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ABSTRACT
The objective of this thesis is to compare variapgroaches for classification of the
defective and non-defective parts via non-destvaatesonance testing methods by
collecting and analyzing experimental data in tiegdiency and time domains. A Laser
Scanning Vibrometer was employed to measure villgatamples in order to determine
the spectral characteristics such as natural freziee and amplitudes. Statistical pattern
recognition tools such as Hilbert Huang, Fisherscbminant, and Neural Network were
used to identify and classify the unknown samplasther they are defective or not. In
this work, a Finite Element Analysis software pap&(ANSYS 13.0 and NASTRAN
NX8.0) was used to obtain estimates of resonamcpiéncies in ‘good’ and ‘bad’
samples. Furthermore, a system identification @ggr was used to generate Auto-
Regressive-Moving Average with exogenous comporimt;Jenkins, and Output Error

models from experimental data that can be usedldssification.
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Chapter 1

INTRODUCTION
1.1 Thesis Background
Resonance testing is a method of Non-Destructivaiig (NDT). It can be used to
detect defects and flaws; such as cracks and wojlgrts. Each product, with specific
dimensions and material properties, has its owonast frequencies, but these
frequencies change in the presence of defectsselthefects cause a difference in the
vibrational behavior (and the natural/resonantdestgies) due to the change in the
stiffness of the part. The change and variatiostififness between the non-defective and
defective parts cause changes in the natural frexes under dynamical load, they
behave differently.

Traditional ‘destructive’ testing methods maglude destroying some samples by
applying loads that are similar to the extreme waglconditions in order to ensure the
safety and performance of the product while ihiservice, these methods are called
destructive testing methods. Some of the disadggst of destructive testing are high
cost due to the damaged parts, longer testing aime the inability to test all the parts.
On the other hand, the testing method that doetptire destroying any parts are called
NDT. The purpose of these methods is to idertifgg measure abnormal conditions,
especially microscopic defects and flaws, and tsawithout deforming or destroying
the part (Price, Dalley, McCullough, & Choquett89T). These methods are quite
common in industry. Each NDT method has some adgas and disadvantages. The

simplest method is ‘visual inspection’. It is cheand easy to perform, but it is incapable



of detecting internal defects. Some NDT methodsirecadvanced technologies such as
X-rays, and laser which leads to expensive testimyrequiring well-trained inspectors.
Testing is very important process in quality cohtitds normally done at the final stages
of production to make sure that the products asdified for performing the required
function before they get shipped to the costunigsonance testing provides important
information that can be used to identify good \ad parts.

In this work, an electro-dynamic shaker is useexcite the part and a Laser Scanning
Vibrometer is employed for gathering vibration dafiéis instrument uses holographic
interferometry which measures velocity and disptaeet of light wave; it has been used
in many applications such as automotive, aerosacebiomedical (Santulli &
Jeronimidis, 2006). The advantages of using thelLdgrometer are the accuracy,
speed and no need for a physical contact with #8neymnder test. The process consists of
a laser beam being directed at a product and bgrgeng a mesh, the beam moves
through all the nodes of the mesh to complete ¢ha sver all the points. Then the data
is collected at each point which can be in freqyesrdime domain. In the frequency
domain, the response is represented with respécetisequency, while in the time
domain varies over time. The frequency and timealarare used in the system
identification tool box in MATLAB, which is a powti tool that can be used to create a
model of a system by using the response data.iffteedomain data of good parts can
also be used to estimate the model.

In addition to system identification approaphttern recognition methods can be
employed to recognize the good and bad parts. Ot anethods is Hilber Huang
Transform (HHT). In this method, the non-lineanssiationary signal is decomposed
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into nine harmonic signals then the frequency spatis evaluated from the extracted

time domain data. Another method used in this vi®ikisher discriminant analysis, in

which good and bad frequency data are projectenl mtihe and then the difference
between the projected means shows the variatidmseba the good and bad samples. In
addition, the neural network method is also empldye classification.

