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Abstract: Although the working of metals has been practised since antiquity, modern appreciation 

that metals are crystalline has revealed the puzzle of how they can be deformed and yet retain their 

crystalline symmetry.  The solution requires acceptance of a dialectic relationship between a defect 

structure displaying random disorder superimposed upon that of the strictly ordered crystal.    

  

Fig. 1 shows a model of Chinese Emperor Qin Shihuang’s chariot.  The original is buried near 

Xi’ang and is on display there with the Terra Cotta Warriors.  It dates from about 200 BCE.  The 

chassis and roof shown in grey are made from bronze sheet.  The elegant roof is over 3 metres long 

but only a few millimetres thick.  It is extraordinary that the ancient metallurgists were able to make 

it by casting, then deforming, the sheet: it is malleable bronze.  The deformation strengthens it, 

makes it more self-supporting over the interior of the chariot.  For this to be possible, the metal 

must be free from inclusions and very homogeneous in composition. The Emperor’s chariots 

exemplify ancient skills of metal forming, remarkably comparable to those shown in modern 

automobiles. 

 
Figure 1. A model of Chinese Emperor Qin Shihuang’s chariot 



  
Metals which can be shaped and strengthened without having to be cast in their final form play a 

central role in civilisation: steel armour, coins of gold or brass, lead roofing, cutlery and cookware, 

copper engravings, as well as aeroplanes, ships, and wheeled vehicles: all require knowing how to 

deform metals without causing them to crack or buckle.  Useful deformable metals are nearly all of 

cubic crystalline atomic structure, in which very nearly perfect crystals form grains in random 

orientations joined together by fundamental atomic forces.  How is it possible for crystals to be 

shaped and moulded like clay? 

       

 

Figure 2. Diagram from Dislocations in Crystals by W. T. Read Jr., McGraw-Hill, N. Y., 1953. 

   
The answer to this question is that the crystal planes can slip over one another by the passage of 

lines of disrupted symmetry called dislocations.  Fig. 2 from an early textbook shows how.  In fig. 

2(a) a thumbnail area of a crystal plane, ABC, slips one atomic spacing over another to produce a 

ledge as shown cross-hatched.  The area is bounded by a curved edge, AC, an arc of dislocation 

where the crystal structure is destroyed, as shown in Fig. 2(b).  The arc can move forward by the 

local motion of the disrupted atoms, and in so doing spread the slipped plane but leaving behind the 

crystal, still perfect. 



Already one can see the interplay between symmetry, perfect crystalline symmetry, and the line of 

dislocation, whose motion is required to change the crystal’s shape.  Dislocations play an essential 

role in the formation of the crystal, as well as in its utility. 

The elastic response of the crystal to applied forces changes the spacings between its atoms, and 

changes too the shape of their pattern.  But it is reversible: on unloading the pattern returns to its 

original form.  The elastic response is independent of the source of the crystal, how it is grown, 

what previous forces it has experienced, and so on.  It is very reproducible, independent of the 

‘history’ of the crystal.  But the plastic response is very different.  The simplest example is possibly 

that of the metal paper clip: if you bend it once, it will deform and assume a different shape.  But if 

you bend it back and forth, it will degrade and rather easily break in two.  The response of the paper 

clip depends upon its ‘history’.  It shows ‘fatigue’.  When dislocations were first observed, it 

became clear that the structure of the arrays inside the crystal is very complicated and variable, 

history dependent, so the problem of understanding plastic behaviour becomes one of classifying 

the arrays and understanding their response to the applied forces. 

The simplest such arrays, and the first to be well understood, are those introduced by backwards-

and-forwards deformation, causing plastic fatigue.  Fig. 2 shows a typical array.  The crystal has 

been subjected to cycles of backwards and forwards shear deformation.  After many such cycles, on 

the plane of shear, groups of dislocations in a ripple pattern appear, looking rather like the sand 

under waves near the shore of the sea.  The symmetry is what you might expect: the pattern is 

overall perpendicular to the shearing direction, as if bits of crystal are scraped up and periodically 

deposited.  The pattern of sand dunes swept by winds in the desert also comes to mind.  But the 

pattern is not simple: its variability, the undulations along the ripples, are an essential symmetry-

breaking feature.  By their movement the undulations allow the ridges to move and to take up a 

well-defined average spacing. 



 

Figure 3. The structure of ‘ripples’ caused by backwards and forwards shear on the slip plane of magnesium.  
Each ripple is a bundle of dislocations, revealed by etching.  The average spacing of the ripples is 8µm.  The 
round pits are an artefact of the etching.  Reproduced from ‘Studies of Fatigue Damage in Magnesium single 
Crystals’, Ph.D. thesis by R. Kwadjo, Cambridge, 1973. 

The study of such patterns in ductile metals is of engineering significance: the endurance limit in 

fatigue, which is the magnitude of the backwards-and-forwards stress amplitude below which no 

cracking is developed, is just twice the stress required to bow a dislocation between the bundles of 

dislocations. 

The patterns themselves suggest that structures of perfect symmetry cannot build up if they do not 

possess some irregularity giving them flexibility to allow change. 

