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Abstract 

Learning new languages is a complex cognitive task involving 
both implicit and explicit processes. Batterink, Oudiette, 
Reber, and Paller (2014) report that participants with vs. 
without conscious awareness of a hidden semi-artificial 
language regularity showed no significant differences in 
behavioral measures of grammar learning, suggesting that 
implicit/explicit routes may be functionally equivalent. 
However, their operationalization of learning via median 
reaction times might not capture underlying differences in 
cognitive processes. In a conceptual replication, we compared 
rule-aware (n=14) and rule-unaware (n=21) participants via 
drift-diffusion modeling, which can quantify distinct 
subcomponents of evidence-accumulation processes (Ratcliff 
& Rouder, 1998). For both groups, grammar learning was 
manifested in non-decision parameters, suggesting anticipation 
of motor responses. For rule-aware participants only, learning 
also affected bias in evidence accumulation during word 
reading. These results suggest that implicit grammar learning 
may be manifested through low-level mechanisms whereas 
explicit grammar learning may involve more direct 
engagement with encoded target meanings. 

Keywords: artificial language; drift-diffusion; evidence 
accumulation; second language; grammar; implicit; explicit 

Background 

Learning a new language is a complex cognitive task 

involving both explicit and implicit processes (i.e., that do/do 

not involve conscious awareness). Understanding how these 

processes interact is essential to a full account of second 

language (L2) learning (for a review, see Leow, 2015). One 

way to study implicit and explicit language processing comes 

from semi-artificial language paradigms involving covert 

regularities in pseudoword articles encoding word meaning 

(e.g., a word’s living/non-living status). Such studies indicate 

that learning an untaught rule can proceed in the absence of 

conscious awareness in rule-unaware participants, as indexed 

by above-chance accuracy on forced choice tasks (e.g., 

Williams, 2005) and by reaction time slowdowns to rule-

violating exemplars (e.g., Batterink, Oudiette, Reber, & 

Paller, 2014; Leung & Williams, 2011; but cf. Faretta-

Stutenberg & Morgan-Short, 2011), suggesting that explicit 

knowledge is not strictly necessary for learning to occur. At 

the same time, other studies with untaught rules demonstrate 

that learners are likely to acquire both implicit and explicit 

knowledge (e.g., Grey, Williams, & Rebuschat, 2014). A core 

question that underlies the interpretation of such studies is 

whether rule-aware and rule-unaware participants in such 

semi-artificial language paradigms take qualitatively 

different routes to grammar processing, or if their 

performance is underlyingly based on the same mechanisms. 

One possibility is that participants with rule awareness 

consciously and willfully apply strategies such as rule 

searches, generation of explicit predictions, and systematic 

hypothesis testing (Leow, 2015). Indirect evidence for such 

an account comes from word sequence learning paradigms 

that suggest that experiment-initial instruction can improve 

performance on rule-adhering trials but worsen detection of 

rule-violating trials, suggesting functional differences 

between rule-aware/rule-unaware processing (Batterink, 

Reber, & Paller, 2015). However, the presence of explicit 

knowledge does not preclude the possibility that other, more 

implicit kinds of learning can drive task performance 

(Rebuschat et al., 2013). In support of such an interpretation,  

Rose, Haider, and Büchel (2010) found that neural and 

behavioral markers of learning can emerge at time points in 

the experiment before participant reports of the emergence of 

rule awareness, suggesting that conscious rule awareness 

might emerge as a consequence of implicit learning. 

The available evidence on grammar processing in semi-

artificial language experiments (e.g., Leung & Williams, 

2011; Rebuschat, et al., 2013; Batterink et al., 2014) is not 

sufficient to determine whether rule-aware and rule-unaware 

participants use different grammar-processing mechanisms. 

