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Abstract—The numerical integration of trajectory equations to simulate electron beams
in kinescope electron guns is complicated because (a) the interior electro-
static fields cannot be computed analytically and (b) space-charge forces
couple the trajectory equations to the Poisson equation nonlinearly. Solution
by digital computer requires iteration of trajectories and storage of large
arrays of potentials, fields, and current densities. Even exploratory analysis
can be costly. A simplified analysis is presented here that permits speedy,
low-cost evaluation of axially symmetric electron guns, albeit at a loss of
high accuracy. The analysis utilizes approximations to the lens fields and to
the Coulomb forces in various gun regions. The approximations are espe-
cially good in the drift and main-lens regions.

1. Introduction

The design of kinescope electron guns has been greatly enhanced by
the ability to simulate electron trajectories numerically with digital
computers."* To do so, one needs to solve the usual® second-order
differential equations of the trajectory coordinates as functions of time
or of the axial coordinate. The differential equations involve the
potentials and fields of the regions through which the electrons pass.
In all but the most elementary situations, even with known fields and
potentials everywhere, it is necessary to integrate the trajectory equa-
tions numerically. The techniques are standard* * and pose no partic-
ular problem.

However, two factors greatly complicate the numerical integration

* Presently at Virginia Polytechnic Institute and State University, Dept. of Electrical
Engineering, Blacksburg, VA 24061.
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of trajectory equations. First, if space charge (the mutual Coulomb
forces between electrons) is ignored, then the potential is obtained
from the Laplace equation with appropriate boundary conditions.™*
Numerical methods are nearly always needed. Relaxation methods""
require calculation of a large two- or three-dimensional array of fields,
and integral-equation methods” either require this also or necessitate
repeated evaluation of potential and fields by a time-consuming nu-
merical integration at each trajectory point.

In the second place, space charge renders the differential equations,
together with the needed Poisson equation, nonlinear because the
fields depend upon (to be calculated) trajectory coordinates. The
numerical work is greatly increased by the necessity of an iteration
procedure™* through enough cycles so that the fields calculated from
the (n — 1)st trajectory coordinates do not bring about appreciable
modifications in the nth trajectory coordinates.

In practice, kinescope electron guns are manufactured from more-
or-less standard parts, and one can separate a gun into three regions:
a beamforming region (BFR) in which several round-aperture lenses
extract and concentrate a beam of electrons emitted from a cathode;
a main-lens region (MLR) in which the diverging beam is focussed
towards a screen location; and a drift region (DR) in which the
redirected electrons move only under space-charge and deflection
forces to a relatively distant screen.

Alig" has recently reviewed these and related matters. A character-
istic sketch is shown in Fig. 1 to clarify the separation. The main lens
usually consists of several metallic cylinders of equal radius placed
coaxially in tandem to produce a compound-cylinder lens with small
gaps between the components.

For much design work with kinescope guns and certainly for the
initial determination of operational parameters such as focus voltage,
drive-voltage versus current characteristics, etc., it seems unnecessary
to demand high accuracy of the trajectory simulation. The purpose of
this paper is to present analytical approximations to potentials and
fields everywhere that vastly reduce the numerical work to merely the
one-time numerical integration of a set of second-order ordinary dif-
ferential equations with known coefficients under appropriate initial
conditions.

A full numerical program, ELOP,” has been utilized to provide a
standard calculation to which the approximations of this work can be
compared. Certain assumptions regarding the fitting of a beam current
density to sample trajectory coordinates have been made in ELOP;
similar ones have been utilized in this work to make a comparison
feasible. The approach is four-fold:
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Fig. 1—Sketch of a kinescope emphasizing the electron optics aspects (from

(1

(2)

(3)

(4)

Alig, Ref. [10]). Note that G3 and G4 have effectively the same radius
with respect to the lens formed by both electrodes. The various
regions are drawn to different scales. Some equipotential lines
(dashed) and some key trajectories (heavy lines) are depicted.

Replacement of the space-charge fields by an equivalent transverse
field. Neglect of longitudinal fields is serious only close to the
cathode in the BFR [see point (4) below], and it eliminates the
need for iteration.

Approximation of potentials and fields inside the main lens by a
two-term analytical approximation based on an extension of Ber-
tram’s approximation'' for axially symmetric cylinders of equal
radius.

Approximation of potential and fields inside the BFR by an exten-
sion of an analytical procedure due to Regenstreif'? for compound
coaxial aperture lenses.

An analytical determination of the emitted current profile and the
concomitant analytical calculation of electron trajectories with
Child’s law under the space-charge limited conditions close to the
cathode.

Because the complexity of these approximations is greatest nearest
the cathode, and least in the DR, we shall examine them in reverse
order of the actual cathode-to-screen calculation. Thus, we start with
the DR, where there are only space-charge and deflection fields; we

RCA Review * Vol. 43 » June 1982 341




then discuss the MLR, where space-charge fields are small but where
there are lens forces; and we end with BFR where both forces are
strong. An estimate of current density also is obtained from the BFR
parameters.

