
1

HOLO WERKZ LLC.

WIDGET SERVICES

FOR UNITY DEVELOPERS

 Widget Services: Essential Tools for Unity Developers

Widget services are at the heart of a Unity developer’s toolkit. They combine key component

properties with unique identifiers to streamline the process of connecting user interface components

and developing workflows for inter-scene and prefab messaging.

Holo Werkz LLC.

Widget Services

holo.werkz@gmail.com

https://holowerkz.com/

mailto:holo.werkz@gmail.com

2

Key Features

• Workflow for Sending Data: Efficiently send data between addressable scenes and

addressable prefabs.

• Data Connection Implementation: Connect user interface components at both edit

and runtime.

• Scene and Screen Handlers: Load and unload addressable scenes and prefabs

seamlessly.

• Testing and Automation Interface: Test and automate using data connections.

Basic UI Behaviors

Each UI behavior includes a component called a widget, such as Button Widget. The Button

Widget handles the heavy lifting by implementing inputs and outputs that connect to UI

behavior methods. You can set a text label or receive a click. Messages are sent as objects

with GUIDs, decoded by the destination object, and parsed for methodology and data.

System Workflow

1. Add Components: Add a panel, a panel widget, a button, and a button widget.

2. Assign GUIDs: Assign unique GUIDs to the widgets.

3. Event Handling: Add a ToWidget component to the button widget to send events to

specific widgets by GUID. For example, the button widget can toggle the active

state of the panel

3

OVERVIEW

Holo Werkz LLC is pleased to submit this asset for Widget Services to support Unity developers in enhancing event

communication systems between scenes and instantiated prefabs. We have improved the workflow for adding

widgets and setting up events between UI components.

• Need #1: Methodology to send events between active scenes and additive scenes loaded at run time.

• Need #2: Methodology to send events between prefabs instantiated at runtime.

• Need #3: Methodology to control addressable scenes and prefab canvas, panels and objects.

The Widget System is a valuable tool for controlling addressable scenes, prefabs, and widgets, including sending

data between scenes and storing objects. Overall, the Widget Services package is committed to improving the

developer and user experience through simplicity, interconnectivity, and real-time construction.

Sending Data Between Addressable Scenes and Prefabs

1. Define and build addressable assets.

2. Load and unload addressable assets.

3. Send data between scenes and to loaded prefabs.

4. Use unique identifiers for data table keying.

Connecting UI Components at Edit and Runtime

1. Add widget components and list them by behavior type.

2. Automatically assign GUIDs and definitions in the editor or at runtime.

3. Send data to widgets and save data between sessions.

4. Allow runtime-created widgets to send and filter object data.

Scene and Screen Handlers

1. Use addressable scene handlers to load builds independently at runtime.

2. Define panels to load and switch at runtime using screen handlers.

Interface for Testing and Automation

1. Use mock data to simulate user experiences.

2. Automate the triggering of events for testing.

4

Top Behaviors and Widgets

• Root Standard: Implements the main static interface handles to non-static MonoBehaviours.

• Root Widget: Processes widget lists for the editor and runtime. Manages event listeners as widgets are

enabled and disabled. Includes methods to add the correct widget based on components on the Game

Object.

• Main Bus: Creates a registry for app widgets and passes event triggers and data to the identified widget.

• Main Signal: Creates a non-volatile repository to store objects by GUID. Widgets can pass data to other

widgets using a combination of the widget’s GUID and the data object’s GUID in the signal repository.

• Model View Data: Creates a base view controller to connect model and data classes based on a template.

Using polymorphism, any simple item can be stacked on the view and retrieved by derived models and

items.

• Widget Manager: Handles the dictionaries for widgets registered for activation and data events.

• Canvas Widget: Manages screen orientation by activating the left/right or top/bottom cells in the view. It

has a widget trigger list that it can send on enable or disable.

• Panel Widget: Derived from the Object Widget, it allows the panel to create slide animations to the left,

right, top, or bottom.

• Object Widget: Extends the App Widget base type with a type and definition. It can be used as a utility

widget for attaching Game Objects.

5

• Sprite List Handler: Maintains a dictionary of textures that can be accessed for images.

