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Abstract—An analytical method is developed for calculating the magnetic
field produced by a magnetic deflection yoke. The method can
be applied to get quantitatively correct results for an air-cored
saddle coil or a toroidal coil wound on a magnetic core and
qualitative results for a saddle coil in the presence of a core.
The final result appears in the form of angular Fourier expan-
sions of the field components about the yoke axis where each
Fourier component is expressed as a simple one-dimensional
integral of known functions. As an example of application of
our formalism, the magnetic field functions Hy(z) and H,(z) are
calculated for a specific yoke and compared with their values
computed by a completely numerical scheme. The agreement
between the two sets of values is very satisfactory.

1. Introduction

Calculation of the magnetic field produced by a magnetic deflection
yoke used in color televisions is a formidable problem, mainly be-
cause of the peculiar geometry of the yoke. All analytical calcula-
tions that can be found in the literature!-% have been confined to
treating the fields at points on or near the yoke axis and/or re-
stricted to yokes of very simple unrealistic geometries. Recently, a
number of very sophisticated computer programs have been devel-
oped that compute the field numerically at any point inside the
television tube.”-? These programs, although very accurate, are ex-
pensive to run and do not shed much light on the physical aspect
of the problem. In this paper we report an analytical and accurate

404 RCA Review ¢ Vol. 44 + September 1983




DEFLECTION YOKE

method for calculating the magnetic field at an arbitrary point in
space due to a saddle-shaped pair of coils without a magnetic core.
The result appears in the form of Fourier expansions of each com-
ponent of the magnetic field in a polar angle about the z-axis, and
each Fourier component is in the form of an integral of a closed-
form expression over z, the z axis being the yoke axis. With some
modifications the result can be qualitatively applied to a saddle-
wound coil and quantitatively applied to a toroidal coil in the pres-
ence of a magnetic core. This result would be very useful in under-
standing the dependence of the various field components on location
of the field point, the geometry of the coil and its wire distribution.
It would also save computer time in computing various quantities
of interest to yoke designers that depend on the magnetic field com-
ponents.

The paper is organized as follows. The calculation of magnetic
field due to a saddle-shaped coil is divided into two parts: (a) cal-
culation of field due to the main body of the yoke, which is assumed
to be a current sheet with a certain surface current density distri-
bution (determined by the actual angular distribution of the wires
in the coil), and (b) calculation of field due to the end-turns, which
are assumed to be circular arcs with a certain prescribed distribu-
tion along the z-direction. The first part is presented in Sec. 2 and
the second part in Sec. 3. In Sec. 4 we discuss the modifications
necessary to make our results applicable to a coil in the presence
of a magnetic core. Sec. 5 is devoted to a numerical calculation of
the magnetic field functions Hy(z) and Hy(z), which are of interest
in the third-order aberration theory,?3 for a yoke under develop-
ment at RCA on the basis of our theory. The same two functions
are also calculated using an elaborate computer technique by fol-
lowing the methods described in Ref. (8], and the results are com-
pared with our results. The agreement is very satisfactory. We con-
clude in Sec. 6 by suggesting some possible applications of our re-
sults.

2. Field Due to a Current Sheet of Revolution

We will use a cylindrical coordinate system (p, 0, 2) in our deriva-
tion. We will assume the main deflecting part of the yoke to be a
current sheet symmetric about the z-axis with a profile described
by the function py(2) (see Fig. 1). This profile is very similar to the
profile of the neck of the cathode-ray tube and is usually expressed
by a polynomial in z. The surface current density on the sheet K(p,,
6, 2)ax has a magnitude which can be expressed as a Fourier series
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Fig. 1—The profile of the current sheet representing a saddle coil in the
p-Z plane.
K(pg, 0, 2) = LE(C ) fin(2) cosme. [1]
Po(2) Po(2)m = 135...