2. The Transverse Space-Charge Approximation in the Drift
Region.

The electron beam enters the drift region from the MLR and may
undergo deflection forces to focus upon a spot that is not at the center
of the screen. Whether or not the beam is deflected, however, the only
electrostatic forces in the DR are due to space charge. Each electron
can be considered to be in a central-force field due to the collective
effect of all other electrons." This field is

_ —e 4 (R - R))

E(R) = — | d'Rin(R) R-R, [’ (1]
where n(R)) is the number density of electrons at Ry, e is the electron
charge, and e is the vacuum dielectric permittivity. Consider a refer-
ence trajectory in the beam, e.g., a central trajectory. It has a longi-
tudinal coordinate {,. All other electrons can then be characterized by
the locally orthogonal coordinate system R, = (p), {;) where p, has
two mutually orthogonal components that need not be specified fur-
ther.

Typical electron beams in the drift region have a density n(p., 1)
that varies slowly with {,. Characteristically, there will not be much
change in n(p, &) for a length of several radii of the beam in the
longitudinal direction. It is not difficult to perform the d{, integration
in Eq. [1] under the approximation that n(R,) does not depend upon
¢1, and that there is no curvature locally over several beam radii. We
then obtain

2= ”l (2]

Ep, §) = ——— | doin(p, §) oty
2mren | P — P

The same result can be obtained by applying Gauss’s law to a thin
pillbox perpendicular to the reference trajectory. The two surface
forces on the top and bottom of the pillbox almost cancel each other,
and in the approximation they are consequently neglected. The re-
maining terms can be shown to lead to Eq. [2], which obviously results
from ignoring the longitudinal space-charge forces. The result, Eq. [2]
is much more advantageous in use than Eq. [1] not only because it
represents a two-dimensional integral (instead of a three-dimensional
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one) but especially because E (R) depends only on values of n(R,) with
$1 = {. This crucial fact eliminates the nonlinearity, hence also the
need for an iterative numerical procedure. The remaining numerical
procedure then consists, in the absence of deflection, of solving the
equations of motion which we give in nonrelativistic form in the
standard cylindrical coordinate system,'*

_(1+r?
T 20(r, 2)

”

[EAr, 2) = F'E. (r, 2)]. (3]

Here, E, and E, are the three mutually perpendicular components of
the field given in Eq. [2] [and r is a vectorial notation for the x and y
components].

It is obviously necessary to discretize the beam into a number of
beamlets. Then, Eq. [2] becomes

e (p—p1)

le—p|’

E(R) =

> | dn(py, ) [4]
m Sm

2776()

where S, is the cross-sectional area of the mth beamlet. The beamlet
is represented by one trajectory r.(z) which is governed by Eq. [3].
The remaining problem is to choose the areas S, conveniently in shape
and size. Actually, a much more important problem arises here: that
of beam representation. Quite in general, the number density n(p;, {)
is itself a two-dimensional integral over velocities (or momenta pi) in
the z plane characterized by { (the variation of { across the beam in a
2 plane is ignored)

nip, §) = j dzplf(ph ps §). (5]

Hence Eq. [2] is actually a four-dimensional integral over a phase-
space density f, and discretization should occur in all four dimensions.
In this work we assume that the discretization in momentum has
already been chosen prior to the DR; this is discussed later. It is by no
means a trivial point because beam reconstruction at the screen is very
difficult for deflected beams, even when all chosen trajectories are
simulated accurately. However, we will restrict ourselves largely to
rotationally symmetric beams (i.e., without deflection) in which case
the momentum discretization is less of a problem.

A square mesh with spacing A is convenient for reducing Eq. [4]
under the assumption that n(p, {) of the meshblock characterized by
its center at pma = (Xm, ¥») is constant. This approximation determines
the magnitude of & for desired accuracy. The resulting integral in Eq.
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[4] over squares can be performed and it gives

e

E(R) = — 2 n(pmm g‘)G(mn), with

2776() m,n

1 ) ) ) ’
Gx(mn) = 5 t[ln[(tfl + sll)/(tll + S,'l)]

- % tIn[(t2 + sP) /(@2 + s7)] [6a]

+ sl Altr/s7) — Alti/s)]
— si{Al¢/s) — A(ti/s)],
where A(t/s) is an abbreviation for the arctangent of ¢/s, and the
arguments of the functions in Eq. [6a] are defined by
sr=(x — xm) + h/2, tr=(y—y.) +h/2
si= (x — xn) — h/2, ti=(y—y) —h/2
A similar expression holds for the y component of G™". These

expressions can be greatly simplified if one is willing to allow for some
inaccuracy in the vicinity of the edges of the square

(6b]

G(mn) - (P — p’"") .
lp—pmn |+ H/7

The error can be shown to become negligible as # — 0. In practice,
even for a relatively coarse mesh, the error can be kept small because
most of the contribution to E (R) in Eq. [4] comes from nonneighboring
meshblocks. Admittedly, there may be z planes in which n(pm, {) is
very granular in distribution, but even then the forces are most
important where Eq. [7] is a good approximation to Eq. [6].

In the case of a rotationally symmetric beam, we may choose { = z,
and p = r, and Eq. [2] can then be reduced to

(7]

r

E(R) = £ drrn(r, 2), (8]

€lo 0

where the transverse space-charge field E is now directed radially
outwards and is denoted as a scalar in Eq. [8]. A discretization of Eq.
[8] is trivial, as the singularity problem is removed by the azimuthal
integration of Eq. [2] leading to Eq. [8]. However, some discussion
follows because of the beam representation problem. The quantity
—en(ry, z) is the charge density which is equal to j (r, 2)/v(z) in terms
of the current density and velocity at z (we ignore the very minor
variation in velocity with r1). Thus Eq. [8] becomes (with v oc ®'/%)

B

(m/2e)"?

