LGB TRAINING COURSE

This was for engineer training on LCD's put together by Thierry Borel.

PRINCIPLE TRAINING

- General training
 - LCD Pixel Structure
 - Optical Effects
 - Electrical Effects
 - LCD Panel Structure
 - Active Matrix Displays
 - Structure
 - Addressing Techniques
 - General Electronics Block Diagram
 - LCD Drivers
 - LCD Controller
 - Upstream Video Processing
 - Back Lighting
 - Characterization Principles
 - Main Optical Parameters to Examine
 - Measurement Methods and Tools

ADDITIONAL TRAINING For interested audiences!

Annex training

- Passive Matrix displays
 - Structure
 - STN
 - Addressing
- Viewing angle improvements
 - Gray level inversion
 - Compensation film
 - Multidomain
 - IPS

Some LCD Applications

Application	Typical Definition (Column x Line)	Colors	Typical Size (Diagonal)	Special Characteristics
Laptop PC	800 x600 SVGA 1024x768 XGA	3x6 bits	12" – 15" (Palmtop ~8")	Low power
PC-Monitor	1024x768 XGA 1280x1024 SXGA	3x6 bits 3x8 bits	14"5 – 21" ~17"-25" CRT	Very wide viewing angle
PDA	640x240 1/2 VGA	Monochrome or up to 3x6 bits	6"4	Low power or reflective
Automotive	(320+X)x240 QVGA (640+X)x480 VGA X: 16/9 add. Pixels	3x6 bits or analog	5" - 8"	Wide viewing angle
View Finder (Camcorder, Still camera)	320x240 QVGA	3x6 bits or analog	2" to 6"	Wide viewing angle
Light Valve (Projection)	1024x768 XGA 1280x1024 SXGA	Analog	0.7" - 1"3	High light output
LCOS (Rearprojection)	1024x768 XGA 1280x1024 SXGA 1920x1080 HDTV	3x8 bits or analog	0.5" - 0.7 - 1"	Very small size high light output

GENERAL TRAINING

PRINCIPLE TRAINING

- General training
 - LCD pixel structure
 - Optical effect
 - Electrical effect
 - LCD panel structure
 - Active matrix displays
 - Structure
 - Addressing techniques
 - General electronics block diagram
 - LCD drivers
 - LCD controller
 - Upstream video processing
 - Back lighting
 - Characterization principles
 - Main optical parameters to look at
 - Measurement methods and tools

Liquid Crystal is a birefringent material

- Optical anisotropy Δn
- Dielectric anisotropy $\Delta \epsilon$
- The propagation speed of the light depends on the position of the polarization plane versus the birefringence axis

Liquid Crystal is a birefringent material

- Optical anisotropy Δn
- Dielectric anisotropy $\Delta \epsilon$
- The propagation speed of the light depends on the position of the polarization plane versus the birefringence axis

Basic Electro Optic Effect - the Fréedericksz Effect

Basic Electro Optic Effect - the Fréedericksz Effect

This simple structure cannot be used to build a display:

- As the optical thickness is fixed
- Contrast would be very different for different wave lengths
- High spectral dispersion

□Note that LC tilt can have 2 different positions

 This defect is corrected by pre-tilting the LC molecules due to use of an alignment layer

Particular case of a any LC layer

- Whatever the phase difference: δ
- If the polarizer is parallel to the birefringent axis ($\alpha = 0^{\circ}$)

THE SOLUTION IS THE TN EFFECT

Cell gap 3-10µm

□Alignment by rubbed polymer layer

Transparent ITO electrodes

Control of polarization of light by birefringence

Liquid Crystal is a structured liquid which shows a macroscopic structure

• The TN 90° LC structure is the most common one on active matrix LCD

All LCD (Liquid Crystal Display) needs polarized light to display pictures

- exception: Polymer Dispersed Liquid Crystal (PDLC)
 - used for electrically controlled tinted windows
 - Not addressed in this training
- Crossed polarizer technique is used as it offers an achromatic bright state

A Liquid Crystal Display is made of:

- A layer of Liquid Crystal sandwiched between two transparent substrates
- 2 transparent electrodes that can drive an electric field
- By controlling the electric field, polarization plane is more or less rotated and the light is more or less blocked by the analyzer.
- As LC is an insulating material, the pixel is considered as a capacitor

Picture quality mainly comes from:

- Transmission efficiency to have the maximum brightness
- Polarizer quality and adjustments to get the better black state possible
- Intrinsic LC material quality: response time, wavelength dependency,...