Such studies have typically used linear analyses of measures 

of central tendency (e.g., means or medians) to compare 

reaction times, such that grammar learning can be measured 

as general slowdowns to rule-violating trials relative to rule-

adhering trials. However, a finding that rule-aware and rule-

unaware participants do not differ in these measures (as in 

Batterink et al., 2014) does not allow one to infer that the 

underlying processes were not different in subtler ways that 

do not affect means or medians directly in ways that can be 

detected through a traditional linear analysis (Balota & 

Spieler, 1999; Whelan, 2008). Although 

electroencephalography (EEG) data from one study using a 

semi-artificial language paradigm showed different brain 

responses for rule-aware vs. rule-unaware participants 

(Batterink et al., 2014), as the authors note, interpretation of 

these components is problematic because overlap in 



component timing may cause EEG signals to essentially 

cancel each other out. As such, in addition to the processing 

signal that rule-aware participants evidenced (claimed to 

reflect explicit processing), they may have also engaged the 

same grammar processing activity as rule-unaware 

participants. This processing signal (claimed to reflect 

implicit processing) may have been obscured by overlap with 

processing signal that was detected in these learners.1 Due to 

limitations of previous behavioral and EEG data analysis 

approaches, it is not yet established whether grammar 

processing in rule-aware/rule-unaware participants involves 

distinct mechanisms. 

This study aims to address this gap in the extant research 

through drift-diffusion modeling (Ratcliff & Rouder, 1998), 

which belongs to a family of evidence-accumulation models 

that allow one to determine precisely how different 

participant groups might vary in their response time 

characteristics even when the central tendencies of their 

reaction time distributions are the same. The drift-diffusion 

model is based on the idea that each decision in a two-choice 

context is made in a continuous fashion by sampling noisy 

evidence that accumulates until a decision boundary 

threshold has been crossed in favor of one response or the 

other for each trial. Because such models simultaneously fit 

response times and accuracy/choice direction, drift-diffusion 

modeling can also account for speed-accuracy tradeoffs. 

 Drift-diffusion modeling allows us to determine whether 

participants differ in terms of model parameter estimates that 

capture certain constructs from cognitive psychology, i.e.: 

• v: speed of evidence accumulation towards the response 

in each experimental trial;  

• z: bias in evidence accumulation towards one response 

or another, at the start of each trial;  

• t0: time spent in non-decision-related processes, e.g., 

tied to factors like speed of motor responses or of low-

level perception; 
• a: threshold of accumulated evidence before a response 

is provided in each experimental trial 

Trial-to-trial within-person variance in any of the parameters 

listed above can be formally included in the model, e.g., as 

sv, the standard deviation of v; as sz, the standard deviation of 

z, etc. Finally, testing for significant differences in these drift-

diffusion parameters allows one to determine how 

experimental manipulations can affect manifestation of the 

constructs from cognitive psychology mentioned above.  

How can the drift-diffusion modeling approach be 

leveraged to determine whether and how conscious rule 

knowledge affects grammar learning? In the original 

experiment design from Batterink et al. (2014; based on the 

semi-artificial language from prior studies, e.g., Williams, 

2005; Leung & Williams, 2011; Faretta-Stutenberg & 

Morgan-Short, 2011), participants are shown four novel 

articles (gi, ul, ro, and ne) and told that these encoded the 

 
1 In this same study, slow-wave and REM sleep showed similar benefits for rule-

aware and rule-unaware participants, suggesting a similar neural mechanism underlying 

both kinds of processing (Batterink et al., 2014). However, this does not rule out the 

distance of a co-occurring English noun, such that two of the 

articles are used with distant referents and two are used with 

nearby referents. However, there was also an underlying, 

untaught regularity in the semantic features encoded by these 

articles: namely, two of the articles were usually used with 

living things (e.g., horse,), and two articles usually used with 

inanimate nouns (e.g., stereo,). As such, learning of the 

underlying rule can be captured via response 

times/accuracies to a “living/non-living” response task across 

trial conditions that adhere to vs. violate the underlying rule. 

Critically, in the experiment presented in Batterink et al. 

(2014), the trial design is such that the living/non-living-

encoding article is presented with an English noun together 

on a screen simultaneously. However, if the pseudoword is 

shown before the English noun, then it is possible to 

disentangle different cognitive processes as described below. 

