

ARC Energy and Eco Solutions

www.arcenergy.us arcenergyus@gmail.com

Date:	
То,	
Subject: Tr	ail atSugar Factory,
o-day cont	rolled study plan – 5 days pre-dose baseline vs. 5 days continuous dosing of ARC Energy "Plas Plus" (1 L/ton bagasse)
Dear	
dosing at 1	rection, below is the updated plan: collect five full days of pre-dose data and compare against five full days of continuous Plas Plus . o L per 1.0 ton of as-fired bagasse . The design emphasizes tight normalization (load, moisture, O ₂ setpoints) and statistical n across matched operating windows.
1) Objectiv	e & success criteria
	Quantify the impact of Plas Plus on boiler/cogen performance, combustion quality, emissions, fouling, and economics by comparing Days 1–5) vs Dosed (Days 6–10).
Primary su	ccess criteria (sustained, normalized improvement vs. baseline; hit ≥2):
	↑ Boiler efficiency or ↓ specific fuel (kg bagasse/ton steam) by ≥2-5%
	↑ Steam-to-fuel ratio (kg/kg) by ≥2–5%
	↑ Net export power (kWh/ton cane or kWh/ton bagasse) by ≥2-5%
	↓ Unburnt carbon in ash (LOI) by ≥15-30%
	↓ Excess air / stack O ₂ at constant CO by ≥5–10%
	↓ Stack/economizer outlet gas temperature by ≥5-15 °C
	↓ Sootblowing frequency / fouling indicators
2) Schedule	e (11 days total)
I	Day o – Setup/Calibration: Instruments check, sampling kits, MSDS/HSE briefing, data templates.
I	Days 1–5 – Baseline (no additive): Normal operation; collect continuous DCS and scheduled lab samples.
	Days 6–10 – Dosed (continuous): Start Plas Plus @ 1.0 L/ton; maintain for 5 consecutive days. Note: If an unplanned outage ≥4 h occurs, extend dosing period to keep five full operating days.
I	Day 11 – Wrap-up: Coupon retrieval, photo logs, debrief, data freeze.
3) Dosing r	nethod (Days 6–10)
I	Rate: $L/h = bagasse feed (tph) \times 1.0$.

Injection: Spray manifold onto main bagasse conveyor (pre-feeder) with fine-cone nozzles; ensure uniform wetting without slippage.

 $\textbf{Controls:} \ \textbf{Manual setpoint review hourly (or link to weighfeeder signal if available)}.$

HSE: PPE, spill tray, eyewash; locked IBC; 15-min toolbox talk.

arcenergyus@gmail.com

4) Parameters to collect & compare (same list for both phases)

4.1 Boiler & combustion (DCS; 1-min trends preferred)

Steam flow (tph), drum pressure, main steam temp; feedwater & deaerator temps

Bagasse feed (tph); feeder speed; bagasse moisture % (hourly lab; NIR if available)

Flue-gas O₂ (%), CO (ppm), CO₂; NOx/SO₂ if available

Furnace exit, economizer outlet, APH outlet, and stack gas temperatures

Draft; FD/ID fan loads (kW), damper positions; sootblowing events and ΔP across bank/APH

Blowdown % and conductivity/TDS

Auxiliary power in boiler house (fans, feeders, ESP/multicyclone)

4.2 Fuel quality (lab; both phases)

Proximate: Moisture, VM, FC, Ash — **3×/day** (start/mid/end; composite each)

Ultimate: C, H, N, S, O - **Day 2 and Day 9** composites

GCV (as-received & dry): 2×/day

Ash chemistry (Na₂O/K₂O, Cl, SiO₂, Fe₂O₃, CaO, MgO) - Day 4 and Day 9

4.3 Ash & deposits

Fly/bottom ash LOI (unburnt C%) — 1 per steady window

Daily fly/bottom ash mass if recorded; photos of color/texture

Deposit coupons in econ/APH zone (installed Day 0; retrieve Day 11) + SEM/EDS on scraped samples (Baseline vs Dosed)

4.4 Turbine & power balance

Gross & net kW/kWh; condenser vacuum; export kWh

KPIs: kWh/ton cane, kWh/ton bagasse, specific bagasse per MWh

4.5 Environmental & housekeeping

ESP/Multicyclone DP; visible plume notes (fixed times daily)

CO spike counts at steady load (stability proxy)

Incidents: feeder choking, hopper buildup, conveyor carryback

4.6 Economics

Specific fuel: kg bagasse/ton steam; kg/MWh

Additive use (dosed days): L/day; cost/day

Benefits: bagasse saved, extra export kWh, sootblowing time avoided, cleaning deferral

ARC Energy and Eco Solutions

arcenergyus@gmail.com

Steady windows: target ≥2 windows/day, each ≥120 min with drift limits

Steam flow $\pm 3\%$; O₂ $\pm 0.4\%$ abs; stack temp ± 5 °C

Match windows by load band (±5%), bagasse moisture band (±2% abs), and ambient (temp/RH) as far as practical.

