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Abstract 

Today’s additive manufacturing (AM) industry produces specialized parts at low volume 

or with complex geometries. Traditional testing methods are effective, but costly and 

time consuming to perform. The AM industry lacks an optimized testing method for 

identifying internal defects that occur in parts. The evaluation of multiple parts printed on 

the same build plate for internal defects using various nondestructive (dynamic) testing 

techniques is presented. From these experiments, perspective was gained on when and 

how dynamic testing can be used to find defects. Insight gained from these experiments 

can help the industry in future testing for internal defects. 
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 Introduction 

Additive manufacturing is becoming more popular in industry due to its ability to surpass 

traditional casting methods by producing specialized parts at low volume or with 

complex geometries [3, 4]. AM is a 3D printing process that occurs from stacked layers 

of material formed to create parts. AM has been commercially available for nearly 30 

years, but the concept of AM may have started as early as the late 1960’s. Commercial 

AM started in 1987 by 3D Systems, Inc with stereolithography, a type of polymer resin 

printing, [4, 5, 6, 7] AM has continued to grow since its beginning in polymer printing to 

encompass various printing processes and materials.  

There are seven categories of printing processes in today’s industry that include 

photopolymerization, jetting, extrusion, lamination, and fusion processes [7]. In 2002, 

Polymer printing expanded to include biomaterial printing. While the first 3D printing 

metal machine was debuted around 2011. ASTM Committee F42 was formed in 2009 to 

begin establishing standards in AM [7]. As AM has grown, manufacturers have become 

more interested in process control for dimensional and geometrical accuracy. End users 

have been interested in the quality of products and industry is shifting to evaluate the best 

method for finding part flaws. Since medical and aerospace applications have strict 

guidelines for part functionality, non-destructive evaluation of AM parts is of paramount 

interest in these industries. 

The ability to assess part quality is the major reason why AM is not more widely adopted 

in industry [8, 9]. Surface defects can be identified with the naked eye or with imaging 

software. Internal defects are more difficult to identify since they cannot be tested for 

visually. The most common method for detecting internal defects is x-ray computed 

tomography (XCT). While this method is effective in finding defects, it is costly and time 

consuming to perform [10]. Currently, the industry needs an optimized testing method for 

identifying internal defects. Some alternative methods being investigated include eddy 

current detection (ECD), ultrasonic technology (UT), and impedance-based non-

destructive evaluation (NDE).  

Dynamic testing is another option for optimizing AM for identifying critical flaws. 

Dynamic testing is both cheaper and faster than XCT. The goal of this research focuses 

on determining whether dynamic testing techniques are viable methods for assessing 

internal part integrity. 

1.1 Background 

1.1.1 Summary Non-Destructive Testing Techniques in AM 

The most common method for detecting internal defects is x-ray computed tomography 

(XCT). This method is currently being used for most AM part integrity analysis, but due 
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to its limitations other methods are being investigated. The following methods are 

explained in detail in this section: XCT, ECD, UT, and Impedance-Based NDE. 

XCT is the most common method used to find internal defects in AM parts due to its 

ability to assess dimensional inaccuracies as well as internal defects. XCT technology 

consists of taking numerous x-ray images of the part around an axis of rotation and using 

computer-aided technology to recreate a 3D model [10].While XCT is effective, there are 

significant disadvantages to this technique. The drawbacks of XCT include a significant 

amount of time involved for taking each x-ray slice as well as a high cost for the radiation 

needed to take the slices. The resolution of the XCT measurement is dependent on how 

far the x-ray image penetrates the object [10]. Because of this, XCT is not particularly 

well suited for large AM parts nor parts with high densities. Crack detection is also 

unreliable with XCT, since cracks perpendicular to the scan beam will not be identified 

[11]. 

ECD is used in industry to assess defects in metal components on the surface and 

subsurface of thin materials. Since ECD is used to detect surface flaws, it can be used in-

situ in addition to post-processing to detect defects. The ECD method produces an eddy 

current, or a varying magnetic field, at specified excitation frequencies. When the part is 

scanned, defects will appear as magnetic irregularities [12]. A disadvantage to this 

method is that defects can only be found in conductive materials. ECD’s ability to find 

defects is dependent on surface finish. Poor surface finish increases the noise floor above 

where defects can be detected [11].  

UT is performed with an ultrasound testing machine which uses an ultrasound probe to 

emit sound waves through a part. Defects are detected by the speed at which sound waves 

are reflected to the probe. Traditionally, UT uses a couplant (liquid) between the probe 

and the test part. The introduction of the couplant introduces special test considerations 

since the part will be placed in a liquid [13]. UT can be combined with special equipment 

in which the couplant is not required, such as laser ultrasonic testing (LUT). LUT uses a 

laser to provide and measure the signal in a part [9]. LUT is under development in AM 

but has potential as a novel NDE technique since it does not require a couplant and is 

noncontact. Similar to ECD, good surface finish is needed for LUT to reduce noise in the 

measurements. 

Similar to dynamic evaluation, impedance-based NDE is cheaper and less time 

consuming than XCT. This method was briefly investigated in addition to dynamic 

evaluation in the research presented. Impedance-Based NDE is performed with 

piezoelectric materials, such as lead zirconate titanate (PZT). The PZT is adhered to the 

structure via a patch. This method of testing consists of sending a signal to the adhered 

PZT which both excites the structure and measures its response [14]. The part’s 

mechanical impedance is directly related to and can be separated from the impedance of 

the transducer. According to one study, this method has potential in finding dimensional 

and positional inaccuracies but may not be as suitable for finding internal porosity [15]. 

Another issue with this testing is that the PZT is permanently adhered to the structure. 
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There are a few problems with XCT and the alternative testing techniques. In general, 

there is a limited amount of research published into optimizing NDE testing in AM. For 

the testing performed, only LUT and impedance-based NDE show promise in holistic 

part integrity. Considering these NDE methods, dynamic evaluation has the potential to 

be a novel testing technique in future AM internal defect analysis. 

1.1.2 Introduction to Dynamic Evaluation 

Dynamic evaluation consists of exciting a structure and measuring the response often in 

the form of a Frequency Response Function (FRF). A frequency response function shows 

the natural frequencies of the structure. Natural frequencies of the structure are displayed 

as peaks in the FRF. Natural frequencies are structural properties defined by mass, 

stiffness, and boundary conditions [16]. Internal defects are detected by peak shifts in the 

FRF when compared to nominal parts. Dynamic evaluation is versatile, in that many 

different types of transducers can be used to measure the response.  

1.1.3 Description of AM Builds 

Selective Laser Melting (SLM) is one type of 3D metal printing used in AM. The SLM is 

a powder-bed fusion (PBF) process. The PBF process laser sinters layers of metal powder 

to form parts on a build plate [17]. The parts presented were created from 304L steel 

powder. Some parts were built with support material. Support material aids in the 

printing process by providing a structure for the laser to sinter for parts difficult 

geometries such as overhangs or ledges. The support material is removed in post-

processing. Since all metal parts were tested prior to removal from the build plate, the 

parts presented were tested with support material. 

Ideally, the parts would be tested free-free, but removing parts from the build plate costs 

additional time and expense. One of the goals of this research is to determine if defects in 

parts can be detected while still attached to the build plate. Therefore, all parts were 

tested with a fixed boundary condition. 

Incomplete fusion holes also known as voids are one type of internal defect in that occurs 

in SLM. Voids are created when the laser poorly sinters or misses sintering the layer of 

powder [18]. Voids affect part integrity by changing structural properties of a part. A 

large portion of the presented research is aimed at determining void location and size. 

1.1.4 Dynamic Evaluation on AM Builds 

Dynamic testing traditionally uses impact and/or shaker testing often with accelerometers 

or microphones. All builds were first tested using one (or both) of these techniques. 

Unfortunately, impact and shaker testing have a limited dynamic range which is targeted 

for lower frequency ranges – up to 8,000 – 10,000 Hz. Some shakers are rated for higher 

dynamic ranges, but these require small payloads – less than 2 lb. [19, 20]. Creative tests 
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were introduced to reach higher frequencies. These tests included using speakers for 

acoustic excitation, a BB-gun for high velocity/short duration impacts, and piezoelectric 

excitation. Impedance-based measurements were also performed. 

A Scanning Laser Doppler Vibrometer (SLDV) was used in conjunction with 

accelerometers or microphone(s) to record the response from dynamic excitation. The 

SLDV utilizes the Doppler Effect and optical interferometry to measure velocity and/or 

displacement of a vibrating object [21]. Doppler shifts are created when the laser sends a 

signal to the part and the signal is reflected back. These signals combine constructively or 

destructively. An optical interferometry is used to determine the sign of the Doppler shift. 

The sign determines the direction of the part’s motion. The signal is then demodulated to 

provide the user with velocity and/or displacement [21]. 

Finite Element Analysis (FEA) was used to find natural frequencies and modes shapes 

for each of the builds. The boundary conditions and testing locations from the FEA 

models were created to be representative of the experimental tests performed. Only the 

pertinent information and results from FEA are presented, since the research is focused 

on experimental testing. 

Frequency Response Assurance Criterion (FRAC) was used to assess how correlated an 

FRF or sets of FRFs are from one another. FRAC is often used to determine how close a 

simulated FRF is from the experimental FRF. The following research uses FRAC to 

determine how correlated nominal parts tested experimentally are from one another. The 

equation for FRAC is shown in ( [22], Eq. 1). The FRF, Xa, is the theoretical FRF and the 

FRF, Xe, is the FRF that is being correlated. The results are correlated on a scale from 0 

to 1, with 0 being no correlation and 1 being completely correlated. 

𝐹𝑅𝐴𝐶 =
X𝑎

𝑇X𝑒

√X𝑎
𝑇X𝑎√X𝑒

𝑇X𝑒

     (1) 

Xa = theoretical FRF 

Xe = correlated FRF 

1.2 Results from Previous Testing 

Previously two different types of builds were tested on this project. Two builds with 5 

chimneys and a build with 5 brackets shown in ( [23], Fig. 1). Chimney Build 1 the only 

build printed with support material at the base of the part. These parts were dynamically 

tested with an impact hammer and shaker in correlation with LDV or Digital Image 

Correlation (DIC). One intentional defect was planted in the chimney build and two 

intentional defects were printed in the bracket build sent from MS&T. MTU was tasked 

with finding which parts had these defects. 
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Fig. 1: Chimney Build 1 (Left), Bracket Build 1 (Right), Chimney Build 2 (bottom)  

The defects in all builds were found from impact and shaker testing. Chimney Build 1 

had a difference in hatch spacing on Chimney 4 causing it to be denser. Brackets 2 and 5 

on the bracket build and Chimney 2 on Chimney Build 2 were built with smaller hatch 

spacing than the surrounding parts. 

