ScienceCraft

Atoms and Molecules

What is an atom?

Outdated "plum pudding" model

Bohr model

- Brownian motion: random movement can only be explained by atoms and molecules colliding with each other at a microscopic level
- An atom is the smallest common unit of matter
- **X** All matter is made up of atoms
- An element is a pure substance that cannot be broken down further by chemical means

Charge

- ✗ An atom consists of 3 major parts
- **X** Protons have a positive charge
- **X** Neutrons have no charge
- Electrons rotate around the nucleus and have a negative charge
 - X Located in the orbitals
- Charge is responsible for phenomena like electricity
 - Electricity is simply the "flow of electrons" in an effort to create equilibrium

Particle	Relative Mass	Relative Charge	Charge / C	Mass / kg		
Protons	1	+ 1	+ 1.6 x10 ⁻¹⁹	1.67 x10 ⁻²⁷		
Neutrons	1	neutral	0	1.67 x10 ⁻²⁷		
Electrons	0.0005	- 1	- 1.6 x10 ⁻¹⁹	9.11 x10 ⁻³¹		

H 1																	He
Li 3	Be											B 5	C	N	O 8	F 9	Ne
(6,94)	Mg												(12,01)	P	S (15,99)	(18,99)	9 (18,99)
11 (22,99)	12 (24,30)											13 (26,98)	14	15 (30,97)	16 (32,06)	17 (35,45)	18
K	Ca	Sc	Ti	V		Mn		Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19 (39,10)	20	21	22	23	24 (51,99)	25 (54,94)	26	27 (58,93)	28	29	30 (65,38)	31	32 (72,59)	(74,92)	34 (78,96)	35 (79,90)	36 (83,80)
Rb	Sr	Y	Zr		Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- F2	Xe
37	38	39	40	41	42 (95,94)	43	(101,07)	45	46	47	48	49	50	51	52	53	54
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55 (132,90)	56 (137,33)	57 (138,90)	72 (178,49)	73 (180,95)	74 (183,85)	75 (186,21)	76 (190,20)	77 (192,22)	78 (195,08)	79 (196,97)	80 (200,59)	81 (204,38)	82	83	84	85 (209,99)	86 (222,02)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		FI		Lv		
87	88 (226,02)	89 (227,03)	104	105	106	107	108	109	110 (268,14)	111	112 (285*)		114 (289*)		116 (297*)		

Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
58	59 (140,91)	60	61	62	63	64	65 (158,93)	66 (162,50)	67	68	69 (168,93)	70 (173,04)	71
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Periodic Table

Can you name blocks from each of the 3 categories?

- **X** Elements fall into 3 categories
- Metals are good conductors, malleable, and are solid at room temperature
 - X Except for mercury*
- Nonmetals are poor conductors, not malleable, and vary in states at room temperature
- Metalloids are a hybrid of the two, often serving as semiconductors

Periodic Table

- **X** Alkaline earth metals: Less reactive, slower to produce heat
- Lanthanides: Silvery white, tarnish in air
- ✗ Actinides: Highly radioactive
- **X** Transition metals: Hard, conductive, malleable
- **X** Post-transition metals: Poorer conductors but still metallic
- **X** Metalloids: Semiconductors
- **X** Nonmetals: Common gases
- **X** Halogens: Highly reactive with alkali metals, produce salts
- X Noble Gases: Inert, odorless gas

Periodic Table

ENERGY LEVEL	MAX# OF ELECTRONS
1	2
2	8
3	18
4	32
5	50

1		Valence Electrons																	
1	2		in Each Group										4	5	6	7	8		
1	2											3	4	5	6	7	8		
1	2											3	4	5	6	7	8		
1	2											3	4	5	6	7	8		
1	2											3	4	5	6	7	8		
1	2											3	4	5	6				
		ſ																	

- ★ Atoms have different numbers of electrons
- There are a certain number of electrons in each energy level of the orbitals
 - X Often seen as the "2-8-8" rule
- The number of atoms in the outer shell are known as valence electrons
 - X The number of valence electrons determines how reactive an element is

Bonding

- Ionic bonds: Bonds that result in an electron being passed to another atom
 - X NaCl is an example
- **X** Covalent bonds: Bonds where atoms **share** an electron
 - \mathbf{X} For example, 0 tends to bond with itself as 0_2
- When multiple atoms bond together, they become a molecule
- A compound is made up of two or more unique bonded atoms

Visualizing Molecules

- Molecules are often very complex if you wanted to view each proton, neutron, and electron.
- Oftentimes you will see simplifiedmodels like the one below

Challenge: Build a molecule

Use <u>Chemspider</u> to look up a molecule of your choice

Find the 3D visualization and build it, making sure to label

