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Abstract
Additive manufacturing enables the fabrication of lattice structures which are of particular interest to fabricate medical implants
and lightweight aerospace parts. Product integrity is critical in these applications. This requests very challenging quality control
for such complex geometries, particularly on detecting internal defects. It is important not only to detect whether there are missing
struts for a product with a large size of lattices, but also to identify the number of missing struts for safety-critical applications.
Resonant ultrasound spectroscopy is a promising method for fast and cost-effective non-destructive testing of complex geom-
etries but data analytics methods are needed to systematically analyze resonant ultrasound signals for defect identification and
classification. This study utilizes resonant acoustic method to obtain resonant frequency spectrum of test lattice structures. In
addition, regularized linear discriminant analysis, combined with adaptive sampling and normalization, is developed to classify
the number of missing struts. The result shows 80.95% testing accuracy on validation study, which suggests that the resonant
acoustic method combined with machine learning is a powerful tool to inspect lattices.

Keywords Additive manufacturing (AM) . Lattice structures . Defect detection and classification . Resonant ultrasound
spectroscopy (RUS) .Machine learning

1 Introduction

Additive manufacturing (AM) enables production of parts
with complex geometries such as lattice structures [1].
Comprising a network of nodes and beams, or struts, lattice
structures can dramatically reduce weight and retain structural
integrity. Interesting applications can be found in the medical
sector for implantology [2, 3], where implants with lattices
lead to better fixation due to cell growth inside lattices [4].
In aerospace industry, lattice structures contribute to the

design of new lightweight components with better thermal
performance to dissipate heat [5].

However, lattices fabricated by AM can contain several types
of flaws, which include unconsolidated or trapped powder parti-
cles, voids and porosities inside the struts, or missing struts in the
cells that potentially weaken the structures mechanically.
Reliable and reproducible volumetric non-destructive testing
(NDT) methods are essential to ensure the internal integrity of
lattice structures, especially for safety-critical applications.

Volumetric non-destructive testing (NDT) of lattice quality
faces a number of challenges [6, 7]. The golden standard now-
adays is X-ray computed tomography (XCT) [8, 9]. However,
XCT is time-consuming and expensive. Recently, resonant
ultrasound spectroscopy (RUS) has emerged to be an efficient
and cost-effective NDT method to check the internal flaws of
complex AM parts [7, 10–12]. Yet applying RUS methods to
lattice structures requires new research to evaluate its capabil-
ity to distinguish different types of internal defects, as opposed
to simple pass/fail decision. We propose to investigate and
demonstrate the capability of RUS methods, named resonant
acoustic method (RAM) [13], and combine it with machine
learning for the detection of missing struts in metallic lattice
structures produced by AM.
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The paper is structured as follows. Following the
“Introduction,” Section 2 describes the principle of RUS
methods and more specifically the principle of the RAM im-
plemented in this study. Section 3 is dedicated to the design
and AM of the lattice structures dedicated to the RAM evalu-
ation. Section 4 presents the visual and X-ray digital radiog-
raphy (XDR) inspections of the manufactured lattice struc-
tures. Section 5 provides the RAM inspection of these lattices.
Section 6 presents a machine learning method for defect clas-
sification of lattice structures based on RAM signals.
Conclusion is given in Section 7.

2 Principle of the RAM

There are several variants of RUS methods, as described
in ASTM E2001 [14], but their basic principles are sim-
ilar. These whole-body inspection approaches compare
the frequency spectrum of the mechanical resonances of
a set of reference parts, supposedly flawless, to the fre-
quency spectrum of the mechanical resonances of test
parts. Two similar objects will have similar resonant fre-
quency spectra. A shift of the frequency peaks of a part,
compared to the statistical variation from the similar ref-
erence parts, will be the signature of a structural change
of the part (e.g., changes in part geometry and/or material
properties associated with the mass, stiffness, and
damping). Consequently, the methods can be used to
screen external and internal structural flaws or deviations
in AM parts.

