

From Feedback to the Edge: Systems Thinking and the Prospects for Dynamic Symmetry Theory

OXQ Editorial I/III

Abstract: The mid-twentieth century witnessed a marked shift across several disciplines—from cybernetics and information theory to general systems theory, ecology and later complexity science—away from linear chains of cause and effect and towards recurrent interaction, feedback and organisation. This paper traces that shift through Norbert Wiener's formulation of cybernetics as the study of circular causal processes, Claude Shannon's mathematical theory of communication, Ludwig von Bertalanffy's general system theory, and subsequent developments in network and complexity research. It then examines how this cumulative “systems turn” creates the intellectual conditions in which a theory such as Rattigan's dynamic symmetry, with its Dynamic Symmetry Index (DSI), can plausibly arise and be taken seriously rather than dismissed as speculative metaphysics. Systems thinking normalised the study of open, feedback-rich systems, foregrounding notions such as feedback, information, organisation, openness and non-equilibrium as legitimate objects of rigorous analysis. The argument advanced here is that dynamic symmetry theory can be interpreted as a further refinement of this tradition: an attempt to formalise the balance between structural coherence and adaptive variability that earlier systems theorists identified qualitatively. The paper concludes by suggesting that any future development of Edge theory and the DSI will depend on sustained engagement with the methods and results of systems science, and that the historical trajectory from Wiener to von Bertalanffy already points towards the kind of cross-disciplinary integration that dynamic symmetry demands.

The story of systems thinking in the twentieth century is often told as a sequence of technical advances, but it is also an intellectual reorientation. Prior to cybernetics and its cognate movements, much scientific explanation sought to decompose phenomena into elementary units and to explain their behaviour via one-way causal chains that could, in principle, be isolated. Von Bertalanffy was explicit that traditional science tried “to explain observable phenomena by reducing them to an interplay of elementary units investigable independently of each other”. In physiological, social and ecological domains, this strategy proved limited. Phenomena such as homeostasis, self-regulation, trophic dynamics or organisational coherence could not be fully captured by summing isolated contributions from parts. The shift towards systems thinking was, therefore, less an abandonment of analysis than an expansion of what counted as analysable: circuits of feedback, open systems, and the structural patterns that emerge from interaction rather than from simple aggregation. (1)

Cybernetics is often taken as the emblematic starting point for this change. Norbert Wiener's work in the 1940s framed cybernetics as the transdisciplinary study of control and communication in the animal and the machine, with feedback as its central organising principle. Cybernetics was concerned with circular causality, where the consequences of a system's actions feed back as inputs that modify subsequent actions. A classic example is steering a ship: the helmsman adjusts the wheel in response to deviations from the desired course, constantly comparing observed effects with intended goals. As later summaries note, cybernetics defined feedback as a process in which “the observed outcomes of actions are taken as inputs for further action in ways that support the pursuit, maintenance, or disruption of particular conditions, forming a circular causal relationship”. (1)

Wiener recognised that such feedback structures were ubiquitous: in engineering control systems, in guided missiles, in industrial automation, and, crucially, in living organisms and human-machine interaction. Accounts of his work emphasise that he “saw intelligent behaviour emerging from a complex interaction of feedback loops” and that he “realised that almost all complex systems are driven by feedback loops of information”. A thermostat is the simplest illustration: it senses ambient

temperature, compares it with a set point, and activates or deactivates a furnace accordingly, such that the system stabilises around a target state. The same pattern appears in neural control of movement: sensory input about balance leads to muscular adjustments, which in turn alter the sensory input, generating a loop that can be tuned through learning. Cybernetics, in other words, made it scientifically respectable to speak of purposive, self-regulating systems without invoking any mysterious “vital force”. [\(2\)](#)

From the standpoint of dynamic symmetry theory, cybernetics does two things of lasting importance. First, it relocates causality from one-way lines to closed circuits, making feedback a primitive concept rather than a complication appended to linear models. Second, it implicitly acknowledges that effectiveness often depends on a balance between rigidity and flexibility: a control system that responds too aggressively may oscillate or become unstable, while one that responds too sluggishly may fail to correct deviations in time. Later work on dynamic symmetry, and the DSI in particular, can draw upon this heritage by asking not only whether feedback exists, but whether feedback maintains a system within a productive band between over-correction and inertial drift. [\(1\)](#)