 How might the drift-diffusion model parameters align 

conceptually with different hypothesized cognitive processes 

of grammar learning in our experiment design? We argue that 

the effects of reading the meaning-encoding article in 

isolation can be manifested in at least two (non-mutually-

exclusive) ways: if the information provided by the 

pseudoword article regarding the correct button selection for 

the upcoming living/non-living response involves any degree 

of motor response anticipation (i.e., if participants become 

attuned to the button response assignments in the experiment 

and thus learn to predict which button is usually associated 

with the correct upcoming response, regardless of what the 

button “means” in terms of grammatically-encoded 

semantics), then differences between rule-adhering and rule-

violating trials would be manifested to some degree via the t0 

parameter, which captures time spent in decision processes 

that are not tied to evidence accumulation from presentation 

of the stimulus that initiates the evidence accumulation 

process, i.e., the English noun in the case of our experiment). 

By contrast, if the information provided by the pseudoword 

article involves any degree of higher-level processes (e.g., 

mentally activating the concept of “living-ness” from the 

semantics grammatically encoded by the artificial language 

article), then effects would be manifested through one of the 

other drift-diffusion model parameters. More specifically, if 

participants start each trial with pre-activation of the 

semantics encoded by the pseudoword article such that 

evidence towards the correct living/non-living response is 

“pre-accumulated,” then differences between rule-adhering 

and rule-adhering trials would be manifested via the z 

parameter, which captures biases in evidence accumulation at 

trial start.  By contrast, if participants’ rule-learning entails 

become faster at activating semantics when a noun appears in 

a rule-adhering (vs. rule-violating) context, then differences 

between these trials would be seen in the v parameter, which 

captures speed of evidence accumulation towards the correct 

response. Alternately, participants could react to rule-

violating combinations by changing the threshold of overall 

possibility that sleep benefits were due to factors that were not strictly cognitive (e.g., 

effects on mood, physical comfort, etc.). 



accumulated evidence that they require before providing a 

living/nonliving response in each trial (parameter a). Finally, 

it is possible that rule-adhering and rule-violating trials could 

differ systematically in how much any of these parameters 

vary on a trial-to-trial basis, in which case we would expect 

significant differences (across rule-adhering/rule-violating 

trials) in the parameters related to variance (i.e., the standard 

deviations captured in parameters sv, sz, and st0 for v, z, and t0, 

respectively). These interpretations of the drift diffusion 

model parameters in the context of our experiment are 

visualized in Figure 1 below. 

 

 
Figure 1: Visualization of drift-diffusion model in the 

context of our experiment paradigm. Not pictured: 

parameters capturing standard deviation of v, t0, and z 

Visualization inspired by Fig. 1 in Vinding et al. (2018) 

 

As discussed above, drift-diffusion modeling allows us to 

determine whether rule-aware vs. rule-unaware participants’ 

response times differ in terms of  model parameter estimates 

that capture constructs from cognitive psychology such as the 

speed of evidence accumulation; bias in evidence 

accumulation; the criterion threshold of evidence before 

response in each trial; and time spent in non-evidence-related 

processes, e.g., tied to factors like speed of motor responses 

or of low-level perception. Testing for significant differences 

in these drift-diffusion parameters would allow us to infer 

whether and how conscious rule knowledge affects grammar 

learning. We ask: 

 

Research Question 1: Do learners in a semi-artificial 

language experiment show evidence of grammar learning 

without conscious awareness (conceptually replicating 

Batterink et al., 2014)? 

 

Research Question 2: Do learners with vs. without 

conscious awareness of a covert grammar rule differ in 

grammar processing as revealed by drift-diffusion modeling, 

and if so, how? 

Methods 

Our study comprises a conceptual replication of a prior semi-

artificial language learning experiment (Batterink et al., 

2014) following a popular paradigm in the field of second 

language acquisition first introduced by Williams (2005). 

Participants 

Participants for this study were right-handed native speakers 

of English (N = 40, 27 female). All participants were 

undergraduate students at a large urban university who 

received psychology course credit for their participation. 