From analyzing these builds, it was found that the support material breaks down the more 

the parts are tested. The breakdown of support material changes the structural response of 

the part. 

Higher frequency modes are less affected by support material and sympathetic resonance. 

Sympathetic resonance occurs when a part that is not excited exhibits a response to a part 

with similar natural frequencies that is excited [23]. This phenomenon is often 
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demonstrated with tuning forks tuned to the same frequency. One tuning fork is excited, 

yet both tuning forks will exhibit a response. The testing presented focuses on assessing 

these higher frequency modes. 

1.3 Goals 

The goal of this research was to determine if dynamic evaluation can improve the 

validation process for additively manufactured metals. Improving the validation process 

is based on distinguishing the limits for identifying defect size and location. Using this 

knowledge, parts can be optimized for better part integrity and defect detection. Various 

experimental tests were performed to analyze this goal. Finite Element Analysis was used 

to support the experimental results. Based on these experiments, insight was gained on 

which dynamic testing methods future research should focus on for determining part 

integrity. 
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 Methods 

2.1 Forest Tensile Bar Builds 

Two Forest Tensile Bar Builds were analyzed. The first build shipped to MTU was 

printed with defects. The second build consisted of only nominal parts. Both builds were 

identical in part size and part location on the plate. 

The CAD model of the build with defects is shown in ([2], Fig. 2). There are nine groups 

of five bars for a total of 45 bars. The bars were placed randomly on the build, so that no 

groups were clustered together.  

 
Fig. 2: CAD model of tensile bar build with bar and group numbers labeled 

The first group was built nominal with the subsequent groups having defects. The voids 

varied from 50-400 μm and increased by 50 μm increments starting with Group 2 and 

ending with Group 9 ([2], Table 1). 
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Table 1: Tensile Forest Build defect description by group number 

Group 1 2 3 4 5 6 7 8 9 

Defect size 

(μm) 
0 50 100 150 200 250 300 350 400 

The physical build and void description are shown in (Fig. 3). The height of each of the 

tensile bars is 4.7 in. The defect is located 1.75 in from the base of the part. The base of 

the defect is the same for all groups at a length of 0.21 in [2].The defect increases in 

height with increasing group number. 

 
 

 
Fig. 3: Physical tensile build (top) and defect location (bottom) 
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2.1.1 Shaker Testing 

The build with defects was tested on the Dongling GT500-240-1 shaker. The build plate 

was bolted to a square aluminum adapter plate with dimensions of 19.75 x 19.75 x 

1.5 inches (Fig. 4). The adapter plate was bolted to the slip table on the shaker. The slip 

table that the adapter plate attaches to has the dimensions of 19.75 x 19.75 x 

1.1875 inches (Fig. 4). The adapter plate was created so that the build could be bolted at 

different angles to the shaker table. 

 

 

Fig. 4: Adapter plate (left) and slip table (right) 

The build was shaken to excite the bending modes in the X – direction with a periodic 

chirp from 0-5120 Hz (Fig. 5). The SLDV recorded the response at the top of each bar. 

  

Fig. 5: Top view with shaker direction labeled (right) and shaker testing setup (left) 
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2.1.2 Impact Testing 

Following shaker testing on the build with defects, both forest builds were impact tested 

to determine if the defect groups could be distinguished from one another. The boundary 

condition for the plate was the same as shaker testing i.e. bolted to the shaker slip table. 

Weights were added to the top of the bars with wax to reduce the effect of sympathetic 

frequencies influencing the result of the bar of interest. The weights and testing setup are 

shown in (Fig. 6). A modal impact hammer (PCB Model: 086E80) hammer impacted the 

back side of each bar with the response measured by the SLDV on the front side of the 

bar. 

 
Fig. 6: Tensile bar build impact testing setup 

2.1.3 Damping Values 

The damping values for both the build with defects and the nominal build were calculated 

as another method to determine differences between the two builds. The damping values 

were calculated using the 3 dB down or half power method [24]. This method uses the 

FRF plotted in dB to find the natural frequency (ωn). From the natural frequency peak, 

the frequency values 3 dB down are selected. An example of the points taken from the 

FRF is shown in (Fig. 7). The natural frequencies, f1, fn, and f2 in Hertz, can be converted 

to radians to obtain ω1, ωn, and ω2. 
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Fig. 7: Bar 26 from impact testing on nominal build example of the 3 dB down method 

The damping ratio (ζ) is calculated using the equation for determining the Q factor 

([24], Eq. 2). The Q factor or quality factor was not used in the results, but is another 

property of the system. 

Q =
1

2ζ
=

ωn

ω2−ω1
     𝑜𝑟      𝜁 =

𝜔2−𝜔1

2𝜔𝑛
    (2) 

Q = Q factor 

ζ = damping ratio 

ωn = natural frequency 

ω2 = 3 dB frequency above ωn 

ω1 = 3 dB frequency below ωn 

2.1.4 FEA 

FEA was performed for these builds for one bar in each defect group. The natural 

frequencies and mode shapes are shown in (Fig. 8). The percent difference from the 

largest defect (400 𝜇m) to nominal is also shown in the figure. The bars were modeled 

with a fixed boundary condition at the base of the part. The results from impact testing 

were compared to FEA. From this comparison, acoustic testing was proposed, focused on 

finding the first axial mode at 9,755 Hz. This mode showed the largest difference 

between nominal and a defective part, proposing the highest likelihood of detecting the 

defect. 
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Fig. 8: FEA of tensile bars with defects up to the 1st axial mode 

2.1.5 Acoustic Testing 

2.1.5.1 Acoustic Test 1 

The first acoustic test consisted of a B&C DE1085TN speaker with a B&C Speakers M60 

acoustic horn. The build plate was bolted to a rigid plate with the speaker and horn bolted 

on the reverse side (Fig. 9). A periodic chirp signal from 1,000-12,800 Hz was used to 

excite the base of the plate with 20 averages taken per bar. The SLDV measured the bar 

responses at the top of each bar. 

 
Fig. 9: Test 1 setup for acoustic testing 
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2.1.5.2 Acoustic Test 2 

The first test did not provide enough excitation to the bars for the SLDV to record the 

axial mode. The second acoustic test consisted of two speakers mounted on an adapter 

plate, built by Kevin (Fig. 10). The adapter plate replaced the acoustic horn for this 

testing. 

 
Fig. 10: Model setup of second acoustic testing performed on forest build plates 

The adapter plate had a 0.69-inch spacing between the speakers and the build plate to 

provide an acoustic reverberant chamber. This spacing was calculated from the 

wavelength equation shown in ( [25], Eq. 3). A half-wavelength (λ/2) was calculated 

instead of a whole wavelength (λ) for the axial mode at 9755 Hz. A half-wavelength was 

used to reduce the amount of material needed to create the chamber.  

λ =
c

𝑓
      (3) 

λ = wavelength 

c = speed of sound 

𝑓 = natural frequency 

The adapter plate with the 0.69-inch spacing is displayed in (Fig. 11). The same signal 

parameters were used for this testing as the previous test. 
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Fig. 11: Spacing between speakers/build plate (left) and physical setup for Test 2 (right) 

In addition to taking the response at each of the bars, a grid of points 17 down by 18 

across was taken on the base plate for a total of 280 points. Twenty-six points were 

removed since they fell directly on top of a bar and are displayed as white boxes in (Fig. 

12). The base plate response was used to compare to the bar response to see how much 

the base plate modes affect the bar response. 

 
Fig. 12: Grid of points taken on forest build plate for acoustic testing 
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2.1.5.3 Acoustic Test 3 

The third acoustic test consisted of changing the orientation of the plate from vertical to 

horizontal (Fig. 13). The horizontal position allowed sand to be added to the plate to 

reduce the contribution of plate modes. The other testing conditions remained the same as 

the second test. 

  
Fig. 13: Test 3 setup model (left) and Test 3 physical setup (right) 

A close-up of using sand on the plate is shown in (Fig. 14). The plate was tested nominal, 

with 0.5-inches of sand, and with 1.5-inches of sand. There was one test performed from 

8,000-16,000 Hz to observe the range of the speaker excitation. Only the nominal plate 

was tested in this configuration, since some of the bars continued to show no axial mode 

at 9755 Hz due to the plate modes around this frequency. 
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Fig. 14: Close-up of build plate with sand 

2.1.6 Piezoelectric Excitation 

Piezoelectric excitation was investigated after previous testing did not distinguish the 

defect groups. Two lasers were used for this testing, since accelerometers were difficult 

to attach between the bars. The second laser, a Polytec OFV 353, was a single point laser 

(not scanning). The OFV is a helium neon laser which requires reflective tape to be 

placed on the part to record the response. The OFV laser was used as the reference with 

the SLDV as the response (Fig. 15).  

The first amplifier used was the Leipei® LP-2020TI stereo amplifier, since the PZT 

amplifier took a few months to order and receive. This amplifier had a maximum voltage 

output of 5V. The signal to the amplifier was a periodic chirp from 5000-12800 Hz. The 

nominal build was tested free on a piece of foam. The PZT patch was superglued to the 

build plate (Fig. 15).  
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Fig. 15: Piezoelectric Excitation setup (left) and PZT attachment (right) 

The first experiment consisted of testing Bars 1, 2 ,6, 7, 13, 14, 21, 24, 25, 28, 32, 36, 39, 

and 42 (Fig. 16). These bars were selected based on the base plate modes from FEA 

between 9000-10000 Hz (Fig. 16). The location on the plate for these bars should be 

excited by plate modes and display the axial mode of interest. The plate has the most 

motion at the red areas and the least motion at the blue areas. The bars selected should be 

close to the areas that display the most motion. 
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9079 Hz 

 
9326 Hz 

9327 Hz 
 

9568 Hz 
 

10009 Hz 
Fig. 16: Bars tested with PZT (top left) and base plate modes between 9000-10000 Hz  

The second round of testing with the PZT consisted of using the piezoelectric amp – 

Model: PZD350A from Trek®. This amplifier can provide the high voltages and low 

current that the PZT requires. The same testing conditions were used as the previous test 

except that the voltage was changed to 10 V in amplitude (double of the stereo amplifier). 

The results from this testing were compared to the previous amplifier. 
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2.2 Topology Optimized Brackets 

The topology optimized build consisted of three brackets also known as the GE 

Challenge brackets. All the brackets were nominal on the build and printed with support 

material (Fig. 17). The plan in testing these parts was to find the natural frequencies and 

compare them to FEA. All testing performed on this build consisted of impacting the 

“ears” (Fig. 17). 