Pixel OFF => LC molecules stay twisted

Pixel ON => LC molecules turn towards the electric field direction.

Twisted structure is lost

Pixel ON => LC molecules turn towards the electric field direction.

Twisted structure is lost

WHATEVER THE POLARITY

By modulating the value of \vec{E} , gray shades can be created

Response time is an important parameter depending on cell gap and LC material

Pixel ON => LC molecules turn towards the electric field direction.

Twisted structure is lost

WHATEVER THE POLARITY

We have seen that LC is birefringent

• Optical anisotropy Δn goes together with

• Dielectric anisotropy $\Delta \epsilon = \epsilon_e - \epsilon_0 > 0$

Pixel off => Pixel capacity C_o is proportional to

E₀

Pixel voltage U is 0 Volt

Charge Q is 0 Coulomb

$$Q = C_o \times U = 0$$

We have seen that LC is birefringent

- Optical anisotropy Δn goes together with
- Dielectric anisotropy $\Delta \epsilon = \epsilon_e \epsilon_0 > 0$

•Pixel ON => LC is stressed by an external electric field

•LC does not like to be disturbed and will try to do its best to decrease the electric field

•The LC molecules have just to turn towards the field direction to increase C from C_o to C_e

Pixel voltage is less than 6V

- The goal is to go below 3V to decrease LCD driver cost
- Most of LCD work with crossed polarizers: the higher the voltage, the darker the pixel

 Normally white mode

Normally white mode offer the best black uniformity for direct view displays

• Not true with LCOS projection system where normally black is mostly used

Flicker can be easily eliminated using appropriate addressing schemes

• Line inversion; Column inversion; Dot inversion (See § Active Matrix Addressing techniques)

□If DC voltage is slight, sticking image is reversible

- A DC voltage of less than 50 mV is required
- Sticking images disappear faster when LCD temperature is higher
- Sticking images decrease LCD life time

PRINCIPLE TRAINING

General training

- LCD pixel structure
 - Optical effect
 - Electrical effect

LCD panel structure

- Active matrix displays
 - Structure
 - Addressing techniques
- General electronics block diagram
 - LCD drivers
 - LCD controller
 - Upstream video processing
- Back lighting
- Characterization principles
 - Main optical parameters to look at
 - Measurement methods and tools

Active Matrix Structure Data lines TFT - · - [· -] - · Gate line **Storage capacitor ITO pixel** Continuous counter electrode on 2nd substrate

An LCD panel is a "huge IC" on glass,

- Thin film process => expensive (investment, material, yield)
- Gap homogeneity typically controlled by spacers
- The higher the resolution, the darker the picture for a given size and design rules
- Storage capacity is necessary to increase voltage retention and decrease flicker / sticking image

Active matrix TN effect is widely used

- Wave guide effect. LCD transmission theoritically independent of wavelength
- Large number of gray shades compatible with TV requirements
- POOR viewing angles for TV application

In-Plane Switching Structure (Hitachi)

- Good viewing angle
- Lower response time

Vertically aligned LCD (JVC)

- Good viewing angle and response time
- Difficult to manufacture today

Possibility to integrate drivers:

a-Si integrated drivers on glass

Poly-Si integrated drivers on Quartz

Low temperature P-Si on glass

PRINCIPLE TRAINING

General training

- LCD pixel structure
 - Optical effect
 - Electrical effect
- LCD panel structure
- Active matrix displays
 - Structure
 - Addressing techniques
- General electronics block diagram
 - LCD drivers
 - LCD controller
 - Upstream video processing
- Back lighting
- Characterization principles
 - Main optical parameters to look at
 - Measurement methods and tools

LCD ADDRESSING

LCD Course

Consequences:

- The counter-electrode cannot be perfectly adjusted for all gray levels. DC level risk.
- To decrease the risk, the storage capacitor has to be as high as possible

PRINCIPLE TRAINING

General training

- LCD pixel structure
 - Optical effect
 - Electrical effect
- LCD panel structure
- Active matrix displays
 - Structure
 - Addressing techniques
- General electronics block diagram
 - LCD drivers
 - LCD controller
 - Upstream video processing
- Back lighting
- Characterization principles
 - Main optical parameters to look at
 - Measurement methods and tools