Here I is the current in each turn of the coil and Ad6 is the number
of turns passing between the angles 6 and 6 + d6 at a cross-section
located at z. In writing Eq. [1] it is assumed that the x-axis lies
along the horizontal direction if the coil is supposed to produce hor-
izontal deflection and along the vertical direction if the coil is sup-
posed to produce vertical deflection. The direction of the current
density expressed by the unit vector ag is assumed to be given by

ax = (cosd pj a, + sind py a, + a,)(1 + p§?)', (2]

where a,, a,, a, are unit vectors along x, y, z, axes and a prime
indicates derivative with respect to z. Physically this means that
the current flows along the profile of the coil-sheet in the (p, z) plane
and along the radial lines in the (x, y) planes. Note, however, that
this assumption does not imply that there is no bias in the coil,
because A\ in Eq. [1] is allowed to be z-dependent.

The magnetic field at an arbitrary point (p, 6, z) due to this cur-
rent sheet can be obtained by applying the Biot-Savart law1®

K(pg, 8¢, 29) X R ds
4nR3

where ds is an element of surface area located at (pg, 6, 2) on the
sheet and given by

ds = po(l + 96(20)2)”’(190(120 (4]

H(p,0,2) = [

(3]

R = (pcos® — pocosbpla, + (psin® — pgsinbpla, + (z — zpa, (5]

R = {92 + p% — 2ppocos(6 — 8g) + (2 — 20)2}‘/2 [6]
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and the integration in Eq. [3] extends over the entire surface area
of the sheet. After some straight-forward algebra it can be shown
that the cylindrical components of H are given by

1 —J in(6y — 6
Hy(p, 8, 2) = f day L 00 K(po, 6, zp) 25000 — &
v

R3
[pd(zo)z — 20) + pol29)], (71
B0 )t 2ﬂdel{( B, 2p) o
o\ps U, = T 20 b o A4po, Yo, Z0 R3
X [—cos(8y — 6) {po(zoXz — 20) + pol20)}
+ pol20)], (8]
1 2n
Hz(p, 9, Z) = f dZoL deo K(po, 90, Zo)p_% p()(‘zo)sin(e - 90) [9]
47 R

The zq integrals in Eqgs. [7]-[9] extend from the rear-end to the front-
end of the yoke.

Using the symmetry of the coil the magnetic field components
can be expanded in the following way:

Hyp, 8, 2) = > HXp, 2) sinnd [10]
Hy(p, 6, 2) = > Hj(p, 2) cosn® (11]
H,(p, 8, 2) = > Hp, 2) sinnd. [12]

The summations in Eqgs. [10]-[12] and all sums over indices m and
n in our subsequent discussion are implied to run over the odd
positive integers. The nth harmonic component of H, can be calcu-
lated using the usual Fourier formula

2w
Hi(p, 2) = % o(p, 6, 2) sinn6db. [13]

Substituting Eqgs. [1] and [7] into Eq. [13] and changing the variable
(8o — 8) to « we get

1 2n

a2 desinn® [ dzofim(zo)lpdzo)z — z0) + pol

Hip,2) = >,

m
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2n-6 .
» f do cosm{a + 0)sina

14]
o [p% + pZ — 2ppocosa + (z — zp)*"
If we now write
cosm(a + 0)sinnd = l2[sin{(n + m)0 + ma}
— sin{{n — m)8 — mal}] [15]

and integrate partially with respect to 0, it is easy to show that only
the term with m = n survives in the summation appearing in Eq.
[14] and gives

I
Hyp,2) = — - I dzofr(20)[pd(2z0)X(z — 20) + pol
2w : 0
y do— : sinnasina — (16]
o [P* + p§ — 2ppocosa + (z — zp)°]”

The integral over a can be performed by introducing the variable
¢ = /2, expanding sinna as

sinna = sin2n¢

E (=1)k+1 (22 : }I) 22n-2k+1 gind, cos2n—2k+1¢ [17)
k=1

and integrating term by term.
The final result for H}; can be expressed as

I & 2n - k
H , 5 em = -1 k+1 22n—2k+lB
op, 2) 2 > (-1 ( b 1)

