PHYSICS

Category-I (Q. 1 to 30)

Category-I: Carry 1 mark each and only one option is correct. In case of incorrect answer or any combination of more than one answer, 1/4 mark will be deducted.

একটি উত্তর সঠিক। সঠিক উত্তর দিলে 1 নম্বর পাবে। ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে ¼ নম্বর কাটা যাবে।

When a DC voltage is applied at the two ends of a circuit kept in a closed box, it is observed that the current gradually increases from zero to a certain value and then remains constant. What do you think that the circuit contains?

A resistor alone

- (B) A capacitor alone
- A resistor and an inductor in series (C)
- (D) A resistor and a capacitor in series

একটি বন্ধ বাস্ত্রের মধ্যে রাখা একটি বর্তনীর দুই প্রান্তে DC ভোল্টেজ দিলে দেখা গেল যে প্রবাহ মাত্রা প্রথমে শূন্য থেকে ধীরে ধীরে বাড়তে থাকে একসময় স্থির মাত্রায় পৌছয়। বর্তনীটিতে কী আছে বলে মনে কর?

- (A) শুধুমাত্র একটি রোধ
- তথুমাত্র একটি ধারক (B)
- শ্রেণী সমবায়ে যুক্ত একটি রোধ ও একটি আবেশক (C)
- শ্রেণী সমবায়ে যুক্ত একটি রোধ ও একটি ধারক

Consider the circuit shown. If all the cells have negligible internal resistance, what will be the current through the 2 Ω resistor when steady state is reached?

- (A) 0.66 A
- (B) 0.29 A
- (C) -0 A
- (D) 0.14 A

চিত্রে প্রদর্শিত বর্তনীটি বিবেচনা কর। সমস্ত কোশগুলির অভ্যন্তরীণ রোধ উপেক্ষণীয় হলে অন্তিম সাম্যাবস্থায় পৌঁছানোর পর 2 Ω রোধের মধ্য দিয়ে প্রবাহ মাত্রা কত হবে ?

- (A) 0.66 A
- (B) 0.29 A
- (D) 0.14 A

are then placed in circular loop. What	ting wire of length I of length 'a' (a << R) same plane such that will be the mutual inc	is bent in the for the square loop luctance between	m of a square. is exactly at the the two loops?	The two loop e centre of th
(A) $\mu_0 \frac{\pi a^2}{L}$	(B) $\mu_0 \frac{\pi a^2}{16L}$	(C) $\mu_0 \frac{\pi a^2}{4L}$	(D)	$\mu_0 \frac{a^2}{4\pi L}$
L দৈর্ঘ্যের একটি পরিব (a< <r) আর="" এ<br="" দৈর্ঘ্যের="">লুপকে একই সমতলে সেক্ষেত্রে লুপ দুটির মধ্যে</r)>	বাহী তারকে বাকিয়ে R কটি পরিবাহী তারকে বাা এমন ভাবে রাখা হল ফ পোরস্পরিক আবেশের মা	ক্ষে একটি বর্ণর অ মুর্গাক্তি ভ্রমটি ক	কোর দেওয়া হল।	তারপর ওই দ্যা
(A) $\mu_0 \frac{\pi a^2}{L}$	(B) $\mu_0 \frac{\pi a^2}{16L}$	(C) $\mu_0 \frac{\pi a^2}{4L}$	(D)	$\mu_0 \frac{a^2}{4\pi L}$
An object is placed of mirror is now placed that it covers lower had mirror from the object two mirrors? (A) 40 cm	facing the object in l	between the object rror. What should no parallax between	t and the conver be the distance een the images f	of the plane formed by the
একটি বস্তুকে 30 cm ফো সমতল দর্পণকে তাদের সমতল দর্পণটিকে বস্তুটির ত্রুটি থাকবে না ?	কাস দূরত্বের একটি উত্তর মাঝে এমন ভাবে রাখা হ	ন দর্পণের সামনে 60 লে যে উত্তল দর্পণের	cm দুরে রাখা হল নীচের অর্ধাংশ ঢা	। এরপর একটি কা পড়ে যায়।
(A) 40 cm	(B) 30 cm	(C) 20 cm	(D)	15 cm
A thin convex lens is p coin kept at the bottom poured in the vessel up of the image. Assume t	of the vessel is thus to a height of 64 cm	formed 20 cm abon, what will be the	ove the lens. If i	now water is
(A) 21.33 cm above t		(B) 6.67 cm		
(C) 33.67 cm above the			ove the lens	
80 cm গভীরতার একটি খা যাতে পাত্রের তলায় রাখা এ মধ্যে 64 cm উচ্চতার জল প্রতিসরাঙ্ক 4/3।	াকটি পয়সার প্রতিবিম্ব টে	লম্স-এর 20 cm উ	পরে তৈরী হল।	এবার পাত্রটির
(A) 21.33 cm লেম্স-এর	উপরে	(B) 6.67 cm 7	লম্স-এর নীচে	
The state of the s	4			

4

5.