2meo

ER) = d*rij(ry), B

(9]

"|<"
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where we have chosen to write the integral in a more general fashion
even though j(r)) is rotationally symmetric. Here, ® is the (constant)
potential in the drift region; it is high enough to ignore the small
contribution of the initial electron kinetic energy. The fact that
d?r1j(r)) of an annulus of current arises from a cathode annulus
d®r.j(r.) can be used to construct the former from an initial cathode
discretization. We assume that,* '

. l D . —_ —_ 2 2
Jelr) = m f dlrg_],,(rg)e (n=ralfon [10]

where j,(r2) d°r; is the total current emitted in an annulus d>r..
ELOP assumes that the integral (Eq. [10]) can be reconstructed
from three electrons that enable us to determine the center and 1/e
width of the Gaussian by fitting moments. Here, Eq. [9] is discretized
into 3N pieces (with 3N trajectories) associated with Eq. [3]. The
result for Eq. [9] is
217 N-1 3

W ;0 _gl ainhczjc(nhc)g(rm' - r), [11]

E(R) =

where 6 is the Heaviside stepfunction that is zero for negative and
unity for positive argument. Here, A. is the discretization interval, and

ay=(1+27")7, a=a=e¢'a, [12]

represent the discretization of the Gaussian thermal distribution into
three electrons, one at the peak value and two at 1/e values, all in one
meridional plane with the axis.

It is useful to gun designers to know the ultimate slit current j,(r)
defined as

: N - ()
Js(x)EJ dyJ(x,y)=2f d’(,z—ri(}-zwz- (13]

The slit current j,(x) can be calculated from Egs. [13], [10], and the
approximations underlying Eq. [11] by means of an algorithm devel-
oped by Campbell.? Only 3N electrons need be traced from the cathode
on, where N is an integer of the order of 10, to obtain beam represen-
tations accurate to well within 5% of ELOP-calculated kinescope
beams. Figs. 2 to 4 show comparisons of the above approximations to
results obtained from a full-scale computer simulation with the RCA
electron-optics program ELOP.?

Because space-charge forces are proportional to current density and
to length squared, agreement is best in Fig. 2, which simulates a 1.5-
mA beam in the DR of a relatively short kinescope. The effect of space
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Fig. 2—S8ilit current J,(r) in arbitrary units at the screen versus r for the full
numerical simulation (curve) and for approximation of the space
charge forces based on Eq. {11](circles). The drift parameters are L
= 7.06 inches, V = 30 kV,and / = 1.5 mA.

charge is clearly not negligible at 3.5 mA, as can be seen in Fig. 3, so
that it must be incorporated in simulations of typical high-intensity
TV screen spots. The shape of the beam of Fig. 3 was varied to produce
the quite differently shaped spots in Fig. 4. Ir. all cases, agreement is
close to or within the accuracy of the ELOP program.

Beam representation of asymmetric beams is much more difficult
because the integral in Eq. [10] is then essentially two-dimensional so
that azimuthal smoothing cannot be taken advantage of. However,
several symmetric beams were subjected to the more general space-
charge field approximations Egs. [6, 7], and the resulting symmetric
spot provided a radial distribution of final screen coordinates r..(1 = m
= 3N) that could be processed with the azimuthal smoothing as above.
In Figs. 5 and 6, two cases are compared with results of the ELOP
program. The beam in Fig. 5 is the same as that in Fig. 3; agreement
with the numerical computer simulation is perhaps fortuitously good.
The beam simulation in Fig. 6 illustrates an interesting aspect of the
asymmetric approximations; the mesh choice N,. = 11 gives a poorer
result than N,. = 9. The reason is that the number of space-charge
meshblocks, N2, must not be so large that the smoothed number
density is granular (i.e., so that there are only a few, or less, electrons
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Fig. 3—Slit currents J,(r) versus r for a drift region with L = 13.5 inches, ®
= 30 kV, and / = 3.5 mA, without space charge (A) and with space
charge (B). The circles show the transverse space charge approxi-
mation based upon Eq. [11].

0

per meshblock). The granularity introduces errors in the space-charge
forces (Eq., [7]) where the denominators can become too small. On the
other hand a very low value of N, will smooth out the space-charge
forces too much. Apparently N,. = 9 is close to an optimal choice as
shown in Fig. 6.

3. Field Approximations in the Main Lens Region

The electron beam, having passed a crossover region in the BFR,
enters the first cylindrical field-free region of the MLR and is refo-
cussed towards the center of the screen by one or several more
cylindrical-lens parts. It then exits into the DR in a field-free region
at the so-called ultor voltage' of the rest of the kinescope vacuum
tube. It is customary to use two or more coaxial cylindrical metallic
tubes, all of the same radial extent interspaced with small gaps, as
main lens. Each cylinder is given its own voltage, which is maintained
during operation of the tube.