Table 1 shows participant attributes collected via a shortened 

version of the Language Experience And Proficiency 

Questionnaire (LEAP-Q; Marian, Blumenfeld, & 

Kaushanskaya, 2007)  

 

Table 1. Attributes of participants with reported 

languages of all participants. 
Attribute Mean (SD) 

Gender 27 female, 13 male 

Age 18.73 (0.91) 

English reading proficiencya 4.86 (0.34) 

English writing proficiency 4.84 (0.44) 

English-speaking proficiency 4.84 (0.44) 

% reporting additional lg. 90.45% 

Add. lg. reading proficiency 3.54 (1.36) 

Add. lg. writing proficiency 3.26 (1.45) 

Add. lg. speaking proficiency 3.85 (1.14) 

Note: aSelf-report scale ranges from 1 to 5 with 1 labeled “low 

proficiency” and 5 labeled “high proficiency.” 

Procedure 

Participants first provided informed consent and then 

completed a short language background questionnaire to 

confirm their native English proficiency. Then, they 

performed a vocabulary pre-training to become familiar with 

the four novel articles of the semi-artificial language (see 

Table 2). Subsequently, two blocks of the experimental 

reaction time task were performed. Finally, a debriefing was 

conducted to gauge participants’ level of rule awareness.  

 

Table 2: Living/non-living and distance assignment of the 

four semi-artificial language articles. 
 Participants are not told…  

 Living Non-living 

Participants are told…   

Near gi ro 

Far ul ne 

 

Vocabulary Pretraining Participants were explicitly told 

that gi and ro denote nearby referents (e.g., “gi bear,” “ro 

typewriter”) whereas ul and ne denote distant referents (e.g., 

“ul snake,” “ne teacher”). They then performed a written 

forward translation task and an audio-based backward 

translation task to criterion, just as in Batterink et al. (2014). 

 

Reaction Time Task Each experimental trial (Figure 2) 

began with the presentation of a fixation cross for 1000 ms, 

followed by a pseudoword (ul, gi, ro, or ne) for 500 ms, and 

a noun (presented until a living/non-living response was 

provided until a maximum of 500 ms, after which point a 

blank screen replaced the noun on the display). After the 

living/non-living response, participants saw the cue 

“Near/Far?” until this second response was provided based 



on the pseudoword for that trial. Following Batterink et al. 

(2014), the four response options (living/nonliving/near/ far) 

were assigned unique buttons on a standard keyboard.  

 

 
Figure 2: Trial structure for reaction time task. 

 

Half of the presented nouns were living (e.g., horse) and the 

other half were non-living (e.g., stereo). Six out of every 

seven trials were rule-adhering in that they conformed to the 

living/non-living assignment presented in Table 2, with gi 

and ul preceding living nouns and ro and ne preceding non-

living nouns. One randomly selected (rule-violating) trial in 

each set of seven consecutive did not follow this pattern. To 

avoid confounds related to the specific nouns assigned to the 

rule-adhering/rule-violating conditions, stimuli were 

counterbalanced such that a given noun was presented in the 

context of a rule-adhering trial for six out of seven 

participants and in the context of a rule-violating trial for the 

seventh participant. Additionally, for each participant’s 

stimulus list, nouns assigned to rule-adhering vs. rule-

violating conditions did not differ on orthographic word 

length, frequency, concreteness, positive/negative valence, or 

arousal. Each noun’s order of presentation was randomized 

within blocks, and assignment of nouns to either the first 

block or second learning block was counterbalanced across 

participants. Participants performed a short initial practice 

block of six (rule-adhering) trials followed by two learning 

blocks (each comprising 308 experimental trials) with a 

timed five-minute break in between. 

 

Rule Awareness Debriefing Following the main 

experimental task, a systematic debriefing was administered 

to assess the extent of participants' rule awareness. 

Participants were first asked if they had noticed any pattern 

about when the different articles were used, beyond the 

overtly taught near/far rule. If at this point participants 

spontaneously reported that certain articles co-occurred with 

living/nonliving referents more often than others, participants 

were asked at what point they had noticed this pattern (i.e., 

during the first block, the second block, or only when directly 

asked during the debriefing). Following the procedure in 

Batterink et al. (2014), participants who produced the correct 

pattern and reported having noticed it during either the first 

or second experimental block were classified as rule-aware. 

Otherwise, they were classified as rule-unaware. 