A typical characterization using RUS methods for pass/fail
assessments includes several steps:

First step: to excite the natural resonant frequencies of a
test part by mechanical impulse;
Second step: to monitor and collect the response of the
test part by a sensor;
Third step: to process recorded data by performing a fast
Fourier transform (FFT) to obtain the resonant frequency
spectrum;

Fourth step: to compare the resonant spectrum of the test
part to the spectra of the reference parts. The comparison,
often requiring heavy human intervention, involves:

1. Identification of well-defined resonant peaks based
on testing all the reference parts and a few test parts
with different structural properties than the reference
parts;

2. Selection of a subset of these well-defined resonant
peaks that are consistent for all reference parts and
have distinct separationwith the peaks of the test parts
for further consideration;

3. Evaluation of the ranges in variations in each selected
resonant peak frequency of the reference parts to de-
fine several “criteria.” Outliers of these variations are
excluded from these ranges; and

4. Sorting of the test parts with regard to the criteria to
evaluate the quality of the test parts. All test parts with
frequency peaks outside of the defined boundaries
(criteria) are rejected as faulty parts.

The steps for a typical RAM test are also outlined in the
graphic in Fig. 1.

The more reference parts available, the more clearly defined
the criteria are and the more accurate the RUS methods are.

RAM [13] is an impulse excitation type of RUSmethod. In
RAM, no preparation or fixturing of the test parts is required.
The part is excited by dropping down a slide and onto an
impact surface where it bounces off and drops a short distance
(first step). The resulting acoustic frequency data are moni-
tored by a microphone, while the part is falling and resonating
in a free-free state (second step). The output of themicrophone
is converted into a frequency spectrum using a high-speed
analog to digital converter (24 bits) performing a FFT to de-
termine resonant peaks (third step). Finally, a statistical anal-
ysis conducted with software reveals if the test parts fall within
the defined criteria or not (fourth step). If at least one of the
measured resonant peak frequencies of a test part lies outside
of the established frequency ranges of the reference parts, the
test part is considered faulty. Clearly, this resonant acoustic
method is easy to use and simple to implement.

Fig. 1 Principle steps for performing RUS testing using RAM
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3 Design and manufacturing of lattice
structures for RAM evaluation

In order to evaluate the capability of the RAM method to
detect missing struts in metallic lattice structures produced
by AM, a large set of lattice structures, with different numbers
of missing struts, was specifically designed and additively
manufactured for this purpose at the National Institute of
Standards and Technology (NIST). Since the more reference
parts available, the more clearly defined the criteria are and the
more accurate the RAM is, it was decided to build, on the
same AM platform, one hundred reference parts.

Since a large number of parts needed to be manufactured on
a single AM platform, small parts needed to be considered.
However, we did not want to evaluate the RAM with a basic
standard specimen, but with a specimen, as much as possible,
representative of what is used in the industry. The lattices are
very much used in the medical sector and the parts, in this
sector, are generally smaller than those in the other industrial
sectors. For example, spinal implants are small parts [15]. Thus,
it was decided to design and manufacture lattice structures,
which mimic in sizes a typical spinal implant regarding its

global shape, the ratio dense lattice material, and the basic lat-
tice cell. In addition, since cobalt-chromium (Co–Cr) is a com-
monly used material in implantology [3], it was decided to use
Co–Cr among AM powders processed at NIST. With regard to
the global shape of the specimen, it was chosen to be represen-
tative of the shape of a spinal implant, but also to facilitate the
manufacturing and post-processing of as many of them as pos-
sible on a single AM platform. Therefore, the specimen global
shape is in a door shape, the top is rounded to mimic spinal
implant shape, and its base is flat to enable the part to be
manufactured in a vertical position without support. Indeed,
the vertical manufacturing enables optimizing the number of
built parts on the AM platform, and the flat base to reduce the
post-processing time needed for supports’ removal. Extra 1-
mm height was added on the base of the specimens for their
electrical discharge machining (EDM) removal from the AM
platform. Since missing struts can be located inside or on the
surface of the lattice, three layers of unit cells were considered
(two surface layers and one internal layer). The missing struts
were deleted directly from the CAD model on specific outer
and inner positions. Finally, we endedwith the design presented
in Fig. 2 and the following number of parts:

Fig. 2 Schematics with overall
sizes of the manufactured Co–Cr
lattice structures and positions of
their missing struts