It is well-known® '® that the interior of a cylinder of radius R with a
boundary potential profile ®(R, z) = V(z) (where z is the axial
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Fig. 4—Two variants of the beam used in Fig. 6 to illustrate the effect of
varying electron trajectories in a drift region. An overfocussed beam
(A) and underfocussed beam (B) give slit currents evaluated by
computer (curves) and with Eq. [11] (circles).

direction) is governed by a potential

®(r, z) = %J' dz\V(z\)g(r, z — z)1),
h [14]
_2 (7 Jolkr)
glr, §)=;J koO(kR)cos(k§),

1]

with modified Bessel functions Jo(kr) and Jo(kR) in the Green’s
function g(r, {). Under the reasonable (and tested) assumption that
V(z) is constant on a metallic cylinder and linear in the gaps, Eq. [14]
can be reduced to

1 N Vn_ Vn— 2p+d, ) )
d>(r,z)=%(Vo+V~)+§ Zl—T'j dz'G(r,z — 2')

n

[15]

Lo (T, Jolkr)
G(r) §)=;L dkmSlﬂ(k{)
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Fig. 5—Silit current J,(r) versus r for the same situation as in Fig. 3. The

transverse space-charge approximation (circles) is evaluated as if the
beam were asymmetric with Eq. [7].

The geometry is depicted in Fig. 7. Although the dz’ integration can
be performed in closed form, it is preferable to write it as above at this
stage. The interior potentials (and fields) are thus given as an integral
over an oscillatory integrand that must be evaluated numerically. The
slow oscillatory asymptotic decrease of the integrand requires many
steps in the numerical evaluation. Apparently the evaluation of Eq.
[15] offers no clear numerical advantage over the numerical solutions®
of Laplace’s equation in a cylindrical region.

However, Bertram'' found as early as 1940 that the function
G(0, ¢) is simulated to within 6% errors for | {| < 1.5R by the function

Gs(0, ¢) = tanh(1.318 {R). [16]

This approximation of the axial Green’s function can be improved'” to
give better than 2% accuracy with a two-term version of Eq. [16]

Ga(0, §) = Ajtanh(w; {/R) + Astanh(u»{/R), [17]
with A, = 0.800987, A> = 1 — A, w, = 1.20241, w, = 1.82456 to six
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Fig. 6—Slit current J,(r) versus r for a drift region with L = 13.5 inches, o
= 20 kV, and / = 3.5 mA (full curve) compared to two calculations
based on Eq. [7]: (A) with Ny. = 11 and (B) with Nyc = 9.

significant figures. The result for ®(0, {) is,

1 RN V,- V.
O0,2) ==(Vo+ Vi) += § —"
2 2 n=] dn [18]

5. cosh[wi(z — z.)/R]
Z A'ln{cosh[w.-(z — - dn)/R]}'

The off-axis contributions can be obtained from the symbolical form,
®(r, 2) = Jo(ra/az)®(0, z), [19]

where the Bessel function Jo(ra/az) is expanded into its Taylor series
as if d/@z were a coefficient of r. The functions in Eq. [18] are
analytically differentiable, so that off-axis potentials and fields are
easily generated from Eqs. [18] and [19]. The four coefficients in Eq.
[17] are obtained by fitting the derivative Ga’(0, {) to g(0, {) at { =0,
and at { = o using the asymptotic expansion of g(0, {)." Thus, an
inexpensive simulation of electron beams in standard cylindrical ML
lenses can be obtained from numerical integration of the trajectory
equations Eq. [3] with additive electrostatic fields approximated by
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Va- Vn

Fig. 7—Sketch of the geometry of a compound axially symmetric cylinder
lens with coaxial, equi-radius components.

Eq. [11] for the space-charge forces and by Eq. [18] and [19] for the
Laplace forces due to the lens.

A simulation due to lens effects alone is given in Table 1. Here, two
cylinders with radius R = 100 units (1 inch is 1000 units*) have been
chosen. The gap between them is 0.5R wide and it lies at 5R from the
input plane. The output trajectory coordinates r and r’ lie at 8.5R from
the input plane. The input coordinates are not given, but they arise
from seven triplets leaving the cathode in one plane containing the
axis. Each triplet is emitted at r. = m units above the axis (0 =m < 7)
with r." = —1 (—sign), 0, or +1 (+sign). Fig. 8 illustrates the trajectories
of the r.’ = 0 electrons in this region.

The effect of space charge can be shown to be small in this region.

Table 1—Comparison of r,r’ in an MLR

ELOP 2-Term Bertram
Fe
r r'x 10 r r'x 10’
+0 ~2.65 0.30 ~2.68 0.21
-1 6.06 0.50 6.15 0.71
1 0.47 0.17 0.48 0.19
+1 1.69 1.08 1.72 1.14
=2 8.93 1.19 9.06 1.49
2 5.62 1.20 5.71 1.40
+2 6.45 1.20 6.56 2.22
-3 11.93 1.67 12.12 2.11
3 10.20 1.98 10.35 2.34
+3 11.32 2.73 11.49 3.12
~4 14.67 2.03 14.88 2.53
4 15.27 2.60 15.49 3.12
+4 16.56 3.18 16.81 3.76
-5 19.16 2.21 19.43 2.86
5 20.00 2.78 20.28 3.42
+5 22.54 3.07 22.88 3.89
-6 23.00 1.78 23.33 2.56
6 24.90 2.20 25.25 3.04
+6 28.64 2.00 29.02 291
-7 25.86 0.16 26.23 1.09
7 29.23 0.36 29.63 1.35

* One inch is 1000 mils in engineering terminology. | prefer to use the word "‘unit"
because absolute lengths need not be specified in general.

RCA Review  Vol. 43 » June 1982 351




r/R
03

0.2 /

1 \\(\
|

I IITT v ZI T T T T IRI T T T T T T T

2 4 6 8 z/R

Fig. 8—The trajectories (which lie in one plane through the axis) of seven
principal electrons traversing a two-cylinder lens with gap length
0.5R and voltage ratio 0.24.