  

 
Fig. 17: Topology Optimized Brackets with brackets labeled (top) and side view (bottom) 

2.2.1 FEA 

The FEA for these parts was performed by MS&T. The first mode was at 5,536 Hz with 

the last mode of interest at 8,324 Hz (Fig. 18). The FEA model consisted of the brackets 

fixed to the plate without the support material. All significant modes appeared to be in the 

ears of the brackets. Bracket 1 and Bracket 3 have similar natural frequencies and motion 

for modes 5 and 8. 
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Fig. 18: FEA results for topology optimized brackets 
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2.2.2 Impact Testing 

The brackets were first impact tested in the ears, since the ears provided a flat surface to 

impact. The proposed points for testing these brackets are shown in (Fig. 19). The small 

impact hammer (PCB Model: 086E80) impacted the back side of the ear with the 

response recorded on the other ear with the SLDV.  

 
Fig. 19: Topology optimized brackets testing point locations 

The small impact hammer was exchanged for the larger impact hammer (PCB Model: 

086C04) when there was not enough excitation in the response. 

2.2.3 BB-gun Testing 

Since the topology optimized brackets did not get enough excitation from the impact 

hammer and a shaker was not practical in testing these brackets, testing with a BB-gun 

was proposed. The BB-gun used in this testing is a semi-auto P10 BB Pistol by 

Crosman®. The BB-gun expels steel BB’s and uses CO2 cartridges to fire.  

The setup for BB-gun testing is shown in (Fig. 20). The test was contained within two 

plastic totes lined with sheet metal in between. A hole was cut in the top for a light and 

microphone. Another hole was cut into the side of the tote in order to site the BB-gun at 

the brackets. Foam was placed over the build plate to reduce the effect of ricochets. A 

microphone with a windscreen was used to record the response. The first test used a PCB 

130D21 microphone. The preliminary tests caused the microphone to overload. A 

different microphone was tried, PCB 426A05, but this microphone also overloaded. 
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Fig. 20: Model of BB-gun testing (top) and physical test setup (bottom) 

In order to reduce the microphone overload, a muffler was added to the BB-gun. The 

muffler consisted of a 3D printed plastic adapter piece connected to PVC pipe (Fig. 21). 

The adapter piece was epoxied to the PVC pipe.  
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Fig. 21: BB-gun with muffler adapter 

The PVC Pipe had foam glued to the inside and holes cut in the exterior (Fig. 22). The 

foam and holes allow the gases to spread out before entering the testing container which 

reduces the sound transferred into the test chamber. A PVC cap was placed over the end 

of the muffler with a hole cut into the top of it to allow the pellet to exit. 

 

 

 

Fig. 22: Muffler adapter piece (left), foam added inside muffler (right), PVC end cap 

(bottom) 

Neither microphone overloaded with the addition of the muffler. The first microphone 

(PCB Model: 130D21) was used in the results. The plate was tested both free on foam 

and fixed to the aluminum adapter plate (Fig. 22). The plate was tested in both 

configurations to determine where build plate modes were affecting the results. 
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2.3 Airbus Builds 

The Airbus builds were all printed nominal parts to simulate a production run. A total of 

seven builds were printed and tested. Two brackets were printed on each plate along with 

four tensile bars (Fig. 23). After testing was completed, the four tensile specimens were 

removed from the build plate and pulled for yield strength by MS&T. 

 
Fig. 23: Physical Airbus build printed with four tensile bar specimens 

2.3.1 FEA 

The FEA for these brackets was performed by MS&T. The following eleven mode shapes 

were used for comparison in the results (Fig. 24). The first couple modes appear to have 

bending/torsion in the top of the bracket. The later modes appear to be mostly 

bending/twisting in the legs of the brackets. 
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Mode 1: 1535 Hz 

 
Mode 2: 2538 Hz 

 
Mode 3: 4500 Hz 

 
Mode 4: 4740 Hz 

 
Mode 5: 5883 Hz 

 
Mode 6:  5995 Hz 

 
Mode 7: 6211 Hz 

 
Mode 8: 6254 Hz 

 
Mode 9: 7340 Hz 

                              Mode 10: 7495 Hz                      
 

    Mode 11: 8068 Hz 

Fig. 24: FEA modes for Airbus brackets  
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2.3.2 Shaker Testing 

The first five builds were shaker tested to compare to FEA modes. The plates were fixed 

to the adapter plate on the shaker table. The signal sent to the shaker was a periodic chirp 

from 0 to 6250 Hz. Two configurations were tested to get results on both brackets with 

the SLDV measuring the response. The first configuration bolted the plate at 90º looking 

at Bracket 1 (Fig. 25). The second test configuration bolted the plate at 45º looking at 

Bracket 2 (Fig. 25). Operating deflection shapes were taken for these configurations in 

addition to finding the natural frequencies. 

   

 
 

 

Fig. 25: Airbus shaker testing at 90º (left) and shaker testing at 45º (right) 

2.3.3 Impact Testing 

The brackets were tested with three boundary conditions – semi-fixed, fixed, and free. 

Three boundary conditions were tested for two reasons. The first was that the semi-fixed 

boundary condition did not provide consistent results due to possible table modes. The 
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second two boundary conditions were tested to determine if there were any significant 

changes between fixed and free testing.  

For all boundary conditions, the same equipment and points were tested. The small 

impact hammer (PCB Model: 086E80) applied the impact and the response was measured 

with SLDV. Since the SLDV could not measure in between the brackets, the 

measurement points on Bracket 1 were taken on the opposite side in comparison to 

Bracket 2. The points tested are shown in (Fig. 26). Eight points were tested per bracket 

for a total of 16 points per build. 

 
Fig. 26: Points tested with impact hammer on Airbus brackets 

2.3.3.1 Semi-Fixed Boundary Condition 

The first test consisted of fixing (bolting) the brackets to the aluminum adapter plate 

placed on a table (Fig. 27). The aluminum plate was not fixed to the table and the table 

was not fixed to the floor. Since the aluminum plate was not fixed to the table, this was a 

semi-fixed boundary condition. The first five builds were tested with this boundary 

condition. 
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Fig. 27: Semi-fixed boundary condition for testing Airbus builds on table 

2.3.3.2 Fixed Boundary Condition 

The second boundary condition tested consisted of fixing (bolting) the build to the fixture 

used for acoustic testing (Fig. 28). After comparing the first five builds with free-free 

testing, there was no reason to test the last two builds fixed. The results from both tests 

yielded similar results, except that free-free testing gave cleaner FRFs.  

 
Fig. 28: Airbus build fixed (bolted) to speaker test fixture 
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2.3.3.3 Free Boundary Condition 

All seven builds were tested free on a piece of foam (Fig. 29). The plate and foam were 

placed on top of the test fixture used for acoustic testing. After all builds were tested free, 

the tensile bars were removed from each plate and sent to MS&T to be tensile tested.  

 

 

Fig. 29: Airbus build testing free-free setup (left) and close-up of build plate (right)  

2.3.4 FRAC 

FRAC was applied to the Airbus builds to determine the correlation between every FRF 

on each build. A MATLAB program was created to apply FRAC (Appendix A). Since all 

builds were nominal, any of them could be chosen as the simulated FRF. The simulated 

FRF in this case was chosen to be Build 7. The experimental FRFs were taken from all 

other builds. The FRAC analysis was computed for Points 1-5 and 12-16 for a total of 10 

points. Points 6-11 were not included since they were not tested on all builds. 

The FRF of every point on Build 7 was compared to the same points on all other builds. 

For example, Point 1 on Build 7 was compared to Point 1 on Builds 1-6. Then the same 

was done for Points 2-5 and 12-16. An average of all the builds was taken to obtain the 

correlation of each build to the simulated build (Build 7). 
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 Results 

The results section is organized by the three build types tested: Forest Tensile Builds, 

Topology Optimized Brackets, and Airbus Builds. Each experimental test performed is a 

subsection under the three build types. The main conclusions from each build are 

summarized at the beginning of each section. 

3.1  Forest Tensile Bar Builds 

3.1.1 Summary of Forest Build Results 

The forest tensile builds were physically tested four different ways: shaker testing, impact 

testing, acoustic testing, and piezoelectric testing.  

Shaker testing was performed first as it is the simplest experiment to perform. When the 

results of this testing showed noisy FRFs, impact testing was performed.  

The results from impact testing obtained the first four bending modes in the x-direction of 

the structure. Impact testing provided the best analysis on this build and further statistical 

analysis was performed. The damping values were also determined for this build as some 

of the bars showed damped peaks.  

After the defect groups could not be determined from impact testing, some analysis on 

natural frequencies and bar locations was performed. The statistical and damping ratio 

analysis showed trends in these builds. These trends indicated that the location of a bar on 

the plate affected the results more than the current defects that were put into these builds. 

Cover gas flow in the printing process is presumably the cause of the variation, giving 

directionality to the bars printed on the plate. The trends associated with location were 

discovered after all the testing on these builds was performed. Without this knowledge, 

the following tests were based on the assumption that determining the natural frequencies 

for the axial mode would have the highest likelihood of distinguishing the defect groups.  

The acoustic tests focused on exciting this axial mode through the bottom of the plate. 

Three different tests were performed on this build. The first test did not provide enough 

excitation to the plate and the second test was largely driven by base plate modes. The 

third acoustic test aimed at reducing the effect of the base plate modes by adding sand to 

the plate. The sand reduced some of the base plate response, but bars that were located on 

a plate mode with low response did not receive excitation. The FRFs were difficult to 

analyze from this testing as the plate response gave indistinct peaks. The defect build was 

not tested after the nominal build failed to display the axial mode in some of the bar 

responses on the nominal build. 

The last test performed on these plates aimed for capturing the axial mode as the acoustic 

testing was unable to provide the response required to analyze this mode. The PZT 
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testing excited the plate, with the bar response measured by the SLDV. The PZT testing 

had very similar results to the acoustic testing – some FRFs did not have distinct peaks. 

Additionally, some bars were not excited due to the base plate modes.  