C

6.	is the	found	to be 1. oximate	5 times th	ne inten	sity of li	ght em	ergin	g from the	other sin	slit expering the will also seems to the will also seems to the will also seems to the will be seen to the	II be
) 2.2		(B)	98		(C) 5		(D)	9.9	
	ইয়	ং-এর লার ত	দ্বি-ছিদ্র প ব্রতার 1.5	রীক্ষায় দে গুণ। সে	খা গেল, ক্ষত্রে সঞ্	এক ছিদ্র গাঁচচ ও সর্ব	থেকে ' নিমু ব্যা	নির্গত তচারে	আলোর তী র আলোর ও	চীব্রতার অনু	ছদ্ৰ থেকে বি পাত কত ?	নৰ্গত
	(A	2.2	5	(B)	98		(C) 5		(D)	9.9	
7.	mo scre ord	nochr een at er mir	omatic li a distand tima ?	ight of weee of 50 c	vaveleng em fron	th 600 in the slit.	what	ne dif will l	fraction p be the line	attern is ar separat	uminated observed of the	on a
									6 mm			•
	আৰে	না দ্বারা	ণর-এর অ প্রভাসিত ফুষ্ণপটির ফ	করা হল এ	মবং 50 c	m দূরে এ	ধ-এর ও কটি পর্দ	াকটি 1 র্নার উপ	ছিদ্রকে 600 পর অপবর্তন) nm তরঙ্গ য সজ্জা তৈর্ব	দৈর্ঘ্যের এব বী হল। সেপ্রে	চবণী ক্ত্ৰে
	(A)	1.0	mm	(B)	1.1 m	m	(C)	0.6	5 mm	(D)	1.2 mm	
3.			Rydberg			⁻¹ , then l	hydrog	en ato	om does n	ot emit ar	ny radiation	n of
		**									$\frac{9}{R}$ to $\frac{144}{7R}$	
			- ¹ মাত্রায় নরণ করে		ধ্রুবক হ	য় তবে হ	াইড্রো জে	ন পর	মাণু যে অং	ংশের তরঙ্গ	দৈর্ঘ্যের বে	গনো
	(A)	$\frac{1}{R}$ to	$\frac{4}{3R}$ cm	(B)	$\frac{7}{5R}$ to	19 5R cm	(C)	$\frac{4}{R}$	$\frac{36}{5R}$ cm	(D)	$\frac{9}{R}$ to $\frac{144}{7R}$	cm
									Y. If their rticle emit		masses are	M _x
		*							of light)			
((A)	$(M_x -$	$M_v - m_c$	c^2			(B)	(M,	$x - M_y + n$	n_e) c^2		
((C)	$(M_x -$	$M_v) c^2$				(D)	(M,	$_{x}-M_{y}-2$	m_e) c^2		
7	নউক্লিয় যথাক্র মালোর	и M _x	ও M _y হ	টো কণা নি য় তবে নি	নঃসরণ ব ঃসৃত বিট	চরে নিউরি া কণার স	ক্লয়াস <u>প্র</u> নর্বোচ্চ ফ	্ সৃষ্টি শক্তি	করে। ত হবে (ধরে	াদের পারম নাও, ই <i>লে</i> র	াণবিক ভর নৈর ভর m	যদি ।
			$M_v - m_e$) c ²			(B)	(M _x	$-M_v + m$	n_e) c^2		
			$M_{\rm v}$) c^2						$-M_y-21$			

9.

- 10. For nuclei with mass number close to 119 and 238, the binding energies per nucleon are approximately 7.6 MeV and 8.6 MeV respectively. If a nucleus of mass number 238 breaks into two nuclei of nearly equal masses, what will be the approximate amount of energy released in the process of fission?
 - (A) 214 MeV
- (B) 119 MeV
- (C) 2047 MeV
- (D) 1142 MeV

119 ও 238-এর কাছাকাছি ভরসংখ্যার নিউক্লিয়াসগুলির ক্ষেত্রে নিউক্লিয়ন প্রতি বন্ধনশক্তি হল যথাক্রমে 7.6 MeV ও 8.6 MeV। যদি 238 ভরসংখ্যার একটি নিউক্লিয়াস প্রায় সমান ভরের দুটি নিউক্লিয়াসে বিভাজিত হয় তবে সেই বিভাজন প্রক্রিয়ায় উদ্ভূত শক্তির পরিমাণ প্রায় কত ?

- (A) 214 MeV
- (B) 119 MeV
- (C) 2047 MeV
- (D) 1142 MeV
- 11. A common emitter transistor amplifier is connected with a load resistance of 6 k Ω . When a small a.c. signal of 15 mV is added to the base emitter voltage, the alternating base current is 20 μ A and the alternating collector current is 1.8 mA. What is the voltage gain of the amplifier?
 - (A) 90
- (B) 640
- (C) 900
- (D) 720

একটি সাধারন নিঃসারক বিবর্ধক-এ $6~{\rm k}\Omega$ লোড রোধ যুক্ত আছে। যখন ভূমি-নিঃসারক বিভবের উপর $15~{\rm mV}$ মানের একটি ক্ষুদ্র পরিবর্তী সংকেত যোগ করা হয় তখন পরিবর্তী ভূমি প্রবাহ হয় $20~{\rm \mu A}$ এবং পরিবর্তী সংগ্রাহক প্রবাহ হয় $1.8~{\rm mA}$ । বিবর্ধকটির ভোল্টেজ লাভ (gain) কত ?

- (A) 90
- (B) 640
- (C) 900
- (D) 720

12. 500 Ω ₹

In the circuit shown, the value of β of the transistor is 48. If the base current supplied is 200 μ A, what is the voltage at the terminal Y?

(A) 0.2 V

- (B) 0.5 V
- (C) 4 V
- (D) 4.8 V

চিত্রে প্রদর্শিত বর্তনীতে ট্রান্জিষ্টারটির β-এর মান 48। ট্রান্জিষ্টারটির ভূমি-প্রবাহের মান যদি 200 μΑ হয় তবে Υ প্রান্তে বিভব কত হবে ?