It was excluded from the above example to separate out the effect of
the lens approximation. The accuracy in Table 1 is not unreasonable.
An error in r’ of 0.0004 yields only a 5.5 unit error in r at 13.5 inch
(13,500 units) beyond the exit plane, which is acceptable in kinescope
spot analysis, at least in an initial determination of parameters.

4. Field Approximations in the Beamforming Region

The analysis of electron trajectories is most difficult in the BFR. While
it is true that a (thermionic) cathode emits electrons under the influ-
ence of a shaped electric field created by appropriate voltages on the
BFR electrodes labeled G 1 and G2 (see Fig. 1), this emission is initially
space-charge limited.'”*" That is to say that the space-charge forces
are dominant in the region very close to the cathode (of one to two
length units extent, typically), and, moreover, they are largely longi-
tudinal, not transverse. Thus, the electrostatic fields differ sharply
from those due to the lens elements alone in this “diode region”, and
the transverse-space-charge approximation does not apply.
Furthermore, even though a rapid transition takes place beyond the
diode region to one in which Laplace forces dominate, the current
modulation properties of the G1 and G2 electrodes force the principal
electrons (those with no transverse velocity at the cathode) to cross
over the axis somewhere between G1 and G2 so that relatively large
space-charge forces may again occur in a restricted “crossover region.”
The analysis by which electron trajectories through the diode region
are calculated is postponed until the next section. The input for the
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work in this section is a diode plane several units beyond the cathode
with values of r and r’ = dr/dz of the electron coordinates.

The analytical model for each aperture electrode in the BFR is a
pair of infinitesimally thin perfectly conducting plates at voltage V
with circular apertures of radius R coaxial with the gun axis. The
analytical expression for the potential that arises from one of these in
isolation with asymptotic fields £, (at z = —») and Ex (at z = ®) is
well known:*!

Or, 2) = V=2 (B, + En)z
2 [20]

1 1
+—(E, — ER)| 2 |[A(u) + —],
@ u
where A(u) = arctan(u), and

1 . .
u2=w {(r2+22— Rz)
+[(r2 + 22 — R} + 4R%2%)2).  [21]

Regenstreif? found that ®(0, z) for a coaxial set of three such
aperture lenses could be given by a linear superposition of the r = 0
versions of Egs. [20] and [21]. The idea of superposition has been
generalized to more than three apertures and to off-axis potentials.
Specifically, the BFR is modeled as shown in Fig. 9. Each of the two
grids, G1 and G2, is modeled by a pair of aperture lenses at the same

ViVi %V, v
|
|
r.|
St———t-r~——"1" 17 ~""~""~"""-
|
Ry R, |
3 4e 4 {___
S
|
l z
T
I0 Z, z, Iy I, Zq
|
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I
|
l
ViV Va VY, vy

Fig. 9—Sketch of the BFR model by means of circular apertures. Only half of
the total number of apertures are shown.
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voltage. The entrance to the G3 grid requires only one further aperture
lens at voltage V3. To ensure a zero cathode voltage, the z = 0 plane
is the result of an antisymmetric distribution of 10 aperture lenses in
total; each of the 5 sketched ones in Fig. 9 has an antisymmetric
counterpart at z = —z, with V=—-V,_,(m =1, ... , 5). The electrostatic
potential is then approximated by

5
D(r,z) = Y ®n(r, 2)

m=1

m

®p(r, z) = lE,..{l z+ 2n I[ 1+ +A(um+)]
T u

= |[;1—_+A(um_)]}, [22]

m

(uz)? =% {(r + (z £ zw)* — RnY)

+[(r+ (z £ zw)* — Ra®)? + 4R,z £ 22)?)V%),

and the fields are given by the expressions
E, = (V, - Vy/z, Ey=—-E;=(V:—Vi)(z2—21), [23]
Es=—-Ei= (V3= Vy) /(23— 22).

The superposition (Eq. [22]) was obtained from linear combinations of
Eq. [20] so that the uniform electric fields at r > R are asymptotically
correct. Certain restraints on the parameters are necessary to ensure
accuracy of the approximation close to the axis (where electron trajec-
tories cluster). For example, if only V; ¢ 0 and V; > 0, then it can be
shown that z,/R; < 25/Rs is a necessary restraint, otherwise negative
potentials will result on the axis. The problem is that a region close to
r = R, and z = z, is incorrectly estimated and the extent of such a
region can be obtained from a numerical analysis of Eq. [22].

A first test of the approximation has been to check if it predicts the
proper cutoff voltage of G2 when V|, = —150V, and V3 s a fixed voltage
of the order of 10 kV (different for different guns). The cutoff voltage
is determined by the requirement that the E, field at the center of the
cathode be zero.

Six different gun BFRs have been tested, their parameters are listed
in Table 2. The parameters ¢, and ¢, are the thickness of the G1 and
G2 electrodes, whereas the spacings soy, etc., pertain to those between
the cathode and G1, etc. Certain details of BFR #4 not relevant to
this study have been omitted. The cutoff voltages determined by the
approximations in Egs. [22] and [23] are given in Table 3.