3.1.2 Shaker Testing 

Only the defect build was shaker tested, as the nominal build was built and sent to MTU 

after the results were analyzed for this test. The shaker testing was performed with a 

periodic chirp and recorded with the SLDV at the top of each bar. This testing aimed at 

exciting the x-bending modes. The x-bending direction is bending in the front and back 

of the bar and the y-bending direction is side-to-side bending in the bar (Fig. 30). 

 
x-bending 

 
y-bending 

Fig. 30: X-bending direction (left) and y-bending direction (right) in tensile bar 

The results from the FRF relationship between the generated signal to the shaker and the 

response recorded from the SLDV are shown in (Fig. 31). The FRFs appeared to have 

noise between natural frequencies. This noise is probably due to the whole plate being 

excited at once with all 45 bars attached. From the entire spectrum, it is difficult to see 

individual bar peaks. 
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Fig. 31: FRF for shaker testing results of all 45 tensile bars on the build with defects 

Zooming in on the first natural frequency for all 45 bars, the individual bar peaks can be 

seen (Fig. 32). Unfortunately, these natural frequency peaks have noise despite a high 

frequency resolution of 0.078 Hz. After analyzing these results, impact testing was 

suggested to obtain cleaner FRFs with more distinct natural frequency peaks. 
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Fig. 32: Shaker testing on build with defects at Mode 1 

3.1.3 Impact Testing 

The goals of impact testing were to distinguish the defect groups on the defect build and 

compare the differences with the nominal build. The impact testing performed aimed at 

exciting the same x-bending modes as shaker testing. The bars were impacted from the 

same reference direction as the shaker with the SLDV. The same points being measured 

on each bar as the shaker testing. Both the nominal and defect build were impact tested 

using the same setup. 

3.1.3.1 Build with Defects 

Impact testing provided a greater dynamic range and cleaner FRFs than shaker testing. 

The FRFs between the impact hammer input and the SLDV response of each bar are 

shown in (Fig. 33). The first four x-direction bending modes were distinguishable in the 

FRF and are boxed in red. Modes 2, 4, and 7 are y-bending modes. Mode 6 is a torsional 

mode. These other four modes are lower in amplitude as most of the energy should be in 

the x-direction. These modes probably appear due to the SLDV measurement or impact 

force being slightly angled or off-center.  
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Fig. 33: Impact testing results display the first four bending modes (red)  

There were no distinguishable differences between the defect groups from analyzing the 

FRFs. If the impact results are sensitive to the defects, the FRFs between the groups 

should be shifted from one another. Unfortunately, none of the x-direction modes 

appeared to show any defect groupings. Focusing on Mode 1, the FRFs of each of the bar 

groups appear to overlap one another (Fig. 34).  

FRFs for Mode 1 (all bars) on build with defects 

  

 

Legend: 
Group 1: 
Group 2: 
Group 3: 
Group 4: 
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Group 6: 
Group 7: 
Group 8: 
Group 9: 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 34: FRFs for Mode 1 for all 45 bars on the build with defects 

The fourth x-bending mode or Mode 8 displayed the same phenomena as Mode 1 (Fig. 

35). There were no groups of defects congregated together. Since this mode is higher in 
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frequency the span of natural frequencies is larger than the first mode. Interestingly, the 

amplitude and damping differences are more apparent in this mode. These differences 

prompted determining the damping values associated with each mode from impact 

testing. 

           FRFs for Mode 8 (all bars) on build with defects 
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Fig. 35: FRFs for the build with defects at Mode 8 

3.1.3.2 Nominal Build 

The nominal build results were used as a comparison to the build with defects. For 

comparison, the nominal build bars are categorized by group number associated with the 

build with defects (Fig. 36). Interesting, the four lowest bars in frequency (circled in red) 

are in the same groups as Modes 1 and 8 on the defect build. There is no apparent reason 

for this to be, as those bars are from different groups on the defect build. The nominal 

bars should have no group association. Another difference between the builds is that the 

mean for this mode is shifted approximately 2 Hz or 1% lower than the defect build.  
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FRFs for Mode 1 (all bars) on nominal build 
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Fig. 36: FRFs for Mode 1 on the nominal build for all 45 bars 

Comparing the nominal build Mode 8 with the defect build, the differences and amplitude 

and damping are similar (Fig. 37). The group location anomaly found in both nominal 

Mode 1 and the defect build is the same for this mode as well (circled in red). The mean 

for this mode is also shifted lower by approximately 1% or 77.5 Hz in comparison to the 

defect build. The shifts in mean are investigated further in the statistical analysis. 

FRFs for Mode 8 (all bars) on nominal build 
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Fig. 37: FRFs for Mode 8 on the nominal build with similarity to defect builds circled 
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There appeared to be some possible patterns from the nominal build compared to the 

defect build. There may be some similarity between bar location on the plate as the 

groups were identical for the first four bar frequencies for both builds. There also appears 

to be a mean shift between the two builds. Both of these irregularities are further 

investigated in the statistical analysis. 

3.1.4 Statistical Analysis 

Analyzing the results from impact testing, the statistical analysis evaluates the mean, 

variance, and standard deviation. The analysis extends to investigate further findings in 

frequency compared to bar number and column number. 

The nominal build natural frequencies for the first four x-bending modes were tabulated 

to find the mean, range, and variance (Table 2). Comparing the two builds, the defect 

build has a higher mean, a smaller variation, and a smaller range than does the nominal 

build (indicated in red). The nominal build should have a smaller variance. The mean and 

variance is investigated further in the following sections to determine why this occurred.  

Table 2: Mean, Variance, and range for tensile bar builds 

Mean, Variance, and Range for Tensile builds 

Mode 
Number 

Mode 1 Mode 3 Mode 5 Mode 8 

Build 
Type 

Nominal Defect Nominal Defect Nominal Defect Nominal Defect 

Mean 
(Hz) 

203.2 205.2 1284.5 1300.2 3519.3 3562.6 6966.7 7044.2 

Variance 
(Hz^2) 

1.6 0.7 60.8 33.3 365.6 304.2 1578.4 932.2 

Range 
(Hz) 

5.3 3.5 33.3 25.8 78.4 78.1 170.1 129.1 

3.1.4.1 Mean Shift 

The higher mean value for the defect build is investigated by calculating the mean shift 

for each group on the defect build (Table 3). For the build with defects, the mean was 

shifted on average 1.1% higher. If the defect was being detected, the mean value for each 

group should increase in mean shift for increasing defect. This does not appear to be the 

case as the highest defect group, Group 9, has approximately the same amount of shift as 

the nominal group, Group 1. This indicates that the x-bending modes are not sensitive to 

the defects printed in the defect build. 
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Table 3: Percent mean shift for the build with defects compared the mean value of the 

nominal build 

 

3.1.4.2 Standard Deviation 

In addition to the mean shift, the standard deviation analysis indicates that that the x-

bending modes are not detecting the defects in the defect build. The mean value for each 

defect group was compared to the standard deviation of the nominal build (Fig. 38). The 

average for each mode on the defect build is shown by a red triangle. All groups were 

between 1.1 and 2.7 standard deviations higher than the mean value on the nominal build. 

The groups follow a pattern for each mode in where Group 5 is closest to nominal, 

Group 8 is on the average for the defect build, and Group 2 is the farthest from nominal.  

 
Fig. 38: Defect build compared to the standard devation from the nominal build 

If the defects were detected, Group 9 should be farthest from the mean value and Group 1 

should be nearest to the mean value. The standard deviation analysis shows that this is 

not the case. 

X-bending 

Mode 

Number

Nominal 

Mean Value 

(Hz)

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9

1 203.2 1.06 1.17 0.90 1.10 0.72 1.07 0.81 0.96 1.05

2 1284.5 1.33 1.42 1.13 1.34 0.90 1.33 0.99 1.21 1.35

3 3519.3 1.31 1.44 1.13 1.33 0.87 1.42 0.98 1.24 1.37

4 6966.7 1.21 1.28 1.00 1.23 0.80 1.25 0.94 1.09 1.23

% mean shift
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3.1.4.3 Natural Frequency by Bar Number 

The natural frequency was plotted against bar number to determine if any patterns appear 

between the two builds. A trend does appear in the data as the first bending mode 

demonstrates. The first bending mode shows that from the right to the left side of the 

plate the frequency increases until it hits the middle and then decreases to the other edge 

(Fig. 39). The pattern then starts over with the next row. The nominal build displays a 

decrease in frequency in the rows from the bottom to the top of the plate (Fig. 39). The 

decrease in frequency with increasing row number is not as prominent in the defect build. 

The x-bending Modes 2-4 follow the same trends as first x-bending mode 

(Appendix B.1).  

 

 
Fig. 39: Frequency vs bar number (top) and trends appearing on the build (bottom) 
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3.1.4.4 Natural Frequency by Column Number 

The patterns from right left on the plate, prompted an investigation into the columns of 

the bars. The plate was split into seven columns (Fig. 40). Splitting the bars into columns 

was done to verify that part location on the plate has more of an effect than the defects 

placed in the bars. 

 
Fig. 40: Columns on builds (top) and columns versus frequency for Mode 1 (bottom) 

The columns were plotted against frequency (Fig. 41). The defect build shows a general 

decrease in variation from Column 1 to Column 7. Bar 45 on the defect build appears as 

an outlier in Column 5. The frequency of Bar 45 is more associated with Column 1. The 

nominal build does not decrease in variation across the plate. The same trend is shown in 

in the second, third, and fourth x-bending modes which are shown in (Appendix B.2). 
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Fig. 41: Frequency versus column number for Mode 1 on the tensile forest builds 

The column versus frequency analysis suggests that the bars on the right side of the plate 

are generally lower in frequency. Organizing the bars from lowest to highest in 

frequency, the nominal build had 8 bars on average in common (Fig. 42). These 8 bars 

are the lowest in frequency. They are all located on the right side of the plate. The bars 

were printed to be nominal on this build and the lower frequencies associated with 

location suggest a variation in the printing process. 
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Fig. 42: Nominal build with the lowest bars in frequency circled in red 

The trend on the nominal build is exacerbated in the defect build. The 10 bars shown in 

red were the lowest on average in frequency on this build (Fig. 43). The third x-bending 

mode had an additional bar lower in frequency associated with the right side of the plate. 

Interestingly, Bar 38 was the lowest in frequency for all modes on both the nominal and 

the defect build. 

The bars being lower in frequency further suggests that the cause is associated with 

variation in the printing process. MS&T informed MTU that there is a cover gas flow 

from right to left across the plate while printing. This gas flow disrupts the material being 

printed, causing the trends that appear. MS&T has little control over how the gas flows in 

the print chamber. The variability will continue to occur until the flow can be more 

normalized across the build.  

Unfortunately, the defects created in these bars are less sensitive to dynamic testing than 

the natural variability associated with printing the build. Unless the defects are larger (or 

more sensitive) than the print variability the ability to determine them from dynamic 

testing will be difficult. 
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Fig. 43: Defect build with the lowest bars in frequency circled in red 

3.1.5 Damping Ratios 

The damping ratios were investigated since some of the FRFs appeared to have 

differences in damping. Using the 3 dB down method, the damping ratios were calculated 

for the x-bending modes on both the nominal and defect build. The average damping 

ratios for both the nominal and defect build are shown in (Table 4). The damping values 

ranged from 0.00042 to 0.00092 in the nominal build and from 0.00051 to 0.00080 in the 

build with defects. 