- (A) 0.2 V
- (B) 0.5 V
- (C) 4 V
- (D) 4.8 V

C

- The frequency v of the radiation emitted by an atom when an electron jumps from one orbit to another is given by $v = k \delta E$, where k is a constant and δE is the change in energy 13. level due to the transition. Then dimension of k is
 - ML²T⁻²
 - the same dimension of angular momentum (B)
 - ML^2T^{-1} (C)
 - (D) $M^{-1}L^{-2}T$

কোনো পরমাণুর মধ্যে একটি ইলেক্ট্রন যখন এক কক্ষ থেকে অন্য কক্ষে সংক্রমিত হয় তখন নিঃসৃত বিকিরণের কম্পাঙ্ক যে সমীকরণ মেনে চলে তা হল v=k δE , যেখানে k একটি ধ্রুবক এবং δE হল ওই দুই কক্ষের শক্তির মানের পার্থক্য। তাহলে k-এর মাত্রা হবে

- ML^2T^{-2} (A)
- কৌণিক ভরবেগের মাত্রার সমান (B)
- $\dot{M}L^2T^{-1}$ (C)
- (D) $M^{-1}L^{-2}T$
- Consider the vectors $\vec{A} = \hat{i} + \hat{j} \hat{k}$, $\vec{B} = 2\hat{i} \hat{j} + \hat{k}$, $\vec{C} = \frac{1}{\sqrt{5}}(\hat{i} 2\hat{j} + 2\hat{k})$. What is the value of \vec{C} . $(\vec{A} \times \vec{B})$?
 - (A) 1

(B) 0

(C) $3\sqrt{2}$

 (\cancel{D}) $18\sqrt{5}$

 $\vec{A} = \hat{i} + \hat{j} - \hat{k}$, $\vec{B} = 2\,\hat{i} - \hat{j} + \hat{k}$, $\vec{C} = \frac{1}{\sqrt{5}}$ $(\hat{i} - 2\,\hat{j} + 2\,\hat{k})$. ভেক্টরগুলি বিবেচনা কর। সেক্ষেত্রে

 \vec{C} . $(\vec{A} \times \vec{B})$ -এর মান কত ?

(A) 1

(B) 0

(C) $3\sqrt{2}$

(D) $18\sqrt{5}$

P.T.O.

15.	A fighter plane, flying horizontally with a speed 360 kmph a bomb for a target straight ahead of it on the ground. The bor approximate distance ahead of the target? Assume that acc	t an altitude of 500 in drops a nb should be dropped at what releration due to gravity (g) is
	10 ms ⁻² . Also neglect air drag.	, e66 m

(A) 1000 m

(B) $\sqrt{50}\sqrt{5}$ m

(C) $500\sqrt{5}$ m

866 m (D)

একটি যুদ্ধবিমান 360 kmph দ্রুতিতে 500 m উচ্চতায় অনুভূমিক পথে চলতে চলতে সোজা সামনের দিকে ভূমিতে অবস্থিত একটি লক্ষ্যের উদ্দেশ্যে বোমা ফেললো। বোমাটি কত দূরত্ব আগেই ফেলতে হবে ? অভিকর্ষজ ত্রণ g-এর মান ধরে নাও $10~{
m ms}^{-2}$ এবং বায়ুর ঘর্ষণ উপেক্ষা কর।

(A) 1000 m

(B) $50\sqrt{5}$ m (C) $500\sqrt{5}$ m

(D) 866 m

A block of mass m rests on a horizontal table with a co-efficient of static friction μ . What 16. minimum force must be applied on the block to drag it on the table?

(A) $\frac{\mu}{\sqrt{1+\mu^2}}$ mg (B) $\frac{\mu-1}{\mu+1}$ mg (C) $\frac{\mu}{\sqrt{1-\mu^2}}$ mg (P) μ mg

একটি অনুভূমিক টেবিলের উপরে m ভরের একটি বস্তু রাখা আছে। টেবিল ও বস্তুটির মধ্যে স্থির-ঘর্ষণ শুণাঙ্ক μ । ব্যুটিকে টেবিলের উপরে টেনে সরাতে হলে কমপক্ষে কত বল প্রয়োগ করতে হবে ?

(A) $\frac{\mu}{\sqrt{1+\mu^2}}$ mg (B) $\frac{\mu-1}{\mu+1}$ mg (C) $\frac{\mu}{\sqrt{1-\mu^2}}$ mg (D) μ mg

A tennis ball hits the floor with a speed v at an angle θ with the normal to the floor. If the 17. collision is inelastic and the co-efficient of restitution is ϵ , what will be the angle of reflection?

(A) $\tan^{-1}\left(\frac{\tan\theta}{\varepsilon}\right)$ (B) $\sin^{-1}\left(\frac{\sin\theta}{\varepsilon}\right)$ (C) $\theta\varepsilon$

(D) $\theta \frac{2\varepsilon}{\varepsilon + 1}$

একটি টেনিস বল v বেগে মেঝের উপর উল্লম্ব রেখার সঙ্গে θ আপতন কোণে আঘাত করল। ধরে নাও মেঝে ও বলের মধ্যে সংঘর্ষটি অস্থিতিস্থাপক এবং স্থিতিস্থাপক গুণাঙ্ক হল ह। সেক্ষেত্রে বলটির প্রতিফলন কোণ কত হবে?