The agreement between the analytical results based upon Eq. [22]
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Table 2—Parameters of Test BFR’s

#1 #2 #3 #4 #5 #6
t 5.5 5 5 1 5 3
123 5.5 5 20 5 11 18.5
Sn 3 3 3 3 3 3
Si2 11.5 13 11.5 27 11 11.5
823 68 52 68 33 45 45
R, 12.5 12.5 12.5 12.5 12.5 12,5
R, 12.5 12.5 12.5 12.5 12.5 12.5
R; 16 30 30 23 30 20
Vi(kV) 11.5 6.85 10.0 8.7 13.6 11.44

Table 3—Cutoff Voltages (Volts)

BFR 1 2 3 4 5 6
Numerical V,, 401 429 627 604 556 437
Analytical V,, 397 464 596 650 569 382

and the calculations by the computer program ELOP® range from good

(#1, 3, 5) to fair (#2, 4, 6). However, fair agreement of V., does not

rule out good agreement of trajectory coordinates (see below).

We have also examined the effect of Laplace fields evaluated with
Eq. [22] together with the transverse space-charge approximation (Eq.
[11]) on numerical integration of the trajectory equations (Eq. [3]), in
the BFR for the six different sets of BFR parameters tabulated in
Table 2. The results for r are shown in Fig. 10, and those for r’ =
dr/dz are czrapared with the full numerical analysis (the left column
of each pair of columns) in Table 4. These trajectories originate from
triplets of electrons emitted at the cathode at r. = m units from the
center with . = 0 (PR), r.’ = 1 (THU), and r.’ = -1 (THD). Their
coordinates at the entrance plane (z = 2 units) of this calculation need
not be specified here. Several conclusions can be drawn:

(1) It is evident from the last four columns of Table 4 (for BFR #6)
that space charge is mainly responsible for the discrepancies
between the numerical-field approximation in the left and the
analytical-field approximation in the right of each pair of columns.
Evidently, the approximation (Eq. [22]) by itself is good, even
though the cutoff voltage of BFR #6 (see Table 3) is estimated
somewhat low.

(2) Some of the discrepancies in r’ may be due to the way Gaussians
are fitted to the thermal distribution in Eq. [10]. Fig. 10 indicates
a decrease in o, and therefore larger errors in regions where the
principal test electron does not lie between the two thermals, as
one progresses from BFR #1 to BFR #6. The full numerical values
of r are not shown; they agree quite well and the small discrepan-
cies are not of importance compared with those in r’ in determining
the accuracy of trajectories deeper into the gun. Errors are largest

RCA Review * Vol. 43 * June 1982 355




(p'n) Sjewaay) psjeloosse
OM] S}I pue (d) uoJ}oala |edioulid BUO IO} SBAIND SUIBJUOD ydeub yoe3 's,H4g XIS 10} >4 9pOYIeD SNSIBA J X3 Jo sydesn—o| "bi4

\\\“
—2
0 ; e 0
! -1t
S aemmm————— llll\“N
]
€ de 14
14 -1
S £€* g
o z Rad
r =1 Y
— -
P \\\\—
-
\\ 1 \\\\ €
- d - -1v 4
s &
2.7 s 7 [
. /
=7 1° \\ 9
Ly P
[ \\\ S¢ {2 \\\ \\\ Z# 4.
d - P p 7 9y
8 n- 9 v 2 o g dng v 2 -]
— T T T T T _ L= l— f T T T T T T T 0
= \\\\\ 41 PR -
- P \\\\l—
P
\\\\ -12 P \\\\ -12
7Z2- f =
\\\ ~i€ ol Jde
—Ivd zs
_ e -1t =7 dp 4
_M\ \\ —S \\
e b# / -1$
n’ - il
-
_u\\ \\\ I
gt 1# -8