Table 4: Average damping ratios for tensile forest builds x-bending modes 

 

The nominal build displayed a pattern across the plate from one side to the other for the 

third and fourth x-bending modes. The edge bars appeared to have higher damping 

X-bending Mode No. Nominal Defect

1 0.00072 0.00068

2 0.00042 0.00051

3 0.00092 0.00076

4 0.00072 0.00080

Mean Damping Ratios



44 

values. The plate with the edge bars marked in red is shown in (Fig. 44). This pattern was 

not as prevalent on the first and second x-bending modes.  

 
Fig. 44: Build plate with edge bars marked in red 

The damping ratios for the first x-bending mode on both builds are shown in (Fig. 45). 

The bars on the edges of the plate are displayed by red dots in the figure on the nominal 

build. The mean and ± 3 standard deviations from the nominal build are displayed for 

each mode. All the bars on both builds were between three standard deviations from the 

mean with no apparent patterns appearing in this mode. 

 
Fig. 45: Damping ratios for first x-bending mode 
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The second x-bending mode has the biggest difference between the nominal and defect 

build (Fig. 46). The build with defects has ten bars beyond 3 standard deviations from the 

mean. Nine of these bars are more than 6 standard deviations from the mean. 

Interestingly, one bar, Bar 40, was nearly 18 standard deviations from the mean value.  

 
Fig. 46: Damping ratios for the second x-bending mode 

The bars outside of ± 6 standard deviation are sorted by group number in (Table 5). 

Groups 8 and 9 have 66.7% of these bars. Forty-four percent are from Group 9 alone, the 

group with the largest defect. Interestingly, Group 6 had two of these bars, equating to 

22% of the group. Group 7 did not have any of the bars, although this group was created 

to have a larger defect than Groups 5 and 6. 

Table 5: Number of bars outside 6 SD on the build with defects related to group number 

Group Number Number of bars outside ± 6 SD 

5 1 

6 2 

8 2 

9 4 

Further investigating the 2nd x-bending mode, the damping ratio versus group number 

was plotted with the FEA of this mode shown as a reference (Fig. 47). The second and 

third x-bending modes will be most affected by the defect due to the location of the 

defect being on the section that experiences the most stress. The plot assists in visualizing 

which groups are showing the largest variation in damping ratio. Groups 1, 2, 3, 4, and 7 

appear to have low variation in damping ratio while 5, 6, 8, and 9 appear to have high 

variation. There is no apparent reason why Group 7 is lower in variation and not more 

similar to Groups 6 or 8. 
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Fig. 47: Damping ratios by group number (left) and 2nd bending mode from FEA (right) 

The damping ratios for the third x-bending mode are shown in (Fig. 48). The higher 

damping values on the edge bars are displayed in this mode for the nominal build. The 

edges of the plate appear to have the highest damping values followed by lower damping 

values from one side to the other. The build with defects did not appear to follow this 

trend. The defective build probably did not follow this trend due to the presence of 

defects also affecting the damping values. Oddly, the nominal build has a larger variation 

in damping ratios than the defect build. The presence of defects should cause the defect 

build to have higher variation. 

 
Fig. 48: Damping ratios for the 3rd x-bending mode 
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The damping ratios for the fourth bending mode display a similar trend to the third x-

bending mode (Fig. 49). Higher damping values appear on the nominal build for the bars 

on the right and left sides of the plate. Unlike the third x-bending mode, both the defect 

and nominal build are within three standard deviations. 

 
Fig. 49: Damping ratios for the fourth x-bending mode 

Comparing the damping values to the results from natural frequency versus bar number, 

the trend is the same. Larger damping ratios on the edge bars appear to be associated with 

lower natural frequencies. Further following this trend, the bars in the middle of the plate 

have the smallest damping values. Overall, the damping ratios support the theory that the 

cover gas flow in the chamber is affecting the material properties more than the defects 

themselves. 

3.1.6 Acoustic Testing 

The acoustic testing between the speaker signal and SLDV response was aimed at 

exciting the axial mode after shaker, impact, and the statistical analysis failed to 

distinguish the defect groups. The first axial mode, Mode 9, was chosen for testing based 

on the FEA results. The axial mode has the highest likelihood of determining the defect, 

since this mode stresses the defect the most in relation to Modes 1 through 8. 

3.1.6.1 Acoustic Test 1 

The first acoustic test consisted of testing with one speaker using the acoustic horn. The 

plate did not receive enough excitation for the laser to pick up the response. Since there 

was not enough excitation for the first acoustic test, there were no results to display. The 

results are only displayed for Acoustic Test 2 and Acoustic Test 3. 
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3.1.6.2 Acoustic Test 2 

The results from the second acoustic test with two speakers mounted to the adapter plate 

provided better excitation than Acoustic Test 1. The excitation was sufficient to measure 

the bar and base plate responses. The FRF for Bar 27, a bar in the middle of the plate, on 

the nominal build is shown in (Fig. 50). The FRF does not to appear to have “clean” 

peaks, making it difficult to detect the axial mode of interest. The frequency at which this 

mode should appear is shown by a black vertical line in the figure.  

Comparing the bar response to the node on the plate, the plate appears to drive the bar 

response. The two FRFs are nearly identical in shape, except that Bar 27 is higher in 

amplitude. Therefore, the plate mode is overpowering the response in the bar so that it is 

indiscernible from the plate response. 

 

 
Fig. 50: FRF from nominal build and base plate (top), base plate node location 

(bottom left) and bar locations (bottom right) 

A similar response occurs on Bar 11 for both the nominal and defect build (Fig. 51). The 

nominal build’s bar and base plate node response are similar to the results from Bar 27. 
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The base plate appears to be driving the response in this bar as well. Interestingly, the 

defect build displays a peak at the axial mode, while the nominal build does not show this 

peak.  

 

 
Fig. 51: FRFs from nominal and defect build (top), base plate node location (bottom left) 

and bar location (bottom right) 

Investigating the groups on the defect build, there are no apparent differences between 

the groups (Fig. 52). Group 1 is nominal, Group 2 has the smallest defect (50 μm), and 

Group 9 has the largest defect (400 μm). The same span of peaks appears for each of the 

groups. The span is approximately 9400 to 9700 Hz. The groups do not appear to have 

any significant shifts as would be expected with different amounts of defect. There also 

appears to be multiple peaks around the axial mode frequency when there should be one 

distinct peak. Multiple peaks suggest plate mode interaction with the bar responses 

similar to what was seen on the nominal build. 



50 

 
Fig. 52: FRFs for the defect build results for Groups 1, 2, & 9 

Summarizing Acoustic Test 2, three results appeared. The first result is the plate modes 

drove the bar response. The second result is the FRFs did not have distinct peaks near the 

axial mode of frequency making it difficult to identify an individual mode. The third 

result is the defect build did not have any distinct shifts in frequency suggesting that the 

defects are still not being detected. The third acoustic test aims at reducing the plate mode 

response so the bar natural frequencies can be determined without build plate interaction.  

3.1.6.3 Acoustic Test 3 

The third acoustic test used the same adapter plate with two speakers as the second 

acoustic test, but the build was rotated from vertical to horizontal. Additionally, sand at 

0.5-inches and 1.5-inches was added to the plate in an attempt to reduce the base plate 

modes. 
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The addition of sand reduced in amplitude some of the plate modes, but did not improve 

the quality of the FRFs. The FRFs continued to display indistinct peaks with some of the 

bars not displaying the 9755 Hz mode. 

The response for all three testing conditions for Bar 1 (located at the bottom right edge of 

the plate) is shown in (Fig. 53). The sine sweep was from approximately 1000 to 

12800 Hz. There are differences in amplitude on the FRF for the three testing conditions. 

As expected, the curve with no sand is largest in amplitude and the curve with 1.5-inches 

of sand is smallest in amplitude. The 9755 Hz axial mode is not immediately apparent 

while viewing the whole spectrum. 

 
Fig. 53: FRF and coherence for nominal build Bar 1 from acoustic testing 

Targeting the FRF and coherence between 8500 and 10500 Hz, the axial mode is more 

apparent for Bar 1 (Fig. 54). The FRF continues not to show a clear peak, but the axial 

mode could be at 9652 Hz or 9806 Hz. The shape of the FRF changes between no sand 

and 1.5-inches of sand effectively damping some of the plate mode response. 
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Fig. 54: FRF and coherence for Bar 1 from 8500 to 10500 Hz 

Bar 1 may show the axial mode, but that condition does not hold true for all bars on the 

plate. The FRF for Bar 26, located in the middle of the plate, with no sand, 0.5 inches of 

sand, and 1.5 inches of sand is shown in (Fig. 55). The axial mode that is at 9,755 Hz 

does not appear in this FRF. The plate mode(s) near this frequency did not appear to 

provide excitation to this bar.  
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Fig. 55: FRF for Bar 26 on the nominal build with no sand, 0.5 inches of sand, and 1.5 

inches of sand 

Looking at the plate modes around 9755 Hz, the plate has little or no motion where 

Bar 26 is located (Fig. 56). This result suggests that the plate modes are affecting which 

bars receive excitation. Furthermore, the sand helps reduce some of the base plate mode 

response when a bar is receiving excitation from the plate. If the plate is not providing 

excitation to the bar, the bar response will not appear. If the bar does not receive 

excitation, the axial mode will not appear in the response.  

Unfortunately, the plate modes caused some of the bars on the nominal plate to not show 

the axial mode for all bars. Without the axial mode appearing on the nominal plate, there 

was no reason to test the build with defects.  
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9568 Hz  10009 Hz  

Fig. 56: Base plate mode at 9568 Hz (left), Bar 26 marked in red (middle), base plate 

mode at 10009 Hz (right) 

3.1.6.4 Testing Issues 

A signal problem arose under the third acoustic test. The problem was associated with 

three blown speaker diaphragms. Valuable testing time and additional cost was required 

to replace the diaphragms. The blown diaphragms were attributed to not using an 

amplitude ramp in the signal when starting and stopping. The signal with and without an 

amplitude ramp is shown in (Fig. 57). The speakers had an audible “popping” noise when 

starting and stopping without the amplitude ramp. The stereo speakers could not handle 

the jump in voltage which caused the speaker diaphragms to stop working. Future testing 

should use caution when using this type of excitation and use an amplitude ramp to 

eliminate the possibility of damaging equipment. 

 
 

Fig. 57: Signal to speakers without amplitude ramp (left) and with amplitude ramp (right) 
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3.1.7 Piezoelectric Excitation 

The PZT testing was performed to investigate if the plate could be excited in a better way 

than the acoustic tests to determine the axial mode. A PZT patch sent a periodic chirp 

signal from 5000 to 12800 Hz into the plate. The plate rested on a piece of foam with 

PZT superglued at the bottom of the plate (Fig. 58). The bars tested were selected from 

where the base plate shows excitation around 9755 Hz. Two lasers were used to measure 

the reference and response for this testing since, accelerometers would be difficult to 

attach between the bars. 