Fig. 3 Distribution of the lattice structures on the AM platform: a reference parts, b parts with different numbers of missing struts
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& 100 reference parts without missing strut
& 10 parts with 1 visible missing strut on position 1
& 10 parts with 2 visible missing struts, 1 on each side of the

part on position 1
& 10 parts with 4 visible missing struts, 2 on each side of the

part on positions 1 and 2
& 10 parts with 6 visible missing struts, 3 on each side of the

part on positions 1, 2, and 3
& 10 parts with 8 visible missing struts, 4 on each side of the

part on positions 1 to 4
& 10 parts with 10 visible missing struts, 5 on each side of

the part on positions 1 to 5
& 10 parts with 12 visible missing struts, 6 on each side of

the part on positions 1 to 6
& 10 parts with 1 inner missing strut on inside position 1
& 10 parts with 2 inner missing struts on inside positions 1

and 2
& 10 parts with 4 inner missing struts on inside positions 1 to 4
& 10 parts with 6 inner missing struts on inside positions 1 to 6

The positions of the missing struts are specified on Fig. 2.
A missing strut corresponds to the CAD removal of one of the
six branches of the lattice unit cell. Visible strut means that the
strut is located on one of the two surface layers of the lattice,
whereas inner missing strut means that the strut is located on
the intermediate layer of the lattice.

The lattice structures were manufactured at NIST with a
cobalt-chrome-molybdenum-based superalloy powder (EOS
MP1) using a laser power bed fusion (LPBF) machine EOS
M290, and default built parameters for MP1. The distribution
of the parts on the AM platform has been governed by the man-
ufacture performance of the NIST EOS machine. Indeed, it had
been noticed that, with this machine, the parts manufactured on
the sides of the AM platform could show differences with the
supposed similar parts manufactured on the center of the plat-
form. Thus, it was decided that, to guarantee a better homogene-
ity of the one hundred reference parts, they would be
manufactured at the center of the AM platform, and that the parts
with missing struts would be manufactured around them as
shown on Fig. 3. There can be several reasons explaining these
inhomogeneities in the parts. They can be due to the laser focus
in the corners of the platform. But it can also be due to the
distribution of the shield gas used to dissipate vapor plume and
spatters resulting from laser fusion of the powder.

The EOS machine encountered several unexpected stops
during the AM process for unknown reasons. However, these
stops happened systematically at the end of a complete layer
process. So even if these stops had an influence of the part
integrity, all the parts were impacted in the same way.

The fabrication in the laser PBF machine and the Co–Cr
lattice structures on the AM platform at the end of the AM
process are shown on Fig. 4.

Fig. 4 Co–Cr lattice structures: a during the laser PBF process in the machine, b on the AM platform at the end of the AM process

Fig. 5 Visual inspection of five
Co–Cr lattice structures with out-
er missing struts. These missing
struts are indicated by the red
circles
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4 Visual and XDR inspections of lattice
structures with different numbers of missing
struts

In order to check that the parts manufactured with missing struts
complied with the specifications, visual inspections were per-
formed for several parts with outer missing struts (Fig. 5).

With respect to lattices with inner missing struts, the in-
spection of three of them was performed with a two-
dimensional (2D) XDR system from Safran (Fig. 6). The in-
spection was achieved on lattices with one, two, and six inner
missing struts.

The Safran system included a Vario focus source from
Comet with nominal voltage of 225 kV and focal spot size
of 250 μm at P = 290 W, and a flat panel XRD0822 detector
from Perkin Elmer with a pitch of 200 μm encoded in 16 bits.
The chosen acquisition parameters are given in Table 1.

The inner missing struts are clearly visible on the XDR
image (Fig. 7). From these visual and XRD inspections, we
made the assumption that all the parts manufactured with
missing struts complied with the specifications.

5 RAM tests of lattice structures with different
numbers of missing struts

The RAM tests of the lattice structures were performed with
the RAM-DROP system from The Modal Shop presented on
Fig. 8. This system, dedicated to quick tests of small parts,
provides automatic sorting of defective parts: simple pass/fail
result is returned requiring no human interpretation.

