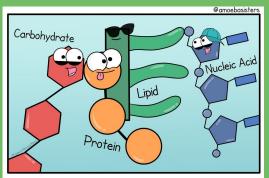
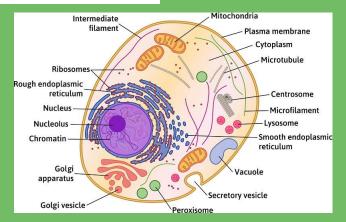

ScienceCraft

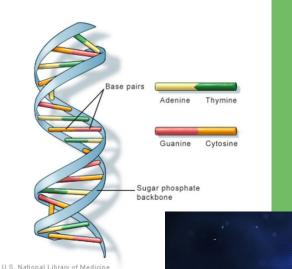
Molecular Biology

What is Molecular Biology?

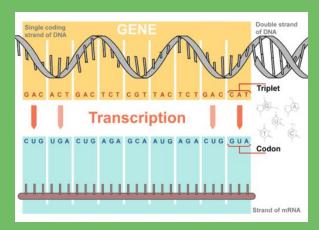


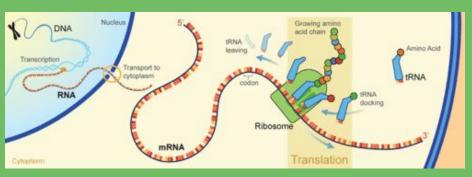

- Biology study of life, Molecular- at the molecular level
- The study of life at the Cellular Level
 - X Interactions between cells and cellular molecules
- Involves things such as human genetics, viruses and diseases at the cellular level, and DNA
- Similar to Biochemistry but biochemistry focuses on chemical reactions within body, while
 Molecular Biology focuses on structure and interactions between molecules

Cellular Molecules



- Proteins are the building blocks of life, most common, and help with cellular function
 - X Made out of 4 Structures of Amino Acids
- Carbohydrates are sources of energy
 - Made out of carbon, hydrogen, and oxygen
- Lipids are fatty molecules used in cell membranes
 - X Made out of Fatty Acids
- Nucleic Acids are what makes DNA and RNA (found in Nucleus)


Part One: Mechanisms


DNA

- DNA is the genetic material found in nearly all life that determines everything about life
- DNA's structure is in a double-helix with rings in the middle (think of a ladder)
 - X Outer helix is a sugarphosphate backbone
- Inner rings consist of **A, T, G, and C** which are 4 Amino Acids (A pairs with T, G pairs with C think "Always together and "Great couple")
- This is called Base Pairing
- Nucleotides are a base attached to a sugar and phosphate

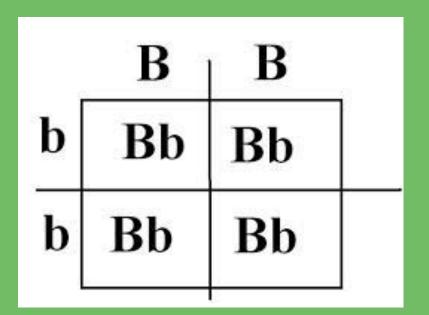
Protein Synthesis

- Protein Synthesis is how proteins are made (proteins do everything in the cell)
- **Dogma** of molecular biology is "DNA → RNA → Proteins"
- **X** Occurs in two stages
- **X** Transcription is where DNA is copied to RNA (Nucleus)
 - Instructions for how to make each protein is written as an mRNA
- **X** Translation is where RNA is turned into Protein (Ribosome)
 - MRNA moves to ribosome where rRNA and tRNA work together to build a protein

Part Two: Genetics

- ✗ Genes segments of DNA located on specific chromosomes.
 - X Chromosomes are long DNA molecules with all genes carried
 - X 23 pairs of Chromosomes.
 - X Have instructions for proteins
- X Nucleotide bases, phosphate backbone, and a 5 carbon sugar.
 - Bases are A, T, C, G
 - X Double Helix

Mendelian Genetics



- ✗ Gregor Mendel came up with his theory of inheritance after experimenting with different pea plants.
- Alleles are pairs of a gene that determine what trait you will have AKA
 Genotype
 - X Genotype determines phenotype
 - X Dominant and recessive genes

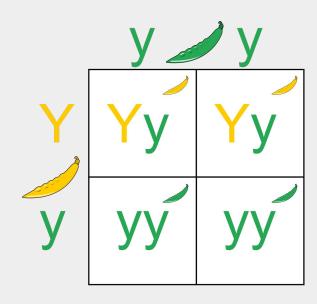
X Law of Segregation

One of each gene is passed on and chosen randomly

Punnett Square

X Dominant is capital, recessive is lowercase

- Dominant always appears over the recessive.
- X Homozygous both recessive or both dominant
- X Homozygous recessive is the only way recessive phenotype shows up.
- X Heterozygous: both!


X Punnett Squares

- Parent alleles on the sides, Cross them together.
- The results are the different genotypes that could appear in the child

Mendelian Genetics Continued

	Seed Shape	Seed Color	Seed Coat	Pod Shape	Pod Color	Flower Position	Plant Height
P	Round X Wrinkled	Yellow X Green	Gray X White	Smooth X Constricted	Green X Yellow	Axial X Terminal	Tall X Short
F,	♥ Round	Yellow	Gray	Smooth	Green	Axial	Tall

- By looking at the results of Mendel's study in the photo on the left, which phenotypes do you think are dominant?

Kahoot Time!