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Abstract. Let me tell a mathematician’s tale about symmetry. We begin

with playful curiosity about a concrete elementary case—the symmetries of

the letters of the alphabet, for instance. Seeking the essence of symmetry,
however, we are pushed toward abstraction, to other shapes and higher di-

mensions. Beyond the geometric figures, we consider the symmetries of an ar-

bitrary mathematical structure—why not the symmetries of the symmetries?
And then, of course, we shall have the symmetries of the symmetries of the

symmetries, and so on, iterating transfinitely. Amazingly, this process culmi-

nates in a sublime self-similar group of symmetries that is its own symmetry
group, a self-similar self-similarity.

In the light of symmetry consider a capital letter A.

A
Well, this particular A in this particular font, unfortunately, is not quite perfectly
symmetric. The uprights at left and right differ in thickness, for example, and the
serif on the right foot is ever so slightly larger than the serif on the left. Let us try
to draw a somewhat more symmetric letter A, even though it may be less graceful.

That’s better. This A exhibits a vertical line symmetry—the vertical line down the
center.

If we reflect the letter across that line—like Alice through the looking glass—it
lands perfectly upon itself. We might fold the paper on that line to realize the
symmetry.
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The letter B also exhibits symmetry.

B
Well, again, this particular B in this particular font is not perfectly symmetric—the
upper curved half is slightly smaller, and the two curves are not exactly the same
shape. But we can try to draw a more symmetric B, if less graceful, so as to exhibit
a horizontal line symmetry.

We might similarly consider all the letters of the alphabet, drawing each of them
as symmetrically as possible. Get some paper and try!

What symmetries did you find? Some letters, as we have seen, have vertical
or horizontal line symmetries. The letter H has both vertical and horizontal line
symmetries. The letter S has no line symmetries, but it has a rotational symmetry.

If you rotate this letter S by 180 degrees about its center, half-way around, it will
land precisely upon itself. In elegant fonts, the letter S is often not quite symmetric
in this way—the upper part is often gracefully smaller than the lower part. Some
letters, such as F, G, and R, seem to have no nontrivial symmetries at all.

Which is the most symmetric letter? The letter X, when drawn with perpen-
dicular lines, exhibits not only vertical and horizontal line symmetries, but also
diagonal line symmetries, as well as four-fold rotational symmetry.

One particular letter, I claim, can be drawn so as to exhibit infinitely many
symmetries! Consider the letter O, drawn as a perfect circle.

This letter O has line symmetries with respect not just to vertical and horizontal
lines, but with respect to any line through the center at all, infinitely many. And
it also has infinitely many rotational symmetries, by any angle you like.
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To illustrate how the symmetries of a figure form a mathematical system, let us
consider the symmetries of a square.

The square exhibits a four-fold rotational symmetry. If we rotate by a quarter turn,
the square lands upon itself. We can rotate twice, or three times, but rotating four
times brings back the original orientation. This is the same result as with no ro-
tation, the identity symmetry, a trivial symmetry leaving the object unchanged.
Perhaps the trivial symmetry is hardly a symmetry at all. Yet mathematicians
systematically find it useful to regard trivial or degenerate instances of their con-
ceptions as fully valid—every square is also a rectangle; every equilateral triangle
is also isosceles; and zero is a number. So let us regard the identity symmetry as a
symmetry—it is one of the ways of associating the square rigidly with itself.

The square also exhibits symmetries by reflection, with four lines of symmetry.

Thus, the square has eight symmetries in all: four rotational symmetries (including
the identity symmetry as 0◦ rotation) and four reflection symmetries.

The letter R indicates for each symmetry how it acts upon the square.
Symmetries can be composed by performing them one after the other; this is

a kind of multiplication operation for symmetries, with the result being another
symmetry. Thus, symmetries become dynamic—each is a distinct transformation.
If you first reflect on the vertical line and then on the horizontal line, for example,
which symmetry have you got?

reflect on

vertical

reflect on

horizontal
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Altogether, this is rotation by 180◦, half-way around. The composition of two
reflections in the plane is always a rotation, because the mirror orientation, being
twice reversed, is ultimately preserved.

Every symmetry admits an inverse symmetry, the symmetry that undoes it;
composing them is the identity symmetry. The inverse of clockwise rotation is
counterclockwise rotation through the same angle; reflections are self-inverse, since
performing them twice gives the same result as doing nothing.

When composing symmetries, does the order matter? Yes, indeed it does. If
you compose a left quarter turn with a vertical-line reflection in both ways, the end
result is not the same.

rotate left reflect on

vertical

reflect on

vertical

rotate left

Abstracting to a higher dimension, consider the symmetries of a cube.

There are numerous rotational symmetries—grab the cube by any face and apply a
quarter turn; or grab the cube by a vertex and spin by one-third; or grab the cube
by an edge and twist exactly half-way around. There are also numerous mirror-
plane reflection symmetries—how many can you find? And there is the central
symmetry, turning the cube inside out by exchanging each vertex with its opposite
through the center. This is neither a rotation nor a planar reflection, it turns out,
although it can be realized by composing a rotation with a planar reflection.

How many symmetries of the cube are there? You might be surprised to learn
that there are 48 distinct symmetries of the cube. To count them, consider how
a symmetry might act upon a particular face. This face must be carried to one
of the six faces, and as we observed above, there are eight ways to associate the
two squares. Having attached the face, the rest of the symmetry is determined
(perhaps requiring reflection), and so there are 6× 8 = 48 many symmetries of the
cube altogether.
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What is a symmetry? With geometric plane figures, we had rotational and
reflective symmetries, and in three dimensions we had the central symmetry. In
higher dimensions there are still other kinds of rigid transformations. All of these
symmetries are isometric, which means that they preserve distances—they do not
stretch or compress the figure.