Analysis 

Linear Analysis.   To replicate Batterink et al.’s (2014) linear 

analysis procedure as closely as possible for Research 

Question 1, our initial measure of rule learning was the Rule 

Learning Index (RLI), which comprises response time 

slowdowns for the living/non-living response in rule-

violating trials relative to rule-adhering trials. Data from each 

of the two experimental blocks were divided into four epochs 

of equal length, yielding eight total epochs. Participants’ 

median RLIs were compared using a Greenhouse-Geisser-

corrected mixed 2x2x8 ANOVA, with Awareness (rule-

aware vs. rule-unaware) as a between-participants factor and 

Trial Condition (rule-adhering vs. rule-violating trial) and 

Epoch (for each of eight experimental epochs) as within-

participant factors. Only trials with correct responses to the 

living/non-living judgment were included in this analysis. 

 

Drift-Diffusion Analysis. To test for differences between 

rule-aware/rule-unaware participants as per Research 

Question 2, drift-diffusion modeling was performed on the 

living/non-living responses using the rtdists package 

(Singmann, Brown, Gretton, & Heathcote, 2020) for the R 

scripting language. Data were first cleaned by removing 

reaction times faster than 200 ms and slower than 3000 ms, 

and only correctly-responded trials were included. Only data 

from the second block were used, to ensure that enough time 

had elapsed for sufficient rule-learning to have occurred.  

Separate models were fit for each participant’s rule-adhering 

and rule-violating trials following the model-fitting 

procedure used in Singmann (2020), with seven parameters: 

v (rate of evidence accumulation for the living/non-living 

response); z (bias in evidence accumulation at start of each 

trial); t0 (non-decision-related times); their standard 

deviations (sv, sz, and st0, respectively); and finally a  

(threshold of accumulated evidence before the living/non-

living response was provided). For each model-fitting  

iteration, starting values for each of the parameters were 

drawn from a random distribution and fitting proceeded until 

relative convergence was achieved as per the nlminb() 

optimizing function. For each of the seven output parameters 

in the model, separate 2x2 mixed effects Analyses of 

Variance (ANOVA) were performed with the within-

participant factor Trial Condition (rule-adhering vs. rule-

violating trials) and the between-participant factor 

Awareness (for rule-aware vs. rule-unaware participants). 

Significant interactions were followed up via Bonferroni-



corrected t-tests with degrees-of-freedom correction for 

unequal variances using the emmeans package for R (Lenth, 

2020). Note that because these data comprise only one 

observation per participant per parameter, running mixed 

effects models to account for random effects is not possible. 

 

Results 

Of the 40 recruited participants, two were excluded due to 

technical issues and three were excluded due to excessively 

low accuracies that were not significantly different from  

chance levels (50%) as per a one-sample t-test on binarily-

coded trial-level values (1=correct, 0=incorrect). Of the 

remaining 35 participants, 14 were coded as aware and 21 as 

unaware based on their debriefing questionnaire responses.  

 

Linear Analysis Results. Figure 3 shows epoch median 

response times to rule-adhering vs. rule-violating trials 

overall as well as separately for rule-aware and rule-unaware 

participants. For both participant groups, we found 

decreasing reaction times over the course of the experiment 

and slower responses to rule-violating trials relative to rule-

adhering trials, as confirmed by our three-way ANOVA 

which yielded a significant main effect of Trial Condition, 

F(1, 33) = 7.36, p = .011, ηp
2 = .18, and of Epoch, F(3.63, 

119.68) = 19.90, p < .001, ηp
2 = .38. By contrast, there were 

no significant main effects or interactions with Awareness 

(all p > .05), reproducing Batterink et al. (2014) and 

suggesting that the learning effect was not different between 

rule-aware and rule-unaware participants, at least when 

measured in terms of median reaction times. 