General Electronics Analog Column Driver IC **Digital Column Driver IC** clock clock shift register (240 bit) left/right status left/right shift register (80bit) status status status analog enable enable RGB **TFT** specific video video in 3 x 6 bit data register 1 (240 x 6bit) sample & hold A (240 x) Μ control data register 2 U sample & hold B (240 x) (latch 240 x 6bit) X analog 240 x output circuit control reference output circuit signals voltages (240 x 6 bit DAC) 240 outputs 240 outputs

Gamma correction can be set up by polarizing external ref. Voltages

- Non linear DAC conversion
- 8 bit driver => 256 real optical gray levels
- Sufficient for most PC applications
- Adequate for large screen TV video
- Frequently use more than 8 bit and use some data for adjustment with a effective useable dynamic range of 256 gray scale levels

LCD Controller (6 bit gray scale) for PC

SMART POSITIONING OF LIMITED GREY LEVELS ON A NON CRT DISPLAY

LCD Course

LCD Course

GAMMA Processing Diagram

GAMMA Processing Diagram

The counter-electrode is the most important signal for LCD life time

- It has to be Noise Free
- It must be adjusted in such a way that no flicker is visible
 - Adjustment to be made in row inversion mode
 - Using a black-gray specific pattern

The vertical scanning has to be progressive

- Good de-interlacing algorithm needed in the TV chassis
- Better with motion compensation

Complete digital path for Video Processing available

The gamma correction is the most important function for picture quality

- Make the LCD electro-optical response appear like a CRT one from the outside
- Avoid quantization noise specially in dark regions: more bits in dark
- Unlike on projection systems, gamma correction curves can be the same on R,G and B channels.
- For TV applications, 8 bit or even 10 bit drivers are preferable

PRINCIPLE TRAINING

General training

- LCD pixel structure
 - Optical effect
 - Electrical effect
- LCD panel structure
- Active matrix displays
 - Structure
 - Addressing techniques
- General electronics block diagram
 - LCD drivers
 - LCD controller
 - Upstream video processing
- Back lighting
- Characterization principles
 - Main optical parameters to look at
 - Measurement methods and tools

LCD Course

Back-light Improvements

Benefits:

- Light extraction by direct reflection rather than scattering
- Higher efficiency / better collimation
- Only one manufacturing process (injection mold)
- Only one additional prism film
- Gain in luminance about 30% to screen printed type

Back-light Inverter

PRINCIPLE TRAINING

General training

- LCD pixel structure
 - Optical effect
 - Electrical effect
- LCD panel structure
- Active matrix displays
 - Structure
 - Addressing techniques
- General electronics block diagram
 - LCD drivers
 - LCD controller
 - Upstream video processing
- Back lighting
- Characterization principles
 - Main optical parameters to look at
 - Measurement methods and tools

LCD Characterization

Conoscopic measurement principle

How to characterize a LCD

Critical parameters:

Display parameters

- Brightness : Cd/m² (nit) value, ANSI standard uniformity & Brightness vs viewing angle.
- **Contrast :** White/Black (in dark room) & Contrast uniformity vs viewing angle.
- Color Rendering: R,G&B color coordinates (x/y or u'/v'), Color uniformity over the panel. White coordinates locus vs gray level. Equivalent color temperature.
- Viewing angle: Vertical & Horizontal viewing angle, color shift (du',dv') vs viewing angle. LOOK OUT: Viewing angle values w/o associated contrast does not mean anything
- Pixel defect: R,G &B pixel defect (pixel on or partially on) inside two areas in the panel.

Electronic parameters

- Response Time:
 - Especially for video, ton & toff should be less than fixed value
- Gray Level performances:
 - 6 bits or more?
 - Gray level inversion
- Flicker:
 - if present, adjustment problem
- Power consumption:
 - Backlight & Drivers, stand-by power
- Others effects (if present):
 - cross-talk, still images
How to characterize a LCD

Conoscopic representation:

• Contrast evaluation: function of viewing angle (half space: θ , ϕ). Curves delimit the viewing angle with same contrast for each color example:

How to characterize a LCD Measurements Tools:EZContrast 160D

How to characterize a LCD

Measurements Tools (suggestion):

- Ezcontrast 160D for the Contrast by Eldim (see previous slide)
- Or a precise Luxmeter for White/Black contrast like Luxmeter110 by PRC GmbH.
- Optiscope for Flicker and Response Time by Eldim
- Spectro-photometer for (ex PR 740 from Photo Research):
 - color characterization (over the panel and over the viewing angle)
 - Brightness vs viewing angle
- Or a simple HandPhotometer like Chroma-meter CS-100 by Minolta
 - Brightness and x/y values

ADDITIONAL TRAINING For interested audiences!