The Drop System (RAM-DROP) is instrumented with a
laboratory-grade force sensor, a prepolarized microphone
(PCB 130 series) acting in the frequency range up to
50 kHz, and a 2-channel high-speed analog to digital con-
verter (24 bits). The Drop system also includes an indus-
trial PC mounted on a swivel arm to provide software
interface control and a free-standing test cabinet. A light
tower status indicator provides prominent visual display
of passed or failed parts, indicating a system fault or pro-
viding warning that a preset number of parts have failed
consecutively. In order to effectively capture the resonant
frequency response of small parts, the part under test is
fed onto a slide and then dropped onto an impact surface,
thus creating the mechanical excitation required to excite
the resonant frequencies of the part under test. The part
then drops a short distance into the white drum in the
center of the Drop System pictured in Fig. 8. Once the
Drop System receives the Pass or Fail result from the
NDT-RAM software, the drum will rotate clockwise for
a good part, or counterclockwise for a defective part to
automatically sort the parts that have been tested.

The tested lattices were dropped down the slide, rounded
side first. All parts were impacted in the same location (round-
ed surface), with no twisting on the slide. The frequency win-
dow for analysis ranged from 500 Hz to 50 kHz (Fig. 9), and
the resolutionwas 7.8 Hz. Four criteria were considered to sort
the lattices with missing struts from the reference parts
(Fig. 10). These criteria, defined from the ranges
(boundaries) in variations in each resonant peak frequency
of the reference parts, are shown by vertical green lines on
Fig. 10.

Fig. 6 aXDR Safran system; bXDR Safran source; cXDR Safran detector and photo of the three inspected Co–Cr lattice structures with inner missing
struts on the XDR platform

Table 1 XDR acquisition
parameters used to inspect inner
missing struts in Co–Cr lattice
structures

Magnification Focal spot
size

Voltage Current Exposure
time

Average Gray level on the
ROI

X3 250 μm 150 kV 1.30 mA 800 ms 64 32,000
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The RAM software indicates as faulty parts (F) all tested
parts with frequency peaks outside of the defined criteria, and
as passed parts (P) all tested parts with frequency peaks inside
of the defined criteria. All the lattices were tested using the
four criteria (an excerpt of the RAM tests on the lattice
structures is presented in Table 2). If a lattice is falling at least
one of the criterion, it is considered as faulty part, i.e., part
with at least one missing strut. The comparison between the
reference lattices and the lattices with missing struts reveals
that the RAM can detect all the lattice structures with missing

struts. The parts were tested three times to confirm this result.
The overall result was similar.

Then, one tried to compare the lattices structures with miss-
ing struts to each other and no longer in comparison with the
reference parts. As displayed on Table 3, RAM is not
differentiating:

& The parts with 1/2 outer missing struts from the parts with
1/2/4/6 inner missing struts;

& The parts with 1 outer missing strut from the parts with 2
outer missing struts;

& The parts with 6 outer missing struts from the parts with
8/10/12 outer missing struts;

& The parts with 8 outer missing struts from the parts with 6/
10 outer missing struts;

& The parts with 10 outer missing struts from the parts with
6/8/12 outer missing struts;

& The parts with inner missing struts from the other parts
with inner missing struts.

But RAM is differentiating:

& Most of the parts with inner missing struts from the parts
with 4/6/8/10/12 outer missing struts;

& Most of the parts with 1/2 outer missing strut from the
parts with 4/6/8/10/12 outer missing struts;

& Most of the parts with 4 outer missing struts from the parts
with outer missing struts;

& Most of the parts with 6 outer missing strut from the parts
with 1/2/4 outer missing struts;

& Most of the parts with 8 outer missing struts from the parts
with 1/2/4/12 outer missing struts;

& Most of the parts with 10 outer missing strut from the parts
with 1/2/4 outer missing struts;

& Most of the parts with 12 outer missing struts from the
parts with 1/2/4/8 outer missing struts.

To try to find an explanation why the parts with 6/10 outer
missing struts could not be separated from other lattices with a
different number of missing struts, we identified their location
on the AM platform (Fig. 11). For the parts with 6 outer
missing struts, one explanation could be the fact that these
parts are right on the edge of the AM platform (red rectangles
on Fig. 11). The manufacturing process of the used AM ma-
chine might not be optimum on the edges of the AM the
platform of this machine. However, the part locations on the
AM platform, for the 10 outer missing strut parts, cannot ex-
plain that these parts failed the test (green rectangles on
Fig. 11). No other reasons could be found.