Th=1

b

)
(.’3 271—:._Ig+—3> I d20fn(20)[p6(20)(z — 29 + PO(ZO)]ﬁ

2 2
2n - 2k +3 3 4ppo
xF|l——,—;n-k + 3, —
( 2 2 n 3 q (18]
where
g =+ pp? + (z — 22 [19]

Here F(a, b; c; x) is the hypergeometric function!! and B(x, y) is the
beta function.!2

Similar manipulations can be carried out to determine H{(p, 2)
and H(p, z). For H} we get
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I
Hyp, 2) = — 7— | dzofu(20)lpélz0)(z — 20) + polz0)]

27
X da 2 2 2
o [p* + p§g — 2ppocosa + (z — zp)“J™

Ccosnacosa

27

sy apen [ da cosna [20]
4 0

[p? + p2 — 2ppocosa
+ (2 — zp)n

To do the a integrals we now need the following expansion

cosna = cos2nd

n+l
2n ) _ . op_
— —1)e+1 2n-2k+2 2k -2
121 (-1) (2k _ o)cos $sin?* 24 [21]
The final expression for Hg is
1" 2n) (2k—1 2n—2k--5)
H» , - -1 k+1 B ,
(P, 2) 2m El( ) (2k _2 2 2
1
X [ dzofu(20)lpo(zo)z — 2o) + Po(Zo)]ﬁ
F 2n - 2k + 5,-3—;71 +3;4pp0
2 2 q
n+l
L LS (—1)*+1( 2n )B(2k —1 21 -2+ 3)
T k=1 2k — 2 2 2
1
X [ dzofp(20)lp’(zo)z — 20) + pol2zo) + P]Eq
F (_271 = ,§ ;n+ 1 _4ppo). [22]
2 2 q

Similarly, H? can be written in the final form as

HXp, z) = oL S (=1)k+1 (2" - k) 22n-2%+1B(1, n — k + 1)
4w k=1 k-1

fdzof,.(zo)pé(zo)isF(n -k + 1,§ in—k + 2 m) [23]
q/! 2 q

Egs. [18], [22], and [23] constitute the desired analytical expressions
for the magnetic field due to the current sheet.
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As a special case we note from Eqgs. [16] and [20] that H} and H}
are zero on the yoke axis (p = O)foralln # 1 and H? = O at p =
0 for all n. The axial magnetic field Hy(2) is equivalent to Hl(p =
0, 2) and is given from Eq. [18] by

[pi(zo)z — 2z9) + po(29)]
[p(z) + (z - 2!())2]3’2

Hy(2) = —f [ daofi(2) [24]

3. Field Due to the End Turns

Let us first assume that both the front and rear end-turns can be
approximated by certain single effective circular arcs about the 2
axis with certain mean radii and mean lengths but zero thicknesses.
Fig. 2 shows the “effective” front end-turn defined in this way; the
top half starts and ends at angles 6;and w — 6y, respectively, has a
radius a, and carries the current in the counter clockwise direction
while the bottom half is just its “mirror image” about the x axis. If
2 is the location of the front end-turns and there are N turns in
each half of the coil, the magnetic field dH at (p, 6, 2) due to an
element of length dL of this effective end-turn is again given by the
Biot-Savart law:

_ NIdL x R)
il = 4nR3 ’ [25]
where
dL = i‘adeoae. [26]
vA
&) -¥6

xy

Fig. 2—The “‘effective’ circular front end-turn of a saddle coil.
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The upper and lower signs apply to the upper and lower halves of
the turn, respectively, and R, R are given by Egs. [5] and [6] re-
spectively with py replaced by a and 2, replaced by z. To get-the
total field one has to integrate the expression [25] over 8, from 6,
to w8, to take into account the upper half of the turn and then from
™ + 8rto 2w—0; to include the contribution of the lower half. After
some simple algebra, the components of the field can be easily
shown to be