 

Drift-Diffusion Results. Figure 4 shows boxplots with drift-

diffusion model parameters estimated separately for rule-

adhering vs. rule-violating trials and for rule-aware vs. rule-

unaware participants. Our mixed-effects ANOVAs showed 

no significant effects from either Trial Condition, Awareness, 

or their interaction on the parameters v, a, sv, sz0, or sz. For the 

t0 parameter, there was a main effect of Trial Condition, F(1, 

33) = 15.41, p < .001, ηp
2 = .32 such that rule-violating trials 

showed higher t0 values (M = 0.46, SD = 0.19) relative to rule-

adhering trials (M = 0.39, SD = 0.16), t(33) = 3.93, p < .001.) 
Neither Awareness nor the interaction of Trial Condition and 

Awareness showed statistically significant effects on t0 (ps > 

.05). The z parameter showed a significant interaction of 

Awareness by Trial Condition, F(1, 36) = 6.14, p = .018, such 

that rule-aware participants showed higher bias towards the 

correct response for rule-adhering (M = 0.54, SD = 0.11) 

relative to rule-violating trials (M = 0.43, SD = 0.17), t(33) = 

Figure 4. Drift-diffusion model parameters for rule-adhering vs. rule-violating trials, shown 

separately for rule-aware vs. rule-unaware participants. 

 

Figure 3: Epoch median response times to rule-adhering vs. rule-violating trials, calculated per 

participant. This is shown both overall and separately for rule-aware vs. rule-unaware participants. 



2.51, p = .017. By contrast, for rule-unaware participants, 

bias at the start of the trial did not differ significantly between 

rule-adhering (M = 0.46, SD = 0.08) and rule-violating (M = 

0.51, SD = 0.15) trials, t(33) = 1.36, p = .183.  

Discussion 

We aimed to explore whether and how awareness of a covert 

grammatical rule would affect reaction times in a semi-

artificial language learning task. For Research Question 1, 

our linear analysis reproduced prior findings from Batterink 

et al. (2014) in that both rule-aware and rule-unaware 

participants showed slow-downs to rule-violating trials, 

indicative of grammar learning. This aligns with other 

findings using a similar experimental paradigm (e.g., 

Williams, 2005; Leung & Williams, 2011) and contradicts 

the failure to replicate grammar learning effects in rule-

unaware participants from Faretta-Stutenberg et al. (2011). 

More broadly, it suggests that overt instruction might not be 

necessary for learners to acquire L2 grammar regularities. 

However, as discussed above, such a linear analysis that is 

based on measures of central tendency might not capture 

subtleties in how rule-aware and rule-unaware participants 

might perform differently in this task, even if the overall 

slowdown effect is similar (e.g., Balota & Spieler, 1999; 

Whelan, 2008). For this, we turn to our results from Research 

Question 2. Our drift-diffusion models suggest that rule 

learning (as captured by differences between rule-adhering 

vs. rule-violating trials) affected (a) non-decision-related 

response times (e.g., tied to factors like motor response speed 

that lie outside of the process of evidence accumulation) in 

all participants, and (b) bias in evidence accumulation (i.e., 

towards or against the correct response, at the beginning of 

each trial) in rule-aware participants only. The fact that 

significant differences were found between rule-aware vs. 

rule-unaware participants in the first place suggests that rule 

awareness is indeed tied to differences in task performance. 

This answers in the affirmative the question of whether rule-

learning makes a difference for grammar learning. We turn 

now to a discussion of how rule-learning makes a difference. 

We found that, for both rule-aware and rule-unaware 

participants, the rule-learning effect was manifested in the t0 

parameter, such that rule-violating trials had longer non-

decision times than rule-adhering trials. Recall that the t0 

parameter captures processes that lie outside of evidence 

accumulation from the presented stimulus (in this case, the 

English noun). For instance, t0 could be affected if 

participants anticipate the correct button press prior to the 

presentation of the noun. This seems plausible in the case of 

our experiment design, which (as mentioned above, and 

following prior work with this semi-artificial language 

paradigm, e.g., Leung & Williams, 2011; Batterink et al., 

2014) assigns a unique button for each of the possible 

response options in the trial (“near,” “far,” “living,” and 

“non-living”), making it possible for participants to prepare a 

living/non-living response immediately upon seeing the 

ul/gi/ro/ne pseudoword. Although this approach would not 

yield the correct response for the rule-violating trials, it 

would be sufficient for correctly responding to six-sevenths 

of the trials (i.e., the rule-adhering trials) and achieving 86% 

accuracy in the experiment overall. However—and most 

critically for the purposes of investigating how people learn 

grammatically-encoded meanings—this outcome would 

merely reflect arbitrary motor preparation responses from our 

specific idiosyncratic experiment context, devoid of the 

semantic meaning that is purportedly the target of learning. 