• Audio List Handler: Maintains a dictionary of audio clips that can be accessed for sound effects.

•

6

UI Behaviors and Widgets

App Widget

• Base class widget: Creates the identity, sends triggers to animations, audio, scenes, screens, or other

widgets. Handles messages for activation, enabling, showing, or interaction of the widgets.

o Widget is Listening

o Widget is Sending

o Widget Save and Loads

o Widget triggers on Enabling

o Widget is remotely Activated

o Debug Log Actions for this widget

SendMsg Methods

 These methods on the base class and the SendMsg methods on derived widget are inputs to the Widgets

attached UI class like Image or Button. The SendMsg acts as an output from the UI Component through the

Widget.

• Active State (bool): Sets the active state of the object.

• Active Toggle(): Toggles the active state of the object.

• Enabled Object (bool): Calls the Enable Object method on the widget.

• Enabled Toggle(): Calls the Enable Toggled method on the widget.

• Interactive Object (bool): Sets the interactive state on the Selectable Component.

• Interactive Toggle(): Toggles the interactive state on the Selectable Component.

• Show Object (bool): Calls the Show/Hide method on the widget.

• Show Toggle(): Toggles the Show/Hide method on the widget.

The Panel Widget is an Example of the shared properties on the App Widget.

7

Button Widget

• OnButtonClick: Send Trigger (string): Sends the label of the button on click.

• SendMsg: Set Label (string): Sets the label of the button when triggered.

Dropdown Widget

• OnValueChanged: Send Value Trigger (int): Sends the value of the dropdown selection.

• OnValueChanged: Send Trigger (string): Sends the literal of the dropdown selection.

• SendMsg: Add Option (string): Adds a single string option to the dropdown list.

• SendMsg: Add Option List (List<string>): Adds a list of string options to the dropdown list.

• SendMsg: Clear Options(): Clears the options from the dropdown list.

• SendMsg: Set Value (int): Sets the selected value of the dropdown list.

Image Widget

• SendMsg: Set Value (int): Sets the texture of the sprite by indexing the referenced Sprite List.

• SendMsg: Set Value (Texture2D): Sets the texture of the sprite by passing the referenced Texture2D.

Input Field Widget

• OnValueChanged: Send Trigger (string): Sends the string value when changed.

• OnEndEdit: Send Trigger (string): Sends the string value on the end edit event.

• OnSelected: Send Trigger (string): Sends the string value when selected.

• OnDeselected: Send Trigger (string): Sends the string value when deselected.

• OnSubmit: Send Trigger (string): Sends the string value when the submit event is triggered.

• SendMsg: Set Placeholder (string): Sets the input field’s placeholder.

• SendMsg: Set Label (string): Sets the input field’s text value.

8

Raw Image Widget

• SendMsg: Set Value (int): Sets the texture of the sprite by indexing the referenced Sprite List.

• SendMsg: Set Value (Texture2D): Sets the texture of the sprite by passing the referenced Texture2D.

Scroll Rect Widget

• Extends the View Controller with a Model and a View. The UI Components on the scroll rect utilize an

object pool. Deriving new data objects from the base Simple Item allows for the standard Scroll Rect

widget to handle any model and view. This connects the UI Component properties to data in scripts.

View Controller<TC, TVM> where TC: class where TVM : View Model<TC>

View Controller<Item Simple Data, Item Simple> viewController.

Slider Widget

• OnValueChanged: Send Value Trigger (float): Sends the value of the slider.

• SendMsg: Set Value (float): Sets the value of the slider.

Text Widget

• SendMsg: Set Text (string): Sets the literal of the text component.

Toggle Widget

• OnValueChanged: Send Value Trigger (bool): Sends the value of the toggle when switched.

• SendMsg: Set Is On (bool): Sets the “is on” state of the toggle.

• SendMsg: Switch(): Toggles the “is on” state of the switch.

• SendMsg: Set Label (string): Sets the literal for the toggle UI text component.