Nla(z — zp (" 1 1
Hyp, 8, 2) = TJ;f cos(0 — 6g) Eg— + H dfy (27]
o O Nla(z - zf)J'"_ef . 1 1 5o .
. = — — —_— 4 —
olp, U, 2 4 " SIntYg R3 R3 0
Nla ("% |a — pcos(® — 6) a + pcos(6 — 6p)
HZ ’ 97 =" - de
82 = by [ R3 R3 0
[29]
where
R+ = [p? + a2 = 2pacos(8 — 8y) + (z — zp?]'/2. [30]

All the integrals appearing in Egs. [27]-[29] can be evaluated in
closed-forms, but since we expressed the magnetic field due to the
main body of the coil as Fourier series in 8 we will do the same
thing here and give explicit expressions for the Fourier coefficients.
Thus using Egs. [10] and [27], integrating by parts with respect to
0 and after some manipulations, we get

Hro. 2) Nla(z — zp o " cosna cosa da

y2) = ¢

p\P 2 P osn Of L {p? + a? — 2pacosa + (z — zp?*

or

H}p, 2) =

Nla(z — zp) ntl e 2n 1

—— " cosn; h§=‘,l Sl A PV o

« | g (2= 1,2n—2k+5)F(2n—2k+5’§;n+3;ﬂ)
2 2 2 2 ar

_B(Zk ~1 20 -2+ 3)F(2n ~2%+3 38 l;ﬂ)

2 2 2 2 qr
[31]
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where

g = (p + a2 + (z — z;)2 [32]
Similarly, using Egs. [11], [12], [28], and [29] we get
Hi(p, 2) =
Nla(z — 2z " 2n — k)
A — A 0 -1 k+1 22n—2h+1
ps cosn ,-lgl( ) ( b1
LB(Q’Zn -2k + 3)F(2n ~2%+33 . 3;4_ag)
g \2 2 2 2 qr
[33]
and

2 n+1
Hp, 2) = — (TP_HS(P, 2) _Nila cosnb; D (_1)h+1< 2n )
k=1

—-2p wn 2k — 2
LB(% ~1 2n -2 + 3)F(2n -2 +3 3.
qs” 2 2 2 2
n+ 1 ﬂ). (34]
ar
Again in the special case of p = 0, Eq. [31] reduces to
H)O0, z) = Hy(2)
_ Nla(z — zpcosbs (35]

T 20a? + (2 - 2R’

which agrees with the result given in Ref. [2].

Similarly if the rear end-turns are approximated by mean circular
arcs of radii b, starting angle 6, located at z = z,, the Fourier coef-
ficients of the magnetic field produced by them can be obtained from
Eqgs. [31], [33], and [34] by replacing a by b, the subscript f by r and
changing the over-all signs to take into account the opposite direc-
tion of current.

Several generalizations of Egs. [31], [33], and [34] are possible.
First of all, we note that not all end-turns start at one angle. If we
look at the front end-turns, for example, there are A(6g, z9d6rnumber
of turns which start between the angles 67 and 6; + d6;, where the
function A is given by Eq. [1], i.e.,

N, z) = D fulzpcosmby. (36]

