

Hpc-Online/HasnatPhysicsClasses Muzaffarpur

GR-D23-TEST ID-435-KINEMATICS

Class 11 - Physics

Time A	llowed: 1 hour	Maximum Marks	s: 30
1.			[1]
	The displacement of the body in last 2s is:		
	a) $\frac{2v(n-1)}{n}$	b) $\frac{v(n+1)}{n}$	
	c) $\frac{2v(n+1)}{n}$	d) $\frac{v(n-1)}{n}$	
2.	2. For one-dimensional motion displacement is the change in position and is given by		[1]
	a) $\Delta \mathrm{x} = \mathrm{x}_2 - \mathrm{x}_1$	b) $\Delta \mathrm{x} = \left(\mathrm{x}_2 + \mathrm{x}_1 ight)/2$	
	c) $\Delta \mathrm{x} = \mathrm{x}_2 + \mathrm{x}_1$	d) $\Delta x = 2(x_2 + x_1)$	
3.	State true or false:		[1]
	A body could have constant speed but vary	ng velocity.	
4.	State true or false:		[1]
	The ratio of the distances covered by a body falling freely from rest in the first, second and		
	third seconds of its fall is 1:3:5.		
5.	State true or false:		[1]
	A body has a constant velocity but varying speed.		
6.	State true or false:		[1]
	A body having a non-zero acceleration can have a constant velocity.		
7.	State true or false:		[1]
	A body, whatever its motion, is always at rest in a frame of reference which is fixed to the		
	body itself.		
8.	State true or false:		[1]
	A body can be at rest as well as in motion at the same time.		
9.	Fill in the blanks:		[1]
	When a stone tied to a string is whirled in a circular path, the acceleration acting on it is		
	always at angles.		
10.	Fill in the blanks:		[1]
	velocity of a body is defined as the change in position or displacement divided by the		
	time interval in which that displacement oc	cur.	
11.	Fill in the blanks:		[1]
	The motion in which a particle moves to an	d fro about a given point is known as	
12.	Assertion (A): Displacement of a body is the	signed sum of the area under the velocity-time	[1]
	graph.		
	Reason (R): Displacement is a vector quantit	y.	

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.

c) A is true but R is false.

- d) A is false but R is true.
- Assertion: A body can have acceleration even if its velocity is zero at an instant. 13.

[1]

Reason: A body is momentarily at rest when it reverses its direction of motion.

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.

c) A is true but R is false.

- d) A is false but R is true.
- To find the sum of vectors \vec{A} and \vec{B} , we place vector \vec{B} so that its 14.

[1]

- a) tail is at the tail of the vector \vec{A}
- b) direction is the same as that of vector \hat{A}
- c) tail is at the head of the vector A
- d) head is at the head of the vector A
- For vectors \vec{A} and \vec{B} making an angle 'heta', which one of the following relations is correct? 15.

[1]

a)
$$ec{A} imesec{B}=ec{B} imesec{A}$$

b)
$$ec{A} imesec{B}=AB\sin heta$$

c)
$$\vec{A} imes \vec{B} = AB\cos\theta$$

d)
$$ec{A} imesec{B}=-ec{B} imesec{A}$$

Fill in the blanks: 16.

The angle between $(\vec{A} + \vec{B})$ and $(\vec{A} + \vec{B})$ is _____degree.

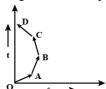
[1]

[1]

- 17. Fill in the blanks:
- The magnitude of a vector is often called its _____, indicated by $|\mathbf{v}| = \mathbf{v}$.

[1]

Assertion (A): The trajectory of projectile is quadratic in x and linear in y. 18.

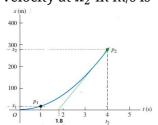

Reason (R): y component of trajectory is independent of x-component.

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.

c) A is true but R is false.

- d) A is false but R is true.
- 19. Which of the following options is correct for the object having a straight line motion represented by the following graph?

[2]

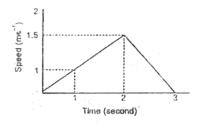

- a) The object moves with constantly increasing velocity from O to A and then it moves with constant velocity.
- b) The graph shown is impossible.
- c) Velocity of the object increases uniformly.
- d) Average velocity is zero.
- A bus starts from rest with an acceleration of 1 m/sec². A man who is 48 meter behind the bus 20. with a uniform velocity of 10 m/sec. Then the minimum time after which the man will catch the bus is

a) 14 sec

b) 4 sec

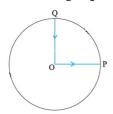
c) 10 sec

- d) 8 sec
- 21. With reference to the figure below which shows a particle moving along a straight line, the y-[2] axis represents the position and x-axis represents time. If $x_2 = 270$ m, the instantaneous velocity at x2 in m/s is



a) 123.0

b) 130


c) 145

- d) 138
- 22. The speed-time graph of a particle moving along a solid curve is shown below. The distance traversed by the particle from t = 0 to t = 3 is:

b) $\frac{9}{5}m$ d) $\frac{9}{2}m$

- A cyclist starts from the centre O of a circular park of radius 1 km, reaches the edge P of the 23. [2] park, then cycles along the circumference anticlockwise from P to Q, and returns to the centre along QO as shown in figure. If the round trip takes 10 min, what is the
 - i. net displacement,
 - ii. average velocity, and
 - iii. average speed of the cyclist?

a) 0, 0, 11.4 km/hr

b) 0, 0, 15.4 km/hr

c) 0, 0, 27.4 km/hr

- d) 0, 0, 21.4 km/hr
- 24. Two particles A and B are connected by a rigid rod AB. The rod slides along perpendicular rails as shown here.

The velocity of A to the left is 10 m/s. What is the velocity of B when angle α = 60°?

[2]

[2]

a) 9.8 m/s

b) 10 m/s

c) 5.8 m/s

d) 17.3 m/s