(A) $\tan^{-1}\left(\frac{\tan\theta}{\varepsilon}\right)$ (B) $\sin^{-1}\left(\frac{\sin\theta}{\varepsilon}\right)$ (C) $\theta\varepsilon$

(D) $\theta \frac{2\varepsilon}{\varepsilon + 1}$

- The bob of a swinging seconds pendulum (one whose time period is 2 s) has a small speed v_0 at its lowest point. Its height from this lowest point 2.25 s after passing through it is given by

- (B) $\frac{v_0^2}{g}$ (C) $\frac{v_0^2}{4g}$ (D) $\frac{9v_0^2}{4g}$

একটি সেকেণ্ড পেন্ডুলামের (যার দোলনকাল $2~{
m s}$) পিন্ডটি তার সর্বনিমু অবস্থান, অতি অলপ দ্রুতি ${
m v}_0$ সহ অতিক্রম করে। সেক্ষেত্রে সর্বনিমু অবস্থান অতিক্রম করার 2.25 s পরে পিন্ডটির উচ্চতা কত হবে ?

- (A) $\frac{v_0^2}{2g}$ (B) $\frac{v_0^2}{g}$ (C) $\frac{v_0^2}{4g}$ (D) $\frac{9v_0^2}{4g}$
- A steel and a brass wire, each of length 50 cm and cross-sectional area 0.005 cm2 hang from a ceiling and are 15 cm apart. Lower ends of the wires are attached to a light 19. horizontal bar. A suitable downward load is applied to the bar so that each of the wires extends in length by 0.1 cm. At what distance from the steel wire the load must be

[Young's modulus of steel is 2×10^{12} dynes/cm² and that of brass is 1×10^{12} dynes/cm²]

- (A) 7.5 cm
- (B) 5 cm
- (C) 10 cm

প্রতিটি 50 cm লম্বা ও 0.005 cm² প্রস্থচেছদ বিশিষ্ট একটি ষ্টীলের ও একটি পিতলের তার ছাদ থেকে 15 cm ব্যবধানে ঝোলানো আছে। তার দুটির নীচের প্রান্তদ্বয় একটি অনুভূমিক দণ্ডের সঙ্গে যুক্ত। অনুভূমিক দণ্ডটির কোনো এক বিন্দুতে একটি নিমুমুখী বল প্রয়োগ করা হল যার ফলে দুটি তারেরই 0.1 cm করে দৈর্ঘ্য বৃদ্ধি হল। ষ্টীলের তারটি থেকে ঠিক কত দূরত্বে ওই বল প্রয়োগ করতে হবে ? ষ্ট্রীলের ইয়ং গুণাঙ্ক 2×10^{12} dynes/cm 2 এবং পিতলের ইয়ং গুণাঙ্ক 1×10^{12} dynes/cm 2]

- (A) 7.5 cm
- (B) 5 cm
- (C) 10 cm
- (D) 3 cm
- Which of the following diagrams correctly shows the relation between the terminal 20. velocity V_T of a spherical body falling in a liquid and viscosity η of the liquid ?

কোনো তরলে পতনরত একটি গোলাকার বস্তুর অন্তিম বেগ $V_{_{\mathrm{T}}}$ এবং ওই তরলের সান্দ্রতা η-এর সম্পর্ক, নীচের কোন্ লেখচিত্রটি দ্বারা বোঝায় ?

An ideal gas undergoes the cyclic process abca as shown in the given P-V diagram. It rejects 50 J of heat during ab and absorbs 80 J of heat during ca. During bc, there is no transfer of heat and 40 J of work is done by the gas. What should be the area of the closed curve abca?

(A) 30 J

(Ø 10 J

(D) 90 J

P-V সূচক চিত্রে যেমন দেখানো হয়েছে, একটি আদর্শ গ্যাস abca আবর্ত প্রক্রিয়া সম্পন্ন করে। গ্যাসটি ab প্রক্রিয়ায় 50 J তাপ বর্জন করে এবং ca প্রক্রিয়ায় 80 J তাপ গ্রহণ করে। bc প্রক্রিয়ায় কোনো তাপ গ্রহণ বা বর্জন হয় না কিন্তু গ্যাসটি 40 ়া কার্য্য সম্পন্ন করে। সেক্ষেত্রে abca লেখটি দারা আবদ্ধ ক্ষেত্রের ক্ষেত্ৰফল কত?

(A) 30 J

40 J (B)

10 J (C)

90 J

22.

A container AB in the shape of a rectangular parallelopiped of length 5 m is divided internally by a movable partition P as shown in the figure. The left compartment is filled with a given mass of an ideal gas of molar mass 32 while the right compartment is filled with an equal mass of another ideal gas of molar mass 18 at same temperature. What will be the distance of P from the left wall A when equilibrium is established?

(A) 2.5 m

1.8 m (B)

(C) 3.2 m

2.1 m (D)

চিত্রে যেমন দেখানো হয়েছে, 5 m লম্বা একটি আয়তাকার বদ্ধ আধার AB-এর ভিত্রে একটি চলমান দেয়াল P দিয়ে ভাগ করা আছে। বাঁ দিকের অংশটি 32 আণবিক ভরের একটি আদর্শ গ্যাস দ্বারা পূর্ণ আছে এবং ডান দিকের অংশটি একই তাপমাত্রায় 18 আণবিক ভরের অন্য একটি আদর্শ গ্যাস দ্বারা পূর্ণ আছে। দৃটি গ্যাসের সমান ভর। সেক্ষেত্রে সাম্যাবস্থায় পৌছানোর পরে P দেয়ালটি বাঁ দিকের দেয়াল A থেকে কত দুরতে থাকবে ?