But some figures are insightfully described by
nonisometric symmetries. Consider the Sierpinski
gasket fractal here, for example. Notice how it ap-
pears within itself in scaled-down form—the whole
triangular figure appears three times at half size
(half the edge size), once in each corner. And it ap-
pears nine times at one-quarter size, twenty-seven
times at one-eighth size, and so on. There are in-
finitely many scaled-down copies of the whole frac-
tal inside itself. This is a kind of symmetry, to be
sure, a self-similarity, but not by rotation or reflec-
tion; because of the scaling, it does not preserve
distances. Yet the figure is insightfully described by this self-similarity.

So we are pushed toward a more generous, abstract conception of symmetry. We
might consider any structure-preserving transformation of a mathematical object,
an isomorphism of the object with itself, as a symmetry of that object. We may
consider the symmetries of any mathematical structure at all.

Consider the system of complex numbers C, for example. Complex numbers
have the form a + bi, where a and b are real numbers and i is the imaginary unit,
the square root of negative one,

i =
√
−1.

We can add complex numbers and multiply them, and altogether the complex
numbers form a mathematical structure known as a field.

We said that i is the square root of negative one. But suppose I ask, Which one?
There are two such complex numbers, since −i also is a square root of negative one,
as you can check:

(−i)2 = (−1)2i2 = i2 = −1.

So what had seemed to be the defining property of i is a property that also holds
of −i. How can we tell them apart?

Indeed, we cannot tell them apart in the complex field. There is nothing you
can say about i in the complex number field C that isn’t also true of −i. Your i
might be my −i, for all we know, if we treat the complex numbers strictly as a field.
The reason is that there is a symmetry of the complex numbers, an isomorphism
of the complex field with itself, that swaps the numbers i and −i. This symmetry
is called complex conjugation, and it associates every complex number with its
complex conjugate:

a + bi 7−→ a− bi.

The numbers i and −i therefore play exactly the same structural role in the complex
number field. They are perfectly symmetric copies of each other.

There are many other automorphisms of the complex field—an enormous un-

countable infinity of them, 22
ℵ0

many—although one uses the axiom of choice to
prove this. Every irrational complex number can be moved. And yet, all these
symmetries of C, including complex conjugation, are broken by augmenting the
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complex field with its coordinate structure, using the real and imaginary parts.
Thus, the complex plane (as opposed to the mere field) is rigid—it has no nontriv-
ial symmetries.

Let us continue our flight toward abstraction. Start with any mathematical
structure at all—a geometric figure, a number system, whatever you like—and
consider its symmetries. Collectively these constitute the symmetry group of your
structure. Since this symmetry group is a perfectly good mathematical structure of
its own, with composition as the group operation, we may consider its symmetries,
or in other words, the symmetries of the symmetries of the original structure.

But why stop there? This next symmetry group, after all, also stands on its
own as a mathematical structure, with its symmetry group, the symmetries of the
symmetries of the symmetries, and then of course there will be the symmetries of
the symmetries of the symmetries of the symmetries, and so on. We may iterate
the process as long as we like. In this way, we are led to the automorphism tower.

G0 −→ G1 −→ G2 −→ G3 −→ · · ·
We began with the symmetry group G0 of the original structure, and then each
next group is the symmetry group or automorphism group of its predecessor.

It is an elementary fact in group theory that every element of a group generates
an inner automorphism of that group by the process of conjugation. Because every
group element is thus mapped canonically into its symmetry group, the tower of
groups can be seen as building toward a certain limit group Gω, the direct limit of
the system of groups.

G0 −→ G1 −→ G2 −→ · · · −→ Gω

And not only that. Because Gω is a perfectly good group on its own, we may
consider its automorphism group, and the automorphism group of that group, and
so on, thereby continuing the automorphism tower beyond infinity.

G0 −→ G1 −→ G2 −→ · · · −→ Gω −→ Gω+1 −→ Gω+2 −→ · · · −→ Gα −→ · · ·
Iterating transfinitely, each next group is the automorphism group of its predeces-
sor, and at limit stages we use the direct limit.

Does it ever stop? Will there ever be a group that is isomorphic to its own
automorphism group by the inner-automorphism association we described?

Amazingly, the answer is Yes. The process eventually reaches completion. In
my article [Ham98], building on key earlier work of [Tho85], I proved the following:

Theorem. Every group has a terminating transfinite automorphism tower.

What I proved is that in every automorphism tower, perhaps very far out in the
transfinite part of the tower, there will eventually be a complete group, a group
for which every automorphism is already realized as an inner automorphism by
a distinct group element. Such a group thus exhibits a perfectly self-similar self-
similarity. Nothing new is added beyond this group by considering symmetries of
symmetries, or symmetries of symmetries of symmetries; one already has them all.

Since every automorphism tower is completed in this way, if you iteratively con-
sider the symmetries of a structure, and then the symmetries of the symmetries, the
symmetries of the symmetries of the symmetries, and so on, iterating transfinitely
in the natural manner, then you will eventually achieve a complete, sublime group
of self-similar self-similarity. You will eventually, perhaps transfinitely, complete
the process of symmetry.
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