We can easily take into account this angular distribution of turns
by writing A(6f, 20d6; for N in Eqgs. [31], [33], and [34] and inte-
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grating over 6y from O to w/2. If the radius a of the turns were
independent of 6 the net result of this integration would have been
replacing the quantity Ncosn6; in these expressions by nf,(z9/4; but
since a depends on 8y each Fourier component of the magnetic field
would involve all wire distribution harmonics f,,(zp. It is also true
in reality that the end-turns do not lie in a single plane but have a
certain thickness in the z-direction. This can be included in our
theory by replacing f,(zp) in Eq. [36] by some distribution of turns
along 2, fm(29dzs say, and integrating the resultant expressions for
the field components over z;. Again one has to keep in mind that
the radius a would also be a function of 2;. The main difficulty in a
practical computation is that the dependence of a on 6; and 2 and
the distribution of end-turns, f,,(29), over their thickness are not very
precisely known because they remain to a large extent at the mercy
of the winding machine. If these functional relations can somehow
be determined, the integrations over 8; and/or zr can be done nu-
merically using a simple computer program. A similar comment
applies to the rear end-turns as well. Another complexity of the
end-turns, especially at the rear end, is that even though the turns
might be circular arcs their centers may not lie on the z-axis. One
can include this “off-centering” in the present treatment by an ap-
propriate coordinate transformation. Finally, we want to point out
that we need not restrict ourselves to circular end-turns; other un-
conventional shapes of end-turns such as rectangular and
hexagonall3 can also be taken into account in the present theory in
a straightforward way.

4. Effect of the Core

The theoretical treatment given so far is valid if there is no mag-
netic core present in the yoke. When a core is present, it changes
the magnetic field substantially. The relative permeability of the
typical core material used in commercial yokes is quite high, of the
order of 1000, and can be assumed to be infinity for all practical
purposes. It can be shown!? that for a long cylindrical yoke, the
effect of such a high-permeability core is to multiply the n-th
Fourier component of the magnetic field by the factor [1 + (py/p.)%"],
where pg and p, are the coil and core radii, respectively; this result
can be derived by solving the Laplace’s equation for the z-compo-
nent of the vector potential,

V24, = 0 (37]

in the (p, 8) plane and using the usual boundary conditions at p =
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po and p = p.. In view of this result, we can take into account the
effect of the core in a qualitative way by introducing the following
major simplication in our theory. We assume that the effect of a
core on the magnetic field inside the yoke produced by the main
body of the coil can be simulated by replacing the harmonic com-
ponents f,(2) of the turn distribution by the functions

fa2) = (1 + {po@p2)2 )f,(2) [38]

in Egs. (18], [22], and [23). Physically this means that each cross-
section of the yoke is assumed to behave, as far as the effect of the
core on the magnetic field is concerned, as if it were part of an
infinitely long cylindrical yoke with that cross-section.

In the case of a toroid-shaped coil wound on the core, py(z) = pe(2)
and Eq. [36] reduces to

f = 2f.(2). [39]

This result can be interpreted in terms of an “image” effect.!4 The
image theorem states that if a plane surface of a magnetic material
of infinite permeability is present in the vicinity of a current-car-
rying wire then the effect of the material on the magnetic field is
the same as the one produced by a fictitious wire that is identical
to the real wire but located on the other side of the plane surface
at a distance equal to the distance of the wire from the surface. For
a curved core surface the validity of this theorem, of course, becomes
questionable, but if the actual coil sits right on the inner core sur-
face, which is the case in a toroidal coil, the “image coil” coincides
with the real coil both in strength and location regardless of the
shape of the core surface. The magnetic field inside the yoke should
then double compared to the core-free value. Eq. [39] is precisely
equivalent to this statement. For a saddle coil, Eq. [38] can also be
interpreted in terms of a contribution from an image coil, but in
this case each harmonic component requires a different image.

It is more difficult to take into account the effect of the core on
the magnetic field produced by the end-turns. The simplest approx-
imation one can make is to assume that the contribution of the end-
turns to the magnetic field is not affected by the presence of the
core. At first glance this may seem like an unrealistic assumpticn,
since a cylindrical core is known to have “shielding” effects on an
external magnetic field. However, if we note that a core is typically
only one inch or so in length, whereas the electron beams are de-
flected over a length of ten inches or more, and the field due to the
end-turns is of secondary importance anyway, neglecting the
shielding effect does not appear to be an overly crude assumption.
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This is especially true for higher harmonics of the end-turn field
which are localized near the turns.