356 RCA Review * Vol. 43 ¢ June 1982




SIMPLIFIED ANALYSIS

G'e6— &'S%— I'¢y— 6'R8G— P0oS— 1I'8e— vis— 605— vevy— 1'9¢— ¢39— 96v— 8 (H.L
0SE— €9¢— CLY— 6'68— 65— v'8h— 1’86~  Lé6b— 98E— L'6g— 6'19— 1'8G— 08— 65— L (HL
I've— <9¢— I'iy— ¢Le—- 9Ly— TYh— g8'Gh— L'Ey— 60— 1°%¢— ovs— L'gS— ¢0S— ¥'8h— 9 (H.L
Y6c— SCE— G'9g— 6'1e— 0'68— CLE— L'8E— L'96- 8'€c— 8Vo— Evr— ¥viv— 60v— gov— S (H.L
66— G@'9¢— yovy— ¥'sc— ¢eE— 96— 81— G§'62— G06— 061— I'sg— ¥'ge— 8'€E— 0'%¢— ¥ (H.L
¢SI— G8I- 16— ¥'8i— I've— 6'15— 6'€5— 6'15— 981—- ¢G'GI— ¢'86— TLo— 09— V¥o— € (H.L
oL— or— SeI—- 911— 8GlI— 91— 691— G¥I- L4 Sl O 4 Gt L'1e— 005— L8l— GLI- ¢ (IH.L
91- 01— £y— 9V L'L— gL- L'L— 89— vel— 811— Lel— 8¢1— ¥o1— 6°01— I JdHL
1ot '8 ¢S gt 91 Lo [ ¥l 8L— 18— ¢'6—  6¢- 61— ¢6¢g— 0 ({H.L
86— a'8b— 9°09— 60— ¢'¢9— 909— 8'¢9— G'19— LU'ly— gsy— ¥'89— 9'89— L NH.L
¢1S— 806— 86— T0S— 6'65— 6'¢4— 86— 8¥e— L'ee— 0'sg— ¥29— 9'89— LYo~ 1'65— 9 NH.L
osy— €Lyv— 8'16— G'Gh— 6°05— €Lv— 0'0S— 66— 0'92— ¢'€6— g6y— ¥eg— L'iy— vov— S NHL
yov— 1'¢v— ¢ry— 1'8¢— 6'ly— 0'8¢— £0r— G9¢- gL~ 9¥I- ¢’LE— 6'8E— gLE= 9VE— ¥ NH.L
yee—- Lve- Sve— v6o— 8'16— V'8%— 9'06— 3G'Lg— £0I—- ¢GL- 6'66— 1'9¢— 9'LG— 66— € NH.L
G'Le— €9¢— L'vYe— 90¢— 8'1e— 681— 90— L'SI— I'y— 61— Vei—- 6vi— GLI—= T¥I- ¢ NH.L
061— GLI- 6yi— 611— L'it— 001— 8'0I— 00I- 0'¢c (44 vy—  £6— Ll—  g6— [ NHL
601— &'8— gs— ¢g¢— 91— L0— Al Gt V- 8L I's (3¢ 6t 61 gt 0 NH.L
1'¢e— 87¢— 90— 068— 86— 6'8v— 9'65— ¢'86— 6vr— 9¢v— 0'89— 009— 8 Hd
gey— gey— ¢'eS— G'9v— 8'65— 0'65— 0'65— 8'¥s— ooy— gob— 999— ¢L9- £e9—- 1'19- L Hd
I'ey— Svv— Lev— T1'gy— 86— I1'6¥y— 91S—  €'Ly— o'lg—- g0g- 8'96— 8'86— ves— 0'es— 9 Hd
0o6e— GOv— 6¢y— 69¢— vvb— LO0v— Sey— g68— 0'€c— 861— 9Gy— 6'Gh— gvr— €1v— S dd
8Cce— €ve— I¥e— /66— &'se— 1e8— 6'ce— 3'1g— ¢91—- 1¢I— 8¥e— 6'¢¢— 1ve— ¢lg- ¥ dd
y'6e— 89— €6c— 1¢8— L'Se— 9'¢e— L'Ye— ¢6e— I'e— 19— L'ee— S'€%— I've— ¢'%%— € dd
¢LI— g8I— 96— L¥I- ggl— gsi— 1'¢l— 96I—- 16— 61— Sel— ¥¥i- I'vi— 6¢l— ¢ Hd
L'8— £6— 86— 89— I's— ¢L 9y 9L— L'e 'l I'c— 89— L'e— 99— [ Hd
9# 9# S# v# e o# #
adiey) asedg oN
SHJd 83 XI§ 10} 01 X 41—V 3qe],

RCA Review * Vol. 43 ¢ June 1982 357




for electrons emitted furthest from the cathode center, but con-
comitant current contributions from the edge electrons are small.

Thus, even though the effect of space charge is appreciable in the
BFR and even though the transverse space-charge force approximation
might not be accurate in the crossover region, it appears that fair to
good predictions for electron coordinates at the end of the BFR can be
made with these simplifying approximations.

The approximations ignore the effect of induced charges in the grids.
Sample calculations show the effect of these to be negligible compared
with other errors. The neglect of the longitudinal space-charge force
was investigated in detail for BFR #6. Fig. 11 shows a comparison of
both for the first 150 length units. Up to the crossover region (at z =
50 units), the neglect of longitudinal space-charge fields is somewhat
serious, probably also accounting for some of the discrepancies. The
rapid transition from longitudinally-dominant to transverse-dominant
forces is quite apparent at the end of a diode region only a few length
units long.

5. The Initial Equivalent-Diode Region

In this section, we present an approximate analysis of the difficult
“diode region” of the BFR in which electron emission is space-charge
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Fig. 11—A comparison in BFR #6 of longitudinal and transverse space-
charge fields.
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limited, i.e., the preceding cloud of emitted electrons shields its suc-
cessor from the applied Laplace field so that the electric field at the
cathode is essentially zero in the emitting region.

In the circularly symmetric cathode vicinity, the Laplace potential
can be written as

@ (r, 2) = OO0, 2) ~ YUr:d®”(0, 2)
[24]
= ®"(0, 2)[1 - r*/R.7,

to the extent that r* and higher-order terms may be neglected. This
equality gives a working definition of an effective cathode radius R..
For r < R, Eq. [24] is a two-term expansion of

&' (r, 2) = Jo(2r/RIDP (0, 2). [25]

One can verify that Eq. [25]) is the solution of the Laplace equation if
®"(0, 2) is a linear combination of sinh(2z/R.) and cosh(2z/R.). Hence,
an acceptable solution of ®(r, z) with ®(0, z) = V. is

®"(r, z) = V. + vsinh(2z/R.) Jo(2r/R.), [26]

where v is an unknown constant voltage determined by the geometry.
Fields™ made the crucial point that the situation in the BFR very close
to the cathode is indistinguishable from one in an effective diode where
an anode at voltage V, at some distance da produces Eq. [26] as well
as the proper solution to the Poisson equation close to the cathode.
That is to say, Eq. [26] can be rewritten in terms of this equivalent
diode as,

sinh(2z/R,)

L = A — riod /DY
O, 2) = Ve+ (Va— V) sinh(2da/R.)