 
Fig. 58: Bars tested and piezo location on forest tensile build 

The PZT excitation performed with the Leipei® amplifier did not provide improved 

results over the acoustic testing. The FRF and coherence for the bars tested are shown in 

(Fig. 59). The FRFs continue to appear noisy and there are large drops in coherence 

throughout the signal. 
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Fig. 59: FRF and coherence for PZT testing with Leipei® amplifier 

Focusing the FRF from 9600 to 9900 Hz, the FRF is compared to the response power 

spectral density (PSD). The PSD shows where the bar is receiving a signal (Fig. 60). The 

PSD from the bar response was used to show which bars were receiving excitation. 

Analyzing the test results, only Bars 1, 2, 6, 7, 13, 14, 21, and 28 received excitation at 

the axial mode. The other bars did not show a peak at the axial mode. There were two 

hypotheses on why some of the bars were not receiving excitation. The first was that the 

plate modes could still be affecting the results. The second hypothesis was that the 

Leipei® stereo amplifier was not providing enough excitation to the plate as both lasers 

were on their most sensitive settings to record the response. 
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Fig. 60: FRF and PSD for PZT testing with Leipei® amplifier 

The PZT amplifier was used to test whether the build was receiving enough excitation. 

The voltage into the plate was doubled from 5V peak to 10V peak for this testing. The 

other test parameters stayed the same as the previous test. Unfortunately, the Trek® 

amplifier yielded similar results to the Leipei® amplifier. The FRFs with the new 

amplifier gave similar curves except higher in amplitude (Fig. 61). The higher amplitude 

was expected since the signal is stronger to the plate. There did not appear to be any 

noticeable changes in the coherence.  



58 

 
Fig. 61: FRF and coherence for PZT testing with Trek® amplifier 

Comparing the FRF and PSDs for this test, the bars that received excitation were the 

same as the other amplifier with the exception of Bar 28. The FRF and PSD from 9600 to 

9900 Hz are shown in (Fig. 62). The noise floor for the PSD appears to be higher for this 

testing in relation to the peak value than previous testing – indicating a difference 

between the two amplifiers. 

Overall, this testing provided similar results to the acoustic testing. The axial mode of 

interest did not appear in all bars, suggesting that the plate modes are still affecting the 

results.  
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Fig. 62: FRF and PSD for PZT testing using the Trek amplifier 

The results from the four tests performed on these builds propose that dynamic testing 

may be used as an indicator for build variation, but may not be sensitive enough to 

determine the defect groups in these bars. The build variation caused the bar location on 

the plate to have more of an effect on the results than the defects in the bars. 

Additionally, exciting the parts through the plate was not as effective, due to the presence 

of plate modes, as exciting each part individually. 

3.2 Topology Optimized Brackets 

3.2.1 Summary of Topology Optimized Brackets Results 

The topology optimized brackets were tested two different ways. The impact testing 

performed on these parts did not provide enough dynamic range to determine the natural 

frequencies of the brackets. Providing higher frequencies than can be obtained with an 

impact hammer involved a new experimental test. The second test involved exciting the 

parts with a BB-gun to obtain the natural frequencies in these parts. 

The BB-gun testing results obtained the natural frequencies and they were compared to 

FEA. The build plate was also tested fixed to how it affected the response. The bracket 
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modes moved up in frequency when fixed to the aluminum adapter plate. The results 

suggest this method has potential as a dynamic testing method, but would need to be 

refined for controlling/measuring the velocity of the BB. 

3.2.2 Impact Testing 

Impacting the ears of the brackets did not provide enough excitation for the natural 

frequencies of the brackets to be measured. The FRF and coherence for the larger impact 

hammer (PCB Model: 086C04) are shown in (Fig. 63). The coherence starts to drop off 

near where the first mode in FEA appears at 5536 Hz. Since the desired frequency was 

not achieved, the proposed testing points were not able to be tested.  

 
Fig. 63: FRF and coherence for Bracket 1 from impact testing 

Since the highest mode is at 8324 Hz, the shaker testing would not provide all the 

frequencies of interest and was not performed on these parts. The Dongling shaker at 

MTU cannot reach this frequency and the build plate is too large (~20 lb.) to be tested on 

the smaller shakers. A creative way to excite the parts, involving the use of a BB-gun 

emerged after analyzing the impact results. 
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3.2.3 BB-gun Testing 

The first testing performed on the brackets involved placing the build plate on a piece of 

foam inside a covered testing chamber. The testing chamber had holes for the 

microphone and BB-gun to impact the parts. 

The first test overloaded the microphone measuring the response. The microphone could 

measure the response if the BB-gun was dry-fired outside of the chamber, but firing into 

the testing chamber caused the microphone to overload. A muffler adaptation on the 

BB-gun was proposed to reduce how much sound was transferred into the testing 

chamber. If the sound inside the testing chamber could be reduced, the microphone 

should be able to measure the response of the parts. 

The addition of the muffler dropped the overall sound pressure level (SPL) in the 

chamber by approximately 16 dB (Fig. 64). A difference of ±6 dB is twice as loud or 

twice as soft. A person would perceive the difference in the test chamber as somewhere 

between a fourth to an eighth as loud as the testing without the muffler. This reduction in 

SPL caused the microphone to stop overloading so the response from the parts could be 

measured. 

 
Fig. 64: Overall sound pressure levels for BB-gun testing with and without the muffler 
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The testing with the BB-gun extended the frequency range that was observed in impact 

testing from 5000 Hz to 10240 Hz (Fig. 65). As an excitation method, testing with a BB-

gun could extend above 10240 Hz. Higher frequencies were not investigated in these 

parts since the highest FEA mode was at 8324 Hz. 

 
Fig. 65: Frequency range extended by using BB-gun to test brackets 

The autopowers were able to be measured from this testing. The natural frequencies of 

the parts were obtained and are marked by black vertical lines in (Fig. 66). Tests 

performed on all three brackets are displayed.  
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Fig. 66: Autopowers for brackets tested free with natural frequencies marked 

Tabulating the natural frequencies obtained from experimental testing, the results were 

compared to FEA (Table 6). Since the FEA was modeled without the support material, 

there was some difference when compared to the experimental results. The largest 

difference is less than 4.5% for all modes. Without the support material being modeled, a 

4.5% difference between the modes is considered acceptable. 

Table 6: BB-gun natural frequencies compared to FEA 

 

The brackets tested fixed to the aluminum adapter plate display an upward shift in the 

natural frequencies found from free testing (Fig. 67). The natural frequencies should 

increase if the plate is fixed, since an increase in stiffness increases the natural frequency 

of a part. The FRF has more peaks than the first test, making some natural frequencies 
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difficult to determine. Mode 4 is shown by black lines in the figure. This mode shifted up 

in frequency from 7135 to 7451 Hz or approximately 320 Hz. Interestingly, both of the 

free and fixed tests at Mode 4 show all three brackets being excited. According to the 

FEA, only Bracket 1 should be excited at this frequency. This may indicate the presence 

of a plate mode instead of a bracket mode.  

  
Fig. 67: BB-gun testing free (left) and fixed (right) 

Overall, the fixed testing shifted the natural frequencies found in the free testing higher 

and indicated the presence of a plate mode. Using a BB-gun was successful in obtaining 

the natural frequencies of these parts. As a testing technique, exciting parts with a BB-

gun is a viable option for obtaining natural frequencies above the dynamic range of the 

impact hammer(s). 

3.2.4 Testing Considerations 

The BB-gun testing was sufficient for determining the natural frequencies on the 

topology optimized build. This testing technique would need refinement before using in 

an industry setting. There currently is no way to measure coherence or the velocity at 

which the BB leaves the BB-gun. Implementing light sensors or imaging equipment that 

could detect how fast the BB leaves the gun could be used to measure the 

velocity/coherence. 

The BB-gun testing technique was destructive as there was some damage to the parts 

(Fig. 68). The use of a regulated air supply such as an air hose instead of the CO2 

cartridges could reduce the damage to the parts.  
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Fig. 68: Damage to parts from BB-gun testing 

3.3 Airbus Builds 

3.3.1 Summary of Airbus Build Results 

The Airbus builds were tested four different ways: shaker testing and impact tested semi-

fixed, fixed, and free.  

The shaker testing performed on these parts obtained the mode shapes to compare to 

FEA. The mode shapes were similar in shape and natural frequency. Modes 8-11 could 

not be found with this technique since their frequencies were above the maximum the 

shaker can provide. Impact testing was suggested to find these natural frequencies. 

The impact testing on these builds had mixed results. The semi-fixed boundary condition 

had low confidence in the accuracy of the results since the results were not repeatable. 

The fixed boundary condition was better than the semi-fixed condition, but the FRFs still 

showed noise. The free testing gave the best results as the FRFs had distinct peaks. 

Statistical analysis was performed on both the fixed and free testing results. The fixed 

results were only performed on the first five builds. All seven builds were used in the 

statistical analysis for the free testing.  

After experimental testing was completed on these parts, they were tensile tested at 

MS&T. The tensile testing results indicated a porous layer defect in Build 7 that was not 

initially found in the experimental testing. The experimental results were re-evaluated to 

see if there were differences in this build. There were two differences appearing in 

Mode 6 and Mode 11. 

Additionally, FRAC was performed on the FRFs from impact testing with the free 

boundary condition. The results from FRAC were not sensitive to the defect found in 

Build 7. The correlation values were high between this build and the rest of the builds. 
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3.3.2 Shaker Testing 

The mode shapes acquired from shaker testing are comparable to FEA. The first three 

mode shapes from shaking in both the 90º and 45º directions compared to FEA are shown 

in (Fig. 69). The red areas from the shaker testing are locations that have the most motion 

while the green areas have the least motion.  

The largest differences between the modes from shaker testing and FEA are in the first 

mode. The first mode from shaker testing is 6.5% higher in frequency than the FEA. The 

first mode being so much higher is interesting. 

 
Mode 1: 1535 Hz 

 
(90º): 1623 Hz  (45º): 1629 Hz 

 
Mode 2: 2538 Hz 

 
(90º): 2548 Hz 

 
(45º): 2656 Hz 

 
Mode 3: 4500 Hz (90º): 4564 Hz 

 
(45º): 45  61 Hz 

Fig. 69: Modes 1-4 from FEA (left) and shaker testing at 90º (middle) and 45º (right) 
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In addition to the first three modes, Modes 4, 6, and 7 were acquired from shaker testing 

the Airbus brackets. Mode 5 is a torsional mode, so it did not appear as a mode shape in 

the shaker results. The modes shapes for Modes 6 and 7 are shown in (Fig. 70). The 

motion for these modes is in the legs of the parts for both FEA and shaker testing.  