2.5 m (A)

1.8 m (B)

(C) 3.2 m

2.1 m

23. When 100 g of boiling water at 100 °C is added into a calorimeter containing 300 g of cold water at 10 °C, temperature of the mixture becomes 20 °C. Then a metallic block of mass 1 kg at 10 °C is dipped into the mixture in the calorimeter. After reaching thermal equilibrium, the final temperature becomes 19 °C. What is the specific heat of the metal

in C.G.S. unit?
(A) 0.01
(B) 0.3
(C) 0.09
(D) 0.1

100 °C-এ 100 g ফুটস্ত জল 10 °C-এ 300 g জল সহ একটি ক্যালোরিমিটারে ঢালা হল যার ফলে মিশ্রণের তাপমাত্রা হল 20 °C। তারপর 10 °C-এ রাখা 1 kg ভরের একটি ধাতব খণ্ড ওই মিশ্রণে ডোবানো হল। তাপীয় সাম্যাবস্থায় পৌছলে সংস্থাটির অন্তিম উষ্ণতা হল 19 °C। সেক্ষেত্রে C.G.S. এক্কে ধাতুটির আপেক্ষিক তাপ কত ?

(A) 0.01 (B) 0.3 (C) 0.09

0.09 (D) 0.1

As shown in the figure, a point charge $q_1 = +1 \times 10^{-6}$ C is placed at the origin in x-y plane and another point charge $q_2 = +3 \times 10^{-6}$ C is placed at the co-ordinate (10, 0). In that case, which of the following graph(s) shows most correctly the electric field vector in E_x in x-direction?

প্রদর্শিত চিত্রের মতো, একটি বিন্দু আধান $q_1=+1\times 10^{-6}$ C-কে x-y তলে মূল বিন্দূতে রাখা হল এবং আর একটি বিন্দু আধান $q_2=+3\times 10^{-6}$ C-কে (10,0) স্থানাঙ্কে রাখা হল। সেক্ষেত্রে নীচের কোন্ (কোন) লেখচিত্রটি x-অভিমুখে তড়িৎ ক্ষেত্র E_x -এর মান সবথেকে সঠিক ভাবে নির্দেশ করে ?

Four identical point masses, each of mass m and carrying charge +q are placed at the corners of a square of sides 'a' on a frictionless plain surface. If the particles are released simultaneously, the kinetic energy of the simultaneously, the kinetic energy of the system when they are infinitely far apart is (A) $\frac{q^2}{a}(2\sqrt{2}+1)$ (B) $\frac{q^2}{a}(\sqrt{2}+2)$ (C) $\frac{q^2}{a}(\sqrt{2}+4)$ (D) $\frac{q^2}{a}(\sqrt{2}+1)$

m ভর ও +q আধান সম্পন্ন চারটি সদৃশ ক্ষু কণাকে একটি ঘর্ষণহীন সমতলের উপর 'a' দৈর্ঘ্য বিশিষ্ট একটি বর্গের চার কোণায় রাখা হল। কণাগুলিকে যদি এক সঙ্গে ছেড়ে দেওয়া হয় তবে তারা পরস্পর থেকে অসীম দূরত্বে সরে যাওয়ার পর সংস্থাটির মোট গতিশক্তি কত হবে ? (A) $\frac{q^2}{a}(2\sqrt{2}+1)$ (B) $\frac{q^2}{a}(\sqrt{2}+2)$ (C) $\frac{q^2}{a}(\sqrt{2}+4)$ (D) $\frac{q^2}{a}(\sqrt{2}+1)$

A very long charged solid cylinder of radius 'a' contains a uniform charge density p. Dielectric constant of the material of the cylinder is k. What will be the magnitude of electric field at a radial distance 'x' (x < a) from the axis of the cylinder? (A) $\rho \frac{x}{\varepsilon_0}$ (B) $\rho \frac{x}{2k\varepsilon_0}$ (C) $\rho \frac{x^2}{2a\varepsilon_0}$ (D) $\rho \frac{x}{2k}$

একটি 'a' ব্যাসার্ধের খুব লম্বা আহিত নিরেট চোঙ-এর আধান ঘনত্ব হল ho। চোঙটির উপাদানের পরাবৈদ্যুতিক ধ্রুবক k। তাহলে চোঙটির ব্যাসার্ধ বরাবর 'x' (x < a) দূরত্বে তড়িৎক্ষেত্রের মান কত ?

(A) $\rho \frac{x}{\epsilon_0}$ (B) $\rho \frac{x}{2k\epsilon_0}$ (C) $\rho \frac{x^2}{2a\epsilon_0}$ (D) $\rho \frac{x}{2k}$

A galvanometer can be converted to a voltmeter of full-scale deflection V_0 by connecting a series resistance R₁ and can be converted to an ammeter of full-scale deflection I₀ by connecting a shunt resistance R2. What is the current flowing through the galvanometer at

(A) $\frac{V_0 - I_0 R_2}{R_1 - R_2}$ (B) $\frac{V_0 + I_0 R_2}{R_1 + R_2}$ (C) $\frac{V_0 - I_0 R_1}{R_2 - R_1}$ (D) $\frac{V_0 + I_0 R_1}{R_1 + R_2}$

একটি গ্যালভানোমিটারকে V₀ সর্বোচ্চ বিক্ষেপের একটি ভোল্টমিটারে পরিণত করতে হলে R₁ রোধ শ্রেণী সমবায়ে যুক্ত করতে হয় এবং I₀ সর্বোচ্চ বিক্ষেপের একটি অ্যাম্মিটারে পরিণত করতে হলে R₂ রোধ সমান্তরাল সমবায়ে যুক্ত করতে হয়। সেক্ষেত্রে গ্যালভানোমিটারটির সর্বোচ্চ বিক্ষেপে তার মধ্য দিয়ে প্রবাহ মাত্রা কত হয়?