For a toroidal coil, the effect of the core on the field produced by
the end-turns is probably more drastic because of the proximity of
the (radial) end-turns to the core surface, but since in this case the
contributions of the end-turns to the field are quite small to begin
with (because of the relatively small length of these turns compared
to those of a saddle coil), we will simply ignore the end-turns alto-
gether in calculating the field due to a toroidal coil.

5. Numerical Calculation

The numerical results calculated for a specific yoke using the
expressions given in Sections 2—4 can be displayed graphically in
a number of ways. One can plot each harmonic component of the
magnetic fields H,, Hy, H, or the total field as a function of p at a
given z or as a function of z at a given p or along some curve in the
p-z plane. As a first example of such numerical calculation, we have
chosen to calculate and plot the magnetic field functions Hy(2)
(=H(0, 0, 2)) and Hy(2) defined by

2

These functions are of considerable interest in the third-order ab-
beration theory,23:!5 and a knowledge of them allows one to calcu-
late the aberration coefficients which determine the various deflec-
tion errors within the context of this theory. Another reason for
choosing these quantities is that they can be experimentally mea-
sured with relative ease.

To perform a numerical calculation, one has to know the following
quantities: the function py(z), which represents the profile of the
inner surface of the coil in the p-z plane; the function p(z), which
is the profile of the inner surface of the core; and the Fourier coef-
ficients f,(2) of the winding distribution of the coil for each z. The
first two functions are typically in the form of polynomials or a
series of polynomials that join smoothly. The remaining functions
can also be expressed as polynomials in z by fitting their numerical
values by a polynomial-fitting routine. All the integrals involved
in Eqs. [18], [22], and (23] are then simple one-dimensional inte-
grals which can be done on a relatively small computer using a
simple integration routine.

The Hy(z) function due to the main body of the yoke and due to
the end-turns of a saddle coil is given by Eqs. [24] and [35], respec-

Ha _ 1(&H,
2(2) = . . [40]
0x° /y=0,y=0
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tively, provided fi(zy) in Eq. [24] is replaced by f 1(2g) defined by Eq.
[38]. The Hy(2) function can be calculated from H ‘1, and H3 functions
according to a formula discussed in the appendix. The results are
given below:
Hy(z) (due to the main body of the yoke)
1 - 3z — 2zg)p'(zg) + 6pylzp)
=—1d )
16 J 9210 [ (02 + (z — 2z
_ 15 {pile — 2)p'(20) + pS}]
2 {pf+ @ - 2

{pdz — 200p'(20) + i} |
{p§ + @ — 29}

151 -
~ 39 | daof 3(z0) [41]

Hy(2) (due to circular end turns of a saddle coil of mean radius a
located at z = 27 and lying between the angles 6 and = — 6;
in the upper half and between  + 6;and 2w — 6yin the lower

half)

Nla ( ) 5aZcos®, 3acosby [42]
=— 1z - 2 -

2m Plie2+ - 209 (@ + (2 — 23

In this paper we have calculated the variation of the quantities
Hy(2) and Hy(z) with z for a yoke that is currently under develop-
ment at RCA. The functions py(zy) and p,(z9) have been computed
using a program that determines the design of the arbor cavity used
to make the horizontal coil and the design of the core. The functions
f»(2) were determined by a program that Fourier analyzes the an-
gular variation of the incremental area of the arbor cavity cross-
section taking into account the fact that not the entire cavity is
filled uniformly with wires during winding. The points 24, 2z, were
taken in the middle of the coil thickness and the angles 6; and 6,
were chosen to be approximately half-way between the starting and
finishing angles at the front- and rear-ends, respectively. We have
also calculated the Hy(2) function for a toroidal coil radially wound
on the core of this yoke neglecting the end-turns. Qur results are
shown in Figs. 3, 4, and 5.