 
Mode 4: 4740 Hz 

 
(90º): 4638 Hz (45º): 4636 Hz 

 
Mode 6:  5995 Hz (90º): 6087 Hz (45º): 6083 Hz 

 
Mode 7: 6211 Hz (90º): 6237 Hz (45º): 6250 Hz 

Fig. 70: Modes 6-7 from FEA (left) and shaker testing at 90º (middle) and 45º (right) 

Shaker testing acquired Modes 1, 2, 3, 4, 6, and 7. Besides the frequency of Mode 1 

being higher, the rest of the modes were comparable in shape and natural frequency to 

FEA. Impact testing the parts was performed, since the large shaker does not reach high 

enough in frequency for Modes 8-11 to be acquired.  
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3.3.3 Impact Testing 

3.3.3.1 Semi-fixed boundary condition 

The semi-fixed boundary condition consisted of the build plate attached to the adapter 

plate placed on a table. The SLDV recorded the response for all the points tested. This 

boundary condition gave the least consistent results out of the three boundary conditions.  

The FRF and coherence for the first five points on Bracket 2 are shown in (Fig. 71). The 

FRFs have differences in amplitudes for some modes (marked on the figure). There 

appears to be some noise or unaccounted input in Point 1 of Build 1 between the second 

and third natural frequency as the coherence drops and the FRF changes. The difference 

in FRF shapes occurs in the outermost legs at high frequency. Compared with the FEA, 

only the legs were excited at the higher modes, which explains why Points 4 and 5 are 

different. 

 
Fig. 71: FRF and coherence for Airbus Build 1 – Bracket 2 

The FRF and coherence for Bracket 1 on Build 1 are displayed in (Fig. 72). The results 

are the same as Bracket 2 when comparing similar locations. The same areas that were 

marked for Bracket 2 were marked for Bracket 1. Overall, this means that the brackets 
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appear to show little variation and should be very similar. Since both parts were created 

nominal, they should be the same.  

 
Fig. 72: FRF and coherence for Airbus Build 1 – Bracket 1 

The remaining points, Points 6-11, are in the legs of the bracket (Fig. 73). The FRFs from 

testing these points are displayed in (Fig. 73). The FRFs appear to have many peaks 

suggesting a complex response from the drivepoint through the part. Multiple peaks make 

finding the natural frequencies difficult to determine. Additionally, impacting on the 

curved part of the bracket is not ideal, as there is no way to get a flat impact location. 

Since these points were both difficult to test and interpret, these points were not tested for 

the fixed and free boundary conditions. 
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Fig. 73: Point locations (top) and FRFs for Points 6-11 on Build 1 (bottom) 

The FRFs for Point 1 on the first five builds are compared in (Fig. 74). A clean FRF 

measurement should have smooth curves around peak values. The FRFs for the first five 

builds do not appear to be smooth, indicating there is some noise or structure 

characteristics in the FRFs. At around 7700 Hz, the FRFs are not very similar, as some 

builds show a natural frequency peak and some do not. The differences in the FRF led to 

a repeatability test on Builds 1 and 2. 
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Fig. 74: FRFs for builds 1-5 of Point 1 from 200 to 8820 Hz 

Build 1 and Build 2 were tested to check repeatability of the test setup. The FRFs 

between the first and second tests displayed differences (Fig. 75). The number of peaks 

surrounding the first modes changed between tests. The first mode shifted higher in 

frequency by 4.5% for Build 1 and 4.3% for Build 2. The shift in the first mode suggests 

that the boundary condition changed between tests. The boundary condition changing 

lends low confidence in the accuracy of the results from the semi-fixed boundary 

condition. The change in boundary condition could be due to the differences in bolting 

torque as the bolts were hand-tightened. 
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Fig. 75: FRFs for Points 1-3 on Builds 1 and 2 tested for repeatability 

3.3.3.2 Fixed boundary condition 

Testing the fixed boundary condition consisted of bolting the build plate onto the test 

frame used in the acoustic testing. The fixed boundary condition displayed similar FRFs 

to the semi-fixed boundary condition (Fig. 76). Comparing Point 1 on Bracket 2 to 

Point 12 on Bracket 1, there appears to be more noise in Point 1 below 1500 Hz. Point 1 

also does not show separation between two peaks at 6000 to 6500 Hz. 
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Fig. 76: FRFs for fixed testing on Airbus builds 

The FRFs are zoomed in to analyze Mode 6 and Mode 7 which appeared to be different 

between Points 1 and 12 when looking at the full bandwidth (Fig. 77). These points are at 

the same location on both brackets – Point 1 is on Bracket 2 and Point 12 is on Bracket 1. 

The zoomed in view of Point 1 confirms that there is not separation between these modes. 

There is no apparent reason why one bracket shows separation between the modes and 

the other bracket does not. 
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Fig. 77: FRFs for fixed testing on Airbus builds at Mode 1 

The build mean values, percent change from FEA, range, and standard deviation were 

analyzed for the fixed testing (Table 8). Points that did not show a natural frequency peak 

were removed from the analysis, such as some of the points for Modes 6 and 7. Mode 5 

and 9 are bending in the legs of the parts and did not show up in the points tested. From 

FEA, the builds were 6% or less different. The standard deviation ranges from Mode 1 at 

8.4 Hz to Mode 11 at 36.9 Hz. The last two builds were not tested fixed, as the results 

between fixed and free were similar enough to only need to test the last builds free. 
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Table 7: Statistics on fixed Airbus build testing 

FEA (all 
modes) 

All Builds 
Build 

1 
Build 

2 
Build 

3 
Build 

4 
Build 

5 
Stats 

Mode 
Freq. 
(Hz) 

Mean 
(Hz) 

% change 
from FEA 

Mean 
(Hz) 

Mean 
(Hz) 

Mean 
(Hz) 

Mean 
(Hz) 

Mean 
(Hz) 

Range 
(Hz) 

S.D. 
(Hz) 

1 1535 1628 6.0 1621 1616 1632 1640 1628 24.0 8.4 

2 2538 2654 4.6 2625 2663 2650 2661 2671 46.1 16.0 

3 4500 4535 0.8 4535 4504 4539 4559 4536 54.5 17.5 

4 4740 4608 -2.8 4591 4596 4627 4605 4620 36.6 13.9 

5 5883 - - - - - - - - - 

6 5995 6109 1.9 6094 6081 6100 6137 6132 56.3 22.1 

7 6211 6254 0.7 6258 6231 6254 6272 6256 41.0 13.2 

8 6254 6356 1.6 6340 6335 6363 6379 6363 44.1 16.2 

9 7340 - - - - - - - - - 

10 7495 7591 1.3 7586 7606 7576 7604 7580 30.5 12.5 

11 8068 7776 -3.6 7736 7738 7809 7828 7769 91.4 36.9 

3.3.3.3 Free-Free boundary condition 

The Airbus build was tested free by placing the plate on a piece of foam. All seven 

Airbus builds were tested in this configuration. FRFs from the free testing provided the 

“cleanest” measurement out of the three tests (Fig. 78). Cleanest is defined in this case to 

be the least noisy. The results are better for Point 1 than with fixed testing, as there was 

separation between Modes 6 and 7. The two brackets on each build display similar 

frequencies and FRFs. Since the full bandwidth is difficult to analyze, some of the modes 

are analyzed in more detail over sections of the bandwidth.  
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Fig. 78: FRFs from Free-Free testing on Airbus builds 

The FRFs from Mode 1 show low variation between brackets on the same plate (Fig. 79). 

An interesting observation is that Build 2 appears shifted farthest to the left while Build 7 

is shifted farthest to the right. The rest of the builds appear closer in natural frequency. 

The trends observed in this mode are further investigated by the statistical analysis on 

these parts. 
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Fig. 79: Mode 1 from Airbus free-free testing 

Mode 2 from the free testing displayed a double peak around the natural frequency (Fig. 

80). Presumably, both brackets are showing up in the response. The frequency of one 

bracket is shifted from the other bracket, but without knowing which response is which, it 

is difficult to determine which peak is from which bracket. 
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Fig. 80: Mode 2 from Airbus free-free testing 

The build mean values, percent change from FEA, range, and standard deviation are 

shown in (Table 8). Mode 2 is not shown since there were multiple peaks around this 

natural frequency. Mode 5 and 9 are bending in the legs of the parts and did not show up 

because the bending direction was not the direction in which the points were tested. From 

FEA, the builds were 5.5% or less different. The standard deviation ranges from Mode 1 

at 11.6 Hz to Mode 11 at 40.7 Hz. 

Looking back at Mode 1, Build 2 is 22 Hz below the average and Build 7 is 19 Hz above 

the average. With the exception of Mode 4, Build 7 was highest in frequency for all 

modes by approximately 0.93%. Build 2 is only lowest in frequency for Mode 1, and 

there is no apparent reason why this occurred. 
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Table 8: Statistics on Free-Free Airbus build testing 

FEA  
(all modes) 

All Builds 
Build 

1 
Build 

2 
Build 

3 
Build 

4 
Build 

5 
Build 

6 
Build 

7 
Stats 

Mode 
Freq

. 
(Hz) 

Mean 
(Hz) 

% 
change 

from 
FEA 

Mean 
(Hz) 

Mean 
(Hz) 

Mean 
(Hz) 

Mean 
(Hz) 

Mean 
(Hz) 

Mean 
(Hz) 

Mean 
(Hz) 

Range 
(Hz) 

S.D. 
(Hz) 

1 1535 1620 5.5 1612 1598 1619 1623 1624 1621 1639 41.5 11.6 

2 2538 - - - - - - - - - - - 

3 4500 4546 1.0 4504 4506 4556 4559 4562 4558 4575 71.0 26.3 

4 4740 4616 -2.6 4574 4596 4624 4638 4637 4613 4632 64.1 22.0 

5 5883 - - - - - - - - - - - 

6 5995 6116 2.0 6069 6080 6098 6135 6131 6133 6169 99.6 32.6 

7 6211 6252 0.7 6249 6222 6236 6240 6229 6274 6310 88.3 28.5 

8 6254 6363 1.7 6338 6336 6363 6379 6365 6366 6394 58.2 19.2 

9 7340 - - - - - - - - - - - 

10 7495 7685 2.5 7682 7682 7711 7670 7673 7651 7724 73.3 23.1 

11 8068 7796 -3.4 7788 7788 7772 7774 7760 7798 7892 131.2 40.7 

As a production run, the Airbus builds displayed an average of 1.5% difference in the 

range of natural frequencies. The standard deviation was an average of 0.5% of the mean 

value. 