(A) $\frac{V_0 - I_0 R_2}{R_1 - R_2}$ (B) $\frac{V_0 + I_0 R_2}{R_1 + R_2}$ (C) $\frac{V_0 - I_0 R_1}{R_2 - R_1}$ (D) $\frac{V_0 + I_0 R_1}{R_1 + R_2}$

As shown in the figure, a single conducting wire is bent to form a loop in the form of a circle of radius 'r' concentrically inside a square of side 'a', where a: r = 8: π . A battery B drives a current through the wire. If the battery B and the gap G are of negligible sizes, determine the strength of magnetic field at the common centre O.

(A)
$$\frac{\mu_0 I}{2\pi a} \sqrt{2} (\sqrt{2} - 1)$$

(B)
$$\frac{\mu_0 I}{2\pi a} (\sqrt{2} + 1)$$

(C)
$$\frac{\mu_0 I}{\pi a} 2\sqrt{2} (\sqrt{2} + 1)$$

(D)
$$\frac{\mu_0 I}{\pi a} 2\sqrt{2} (\sqrt{2} - 1)$$

একটি পরিবাহী তারকে প্রদর্শিত চিত্রের মতো বাঁকিয়ে 'a' দৈর্ঘ্যের একটি বর্গ ও তার ভিতরে 'r' ব্যাসার্ধের একটি সমকেন্দ্রিক বৃত্তের আকার দেওয়া হল যাতে $a: r=8: \pi$ হয়। শ্রেণী সমবায়ে যুক্ত একটি কোশ B লুপটিতে তড়িৎ প্রবাহ সৃষ্টি করল। B কোশ ও G ফাঁকটির আকার যদি নগন্য হয় তবে লুপটির সাধারণ কেন্দ্র O-তে চুম্বক ক্ষেত্রের মান কত ?

(A)
$$\frac{\mu_0 I}{2\pi a} \sqrt{2} (\sqrt{2} - 1)$$

(B)
$$\frac{\mu_0 I}{2\pi a} (\sqrt{2} + 1)$$

(C)
$$\frac{\mu_0 I}{\pi a} 2\sqrt{2} (\sqrt{2} + 1)$$

(D)
$$\frac{\mu_0 I}{\pi a} 2\sqrt{2} (\sqrt{2} - 1)$$

As shown in the figure, a wire is bent to form a D-shaped closed loop, carrying current I, where the curved part is a semi-circle of radius R. The loop is placed in a uniform magnetic field \vec{B} , which is directed into the plane of the paper. The magnetic force felt by the closed loop is

- (A) 0
- IRB (B)
- 2IRB (C)
- (D) $\frac{1}{2}$ IRB

প্রদর্শিত চিত্রের মতো একটি পরিবাহী তারকে R ব্যাসার্ধের অর্ধবৃত্তের মতো বাঁকিয়ে একটি D আকৃতির বদ্ধ বর্তনী গঠন করা হয়েছে যার মধ্যে প্রবাহ মাত্রা হল । বর্তনীটিকে একটি সুষম চৌম্বকক্ষেত্র Bি-তে স্থাপন করা হল। চৌম্বকক্ষেত্রটি পৃষ্ঠার ভিতর দিকে লম্ব ভাবে ক্রিয়াশীল। সেক্ষেত্রে সমগ্র বর্তনীর উপর প্রযুক্ত বলের মান কত?

- (A) 0
- IRB (B)
- 2IRB (C)
- (D) $\frac{1}{2}$ IRB

What will be the equivalent resistance between the terminals A and B of the infinite resistive network shown in the figure?

- (A) $\frac{(\sqrt{3}+1)R}{2}$ (B) $\frac{(\sqrt{3}-1)R}{2}$ (C) $3\frac{R}{2}$
- (D) $(\sqrt{3}+1)R$

চিত্রে প্রদর্শিত রোধের অসীম বর্তনীটির A এবং B প্রান্তে তুল্য রোধ কত ?

- (A) $\frac{(\sqrt{3}+1)R}{2}$ (B) $\frac{(\sqrt{3}-1)R}{2}$ (C) $3\frac{R}{2}$
- (D) $(\sqrt{3}+1)R$

Category-II (Q. 31 to 35)

Carry 2 marks each and only one option is correct. In case of incorrect answer or combination of more than one answer, 1/2 mark will be deducted.

একটি উত্তর সঠিক। সঠিক উত্তর দিলে 2 নম্বর পাবে। ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে 1/2 নম্বর কাটা যাবে।

Two pith balls, each carrying charge +q are hung from a hook by two strings. It is found that when each charge is tripled, angle between the strings double. What was the initial 31. angle between the strings?

(A) 30°

60°

(C) 45°

(D) 90°

প্রতিটি +q আধান যুক্ত দুটি শোলার বল আলাদা আলাদা সুতোর সাহায্যে একটি হুক থেকে ঝোলানো আছে। যদি প্রতিটি শোলার বলের আধান তিন গুণ করা হয় তবে সুতো দুটির মধ্যের কোণ দ্বিগুণ হয়। সতো দৃটির মধ্যে প্রাথমিক কোণ কত ছিল ?

