

Hasnat Physics Classes Kamaal Lane, Jail Road, Muzaffarpur

PrSh -01-ONE DIMENSIONAL MOTION-L-1

1.	Displacement is a		
	a) tensor	b) Hector	
	c) scalar	d) Vector	
2.	For one-dimensional motion displacement is the change in position and is given by		
	a) $\Delta { m x}={ m x}_2-{ m x}_1$	b) $\Delta \mathrm{x}=\left(\mathrm{x}_{2}+\mathrm{x}_{1} ight)/2$	
	c) $\Delta \mathrm{x} = \mathrm{x}_2 + \mathrm{x}_1$	d) $\Delta x = 2(x_2+x_1)$	
3.	Path length is defined as		
	a) distance from origin to origin.	b) the total length of the path traversed by an object.	
	c) the distance from origin to maximum point.	d) the distance from origin to minimum point.	
4.	A golf ball is released from rest from the top of a very tall building. Calculate the position in m of the ball after		
	$2.00 \text{ seconds.}(g=9.8\text{m/s}^2)$		
	a) 32.1	b) 20.9	
	c) 19.6	d) 22.2	
5.	If the distance covered is zero, the displacement		
	a) may or may not be zero	b) cannot be zero	
	c) must be zero	d) depends upon the particle	
6.	A cyclist moves in such a way that he takes 60° turn seventh turn?	after 100 m. What is the displacement when he takes the	
	a) $100\sqrt{3}$ m	b) 100 m	
	c) 200 m	d) $\frac{100}{\sqrt{3}}$ m	
7.	A cyclist starts from the centre O of a circular park of radius one kilometre, reaches the edge P of the park. Then		
	cycles along the circumference and returns to the centre along QO as shown in the figure. If the round trip takes		

ten minutes, the net displacement and average speed of the cyclist (in metre and kilometre per hour respectively)

a) 0, 1

b) $\frac{\pi+4}{2}$, 0

c) 21.4, $\frac{\pi+4}{2}$

- d) 0, 21.4
- 8. A toy cyclist completes one round of a square 2 m in 40 seconds. What will be the displacement at the end of 3 minutes?
 - a) 16 m

b) Zero

c) 52 m

d) $2\sqrt{2}$ m

- 9. Which of the following is correct?
 - i. Displacement is always equal to the distance.
 - ii. Displacement must be in the direction of the acceleration of the body.
 - iii. Displacement must not be in the direction of velocity.
 - iv. None of these
 - a) Only (ii)

b) Only (i)

c) Only (iv)

- d) Only (iii)
- 10. The magnitude of the displacement is equal to the distance covered in a given interval of time if the particle
 - a) moves with constant speed

- b) moves with constant acceleration
- c) moves with different velocity
- d) moves with constant velocity
- 11. A body starts from rest and travels with constant acceleration . What is the ratio of the distance covered by the body during the 4^{th} and 3^{rd} second.
 - a) $\frac{3}{7}$

b) $\frac{7}{3}$

c) $\frac{7}{5}$

d) $\frac{5}{7}$

- 12. In Kinematics we study ways to
 - a) describe motion without going into the causes of motion.
- b) find jerk without going into the causes of motion.
- c) find acceleration without going into the causes of motion.
- d) find velocity without going into the causes of motion.
- 13. A 100 m long train is moving with a uniform velocity of 45 km/h. The time taken by the train to cross a bridge of length 1 km is:
 - a) 78 s

b) 58 s

c) 68 s

- d) 88 s
- 14. A truck on a straight road starts from rest, accelerating at 2.00 m/s² until it reaches a speed of 20.0 m/s. Then the

	an additional 5.00 s. What is the average velocity in m/s of the truck for the motion described?		
	a) 15.7	b) 17.5	
	c) 154	d) 16.2	
15.	A stone dropped from the top of	f the tower touches the ground in 2 sec. The height of the tower is about:	
	$(g=10 \text{m/s}^2)$		
	a) 40 m	b) 25 m	
	c) 160 m	d) 20 m	
16.	A scooter accelerates from rest	for time t_1 at constant rate a_1 and then retards at constant rate a_2 for time t_2 and	
	comes to rest. The correct value	of $\frac{t_1}{t_2}$ will be	
	a) $\frac{a_2}{a_1}$	b) $\frac{a_1 + a_2}{a_1}$	
	C) $\frac{a_1+a_2}{a_2}$	d) $\frac{a_1}{a_2}$	
17.	An athlete completes one round	of a circular track of radius R in 40 seconds. What will be his displacement at	
	the end of 2 minutes 20 seconds	??	
	a) $7\pi R$	b) 2πR	
	c) Zero	d) 2R	
18.	A ball is dropped on the floor from a height of 10 m. It rebounds to a height of 2.5 m. If the ball is in contact		
	with the floor for 0.01 sec, the a	verage acceleration during contact is:	
	a) $1400 \frac{m}{\sec^2}$	b) $2100 \frac{m}{\sec^2}$ upwards	
	c) $700 \frac{m}{\sec^2}$	b) $2100 \frac{m}{\sec^2}$ upwards d) $2100 \frac{m}{\sec^2}$ downwards	
19.	The change in position or displacement (Δx) divided by the time intervals (Δt), in which the displacement		
	occurs is known as		
	a) acceleration	b) average acceleration	
	c) speed	d) average velocity	
20.	Instantaneous velocity or simply velocity v at an instant t equals		
	a) $\lim_{t o\infty}rac{\Delta x}{\Delta t}$	b) $\lim_{\Delta t o 0} rac{\Delta x}{\Delta t}$	
	c) $\lim_{ ext{t} o 0}rac{\Delta x}{2\Delta t}$	d) $\lim_{ au o 1}rac{\Delta x}{\Delta t}$	

truck travels for 20.0 s at a constant speed until the brakes are applied, stopping the truck in a uniform manner in