But what of the apparently more straightforward deformation that the roof of the emperor’s chariot 

underwent before it was assembled?  When a metal is subjected to a steadily increasing load, the 

plastic strain continuously increases and is permanent: it doesn’t flow back when the load is 

removed.  Is it possible to understand how this happens? The answer here is far more complicated 

and still subject to controversy among the many ‘plasticians’ in the world: engineers, materials 

scientists, physicists.  Two facts are (mostly) agreed: firstly, on the mesoscale, that is, between 

atomic size and the size of the macroscopic object, plastic deformation is not homogeneous.  It 



occurs in discrete slips, slip bands, or ‘avalanches of slip’, each lasting several microseconds.  

Secondly, attempts to see the structure of dislocations in these bands while they are forming have 

been frustrated.  The transient bands are triggered suddenly and randomly.  They have been 

compared to earthquakes: there seems to be no way of predicting where or when they will occur.  

One imagines that in the future, perhaps with the next generation of extremely bright sources of 

synchrotron radiation, we may be able to see them.  What can be seen in the electron microscope is 

the residue of the bands, the most recent leaving their traces over the traces of others which have 

triggered before them.  The apparently continuous curve of stress required to continue macroscopic 

plastic strain is an ‘emergent property’ of the system: it is the ‘coarse-grained’ (that is, ‘smoothed’) 

outcome of underlying, unrecorded, jerky events. 

 
Figure 4. The typical ‘stress/strain’ curve of a ductile single crystal, reproduced from The Plastic 
Deformation of Metals by R. W. K. Honeycombe, Edward Arnold (Publishers) Ltd., London, 1968.  The 
‘resolved shear stress’ is the load per unit area of the shearing plane, and the ‘resolved shear strain’ is the 
plastic displacement per unit length measured perpendicular to the plane.  The critical stresses for the 
transitions from one stage to the next are labelled: τ0 for the onset of flow after the elastic region, τ2 for the 
onset of stage 2, leading to failure in stage 3. 

  
The puzzle is that, as has been known for many years, plastic flow of a ductile single crystal 

displays universal regularities.  Fig. 3 shows a typical curve showing the increase of the shearing 

force required to continue plastic flow as a function of the plastic distortion it has already caused.  

After an initial very small elastic strain, not shown in the figure, one finds a ‘precursor’ interval, 

called Stage 1, where the response is variable, depending upon crystal orientation and its perfection.  

Then one finds a nearly linear region, Stage 2, which for each available slip system has a slope 

about equal to the elastic slope divided by 400.  The slope is almost the same for all ductile crystals.  



It does not depend upon the history of the crystal.  It depends very little upon temperature or the rate 

of straining except at extremely high rates.  The linear increase of force required to continue 

straining is the strengthening caused by the strain.  Called ‘work hardening’, it is an essential 

characteristic of metal deformation.  After Stage 2, one finds an exhaustion region, Stage 3, where 

the slope progressively decreases.  The crystal fails before the curve flattens out.   
  

What is the outline explanation for this universal behaviour?  It must be rather like that for the 

universal gas law, the ideal gas, so beloved of first-year physics. 

 

Figure 5. Each ellipsoidal slip band (smartie) is jammed against its neighbour and makes a variable angle 
with the plane of the paper (the shear plane) 

The answer lies in the structure of the slip bands.  If they are pictured as a densely packed array of 

ellipsoids, like smarties in a package, they present a universal but random structure.  That they are 

ellipsoidal has a deep explanation.  In an ellipsoid, all the dislocations in the band experience the 

same stress, enabling them to drive each other forward co-operatively.  Each band almost 

instantaneously contributes its plastic strain.  Once the pattern of interlocking ellipsoids is 

established in the crystal, more strain can be produced by generating new ellipsoids which 

overwrite the existing ones, yet not changing the random pattern of ellipsoids.  The pattern only 

shrinks, to produce more and more bands, each new band getting progressively smaller.  But as the 

pattern shrinks, the dislocations are forced to bend ever more sharply, thereby causing the 

characteristic work-hardening.  At a high enough stress, the ellipsoids cannot be contained, they 



penetrate their boundaries, and the hardening progressively diminishes: the work-hardening 

saturates, and Stage 3 takes over. 

There is a remarkable feature of this picture: the plastic offset produced so suddenly by each band is 

constant over the whole of Stage 2.  The number of atomic spacings in each offset is approximately 

equal to the inverse of the angle (in radians) between the ellipsoid and the plane of shear.  Its 

constancy is evidence of an underlying pattern, changing only in scale, as the deformation 

progresses. 

So we have found a three-dimensional structure in which variability plays a crucial role, but which 

possesses the overall symmetry of shear. Each ellipsoid has degrees of freedom, a variable angle of 

tilt as well as variable size.  Computer models show that the volume fraction occupied by the 

ellipsoids is very nearly 75%.  As the straining proceeds, this stays constant.  The structure is scale 

invariant, satisfies the ‘renormalisation group’, that is, it looks the same at any magnification.  In 

the language of materials science, it follows ‘similitude’.  