Additional training

- Passive Matrix displays
 - Structure
 - STN
 - Addressing
- Viewing angle improvements
 - Gray level inversion
 - Compensation film
 - Multidomain
 - IPS

- RMS-response requires: response time >> frame time (OK for STN)
- DC-free by frame inversion

Passive Matrix Addressing Principles

□No storing element (TFT)

- Difference between Von rms and V off rms is tiny
- TN LCD cannot be used for Passive Matrix applications

□Need for a very steep LCD response

- STN is the solution
- Limited number of gray levels

PASSIVE MATRIX DISPLAYS

□ Increase of the steepness of the EOR for passive addressing:

=>Increase the twist angle (cholesteric LC)

Electro-mechanical response:

LCD Course

Structure of a STN-LCD:

STN Characteristics

Steep Electro Optical response (EOR)

- Ideal for passive addressing
- Slow response time: 50-300 ms

OFF state chromatism

- Blue mode, yellow mode
- Transmission sensitive on $\Delta nd/\lambda$
- □Very limited viewing angle
- Limited gray level rendition
- Vertical crosstalk
- Not usable for TV applications

ADDITIONAL TRAINING For interested audiences!

Annex training

- Passive Matrix displays
 - Structure
 - STN
 - Addressing
- Viewing angle improvements
 - Gray level inversion
 - Compensation film
 - Multidomain

– IPS

Viewing Angle Improvements

Angular luminance distribution of a AMLCD for 8 gray-levels: vertical viewing plane horizontal viewing plane

- 1. Contrast loss, especially in upper vertical direction
- 2. Gray level inversion, especially in lower vertical direction

Viewing Angle Improvements

Viewing Angle Compensation Principle

Basic Idea:

- Add birefringent element exhibiting the inverse angular characteristics of LC dark state
- => Small birefringence, bright state not affected

Viewing Angle Compensation Principle

Viewing Angle Compensation Principle

Viewing Angle - Multidomain Technique

Symmetrization of adressed LC-Profile: Multidomain Structure

- **Each pixel divided into 2 or more domains**
- **Domains created either by patterned alignment layer or by fringe field**

Viewing Angle - In Plane Switching

Principle: lateral electrical field effect

OFF-state: homogenous texture, 'perfect' dark state ON-state: LC molecules Đ polarizer axis, I/2-plate (like ECB)

Viewing Angle - IPS Characteristics

- Contrast range mainly limited by Polarizers
- High Contrast over whole viewing angle
- Only few gray-level inversions
- Best viewing angle of all LCD-Modes

Large Viewing Angle - Sum Up

Comparison of Different LC-Modes:

1. Enhanced TN Mode using LC-Polymer Film Compensation

- easy add-on component
- viewing angle sufficient for small displays or graphics applications

2. TN-Multidomain Modes

- basically standard TN process, but:
- patterning of alignment layer technologically difficult
- good gray level fidelity, but vertical contrast range limited

3. 'New' LC-Modes: Multidomain ECB (VAC), IPS

- (nearly) perfect viewing angle
- Non standard technologies, require better cell-gap control and specific
- LC mixtures
- higher driving voltage = higher power consumption)
- IPS: low transmission = about 2x higher power consumption

Large Viewing Angle - Trends

Application	Technology	Challenge
Laptop	Standard TN	Price, Power Consumption
PC-Monitor	IPS (Hitachi, NEC,)	Cell gap uniformity
	VAC (Futjisu,)	Cell gap uniformity, retarder uniformity
	TN, Multidomain, ASM (Sharp,)	manufactoring Process, LC-stability
Automotive,	Polymer LC Film	cost of retarder, evironmental stability
Video monitor	Polymer LC Film	cost, symmetry of viewing angle

LGB TRAINING COURSE

Thank You For Your Kind Attention

LCD Course