Keep O2 setpoint constant within each window; change only between windows.

Use **same sootblowing regime** across phases (or record deviations precisely).

Exclude windows with major disturbances (trips, analyzer downtime) and replace with additional matched windows.

6) Analysis & comparison approach

Compute KPIs per window (both phases):

Boiler efficiency (direct/indirect), steam-to-fuel (kg/kg)

Specific bagasse/ton steam; specific bagasse/MWh

Net kWh/ton cane & kWh/ton bagasse

Excess air (%), O2 (%), CO (ppm, spikes/hour)

Stack loss proxy (T_gas, O₂), ash **LOI (%)**, fouling proxies (ΔT across APH/econ; sootblow frequency)

Normalize KPIs for moisture and load using either:

Regression/ANCOVA with bagasse moisture, load, and ambient as covariates, or

Ratio-to-baseline at matched bands (preferred when bands are tight).

Statistics: two-sample t-test (or Mann-Whitney if non-normal) across matched windows Baseline vs Dosed; effect size with 95% CI.

Operational stability: compare σ (std. dev.) of steam flow/pressure and CO spikes/hour.

Economics:

Bagasse saved/day = (Baseline specific – Dosed specific) × steam produced (or MWh)

Value/day (₹) = (bagasse saved \times ₹/ton) + (extra export kWh \times tariff) – (additive L/day \times ₹/L)

7) Roles & responsibilities

ARC Energy: Dosing design, on-site supervision (Days 6-10), QA/QC on sampling, data integrity checks, analytics & report.

Factory team: Operations, access to DCS data, weighbridge/feeder records, lab sampling/testing, safety & permits.

8) Sampling & chain of custody

Pre-label containers (Date-Time-Point-Operator); composite per window.

Chain-of-custody log; seal splits; retain for 7 days post-trial.

Prefer NABL-accredited methods (record IS/ASTM on certificates).

ARC Energy and Eco Solutions www.arcenergy.us

arcenergyus@gmail.com

A window is valid if: load band matched, analyzer online, no major intervention, drift limits respected, and full sampling set (moisture + ash LOI) obtained.

10) Deliverables

Executive summary (2 pages): Pass/fail vs success criteria; headline % gains and ₹/day impact.

Technical report: Methods, raw data appendix, matched-window tables, normalization approach, statistical tests, plots, ash/deposit photos & SEM/EDS notes, **recommendations** (dose optimization, rollout plan).

Operational aide: Simple dosing chart (tph \rightarrow L/h), lessons learned for SOP.

Quick reference — Parameter × Frequency matrix (both phases)

Area	Parameter	Method	Frequency
Fuel	Bagasse rate (tph)	Weighfeeder/DCS	1-min
Fuel	Moisture (%)	Oven/NIR	Hourly + per window
Boiler	Steam flow/press/temp	DCS	1-min
Flue gas	O ₂ (%), CO (ppm)	Online analyzer	1-min
Flue gas	Gas temps: FEG, Eco, APH, Stack	DCS	1-min
Air	Draft, FD/ID kW, dampers	DCS	1-min
Ash	LOI (unburnt C %)	Lab	1 per window
Power	Gross/Net kW, export kWh	DCS/meter	1-min; daily total
Fouling	ΔP bank/APH; sootblow events	DCS/log	Event-based
Chemistry	Blowdown %, TDS	DCS/Lab	1 per window
Economics	kWh/ton cane & bagasse	Calc	Daily

If you approve this 5-day baseline + 5-day dosing design, we will proceed with Day o setup and lock the matched window bands and data templates with your team.

Respectfully,

Chandrashekhar Chawan

ARC Energy & Eco Solutions

(arcenergy.us)

Email: arcenergyus@gmail.com