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INTRODUCTION

Suppose we are looking at a system consisting of an oscillator
AB and collision partner C. The oscillator may in general be diatomic or
polyatomic and the collision partner could be monatomic, diatomic, or
polyatomic. At infinite separation between AB and C the interparticle forces

are assumed to go to zero, and the Hamiltonian for the system can be expressed

as
B = int int
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where TAB = - 5;—— YAB is the kinetic energy operator for AB.
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TC = -EE—-VC is the kinetic energy operator for C.
C
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VAB = internal potential energy operator for AB.
And Vént = internal potential energy operator for C.

Suppose that we allob;AB and C to approach each other to a
point where the intermolecular forces are no longer negligible. We can
represent this energy interaction operator by H', and must include this term
in our Hamiltonian. The collision process occurs, and as the particles
receed H' » 0, leaving us with our pre-collision form of the Hamiltonian.

This problem seems ideally suited for treatment by time-dependent perturbation

methods, and this will be done now.

TIME DEPENDENT EQUATIONS

The time-dependence of the Schr8dinger equation can be expressed




by

if¥ = HY
where ¥ is the total, time-dependent wave function and H is the total, time-
dependent Hamiltonian. We can express H as the sum of a time-independent and
time dependent term

H = H° + H'
where H' will be called the time-dependent perturbation. The Schrodinger
equation can now be written as

iBY = (HC + H')V.
We can express the wave function ¥ as an expansion in the time-independent
wave functions ¢n which are solutions to the equationn+H°¢n = En¢n, as

follows: —iEnt

and the time dependence is carried in the expansion coefficients Cn(t).

Furthermore, we then have

! -iE_t/ . -iE_t/A
¥=-z ercn(t)%e n ‘hEn + rZlcn(t)q>ne n

Substituting into the time dependent Schr8dinger equation we see the following

ch(t)1+3mq>ne'ﬂ”3nt/'7"1 + iﬁZén(t)cpne—iEnt/ﬁ = ZCn(t)Encbne-iEnt/ﬁ + Jc (£)H'$ e
n n n n
or

iﬁZén(t)dsne—iEnt/ﬁ = ZCn(t)H'q;ne_iEnt/ﬁ
n n

suppose we define the angular frequency W, 88

Ek . En

Wen = A

—1Ent/ﬁ
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The complete set of ¢n's possesses the property of orthonormality and if we

*
multiply both sides of the equation by ¢k we obtain

-iEnt/ﬁ

I
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& (8) = T%Tg[cn(t)(m;}wndr)ei‘*’knt]

It should be noted that the expansion is over a complete set of eigenfunctions,

where discrete they can be summed, where continuous they must be integrated.

In this above treatment integration over any continuous eigenfunction

necessary to insure completeness of the set has been implicitly assumed.
Returning to the problem, suppose that we replace the perturbation

H' by AH' and express the coefficients as a power series in A

This series is assumed to be a continuous and analytic function of A for
2¢(0,1). We can substitute the above expression, equate like powers of As

and then set A = 1.to obtain the following results:

W3 ey o payel . (3) in t
CkJ (t) = (in) E[(f¢kH ¢ndT)CnJ (t)e™%kn"]

So that we can in principle perform successive integrations to obtain
approximate solutions to any desired order in the perturbation. By not
doing so infinitely we introduce the first approximation to the treatment.
(0) (0),

x 1S zero implies the Ck

We shall assume the system to be in a precisely defined state initially, so

That é s to be constant in time.
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that all Ck are zero except for the one describing the specified state.

Integration of the first order equation gives the following result:
5 { 3 1
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where the wave function ¢m describes the initial state and ¢k the final one.

The constant of integration and limits have been chosen such that

c(l)(-w) = 0

The probability of the system being in the state m is given by [C§Qm| and
is initially equal to 1. The probability of the system being in the state

k after a time t under the influence of the perturbation H' is given by

Since we have a particle colliding that was initially at
t = -~ and we are going to t = +», the probability of going from an initial

state 1 to a final state f is given by

B ]2 - Ly s o
Py p = [Ce(=)] ",ﬁelﬂ [f¢;iH'¢idT]e““fi'° at’

This gives us the first-order perturbation result if we could find an

expression for H' as a function of time.
Xp

SEMI-CLASSTICAL APPROACH
Suppose we set up our model as follows:

(1) AB is the oscillator and has its center of mass at a fixed position.

(2) C is approaching AB along the vibration coordinate with a relative kinetic




of approach (at infinite separation).
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The potentiai energy of the system is assumed to be in the form

of V=1V e—ar where o is some force constant and r is the distance between

0

AB and C. This distance r will be given as

for C colliding with B (and

"5
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for C colliding with A). Let Yo

1l and we can write

V(x,y) = exp{-a[x - (MA/MA+MB)j}

At the distance of closest approach (rBC) we have therefore

V(xo,yo) =€ = exp{—ach}

M
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where ¥y = equilibrium value of the harmonic oscillator coordinate y.

We can rewrite the potential energy in the following way:

MA
skexp{—a[x - (ﬁ;ﬁ;jzgxy— rBC]}

V(x,y)
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e—ochaY(MA/MA+MB)

or V(X,Y) = €

where X = x - Xy Y=y - Yo

& V(%Y) = WXW(Y) .

Suppose that V(Y) = 1 in order to assign a collision trajectory.

2
- wv(X)
€ = v(x) + = .
where v(¥) = %%. We can rearrange the above equation to give the following
N —a¥y 11/2 -
[XO[T(l - e ax = fat.