In a nutshell, the defined criteria of the RAM system were
able to separate all the parts with missing struts from the ref-
erence parts. However, when the parts with inner missingFig. 8 RAM setup used to test the Co–Cr lattice structures

Fig. 7 XDR image of the three inspected lattice structures with inner
missing struts in Co–Cr lattice structures. On the left image, one missing
strut is visible; on the center image, two missing struts are visible; and on
the right image, six missing struts are visible (these missing struts are
indicated by the red circles)
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struts are compared with parts with a different number of inner
missing struts, RAM cannot effectively differentiate them
from each other. In addition, RAM cannot distinguish parts
with one outer missing strut from parts with two outer missing
struts. It is only effective when the gap of missing struts in
parts is more than two.

As mentioned previously, RUS is a whole-body test meth-
od which means that the entire structure is excited and evalu-
ated during the RUS test. The primary factors that dictate the
natural frequencies of any given part under test are the stiff-
ness and the mass. The process of additively manufacturing a
group of parts (or any other known manufacturing process for
that matter) will inherently create minor variations in the stiff-
ness and mass from part to part. The process variation from
part to part is acceptable as long as the parts still meet the
established specifications and are free from defects such as
cracks, missing material, voids, and a number of other defects
that would cause the part in question to fail to perform in its
intended manner. The minor variations in stiffness and mass
among the conforming parts are known as normalmanufactur-
ing process variation and result in variation in the natural
frequency response of the parts during RUS testing. The same
normal variation holds true for parts containing defects; how-
ever, the effect of a defect on the frequency response of a

given part is generally much more pronounced than the nor-
mal process variation in the conforming parts. The normal
manufacturing process variation from part to part can be de-
fined as the noise in the RUS testing technique. As long as the
change in stiffness and/or mass of the defective parts is greater
than the effect of the noise from normal process variation,
RUS testing is 100% successful in detecting defective parts
and sorting them from conforming parts.

In the case of detecting size, location, or number of defects
present in a part, RUS testing is generally not well suited. The
noise from normal process variation, which is equally present in
non-conforming parts as it is in conforming parts, plays a factor
in creating variation in the response of the defective parts. A
manufacturer of a given part will optimize their manufacturing
process to minimize the normal variation in that part and meet or
exceed the specification required of that part. The conforming
parts that are manufactured have the same mechanical character-
istics and resonant frequency response plus the added noise from
normal process variation, meaning that the results of RUS testing
will be predictable and repeatable. Defective parts, however, fall
out of the predictable and repeatable range of frequency re-
sponse. Defective parts represent a failure in the expected normal
manufacturing process and therefore do not follow the same level
of predictability and noise variation that is present in the

Fig. 9 RAM spectra of the Co–Cr lattice structures all over the tested frequency range

Fig. 10 RAM spectra of the Co–Cr lattice structures, zoom on the criteria: the blue line is the spectrum of a reference part, the red line the spectrum of a
lattice structure with missing struts, and the vertical green lines the defined criteria used for comparison
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conforming parts. In the case of the lattice structures used for this
paper, the defects were intentional and printed. The RAM system
was able to reliably differentiate all of the conforming parts from
all of the defective parts, but not the different numbers of defects
from each other or the variation in location of the defects.

While the change in stiffness and/or mass of the defective
parts was significant enough to reliably separate them from
the conforming parts, a small change in the number or location
of defects was not significant enough to reliably sort the de-
fective parts by number and location of defects. The same
results generally hold true for all RUS testing regardless of
part size, shape, and manufacturing processes.

In order to improve the reliability of separating defective
parts by the number of defects present in the part, it was
decided to analyze all the RAM data with machine learning.

6 Machine learning analysis of RAM data
to sort lattice structures according
to the number of missing struts

Physical modeling and simulation of RAM patterns in re-
sponse to various defective prints can be impractical. Given

RAM inspection signals and quality inspection, machine
learning (ML) can be used to construct a model to make pre-
dictions and help in understanding the process [16]. For the
RAM data, the classification methods in ML literature can be
applied to predict the number of missing struts and their loca-
tions (in/out).