For rule-aware participants only, rule learning was also 

manifested in the z parameter, such that rule-adhering trials 

showed significantly more bias towards the correct answer 

relative to rule-violating trials. Recall that the z parameter 

reflects bias in evidence accumulation at the start of each 

trial, i.e., if participants have acquired evidence for a 

living/non-living response before the noun is presented. This 

is distinct from other possible mechanisms of learning that 

could be detected by the drift-diffusion model, e.g., 

accumulating evidence from the noun more slowly or 

responding more cautiously to rule-violating trials relative to 

rule-adhering trials. Importantly, the z parameter is distinct 

from the t0 parameter in that bias from the z parameter 

interacts with other decision-related components like the 

evidence accumulation rate (parameter v) and the response 

boundary threshold (parameter a), in affecting the reaction 

time that is ultimately measured for each trial. By contrast, t0 

is “agnostic” to these other components and instead shifts the 

entire evidence accumulation process to an earlier/later 

ultimate response time, regardless of the relative timing of its 

subcomponents. Seen in this way, our findings seem to 

distinguish between learning that involves higher-order 

cognitive processes (e.g., pre-activation of the semantics of a 

noun based on grammatically-encoded meaning) vs. learning 

that involves lower-level mechanisms (e.g., motor 

anticipation based on recurring patterns particular to a task 

context).A 

Our findings provide evidence that rule-aware and rule-

unaware grammar learners engage different mechanisms. 

However, at this stage, our evidence cannot speak to the exact 

relationship between implicit and explicit learning. In what 

has been referred to as the “interface debate” (for a review 

see Leow, 2015), prior competing models in the field of 

second language acquisition have argued as to whether 

explicit L2 learning helps, has no direct relationship with, or 

(as in Ellis & Sagarra, 2010) can even hinder L2 implicit 

learning. Hopefully future studies can leverage the power of 

drift-diffusion modeling to expand on this line of inquiry, 

e.g., by determining whether the higher-level learning 

associated with conscious rule-awareness is predicated on 

lower-level learning tied to motor response prediction in this 

paradigm. As Rebuschat et al. (2013) write, “one needs to ask 

what processes contributed to participants suddenly 

becoming aware of a feature in the first place.”  

We have identified several future directions for this line of 

research. First, we have adapted this experiment so that motor 

response preparation from the hidden semi-artificial language 

grammar rule is not possible, e.g., by randomizing button 

assignment on each trial so that the correct response cannot 



be anticipated prior to noun presentation. This would allow 

us to test whether implicit grammar learning can occur in 

regard to word meaning, vs. in regard to lower-level 

processes related to motor anticipation of idiosyncratic 

button-pressing sequences in a particular task design. We are 

currently undertaking data collection for precisely such a 

study. Because this round of data collection also involves 

counter-balancing this new, randomized-button trial design 

with the non-randomized trial design presented in these data, 

we aim for a controlled comparison across the two conditions 

as well as a larger dataset to validate the findings presented 

in the current study. This would also allow us to investigate 

how differences in prior language experience across 

experiment participants can affect grammar learning in our 

experiment paradigm. 

   Beyond contributing to theoretical debates on 

implicit/explicit language learning, our findings may be 

relevant for teaching praxis in illustrating a crucial distinction 

between L2 grammar learning that is based on understanding 

of underlying encoded meanings vs. learning that is based on 

exploiting aspects of the task design that allow learners to 

produce correct answers without necessarily attending to the 

target meanings directly (e.g., systematically choosing the 

verb “are” instead of “is” because the preceding noun ends in 

-s, without understanding that this suffix denotes plurality). 

We are enthusiastic about the translational potential of drift-

diffusion modeling for language teaching praxis, e.g., by 

suggesting how educators might (at different times and for 

different short-term teaching purposes) intentionally exploit 

vs. avoid features of classroom task design that invoke the 

kind of low-level learning processes we describe here. 
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