The solution to position as a function of time is implicit in the relation:

—a¥ uvot)

e = sech™( 5

which results on integration of the above equation. Since the potential







does not depend strongly on Y (that is to say oY << 1) we can write

) M

aY(M, /M, +M A
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v(Y) = aY}.

The potential V(X,Y) can now be written in the form V(Y,t) as follows:

oV t

o)

V(Y,t) = sk{l + aY(MA/MA+MB)}sech2(

This expression gives us the perturbation energy as a function of time, t,
and displacement from the oscillators equilibrium position Y. If our total
wave function is separable into a product of electronic, wvibrational,

translational, and rotational wavefunctions

v= <belec:'l:¢vib¢rotq’trans

then (assuming they are properly normalized) all will factor out and integrate
to unity with the exception of the vibrational wave function, which can be
expressed as a function of Y. The matrix element can be factored into a

time dependent and time independent part as follows:

B! .(t) = F(t)j0¢f(Y)Y¢i(Y)dY

where F(t) = 8/9Y{V(Y,t)}

av.t
ask(MA/MA+MB)sech ( - )oa

From our perturbation theory result we can write for our probability of

transition
22
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The time integral squared has the value of

2
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so that we can write the relation

b2 M m
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where |Yifl2 is the square of the matrix element inducing the harmonic

oscillator transitions.

The |Yifl2 are well known and have the following properties:

U}

I

|2 =0 if An # *1
The above equations define our transition probability per collision for a

. _ 2
given e, = l/2(uvo).




The observed probability will be that integrated over a
Maxwell-Boltzmann distribution of energies. Since we solved the mechanics
in one dimension we should use the one dimensional distribution for consistency.

This will be given by

v2
-o
B u \1/2  2kT
dn = n(é;iﬁﬁ e dvo.
In our result for transition probability we also used the term VO’ but this

should actually be called V> which is the velocity corresponding to the
average of the kinetic energies of approach and recession. This introduces
collisional symmetrization into the trajectory calculation which was previously

ignored. The velocities Vo and v, are related by the equations

uvg = uvi - hw for deactivation
2 2 . .
and uvo = uva + hw for activation.

We will also make the further simplification that since mw >> avy for an

adiabatic collision we can make the simplification
cosech(x) = 2exp(-x).

The velocity distribution is integrated from O to = since we are interested

only in those velocities moving toward our target. If we define

B l6w2u2 ( My )2|Y

A=
am My T¥p

then the averaged transition probability is given by

|2( U )1/2
if! “2nkT ?
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By using our relations between Y, and Vo We can rewrite this as
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where the + sign refers to deactivation and the - sign to activation. The
integrand is a sharply peaked function of va and will give a significant
contribution to the transition probability only in the region of some critical
velocity vg. This velocity vz can be found by differentiating the integrand

and setting it equal to zero, giving

_ (eka)l/3
g )

If we expand the term in the exponent about V: we can make the approximation,

uv 2 2
2mw Tlay mTw 31/3 3 2
_(uv d = (QkT) B _35 2 .} T2 (va - v:) :
a 20 kT
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By making the definition
gath)
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we can write

R DR 8 3 2
Pip = Bfoe"p{ 5 KTy ~ VE) Yav,

which can be readily evaluated to give the result

- 5{22%2)1/2

Pir = &l
Suppose we note initial and final states by the vibrational quantum number

n and restrict ourselves to transitions such that An = *1. The relations

can fall out immediately that

S
—. — kT

pn,n—l e pn—l,ne
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and that

pn,n—l - npl,O'

Modifications to Treatment

There are several modifications that can be made to this treat-
ment that will give some interesting results.
If one does want to look at multiquantum transitions this can

be done readily by keeping higher order terms in the expansion of

2
- 1+CY+@—+

g = 21

In looking at the first term the orthogonal vibrational wavefunctions vanish.
The second term gives a non-vanishing matrix element for wavefunctions whose
vibrational quantum number differs by 1, the third term for those with
An = +2, etc. The probabilities drop off rapidly with increasing An as
expected. Another alternative is to use anharmonic wavefunctions and compute
the matrix element for the Y term, this can give non-vanishing probabilities
for An = *2 and greater depending on how far one carries the anharmonicity.
If one wishes to deal with complex vibrational energy transfer
as illustrated below,

AB(vi =mn, V, = k) + C ~» AB(Vl =n-1, v, = k+l) + C

then we can look at this as a simultaneous deactivation of mode 1 and activation
of mode 2. Since the probability of two events occurring simultaneously
may be approximated as the product of probabilities for the individual

events we can express this as

skt o = Ry
n,n-1 pn,n-l Pk,k+l
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which will be proportional to the term

(

:ﬁ__ - )
o EBF o Wi

An identical result is obtained when we look at V -+ V transfer as illustrated
by

AB(v, = n) + CD(v2 = k) > AB(vl = n-1) + CD(v, = k+1).

il 2

Complex V » T transfer as well as V - V transfer can be expressed
in terms of the probabilities of individual simple V - T transfers.
If there is an attractive force with a potential well of depth

e [kT

€, then e a is added to the velocity distribution function. This is a
constant and integrates out. Such a term merely multiplies the probability
given earlier. If we want to take into account collisional symmetry (that

is C colliding with B instead of A, as we assumed in the trajectory calculation)

we replace the ratio MA/MB by %(MA/MB + MB/MA) wherever it appears in the

previous expressions.