To check the accuracy of these results we have also calculated
Hy(z) and Hy(z) by using a very sophisticated and expensive com-
puter program. The mathematical principles behind this program
is discussed in Ref. [8]; it involves replacing the coil by an effective
“magnetic charge” on the core which produces the same magnetic
field everywhere inside the coil. The results of these calculations
are also shown in Figs. 3, 4, and 5. The two sets of results are
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ARB. UNITS

]
INCHES

Fig. 3—The axial magnetic field Hy(z) due to a nonradial saddle coil. The
solid curve corresponds to the result derived in the present paper
and the dashed curve corresponds to the values computed nu-
merically by the method described Ref. [8].

strikingly similar. In particular, the general shapes of the curves
and the locations of the maxima and minima are almost identical
in the two cases. The two sets of curves even agree closely in ab-
solute numbers. An exact agreement in magnitude for a saddle coil
was not expected, partly because of the approximate nature of the
way the core is taken into account in our theory and partly because
the two theories treat the end-turns somewhat differently.

A
H,

ARB. UNITS

-1 v »-
2 0 INCHES ? ¢ 4
Fig. 4—The magnetic field function H,(z) due to a nonradial saddie coil.
The solid curve corresponds to the result derived in the present
paper and the dashed curve corresponds to the values computed
numerically by the method described in Ref. [8].
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Fig. 5—The axial magnetic field Hy(z) due to a radially wound toroidal coil.
The solid curve corresponds to the result derived in the present
paper and the dashed curve corresponds to the values computed
numerically by the method described in Ref. [8].

In experiments done elsewhere®16 the computer-predicted varia-
tions of Hy(2) and Hy(z) were found to be in excellent agreement
with experimental results for several yokes. Since our results agree
very well with the computer calculations, this observation can also
be considered as an indirect experimental verification of the present
theory.

As a second example of numerical application of our theory we
have calculated the various harmonic coefficients of the magnetic
field components H, and Hy due to the end-turns of a saddle coil as
a function of p using Egs. [31] and [33] and neglecting the presence
of the core. The results are shown in Figs. 6 and 7. Note that the
contributions of all harmonics beyond the first are insignificant, but
the first harmonic field is largely radial (i.e. pin-cushion shaped)
close to the turns.

6. Concluding Remarks

We have developed an analytical method for calculating the mag-
netic field at an arbitrary point due to a magnetic deflection coil.
The method is capable of giving quantitative results for an air-core
saddle coil and qualitatively correct results in the presence of a
magnetic core. The final numerical calculation of the field requires
a simple numerical integration routine over one variable and a
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ARB. UNITS
~

Fig. 6—The radial component of the magnetic field H, as a
function of p due to the circular end-turns of an air-
core saddle coil at a distance 0.1a from the location
of the end-turns. 6, = 20°.

function routine for evaluation of the hypergeometric series; both
of these can be made readily available on a relatively small com-
puter. Hence the success of the present method would imply consid-
erable savings of computer CPU time over the numerical methods
of computing the field, described in Refs. [7]-{9], and make it fea-

‘ H9 2J n
—
—————— 3
i i om [5)
1 7
£ | .
z | S AR
| — — e iyl SR T =)
& 0 e 2 B T 6 8 10
F P/a e et
“ \\N ’/
-|1
‘ e yd

Fig. 7—The tangential component of the magnetic field Hy as a func-
tion of p due to the circular end-turns of an air-core saddle
coil at a distance 0.1a from the location of the end-turns.
6, = 20°
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sible to do these computations on a small computer. At present, for
a saddle coil with a magnetic core, this success is limited because
the effect of the core is not considered in a precise way, but we
believe that an analytical treatment of the core could be improved,
perhaps by some generalized image theorem. The present method
can be easily extended to calculate the field due to the main body
of a toroidally wound coil on a core simply by replacing f,(z) in Eqs.
(18], [22], and [23] by 2f,(z¢), the factor 2 being due to the image
coil as discussed in Sec. 4. However, the core makes it difficult to
calculate the field due to the end-turns of a toroidal coil.