9

Util ity Behaviors and Widgets

• Animation Widget: This widget lerps a rectangle transform off-screen in the left, right, top, or bottom

directions.

o Slide Time

o Slide Motion

o Rect Transform

o Disable View

• Animator Widget: Sends the slide time and motion to a Panel GUID and initiates the animation. When

called, the animator overrides the default values with those provided.

o Slide Time

o Slide Motion

o List of GUIDs

• Audio Widget: Calls the Audio Controller to play the audio clip as the main effect when enabled or added

as a one-shot overlay. The widget triggers audio events using a literal lookup of the audio clip name and

the audio list.

o Audio Name

o List of Audio Handles

o Play On Enable

o Play One Shot

• Fade Widget: Controls the splash screen display and a black overlay for fading. Supports fading in, out, in -

out, and out-in combinations. Requires references to the splash and fade images.

o Fade Type

o Fade Time

• Scene Widget: Triggered by the Button Widget to control an addressable scene, either loading (on) or

unloading (off) it.

o Scene Name

o Scene State

10

• Screen Widget: Loads, switches, and unloads prefab addressable assets as UI panels. Managed by an

enumeration identifier.

o Screen Prefab

o Screen State

▪ On Others Change No

▪ On Others Change Off

▪ Off Others Change No

▪ Off Others Change Off

▪ Toggle Others Change No

• To Widget: Sends output events and data to a list of other widgets by GUID. The send value functions are

triggered by UI component events, which are processed by the App Widget to harvest data and send

messages.

o List of Send To Widgets

▪ Send To Name (Component Type/GUID/Game Object Name/Parent)

▪ Send To Msg (Key message and Data Struct)

11

• Trigger List Widget: Sends messages to a list of App Widgets.

o Widget Change State Proc (Activate, Enable, Interact, Show)

o Is Triggered

o App Widget List (Game Object References)

• Enabler List Widget: Triggered when the widget is enabled or disabled. You can set the trigger to fire for

each method and specify the Boolean payload for the trigger.

o Widget Change State Proc (Activate, Enable, Interact, Show)

o Is Triggered

o App Widget List (Game Object References)

12

Basic Examples

Example Usage – UI Panel

1. Create UI Panel: Add a panel and a Panel Widget.

o Set the panel to listening.

o Set the panel to activate.

2. Create UI Button: Add a button and a Button Widget to the scene.

o Add a ToWidget to the button.

o Add one Guid Sent To Widget property.

o Set the drop-down value to the Panel object you just created.

▪ Note: As you add more widgets, this drop-down value will change. The concrete value

set by the drop-down is stored below in a read-only label. This read-only value is the

GUID being used.

o Set the enumeration of the message to be sent. In this case, set Widget_Active_State_Trigger.

o Leave the trigger value unchecked to deactivate the panel when the button is clicked.

Example Usage – Alt Scene

1. Create Previous Example in Alternate Scene: Add a second panel and button then set the messages in the

alt scene to control objects in the active main scene.

13

Example Usage – UI Dropdown Panel

1. Create UI Panel: Add a panel and a Panel Widget, then arrange the following components:

o Add a Text Component and a Text Widget.

o Add a Dropdown Component and a Dropdown Widget.

o Add an Input Field Component and an Input Field Widget.

o Add a Button Component and a Button Widget.

2. Configure the Button:

o Label it “Clear”.

o Add a ToWidget.

o On the ToWidget, create one SendToGuid for the Dropdown Widget with a message

of Dropdown_INP_Clear_Option.

3. Configure the Input Field:

o Add a ToWidget.

o On the ToWidget, create one SendToGuid for the Dropdown Widget with a message

of Dropdown_INP_Add_Option.

o On the Input Field Widget, check the box to Send End Edit.

4. Configure the Dropdown:

o On the Dropdown Widget, check the box to listen for input events.

o Add a ToWidget.

o On the ToWidget, create one SendToGuid for the Text Widget with a message

of Text_INP_Set_Text

14

CONCLUSION

We look forward to working with Unity Developers and supporting your efforts to improve your skills; working with

User Interface Components and more scene objects. We are confident that with this simple framework you will

save time creating user experiences in the editor and at runtime.

If you have questions on this documentation, feel free to contact Holo Werkz by email. We will be in touch with

you in the next one to three business days.

Thank you for your consideration,

Holo Werkz LLC.

holo.werkz@gmail.com