Running in parallel with cybernetics, Claude Shannon’s “A Mathematical Theory of Communication” reframed information itself as a quantifiable, probabilistic entity. Shannon’s model introduced the now-familiar components of communication: a source producing messages, a transmitter encoding them into signals, a channel subject to noise, a receiver decoding the signal, and a destination that uses the recovered message. Crucially, Shannon defined information content in terms of entropy, as a function of the probabilities of different symbols, and derived theorems establishing limits on compression and reliable transmission. The “channel capacity” of a given medium sets an upper bound on the information rate achievable with arbitrarily small error. [\(3\)](#)

Shannon’s work, as historians have noted, “transformed the understanding of the process of electronic communication by providing it with a mathematics” and unified previously fragmented theories into what came to be called information theory. Although Shannon explicitly bracketed questions of meaning, treating information as independent of semantic content, the formalism had far-reaching implications. It encouraged scientists to examine diverse processes—genetic replication, neural signalling, social communication, market behaviour—in terms of information sources, channels, noise and coding, even if the mapping from physical process to symbolic representation required further modelling. [\(4\)](#)

In relation to dynamic symmetry, Shannon’s contribution is twofold. First, he established that systems can be characterised by abstract measures—such as entropy and capacity—that are independent of their particular substrate. This abstraction opens the possibility that indices such as the DSI might likewise be defined at a level that cuts across domains, provided they are anchored in the statistical structure of processes rather than in the material details of their implementation. Second, the communication model, with its emphasis on noise, redundancy and coding strategies, naturally invites questions about how a system maintains reliable function in the face of perturbation. The idea that there is an optimal coding regime for a given channel is analogous, in spirit, to the dynamic symmetry claim that there is an optimal balance between order and variability for adaptive systems. Shannon supplied the prototype of a rigorous limit concept; Edge theory aspires to something comparable for adaptive balance. [\(3\)](#)

If cybernetics and information theory reframed feedback and communication, Ludwig von Bertalanffy’s general system theory brought “wholeness” and organisation into scientific discourse. Writing in the 1960s, von Bertalanffy argued that traditional, reductionist science, with its focus on “isolable units acting in one-way causality”, was proving insufficient in many fields. He proposed a

“general science of ‘wholeness’” aimed at identifying principles valid for “systems in general”, whether in biology, psychology, sociology or technology.⁽⁵⁾

Von Bertalanffy distinguished sharply between closed and open systems. Closed systems, exemplified by classical physical models, are isolated from their environment and evolve towards thermodynamic equilibrium, with entropy increasing and order degrading. Open systems, by contrast, exchange matter and energy with their surroundings and can maintain steady states far from equilibrium through continuous flux. Living organisms are paradigmatic open systems: they sustain their organisation by importing low-entropy energy and exporting entropy to the environment. On this basis, von Bertalanffy argued that the apparent contradiction between the second law of thermodynamics and biological evolution—a movement towards higher organisation—“disappears” once the open, non-equilibrium character of life is acknowledged.⁽⁵⁾

General system theory articulated several themes that resonate strongly with later complexity science. These include non-linearity, emergent properties “not resolvable into local events”, dynamic interactions among parts, equifinality (the possibility of different initial conditions leading to similar end states), and multi-level organisation. Importantly, von Bertalanffy saw systems theory as a unifying scaffold, offering “unifying principles running ‘vertically’ through the universe of the individual sciences” and thereby promoting integration across disciplines.⁽⁵⁾

For dynamic symmetry theory, general system theory provides both conceptual and normative support. Conceptually, it frames systems as organised wholes whose behaviour depends on patterns of interaction, not merely on additive contributions. It directs attention to open systems that maintain far-from-equilibrium structures, precisely the kind of systems where a balance between stability and change is salient. Normatively, it endorses the search for cross-domain principles—such as dynamic symmetry—and encourages efforts to develop metrics that apply, mutatis mutandis, from ecosystems to institutions. Without this prior legitimisation of “systems in general” as a target of rigorous theory, any claim that one could measure an “edge” of adaptive balance across domains would risk being dismissed as hand-waving.