A knowledge of the magnetic field at all points inside a television
tube is extremely useful in analyzing the performance of a yoke
and, in principle at least, it allows one to calculate all the charac-
teristics relevant to its commercial use. We conclude by listing some
important areas of application of our theory.

(1) Knowing the Hy(z) and Hy(2) functions for both coils, calcu-
lated in the previous section, one can calculate all the aber-
ration coefficients appearing in the third-order aberration
theory2315 and hence all the deflection errors produced by a
yoke as predicted by this theory. Furthermore, one can deter-
mine higher-order derivatives of the field near the axis, such
as the Hy(2) function in the fifth-order aberration theory, from
our expressions of field components.

(2) One can calculate the electron trajectories inside the tube
once the magnetic field is known by solving the equations of
motion of the electron. This would require a separate com-
puter program similar to the one described in Ref. [9]. One
could then determine the peak currents in both coils needed
to scan the screen and other features relevant to manufac-
turing, such as the “pullback” distance.* The convergence er-
rors on the screen can also be determined by first finding the
coordinates of the landing points of the three primary beams
and then taking the differences of various pairs of coordinates.
This is not an accurate method of calculating the errors, how-
ever, since the errors are typically about 100 times smaller
than the deflections of the beams and, hence, can be “washed
out” by the inaccuracies in the computing method itself.

(3) Recently the auther has developed a theory that relates the
deflection errors directly with the harmonic components of the
field.1” The result involves integrations of expressions con-

* The pullback distance is the distance through which the yoke can be moved back
starting from the tube neck before the electron beam strikes the inside glass of the
tube.
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taining the various field components along the trajectory of
the electrons. An analytical expression for the Fourier com-
ponents of the field would be extremely useful in a numerical
computation of the deflection errors using this formalism.

(4) The inductance of a saddle-shaped horizontal coil can be ex-
pressed in terms of the variation of the harmonic components
H? and H? along the inside coil contour.'® Again analytical
expressions for H} and H? would greatly facilitate the in-
ductance calculation. In conjunction with the calculation of
the peak horizontal current, one can then determine the so-
called “stored energy” of the coil which is an important per-
formance characteristic of a yoke.

(5) Since the present theory gives separate expressions for the
field due to the main body of the yoke and the field due to the
end-turns, one can study the effect of the end-turns on the
various deflection errors and hence use the geometry of the
end-turns as a useful parameter in the design of a yoke.

(6) Finally, one can investigate the radial variation of the various
harmonic components across any given cross-section of the
coil. This would tell us how the different harmonics increase
in strength as the coil is approached. This knowledge is useful
in understanding the importance of the various harmonics in
determining the yoke performance.

Appendix

The relationship between Hy(2) defined in Sec. 4 and the Fourier
components of the field is best obtained by writing H, near the yoke
axis in two ways. A Taylor expansion in Cartesian coordinates
yields.

H, = Hy2) — [Hy2) + Y2Hy(2)] y2 + Hy(2)x? + ... [A-1]

On the other hand H,, can be related to the magnetostatic potential
harmonics in the following way.!® The potential ¥(p, 8, z) has a
Fourier expansion given by

Uip, 0, 2) = &;(p, 2)sinb + d3(p, 2) sin30 + ... [A-2]
Near the axis,

bi(p, 2) = a,(2)p — aj(2)p*8 [A-3]
b3lp, 2) = as(2)pd, [A-4]
so that
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H=%_ _ 0+ @+ 308 [A-5]

W 302 - yay).
Comparing Egs. [A-1] and [A-5], we get
Hy2) = — a4(2) [A-6]
Hyz) = + Elg(i) - 3aj(2). [A-T7]
Since
HXO0, 2) = Hy(z) = — a;(2) [A-8]
and Hip, 2) = — %¢3(p, 2), [A-9]

we can write Eq. [A-6] as

H'p"(0, 2) 1
Hz(z) = — pT + {? Hg(p, Z)}p = 0- [A-].O]
This formula has been used in the paper to calculate Hy(z).
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