6.1 Regularized linear discriminant analysis to sort
lattice structures

Linear discriminant analysis (LDA) is a commonly used su-
pervised learning approach for classification and is applied in
many areas, including signal processing, image recognition,
economics, biomedical science, earth science, and so on
[17–23]. By projecting the original data matrix into a lower
dimensional space, the ratio of the between-class variance to
the within-class variance is maximized to ensure the separa-
bility between different classes, while the redundant features

Table 3 Results of the RAM tests of all the Co–Cr lattice structures
with different numbers of missing struts compared to each other using the
RAM criterion number 2. In each table cell is indicated the number of

parts that can be separated from parts with different numbers of missing
struts (10 is the maximum). If no number is indicated, this means that the
separation failed

Number of 

missing struts 

and location

(in/out)

1
 o

u
t

2
 o

u
t

4
 o

u
t

6
 o

u
t

8
 o

u
t

1
0

 o
u

t

1
2

 o
u

t

1
 i

n

2
 i

n

4
 i

n

6
 i

n

1 out 10 10 10 10 10
2 out 9 9 10 10 10
4 out 10 9 8 7 8 10 10 9 9 10
6 out 10 9 8 10 9 9 9

8 out 10 10 7 7 10 9 10 10
10 out 10 10 8 10 9 10 10
12 out 10 10 10 7 10 10 10 10

1 in 10 10 10 10 10
2 in 9 9 9 9 10
4 in 9 9 10 10 10
6 in 10 9 10 10 10

Fig. 11 Co–Cr lattice structure distribution on the AM platform. The red
rectangles indicate the parts with 6 outer missing struts and the green
rectangles indicate the parts with 10 outer missing struts

Table 2 Comparison between reference lattices and lattices with 1 and
2 missing struts. The RAM software indicates as faulty parts (F in red) all
tested parts with frequency peaks outside of the defined criteria, and as
passed parts (P in green) all tested parts with frequency peaks inside of the
defined criteria. If a part is failing only one of the criteria, it is considered a
faulty part, i.e., part with at least one missing strut
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could be eliminated to achieve dimensionality reduction [24].
LDA also provides insights into the importance of different
frequencies collected from RAM.

A typical classification problem is that given N observa-
tions formulating the original data matrix X = {x1,…, xN},
where xi ∈ℝp, and the corresponding labels y ∈ℝN, where y-

i = 1,…, k for all i = 1,…, N, how to predict the class of a new
sample x∗ ∈ℝp. Essentially, k regions are defined to allocate
each observation x. Assuming the data in each class follow the
Gaussian distribution with mean μj and covariance matrixΣj

for each class j, i.e.:

X j y ¼ j∼N μ j;Σ j
� �

; for any j ¼ 1;…; k ð1Þ

Then we know that:

f j xð Þ ¼ 2πΣ j

�� ��−1
2exp −

1
2

x−μ j

� �T
Σ−1

j x−μ j

� �� �
ð2Þ

By the Bayes’ rule, given the prior distribution of each
class πj, we can maximize the posterior log probability to
decide the label of the observation x:

byi ¼ argmax
j

−
1
2
log Σ j

�� ��−
1
2

x−μ j

� �T
Σ−1

j x−μ j

� �

þ logπ j ð3Þ

which is known as quadratic discriminant analysis (QDA)
since the right side is a quadratic function in x.

If we assume the homoscedasticity, i.e.,Σj =Σ for all j = 1,
…, k, Eq. (3) is changed to:

byi ¼ argmax
j

xTΣ−1μ j−
1
2
μ j

TΣ−1μ j þ logπ j ð4Þ

which is a linear function in x, and thus is called LDA. It
requires must less data than QDA since there are fewer pa-
rameters to estimate. To avoid overfitting, we deploy the reg-
ularized LDA (or RLDA) by setting the covariancematrix as a
function of the hyperparameter γ ∈ [0, 1], i.e.:

Σ γð Þ ¼ 1−γð ÞΣþ γI ð5Þ
where I is the diagonal matrix.

Fisher [17] approaches the same formulation without any
assumptions about data distribution by maximizing the ratio
of the between-class variance to the within-class variance
[19]. Given the transformation matrix W, the between-class
variance is:

SB ¼ WTμi−W
Tμ

� �2 ð6Þ

where μi is the mean of the ith class and μ is the total mean,

Fig. 12 Adaptive sampling of a
reference lattice structure
frequency spectrum

Fig. 13 Visualization of RLDA training result

Table 4 Model comparison of different machine learning methods

Method Training accuracy (%)

RLDA 100

Linear SVM 84.4

Random forest (fine tree) 81.4

Random forest (coarse tree) 55.7
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and the within-class variance of the jth class is calculated as:

SW j ¼ ∑
i¼1

n j

WTxij−WTμ j

� �2
ð7Þ

where xij is the ith sample in the jth class and nj is the number
of samples in the jth class, which subjects to ∑jnj =N. Then,
the best transformation matrix can be found by solving the
following optimization problem:

max
W

WTSBW
WTSWW

ð8Þ

where SW ¼ ∑ j SW j is the total within-class variance.