As these strands matured, they fed into the broader development of complexity science. Cybernetics introduced feedback and control; information theory provided a calculus of uncertainty; general system theory emphasised organisation and openness. Building on this foundation, late twentieth-century work in areas such as nonlinear dynamics, chaos theory, network science and self-organised criticality explored how complex behaviour arises from simple local rules and interaction structures. Although the present article does not draw on specific examples beyond the classical sources already cited, it is widely acknowledged that complexity science shifted attention from isolated trajectories to ensembles, from equilibrium points to attractors and critical regimes, and from single-scale descriptions to multi-scale patterns.⁽³⁾

Network science, in particular, proved influential in showing that the topology of connections—whether in neural networks, social graphs or infrastructural systems—constrains and shapes dynamics. Hubs, communities, path lengths and degree distributions affect how rapidly information or perturbations spread, how resilient a system is to random failures or targeted attacks, and how local interactions aggregate into global behaviour. This focus on structure resonates with both Bertalanffy’s concern with organisation and dynamic symmetry’s interest in how symmetries—understood broadly as patterns of structural invariance—are modulated over time.

Cybernetics, information theory, general system theory and complexity research differed in emphasis and technique, but they collectively promoted a shift from thinking in terms of isolated entities to thinking in terms of relations and flows. Cybernetics made circular causality central; information theory cast communication as a stochastic, channel-constrained process; general system

theory insisted on wholeness and open systems; complexity science foregrounded emergence, non-linearity and network structure. Combined, these moves created a conceptual ecology in which a theory like dynamic symmetry could take root.⁽¹⁾

Dynamic symmetry theory (often called ‘Rattigan’s Edge’ or ‘Edge theory’), can be sketched as an attempt to formalise the intuition that adaptive systems function best when they maintain a dynamic balance between structural order and exploratory variation. The Dynamic Symmetry Index (DSI) seeks to measure this balance by integrating a characterisation of a system’s symmetry structure—its patterns of organisation, invariances and constraints—with a characterisation of its adaptive behaviour, such as responsiveness, diversity of states and capacity to recover from perturbation. The exact form of the DSI will vary by domain, but the underlying ambition is consistent: to provide a quantitative indicator of how well a system sustains itself near a productive “edge” between rigidity and chaos.

Without the historical development of systems thinking, this ambition would appear dubious. To suggest, in a nineteenth-century mechanistic idiom, that a political institution or an ecosystem could be assigned a meaningful “edge score” describing its balance between order and adaptability would have seemed mystical. It is the earlier work of Wiener, Shannon, von Bertalanffy and others that has trained the scientific imagination to accept that feedback loops, information flows, and open systems can be legitimate objects of quantitative analysis.⁽⁶⁾

The relevance of Wiener’s feedback concept to dynamic symmetry is particularly direct. Cybernetics teaches that feedback can stabilise a system around a target, but also that feedback gains can be tuned. If the feedback is too weak, deviations persist; if too strong, oscillations and instabilities emerge. This tuning problem is structurally similar to the problem dynamic symmetry addresses: how to ensure that corrective processes are strong enough to maintain coherence without suppressing the variability required for learning and adaptation. The DSI can be interpreted as a higher-order measure of how well feedback processes within a system are calibrated to preserve this balance over time, given both internal dynamics and external disturbances.⁽⁷⁾

Shannon’s theory contributes an information-theoretic sensibility. By quantifying uncertainty and showing that communication capacity is limited by channel properties, Shannon demonstrated that there are fundamental trade-offs between reliability, redundancy and efficiency. In the context of dynamic symmetry, one can ask analogous questions about trade-offs between structural rigidity (which may reduce local uncertainty but at the cost of fragility) and structural looseness (which increases variability but may undermine coordination). A DSI framework might employ entropy-based measures to quantify diversity of states or responses, while symmetry measures capture regularities; their combined behaviour over time then indicates whether a system operates within a viable range.⁽⁴⁾