Jo(2r/R.), [27])
even though this predicts the Laplace potential correctly only for an
immediate vicinity of the cathode center. In the case of a purely one-
dimensional situation (R. — ) it can be seen® from Eq. [27] that d,
reduces to the length du = [4E."(0, 0)/dV.]™". On the other hand, Eq.
[27] yields

3E."(0,0) _ 2/R.
aV.  sinh(2da/R.)’

(28]

so that by inversion we relate an effective diode length d. to the
physical length dy = [9E.' (0, 0)/dV.]™",

da = %RIn[(2do/R.) + (1 + 4 do*/R2)"?]

[29]

Y%R..arc sinh(2do/R,).
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Note that d is entirely determined by the geometry and the Laplace
fields of the real problem, where d4 also contains the curvature radius
R. which will later be replaced by an effective beam radius.

Close to the cathode, the fields are governed by the Poisson equation,

3¥d 19 [ ad\ 1 jr, 2)

—_— - — —_— = — y -~ 2 75T 0 30

az*> rar <r ar) eop(r 2 = 2= [30]
where j (r, 2) is the current density and B is the constant given in Eq.
[9]). If ®(r, z) has Jo(2r/R.) as a factor containing all the dependence
upon r, then the correct solution of Eq. [30] can be written

) < 2[00 2) — VP

. 978 R.[sinh(z/R) |’
where R, = 2R./3. Now we apply Eq. [31] at z = da, the effective
anode position, and replace the numerator, using Eq. [27],

&(r, da) — V. = %R[—E."(r, 0)] sinh(2da/R.) [32]

[31]

to obtain the following analytical expression for the estimated current
density:

() = —— [~E.r, 02D,

97 [33]
128 [sinh(3d4/2R.)]*

81 ~ ¢ [sinh(2d4/R)}*’

where d4 is given by Eq. [29] and do = (3E."/aV.)"" at the center of
the cathode. The remarkable aspect of Eq. [33] is that the estimate
does not require a lengthy iterative numerical simulation by computer;
only the Laplace fields E.(r, 0) are needed and they are easily obtained
from the approximations in the previous section. However, several
defects in the assumptions must be borne in mind:

(1) The assumption that potential and current are proportional to
Jo(2r/R.) is incorrect for values of r close to R.. Fortunately j(r)
is very small when | R, - r| < R..

(2) The curvature radius R. is close to, but not equal to the effective
beam radius, and furthermore R, is a decreasing function of z in
the diode region (in contrast to the constant R. assumed in
developing Eq. [32]). Table 5 shows predictions of j.(r) made on
the basis of Eq. [33] with an ad hoc adjustment for the above
points by replacement of R. in Eq. [33] by R. [~70% of the actual
beam radius obtained from the location on the cathode where
E."(r, 0) = 0)]. Each pair of columns gives the numerically ap-
proximated current (density) to the left and the analytically esti-
mated one to the right. The current density J.(m) = 278j.(mh),

D=
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where A = 1 unit, and 278 = 190.43 if j.(mh) is to be in mA. The
total current I in mA is also given.

When reasonably accurate densities have been established by this
procedure, we then use Eq. [3] to simulate electron trajectories in the
short diode region, with a version of Eq. [31] that gives the Child’s law
potential and fields in terms of the estimated current densities. At the
end of the diode region, a transition is made to the transverse space-
charge approximation. This abruptness of the transition, exemplified
in Fig. 11, makes it possible to estimate its location from experience
with an entire class of not-dissimilar cathode-G 1 regions.

Table 5—Current Densities Predicted by Eq. [33] Compared with Computer-
Determined Ones

#1 w2 #3 #4 #5 #6

I(mA) 3.50 2.02 3.48 3.55 3.73 3.47

Jc(0) 641 6.06 4.37 440 621 645 509 6.72 6.66 698 566 595
J.(1) 6.31 597 430 432 612 634 505 565 6.57 686 560 5.87
J.(2) 6.02 569 4.06 406 585 603 491 544 628 651 540 562
J(3) 553 524 3.68 364 541 550 4.69 507 579 593 507 520
J.(4) 485 4.60 3.14 3.07 477 477 435 456 511 513 4.58 461
J.(5) 396 3.80 244 235 393 385 387 386 421 413 391 383
J.(6) 289 286 162 154 290 277 322 297 311 296 3.03 287
A7) 1.69 181 069 069 1.72 160 237 191 187 170 196 177
J.(8) 0.47 0.76 048 049 129 0.76 056 053 0.72 0.65

6. Conclusions

The purpose of this work has been to replace accurate but costly
numerical simulation (by digital computer) of electron trajectories in
kinescope guns by analytical approximations to provide the gun de-
signer with a flexible, low-cost, exploratory tool. We have found that
space-charge forces can be approximated by transverse electric fields
in typical kinescope beams at high accuracy beyond the crossover
region in the BFR. Between the cathode and the crossover region, the
transverse-field approximation is somewhat (but not seriously) in
error, as long as the immediate vicinity is properly treated separately
as an effective diode. For this reason, it is emphasized that the
approximations in this work are most useful in the drift region, and in
the main-lens region when circularly symmetric cylinder lenses of
equal radius are utilized.

Cathode current distributions can be estimated from the Laplace
fields. These, in turn, can be approximated analytically in axially
symmetric guns with conventionally shaped grids and lenses. While
such analytical approximations also carry with them some loss in
accuracy, they provide a tremendous gain in time and cost, and
therefore are especially useful for exploratory design in which high
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accuracy (well within 10% of the ELOP numerical calculations) is not
yet necessary.
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