All the lattice structures with missing struts are labeled by
both their number of missing struts, and by their missing struts
are either inside or outside the lattice, such as “1 out,” “2 out,”
…, “6 in”; 80% of the data are used to train the RLDAmodel,
and the rest (20%) form the testing set.

6.2 Adaptive sampling and normalization for RLDA

There exist two major issues for applying RLDA to RAM
data: a large number of frequency features and robustness of
RLDA classification. So we propose RLDA with adaptive
sampling and normalization for the reference lattice structures.

Thousands of different frequencies are generated by FFT to
form the resonant frequency spectrum. Considering all fre-
quencies as features would cause unnecessary computational
complexity and overload the MATLAB software. Therefore,
the adaptive sampling strategy is proposed to reduce the ines-
sential frequencies. Unlike random sampling, which selects
each frequency with the same probability, the proposed adap-
tive sampling chooses the frequency according to the magni-
tude of its voltage. The larger the response is, the more likely
the frequency is chosen. Also, the frequencies with the top 10
largest voltage would be kept with probability 1 to make sure
no significant frequency is missed. Figure 12 shows the adap-
tive sampling result of a randomly selected lattice structure
frequency spectrum. We can find that the patterns are similar
to less than 10% of the original frequencies.

To achieve stable and faster computation, normalization is
applied by computing the z-score [25] for each selected fre-
quency. Also, the voltage collected could be affected by many
non-defect-related causes, for example, the dropping position
and recording distance. Then, normalization could help to
improve the robustness of the proposed method.

After randomly selecting 80% of the 209 manufactured
parts as the training set, we adaptively select 500 features
from 6400 original frequencies and train the RLDA classi-
fier with 5-fold cross validation. The training result is
shown in Fig. 13. Note that even with the adaptive sampling
strategy proposed in Section 6.2, the RAM data still have

500 different frequencies, so we have to project them onto a
2D plane to visualize the results. In Fig. 13, two random
frequencies 125 Hz and 132.8 Hz are selected as the x-
and y-axes, and different colors represent different numbers
of missing struts and locations (in/out).

We achieved 100% training accuracy and 80.95% testing
accuracy on the rest (20%) of the parts. Note that the train-test
split is done within each type of the defect; for example,
among ten lattice structures with 4 visible/outside missing
struts, eight of them are in the training set and two of them
are in the testing set. We also compared the proposed RLDA
method with other machine learning methods after the same
preprocessing procedures as shown in Table 4. As a popular
classification method, linear support vector machine (SVM)
finds the hyperplanes that separate data points of one class
from those of other classes by maximizing the margins among
classes, where the margin is decided by the closest data points
called support vectors [26]. Since only the points close to the
separating hyperplane are used, SVM is very flexible and
robust at the cost of interpretability compared to LDA. In
addition, random forest, as an ensemble learningmethod, con-
sists of multiple decision trees, where each decision tree clas-
sifies the data following the decisions from the root node
down to a leaf node. Each internal (non-leaf) node is labeled
with an input feature, which is one specific frequency in our
case, and leads to a subordinate decision node [27]. While the
fine tree allows many leaves to be selected for a flexible dis-
tinction between classes, the coarse tree restricts the number of
leaves for each node to be less than four.

7 Conclusions

This study presents a non-destructive testing (NDT)method to
control the quality of lattice structures built by AM. Based on
RAM to collect resonant frequency spectrums of test lattice
structures, the RLDA with adaptive sampling and normaliza-
tion could classify the defects with 100% training accuracy
and 80.95% testing accuracy with a good reproducibility. The
result shows that the RAM method combined with the ma-
chine learning method RLDA is an effective solution for de-
tailed defect classification. Further study can be conducted to
reduce the potential over-fitting problem in model training
stage and improve the prediction accuracy for test data.
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