Von Bertalanffy’s conception of open systems offers another crucial enabling idea. Dynamic symmetry is most pertinent to systems that are far from equilibrium and continuously exchanging matter, energy or information with their environment. Open systems maintain structure not by resisting change but by transforming flux. General system theory not only legitimised the study of such systems but also emphasised principles like equifinality and multi-level organisation that dovetail with dynamic symmetry’s interest in systemic balance rather than micro-determinism. The recognition that living systems can increase internal order while complying with the second law of thermodynamics—by exporting entropy—provided a template for thinking about how social or institutional systems might increase functional organisation without violating underlying physical constraints.⁽⁵⁾

Complexity science, finally, contributed an appreciation for critical regimes and self-organised criticality, where systems self-tune to points of marginal stability that maximise responsiveness and correlation length. While dynamic symmetry need not be identical with any specific criticality model, these developments reinforced the plausibility of the claim that there exists a region, rather than a point, in parameter space where systems exhibit rich, adaptive behaviour. The DSI can be thought of as one among several attempts to describe such regions in a way that is empirically tractable and comparable across domains.

The metaphor that Rattigan's Edge is the "steel skeleton" of a future worldview and twentieth-century systems science the "scaffolding" is apt in another sense: the scaffolding remains necessary even as the skeleton rises. Cybernetics and its successors provide methodological tools—feedback analysis, information measures, system identification techniques—that dynamic symmetry must employ if it is to mature. Edge theory will not replace systems science; rather, it will have to inhabit it, specifying more precisely how particular balances between order and variability can be identified, targeted and maintained in concrete systems.

One can imagine, for example, an institutional designer using DSI-style metrics to assess whether a regulatory body is too centralised (high structural order, low adaptive diversity) or too fragmented (high diversity, low coherence), adjusting feedback channels accordingly. Such an exercise presupposes a cybernetic understanding of control, an information-theoretic approach to communication between units, and a systems-theoretic grasp of open, multi-level organisation. The notion of an "edge" becomes meaningful only because the designer already thinks in terms of feedback loops, noise, redundancy and system boundaries.

In conclusion, the rise of systems thinking in cybernetics, information theory, general system theory and complexity research has reshaped scientific practice. It has taught scientists to attend to feedback, organisation, openness and non-equilibrium as fundamental features of the phenomena they study. In doing so, it has prepared the ground for dynamic symmetry theory. What once might have sounded like mystical talk of balance between order and chaos can now be reformulated as a precise question about how feedback-rich, open systems maintain themselves within viable regimes, and how such maintenance might be measured. The future development of Edge theory and the DSI will depend on how well it can integrate and extend the insights of Wiener, Shannon, von Bertalanffy and their successors, translating an inherited systems vocabulary into new mathematical structures and empirical tools.⁽⁶⁾

References and Further Reading

- (1) [*Cybernetics*](#), Wikipedia. Summary of cybernetics as the study of circular causal processes, including the central role of feedback.
- (2) [*From Cybernetics to AI: the pioneering work of Norbert Wiener*](#), Max Planck Neuroscience (2024). Accessible overview of Wiener's recognition of feedback loops of information as drivers of complex systems.
- (3) Shannon, Claude E. [*A Mathematical Theory of Communication*](#). Bell System Technical Journal 27, no. 3 (July 1948): 379–423; and 27, no. 4 (October 1948): 623–656. Foundational paper introducing entropy, channel capacity and the probabilistic theory of communication.
- (4) [*A Mathematical Theory of Communication*](#). Wikipedia entry providing an overview of Shannon's article.
- (5) Ludwig von Bertalanffy, [*General System Theory: Foundations, Development, Applications*](#) (1968). Classic statement of general system theory, with extensive discussion of open systems, equifinality and the aim of a “science of wholeness”.
- (6) [*Return of cybernetics*](#), Nature Machine Intelligence 1, 418–419 (2019). Brief account of Wiener's emphasis on feedback loops as the basis of intelligent behaviour.
- (7) Hlaváč, Václav. [*Feedback, core of cybernetics*](#). Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics.
- (8) Norbert Wiener, [*Cybernetics: Or Control and Communication in the Animal and the Machine*](#). (For an overview of feedback and circular causality in control and communication systems.)