(A) 30°

(B) 60°

(C)

90° (D)

A conducting circular loop of resistance 20 Ω and cross-sectional area 20 \times 10⁻² m² is 32. placed perpendicular to a spatially uniform magnetic field B, which varies with time t as $B = 2 \sin (50 \pi t)$ T. Find the net charge flowing through the loop in 20 ms starting from t = 0.

(A) 0.5 C

(B) 0.2 C

(C) 0 C

 $20~\Omega$ রোধ ও $20 \times 10^{-2}~{
m m}^2$ ক্ষেত্রফল বিশিষ্ট একটি বৃত্তাকার পরিবাহী লুপ্রেক সুষম চৌম্বকক্ষেত্র B-এর উল্লম্ব তলে রাখা হল। চৌম্বকক্ষেত্রটি সময় t-এর সঙ্গে B=2sin(50πt) Τ সমীকরণ অনুযায়ী পরিবর্তিত হয়। তাহলে t=0 সময় থেকে শুরু করে 20 ms সময়ের মধ্যে ওই লুপটির মধ্য দিয়ে কত আধান প্রবাহিত হবে?

(A) 0.5 C

(B) 0.2 C (C) 0 C

A pair of parallel metal plates are kept with a separation 'd'. One plate is at a potential 33. +V and the other is at ground potential. A narrow beam of electrons enters the space between the plates with a velocity v₀ and in a direction parallel to the plates. What will be the angle of the beam with the plates after it travels an axial distance L?

(A) $\tan^{-1}\left(\frac{\text{eVL}}{\text{mdv}_0}\right)$ (B) $\tan^{-1}\left(\frac{\text{eVL}}{\text{mdv}_0^2}\right)$ (C) $\sin^{-1}\left(\frac{\text{eVL}}{\text{mdv}_0}\right)$ (D) $\cos^{-1}\left(\frac{\text{eVL}}{\text{mdv}_0^2}\right)$

দৃটি সমান্তরাল ধাতব পাত পরস্পর 'd' দূরতে রাখা আছে। একটি পাত +V বিভবের সঙ্গে ও অন্যটি ভূমি বিভবের সঙ্গে যুক্ত আছে। অতঃপর পাত দুটির সঙ্গে সমান্তরাল পথে ইলেক্ট্রনের একটি সুক্ষ্ স্রোত, পাত দৃটির মধ্যবর্তী স্থানে ${
m v}_0$ বেগে প্রবেশ করলো। সেক্ষেত্রে অক্ষ বরাবর ${
m L}$ দূরত্ব অতিক্রম করার পর স্রোতটি পাত দটির সঙ্গে কত কোণ সৃষ্টি কর্বে?

(A) $\tan^{-1}\left(\frac{\text{eVL}}{\text{mdv}_0}\right)$ (B) $\tan^{-1}\left(\frac{\text{eVL}}{\text{mdv}_0^2}\right)$ (C) $\sin^{-1}\left(\frac{\text{eVL}}{\text{mdv}_0}\right)$ (D) $\cos^{-1}\left(\frac{\text{eVL}}{\text{mdv}_0^2}\right)$

34. A metallic block of mass 20 kg is dragged with a uniform velocity of 0.5 ms⁻¹ on a horizontal table for 2.1 s. The co-efficient of static friction between the block and the table is 0.10. What will be the maximum possible rise in temperature of the metal block if the specific heat of the block is 0.1 C.G.S. unit? Assume g = 10 ms⁻² and uniform rise in temperature throughout the whole block. [Ignore absorption of heat by the table]

(A) 0.0025 °C

(B) 0.025 °C

(C) 0.001 °C

(D) 0.05 °C

 $20~{
m kg}$ ভরের একটি ধাতব বস্তুকে $0.5~{
m ms}^{-1}$ বেগে একটি অনুভূমিক টেবিলের উপর $2.1~{
m s}$ ধরে টানা হল । ওই বস্তুটি এবং টেবিলের মধ্যে স্থির ঘর্ষণ গুণাঙ্ক হল $0.10~{
m l}$ বস্তুটির উপাদানের আপেক্ষিক তাপ $0.1~{
m C.G.S.}$ একক হলে বস্তুটির তাপমাত্রা সর্বাধিক কত বৃদ্ধি পেতে পারে ? মনে কর ${
m g}=10~{
m ms}^{-2}$ এবং বস্তুটির সর্বাংশে সুষম ভাবে তাপমাত্রা বৃদ্ধি হয় । (টেবিল দ্বারা তাপীয় শোষণ উপেক্ষা কর)

(A) 0.0025 °C

(B) 0.025 °C

(C) 0.001 °C

→ % (D) 0.05 °C

35. Consider an engine that absorbs 130 cal of heat from a hot reservoir and delivers 30 cal heat to a cold reservoir in each cycle. The engine also consumes 2 J energy in each cycle to overcome friction. If the engine works at 90 cycles per minute, what will be the maximum power delivered to the load?