In terms of this postulated structure, all characteristics of the work-hardening curve can be 

estimated accurately and consistently.  It is very frustrating that the structure has not yet been seen 

directly.  The perfect ellipsoids are too short-lived and their location impossible to predict.  What is 

seen is an imperfect record of their existence, not unlike the fossil record left by evolution. 

There is an underlying principle satisfied by all these structures, the crystal and its dislocations.  

They display ‘maximum suppleness’.  They are ‘self-organised critical structures’, in which there 

are a maximum number of elements which can participate in an avalanche.  Each element is on the 

verge of departure from the standing pattern.  Bifurcations are incessantly occurring: the ridges in 

the fatigue structure can split, or move sideways left or right; the ellipsoids can tilt clockwise or 

anticlockwise.  These are the degrees of freedom which allow any new avalanche to overwrite the 

existing structure, refine it, but maintain its character. The overall degrees of freedom are 

maximised in number if they are distributed over all the space available, so no element gets ‘frozen 

out’.  The concept of maximum suppleness enables one to calculate emergent properties without 

detailed knowledge of the sequence of events leading to an avalanche, rather the way one can 

calculate the behaviour of an ideal gas without knowledge of individual molecular trajectories.  Just 

as it’s remarkable that all gases of whatever molecular identity behave approximately as an ideal 



gas, so it is that all ductile crystals behave in the same way.  In stage 2 hardening they too obey a 

universal equation of state.  ‘Maximum suppleness’ applies to the state of the straining crystal.  It 

replaces the principle of ‘maximum entropy’ which applies to systems in thermal equilibrium.  

Suppleness in a complex mechanical system under stress does not depend upon temperature.  It is 

the chance that somewhere in it an avalanche will occur.  It is maximised when every element in the 

system is on the edge of participation in one. 

Perhaps the aesthetic lesson is the Japanese notion of wabi-sabi: the beauty of austere symmetrical 

perfection be appreciated only if there is an element of chaotic imperfection.  Imperfections are a 

product of the object’s history, to be incorporated and admired.  They are the structures which 

mediate between the real fragile world, subject to change, and an ideal world which cannot ever be 

realised.  

Suppleness characterises the response of systems subject to change under the action of intensive 

forces.  A good example is delta formation at the mouths of rivers opening out into the sea: as the 

silt carried from the source is deposited, it forms a barrier.  Further flow is impeded and the river 

must push to find a way around the barrier.  The river bifurcates, splits into two rivulets.  The 

process repeats.  A structure is built up which is narrow at the river and ever widening at the sea: a 

quasi-triangular delta structure of universal shape, supporting a pattern of successive bifurcations.  

Each river delta is unique, yet is a recognisable product of an irreversible process which comes to 

an end only when the source is exhausted.  Maximum suppleness implies that at the spreading edge 

of the delta each rivulet is potentially on the verge of splitting again. 

Wabi-sabi encourages us to appreciate the clash between the unique historical record of an object 

and its ideal form. 

  

   



Prof Adrian Sutton FRS: Comments on ‘The Clash Between Chaos and Symmetry in an 

Ancient Process: The Working of Metals’ by L M Brown 

It was a pleasure to read this paper. Professor Brown has pioneered the idea that the internal 

structure of a plastically deformed metal evolves into a self-organised critical state displaying 

‘maximum suppleness’. It is not only a beautiful idea but in his hands it has provided a quantitative 

understanding of the universal features of stage 2 work-hardening. 

For readers of this journal it may come as a surprise that there is so much going on inside a crystal 

of a pure metal when it is plastically deformed. The atomic structure of the crystal is largely 

unchanged. It is at larger length scales where new structures appear – the ellipsoids of sheared 

regions, well-illustrated in Fig.5 using smarties. This is the length scale of microstructure, which all 

metallurgists and materials scientists learn is fundamental to the mechanical properties of all 

crystalline materials. They also learn that linear defects called dislocations are the agents of plastic 

deformation: as they glide along planes in the crystal they shear the crystal irreversibly bringing 

about a permanent change of shape of the crystal. The theoretical challenge has been to understand 

the many-body problem of billions, even trillions, of dislocations in a cubic centimetre of crystal, 

where each dislocation is a flexible line that interacts through long-range elastic fields with other 

dislocations, and where their interaction at short range can result in the generation of new 

dislocations or their annihilation. In my view Professor Brown’s ideas have provided a framework 

to understand this extremely complex phenomenon, and to make sense of the universality of stage 2 

work hardening. 
  

________________________________________________________________________________ 
  

Suggestions for further reading: 

The theory underlying the ellipsoidal shape of slip bands is expounded in a recent book by Adrian P. Sutton: 
Physics of elasticity and crystal defects, Oxford Series on Materials Modelling, 2nd edition, Oxford 
University Press, 2024, DOI: 10.1093/oso/97801989081.001.0001. 

The initiation of cracks in fatigue is briefly reviewed by Professor Brown: Philosophical Magazine, 2013, vol 
93, pp 3809 – 3820, <http://dx.doi.org/10.1080/14786435.2013.798048> 

Self-Organized Criticality is expounded in the book by Henrik Jeldtoft Jensen, Cambridge University Press 
1998, ISBN 0-521-48371-9.    