3.3.4 Tensile Specimens 

After impact testing was completed, the tensile specimens were sent to MS&T to be 

tensile tested. From the tensile specimens, MS&T discovered there was a porous layer 

defect in Build 7 that was not initially detected with impact/shaker testing performed on 

this build. This porous layer caused the tensile specimen to fail prematurely, resulting in a 

lower yield strength. 

Re-evaluating Airbus Build 7, there were two noticeable differences between this build 

and the other six builds. The first difference was a double peak present on Mode 6 of 

Build 7 that was not present in any other builds (Fig. 81). Only Point 1 from Bracket 2 

and Point 12 from Bracket 1 are shown, but the double peak appears in all points from 

Build 7. 
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Fig. 81: FRF of Mode 6 from Build 7 tested free-free 

The second difference is in Mode 11. The mean value for Build 7 is 100 Hz (1.4%) 

higher for this mode in comparison to all other builds. Excluding Build 7 from the 

statistical analysis, the mean value drops 0.2%, the range drops 71%, and the S.D. drops 

69% (Table 9). This would place Build 7 more than 6 standard deviations above the mean 

value, indicating that Build 7 is significantly higher in frequency than the other builds. 

Table 9: Statistical analysis into Mode 11 for Airbus builds 
 

FEA  
(all modes) 

Build 7 
All 

Builds 
Stats 

Mode 
Freq. 
(Hz) 

Mean 
(Hz) 

Mean 
(Hz) 

Range 
(Hz) 

S.D. 
(Hz) 

3 
S.D. 
(Hz) 

6 
S.D. 
(Hz) 

Including 
Build 7 

11 8068 7892 7796 131.2 40.7 122.1 244.2 

Excluding 
Build 7 

11 8068 7892 7780 37.9 12.6 37.8 75.6 

Difference 
(Hz) 

- - - 16 93.3 28.1 84.3 168.6 

Difference 
(%) 

- - - 0.2 71.1 69.0 69.0 69.0 
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3.3.5 FRAC 

FRAC analysis compares a simulated FRF to any number of experimental FRFs and 

provides a correlation value between 0 and 1. Build 7 was first used as the simulated data. 

After the tensile testing showed a defect in this build, Build 4 was used as the simulated 

data. Build 4 was selected since most of its natural frequencies were nearest the mean 

value for all the modes tested. 

The average correlation for each build from calculating FRAC is shown in (Table 10). 

Build 4 as the reference shows better correlation at 0.23 on average than Build 7 with 

0.07 on average. Interestingly, this does show that Build 2 and Build 7 are the least 

correlated with Build 4. As mentioned earlier, Build 2 was lowest in frequency on some 

modes and Build 7 was highest in frequency. 

Table 10: FRAC for Airbus builds referenced to Build 7 and Build 1 
Frequency Range: 1050-7979 Hz 

 Build 1 Build 2 Build 3 Build 4 Build 5 Build 6 Build 7 

Ref. 

Build 7 
0.07 0.03 0.11 0.06 0.06 0.08 1 

Ref. 

Build 4 
0.12 0.04 0.25 1 0.65 0.27 0.06 

The low correlations were due to drops in coherence between natural frequency peaks 

(Fig. 82). FRAC was re-evaluated to take bands around natural frequency peaks to 

determine if that would increase the correlation between FRFs. 

 
Fig. 82: FRF and Coherence for Points 1-5 and 12-16 on all Airbus builds 
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When FRAC was analyzed in sections where natural frequencies occur, the correlation 

between FRFs increases (Table 11). The average correlation between builds was 0.90 for 

using Build 7 as the reference and 0.89 for using Build 4 as the reference. Interestingly, 

Build 7 does not drop in correlation when Build 4 is the simulated data. This indicates 

that the FRAC analysis on these builds is not sensitive to the porous layer defect found 

from tensile testing. If Build 7 was very different from the rest of the builds, the 

correlation should be lower. 

Table 11: FRAC over bands where natural frequencies occur 
Frequency Ranges: 1026-1909, 2532-2707, 4374-4754, 5931-7974 Hz 

 Build 1 Build 2 Build 3 Build 4 Build 5 Build 6 Build 7 

Ref. 

Build 7 
0.97 0.88 0.86 0.87 0.87 0.97 1 

Ref. 

Build 4 
0.86 0.89 0.88 1 0.92 0.86 0.86 

Caution should be taken when evaluating FRAC on experimental data, since the results 

are dependent on multiple variables such as which frequency bands are selected, which 

FRF is chosen as the simulated data, and which points on the structure are selected for 

comparison. FRAC results may also show low correlation due to leakage or windowing 

effects in the experimental data. 
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 Summary and Recommendations 

This section summarizes the testing and offers recommendations in two categories: the 

printing process and the dynamic testing methods performed on the builds.  

4.1 Printing Process and Part Orientation 

When testing the forest build plates, the cover gas flow in the printing chamber caused 

more variation than the defects placed in the parts. Unfortunately, the printer that printed 

all of these parts has little user control over the gas flow from right to left in the chamber. 

Unless this variability can be reduced, finding defects in parts such as were placed in the 

tensile bar builds will continue to be difficult. The dynamic testing method must be 

sensitive to the defect to be able to detect it. In the case of the forest builds, the testing 

methods were more sensitive to the plate variation than the defects themselves. 

It is further recommended that part orientation be taken into account before printing the 

parts if they are to be dynamically tested. Printing the parts with the end testing in mind 

would greatly reduce testing time. For example, if one of the brackets on the Airbus 

builds could have been flipped, testing with the SLDV would have been much faster as 

both brackets could have been tested at once. The SLDV cannot see through the part and 

the build had to be turned to test the other bracket. Every time the build is moved, the 

SLDV has to be recalibrated to the new orientation which costs additional time. 

4.2 Dynamic Testing Methods 

There were five methods used to dynamically test these parts: acoustic, shaker, PZT, 

impact, and BB-gun testing. The following summaries and recommendations on these 

testing methods are separated into two categories: Plate excitation and Part excitation. 

4.2.1 Plate Excitation 

The methods that excited the parts through the build plate – acoustic, shaker, and PZT – 

were the least effective testing methods for two reasons. The first reason is that the 

excitation to the part is dependent on the build plate modes. The forest plates exemplified 

this, as some bars were not excited through the plate, because the plate did not have 

excitation at the location of the bar. 

The second reason is that even if the part receives excitation through the plate, extracting 

the individual part response from the build plate response is difficult. Reducing the build 

plate response in the parts is possible, but would need more analysis to determine the 

effectiveness of this method. One attempt was made at reducing the build plate response 

by adding sand to the plate. The addition of sand assisted with reducing the build plate 

response, but the quality of the FRFs was not sufficient to determine the effectiveness of 

this method.  
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4.2.1.1 Acoustic testing 

The acoustic testing assisted in determining base plate mode response, but was not an 

effective method for determining individual part responses. Using the speakers to excite 

through the build plate created responses that were difficult to interpret due to the lack of 

distinct peaks.  

4.2.1.2 Shaker testing 

Shaker testing can be an effective method for some parts, but may not be suited to test all 

types of parts. An advantage of this type of testing is that it is typically the fastest to 

perform. This was why it was often performed as the first dynamic test. This method can 

be effective in finding mode shapes and natural frequencies, but has a limited dynamic 

testing range. This was true with the Airbus builds, as the high frequency modes needed 

additional testing since the shaker could not reach these frequencies. The “may not be 

suited to all parts” is exemplified by the shaker testing on the forest tensile builds. The 

natural frequency peaks from this testing were not distinct enough to be determined. 

4.2.1.3 PZT testing 

The PZT testing was performed near the end of this research, and there are more 

opportunities with this testing. The testing performed was not effective at exciting 

through the plate, but the PZT can be cut to any size and could be attached to individual 

parts to excite them. The greatest advantage of PZT testing is that very high frequencies 

can be tested – up to 50-60 kHz or more – depending on the type of PZT. This method 

has potential for testing parts with natural frequencies above the excitation range of 

impact hammers and shakers. Although, more research would need to be performed 

before evaluating the effectiveness of PZT as a dynamic excitation method. 

4.2.2 Part Excitation 

The methods that were most effective in determining natural frequencies in the builds 

tested each part individually. These methods included impact testing and BB-gun testing.  

4.2.2.1 Impact Testing 

Impact testing was the most effective dynamic test from this research. The results from 

impact testing provided the best FRF and coherence measurements. Statistical analysis 

was able to be performed on the results of this testing as well. The effectiveness of this 

test is dependent on the size of the part and the ability to impact a flat surface repeatedly. 

The topology optimized brackets were very rigidly connected and impact testing was not 

very effective in finding the natural frequencies. The surfaces of both these parts and the 

Airbus parts were difficult to test, as the topology optimization does not provide many 

flat surfaces to test. 
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4.2.2.2 BB-gun Testing 

As an excitation method, BB-gun testing shows potential as it can provide higher 

frequencies than an impact hammer. This test method would need refinement to be 

commercially adapted for a few reasons. The first reason was only the autopowers can 

currently be obtained. The second reason was the BB’s impacted the parts too hard, 

causing surface damage. The third reason is there was no measure on how fast the BB 

was moving.  
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 Conclusions and Future Work 

Dynamic testing to find defects in AM parts was met with mixed success. The defects 

printed in previously tested parts were able to be determined. The defects in the parts 

researched were unable to be determined due to printing process variation. Cover gas 

flow in the printing process is causing part variation across the build to have a larger 

effect on the response than defects in the parts. Additionally, one of the biggest barriers 

in testing these parts is separating the part response from the build plate response.   

Overall, the most effective testing method was impact testing each part individually. As a 

way to measure part integrity, dynamic testing has the potential to be an effective method 

for testing AM parts. But the results suggest more research needs to be conducted into the 

printing process and build plate response before this method can be considered successful 

and commercially adapted. 

The work on this project is on-going and the future testing continues to examine defect 

size and part integrity. The future work is focused on determining the critical defect size. 

Critical defect size is associated with answering the question: What size and at what 

location do we need to find a defect to ensure a part will not fail? To answer this 

question, future parts could be printed with a use case in mind, as critical size is 

dependent on the loading conditions for the part. Future work will also experiment further 

PZT and impedance testing. 
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A  FRAC MATLAB Code 

The following is the code used to calculate FRAC for the Airbus builds. The code inputs 

the FRF and coherence data exported from LMS. The code outputs a table of FRAC 

values for the points and builds selected.
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B Additional Figures 

The following figures may be of interest.  

B.1 Frequency vs Bar Number for 2nd- 4th x-bending 

 

 



94 

 

B.2 Frequency vs Column Number for 2nd- 4th x-bending 
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