[Assume the thermal equivalent of heat is 4.2 J/cal]

(A) 816 W

(B) 819 W

(C) 627 W

(B) 630 W

মনে কর একটি ইঞ্জিন প্রতি চক্রে উষ্ণ আধার থেকে 130 cal তাপ গ্রহণ করে ও শীতল আধারে 30 cal তাপ বর্জন করে। এছাড়া ইঞ্জিনটি ঘর্ষণ অতিক্রম করার জন্য প্রতি চক্রে 2 J শক্তি ব্যবহার করে। ইঞ্জিনটি যদি প্রতি মিনিটে 90 চক্র অতিক্রম করে তবে লোড-এ সর্বোচ্চ কত ক্ষমতা প্রদান করতে পারবে ? [ধরে নাও, তাপের যান্ত্রিক তুলাঙ্ক হল 4.2 J/cal]

(A) 816 W

(B) 819 W

(C) 627 W

(D) 630 W

Category-III (Q. 36 to 40)

Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and also no incorrect answer is marked, then score = 2 × number of correct answers. If any wrong option is marked or if answers marked + actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong, but there is no negative marking for the same and zero mark will be awarded.

ত্রমান ক্রিক উত্তর সঠিক। সব কটি সঠিক উত্তর দিলে 2 নম্বর পাবে। যদি কোন ভূল উত্তর না থাকে এবং সঠিক উত্তরও সব কটি না থাকে তাহলে পাবে 2 × যে কটি সঠিক উত্তর দেওয়া হয়েছে তার সংখ্যা

- আসলে যে কটি উত্তর সঠিক তার সংখ্যা। যদি কোনো ভূল উত্তর দেওয়া হয় বা একাধিক উত্তরের মধ্যে
একটিও ভূল থাকে তাহলে উত্তরটি ভূল ধরে নেওয়া হবে। কিন্তু সেক্ষেত্রে কোনো নম্বর কাটা যাবে না, অর্থাৎ
তন্য নম্বর পাবে।

- 36. A charged particle moves with constant velocity in a region where no effect of gravity is felt but an electrostatic field E together with a magnetic field B may be present. Then which of the following cases are possible?

 - (A) $\vec{E} \neq 0, \vec{B} \neq 0$ (B) $\vec{E} \neq 0, \vec{B} = 0$ (C) $\vec{E} = 0, \vec{B} = 0$ (D) $\vec{E} = 0, \vec{B} \neq 0$
- 37. A point source of light is used in an experiment of photo-electric effects. If the distance between the source and the photo-electric surface is doubled, which of the following may result?
 - (A) / Stopping potential will be halved.
 - Photo-electric current will decrease.
 - (C) Maximum kinetic energy of photo-electrons will decrease.
 - (D) Stopping potential will increase slightly.

আলোক-তড়িৎক্রিয়ার একটি পরীক্ষায় একটি বিন্দু উৎস ব্যবহার করা হল। উৎস থেকে আলোক-তড়িৎ পৃষ্ঠের দূরত্ব যদি দ্বিগুণ করা হয় তবে ফলস্বরূপ নীচের কোন্ (কোন) ঘটনা ঘটতে পারে ?

- (A) নিরোধী বিভব অর্ধেক হয়ে যাবে
- (B) আলোক-তড়িৎ প্রবাহ কমে যাবে
- (C) আলোক ইলেক্সনের সর্বোচ্চ গতিশক্তি কমে যাবে
- (D) নিরোধী বিভব সামান্য বৃদ্ধি পাবে

P.T.O.

38	PC-2020 Two metallic spheres of equal outer radii are found to have same moment of inertia about their respective diameters. Then which of the following statement(s) is/are true? (A) The two spheres have equal masses (B) The ratio of their masses is nearly 1.67: 1 (C) The spheres are made of different materials (D) Their rotational kinetic energies will be equal when rotated with equal uniform angular speed about their respective diameters সমান বহিঃব্যাসার্ধ বিশিষ্ট দৃটি ধাতব গোলকের ক্ষেত্রে তাদের নিজ নিজ ব্যাস-অক্ষ সাপেক্ষে জাত্য ভ্রামক সমান। তাহলে নীচের কোন (কোন) উক্তিটি সত্য হতে পারে? (A) গোলক দৃটির ভরের অনুপাত প্রায় 1.67: 1 (C) গোলক দৃটি ভিন্ন উপাদানে তৈরী (D) গোলক দৃটিকে নিজ নিজ ব্যাস-অক্ষ সাপেক্ষে সমান ও সৃষম কৌনিক বেগে ঘোরালে তাদের ঘূর্ণন গতিশক্তি সমান হবে
39.	A simple pendulum of length ℓ is displaced so that its taught string is horizontal and then released. A uniform bar pivoted at one end is simultaneously released from its horizontal position. If their motions are synchronous, what is the length of the bar? (A) $\frac{3\ell}{2}$ (B) ℓ (C) 2ℓ (D) $\frac{2\ell}{3}$ (E) ℓ (The function of the bar of the position of the position of the position of the part
40.	(A) $\frac{3\ell}{2}$ (B) ℓ (C) 2ℓ (D) $\frac{2\ell}{3}$ A 400 Ω resistor, a 250 mH inductor and a 2.5 μ F capacitor are connected in series with an AC source of peak voltage 5 V and angular frequency 2kHz. What is the peak value of the electrostatic energy of the capacitor?
	(A) 2 μJ (B) 2.5 μJ (C) 3.33 μJ (D) 5 μJ একটি 400 Ω রোধ, একটি 250 mH আবেশক ও একটি 2.5 μF ধারক, 5 V শীর্ষমান ও 2kHz কৌণিক কম্পাঙ্কের একটি AC উৎসের সঙ্গে শ্রেণী সমবায়ে যুক্ত করা হল। সেক্ষেত্রে ধারকের স্থির তড়িৎশক্তির শীর্ষমান কত হবে ? (A) 2 μJ (B) 2.5 μJ (C) 3.33 μJ (D) 5 μJ
C	18