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Magnetic Dipole Plots of Planets

The field around a theoretical magnetic dipole is a close approximation for what occurs around the 
planets. 

The following is an equation that provides the vector components of the magnetic field of a dipole of 
magnetic moment m = 1 (T-M^3) as a function of x,y,and z

In [101] :=

In[102] :=

dipB[x_, y_, z_] := (mu0*m/ 4* Pi)*{3* x* z/((x^2 + y^2 + z^2)^(5/ 2)),

3* y* z/((x^2 + y^2 + z^2)^(5/ 2)), (2* z^2 - x^2 - y^2)/((x^2 + y^2 + z^2)^(5/ 2))};

mu0 = 4* Pi* 10^-7;

m = 1; (* Note: m for the Earth is 7.91*10^15 T-M^3 *)

The following is a 3D plot of the vector field, using the equation above. You can see the field leaving 
from the +z direction and going to the -z direction (on a planet ....North pole and South pole). 



In [105] :=

vector = VectorPlot3D[dipB[x, y, z],

{x, -2, 2}, {y, -2, 2}, {z, -2, 2}, AxesLabel  {x, y, z}]

Out[105]=

This plot is called a Stream plot as it shows the flow of the magnetic field lines.
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In [106] :=

stream =

StreamPlot3D[dipB[x, y, z], {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, StreamMarkers  "Tube"]

Out[106]=

Now to better illustrate how the magnetic fields flow around the planet Earth , we create a spherical 
graphics object.

Ou t [ ] =

Ball[{0, 0, 0}]
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In [107] :=

ball = Graphics3D[Ball[]]

Out[107]=
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In [108] :=

Out[108]=

Now we combine the stream plot and the vector plot of the magnetic field lines with the spherical 
graphics object to render  simulations of the Earths magnetic field . In this case the distance s are in 
units of the Earths radius .
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In [109] :=

Show[stream, ball]
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Out[109]=

Out[110]=
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In [111] :=

Show[vector, ball]

Out[111]=

Another plot is a Stream plot where the magnetic flux lines are not simply represented as flux tubes 
but alos show the field direction with arrows . This is sort of a combination of the Stream and Vector 
plots.
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In [112] :=

stream1 = StreamPlot3D[dipB[x, y, z],

{x, -2, 2}, {y, -2, 2}, {z, -2, 2}, StreamMarkers  "Arrow3D"]

Out[112]=
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In [113] :=

Show[stream1, ball]

Out[113]=

Here' s a list of the magnetic moments of planets in our solar system, from strongest to weakest : 

Jupiter : 1.55*10^20 T⋅m^3
Saturn : 4.6*10^18 T⋅m^3
Uranus : 3.9*10^17 T⋅m^3
Neptune : 2.2*10^17 T⋅m^3
Earth : 7.91*10^15 T⋅m^3
Mercury : 4*10^12 T⋅m^3
Mars : ~1.5*10^12 T⋅m^3 (estimated based on current weak field)
Venus : No significant global magnetic field

Key takeaways : The magnetic moment is measured in tesla - cubic meters (T⋅m^3) . 
Jupiter has the strongest magnetic field by far, followed by Saturn . 
Earth' s magnetic field is substantial and crucial for life . 
The inner rocky planets (Mercury, Venus, Mars) have weak or no global magnetic fields .

Strong magnetic fields are associated with liquid states of conducting material inside the planet. 
In the case of Earth this is a fluid iron core, and in the case of the gas giants this is probably a core 
containing a state of hydrogen that is a liquid metal.
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The conductive fluid core can have motion and flow in it, which causes a dynamo effect generating the 
planetary magnetic field.

We can redo the Earth example in the actual numbers rather than reduced numbers.

Earth magnetic moment,  m = 7.91*10^15    T-M^3
mu0 = 4*Pi*10^-7    N-A^-2
Earth radius = 6.37*10^6 M

In [114] :=

mu0 = 4* Pi* 10^-7;

m = 7.91* 10^15;

R = 6.37* 10^6;

In [117] :=

In[118] :=

dipB[x_, y_, z_] := (mu0*m/ 4* Pi)*

{3* x* z/((x^2 + y^2 + z^2)^(5/ 2)), 3* y* z/((x^2 + y^2 + z^2)^(5/ 2)),

+(2* z^2 - x^2 - y^2)/((x^2 + y^2 + z^2)^(5/2))};

In [119] :=

stream2 = StreamPlot3D[dipB[x, y, z], {x, -2* R, 2* R}, {y, -2* R, 2*R},

{z, -2* R, 2* R}, StreamMarkers  "Arrow3D", AxesLabel  {x, y, z}]

Out[119]=
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In [120] :=

ball1 = Graphics3D[Ball[{0, 0, 0}, R]]

Out[120]=

In[121] :=

Show[stream2, ball1]

Out[121]=

12     Magnetic Dipole Plots of Planets.nb



So we now have the distance scales proper for the Earths magnetic field . Lets look at the field 
strength as a function of distance from the Earths surface at the Equator and the North Pole.

In [122] :=

eqPlot = Plot[Abs[dipB[x, 0, 0]], {x, R, 2* R}, AxesLabel 

{"Distance from Earth Center(meters)", "Magnetic Field Strength (Teslas)"},

PlotLabel  "Earths Magnetic Field Strength"]

Out[122]=
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In [123] :=

In[124] :=

polePlot = Plot[Abs[dipB[0, 0, z]], {z, R, 2* R}, AxesLabel 

{"Distance from Earth Center(meters)", "Magnetic Field Strength (Teslas)"},

PlotLabel  "Earths Magnetic Field Strength"]

Out[124]=

7.0×106 8.0×106 9.0×106 1.0×107 1.1×107 1.2×107
Distance from Earth Center(meters)

1×10-11

2×10-11

3×10-11

4×10-11

Magnetic Field Strength (Teslas)
Earths Magnetic Field Strength

Magnetic Dipole Plots of Planets.nb     13



In [125] :=

Now to compare the magnetic field strength outward from the North Pole to that going outward from 
the Equator .

In [126] :=

In[127] :=

Show[polePlot, eqPlot]

Out[127]=
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The  polar field is twice as strong as the equatorial field . Since the field (in spherical coordinates) is 
proportional to Sqrt[1+3*Cos[theta]], and theta(NorthPole)=0, while theta(equator)=Pi/2, the ratio 
should be 2:1. We can also  see that the field strength is reduced 
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