1.2 Resonance Testing Using Laser Scanning Vibrometer

Resonance testing has many advantages that meKeignt and beneficial to industry

more than other methods of testing; especially vihertests are performed by an accurate

powerful instrument such as the Laser Vibrometbesk advantages are:

1. The high accuracy of Laser Vibrometer allows foclaate testing results, and the
velocity and displacement data can be collectedhvimakes it easy to analyze.

2. A mesh of small elements connected by nodes cageherated to ensure that the
‘automated multipoint’ test can be performed athesimall segment of the part to be
tested.

3. This NDT method is fast and it can be used in @daroduct’s inspection line.

4. The high frequency range helps define small argeldefects.

5. No contact is required with the part under investan. This property helps performing
the test from distance or for complex geometrygleproducts.

1.3 Problem Statement

This thesis concentrates on identifying the defantsflaws in the products and machine

parts using resonance NDT methods in both frequand time domains by employing

laser vibrometry scanning technology. It alsounes a comparison between defective
and non-defective test samples by analyzing the filamn experiments. Furthermore, an

3



ideal theoretical analyses are used by employimgeamnical software packages ANSYS

and NASTRAN NX8.0.

The objectives of the thesis are accomplished by:

1.

Describing the difference between frequency ane timmains and explaining the
fundamental operating principles of the Vibrometer.

Performing the experiments using the laser scanviilngpmeter and electro-
dynamic shaker.

Applying different types of vibrational waves suahburst chirp, white noise, and
sinusoidal sweep waves, then comparing the resttteeir response.

Generating mathematical models using time domatia fda the part under
investigation using MATLAB system identificationdiobox.

Identifying Defective and non-Defective parts, gaalg the experimental results,
using frequency domain data.

Generating a finite element simulation using ANSYASTRAN NX8.0 software
packages for both the defective and non-defeciiwrtsp

Using pattern recognition tools such as neural aginFisher’s discriminant

analysis, and Hilbert Huang Transform to clasdiky ¢xperimental data.



Chapter 2
LITERATURE REVIEW
The outcome of each NDT method depends on timtdagy and the testing method
type. Selecting the testing method is based ordseand time required for the test.
Some methods are very cost effective but theyesm® dccurate such as visual inspection
method. Historically, this method was used inuglgtconducted to identify the saw
marks in wood materials; the testing result wasegiti “Yes” for the good parts or a
“No” for the defective parts. The sliding scale wes®d to identify the level of defects by
choosing a range from 1 to 10, in which 1 repres#drg minimum, while 10 is the
maximum (Smith, Callahan, & Strong, 2005).

Newer testing technologies based on spectrosgs@yltrasonic NDT methods. The
fundamental principle of this method is based @nultrasonic wave propagation through
the part; these waves are of such high frequeratyttiey exceed the human hearing
ability. The wave penetrates the part at certaaratteristics such as specific velocity
value; any reflection of this wave indicates a dete flaw in the part's material (IAEA,
2001). (Characteristics such as velocity and degpteent can be measured to detect the
presence of flaws in the part)

Another method called Damage Locator Vector (DL¥3 bbeen used to detect the flaws
and damage in the part’s material. This methocged on vibrational testing by using
the frequency response function. The defectiveipadentified due to change in the
stiffness when compared to the good part (Huynhr&7T2004).

Another method of NDT is called the Shearographyictvis used to define the invisible
defects. The principle of this technique is basedplying a laser beam on the part

5



under investigation. When a mechanical load isiegmn the part, the defects cause a
deformation that can be detected from the reflelstser beam. This method is fast to
perform and the acquisition process and analykesteelatively short time. The
disadvantage of this method is the incapabilityesting large parts (Huke, Focke,

Falldorf, Kopylow, & Bergmann, 2010).

Figure 2.1. Digital Shearography system (Huke,
Focke, Falldorf, Kopylow, & Bergmann, 2010)

Resonance testing uses the vibration response qfatt under excitation to detect
defects and flaws. This vibrational response f $ample when it is under excitation
contains the displacement or velocity signals liat sample. Prior to this work,
resonance testing was performed in the lab usinge8s Compensating Resonance
Testing (PCRT) setup which has transducers thateette part under investigation, and
they collect the vibrational data. This proces&s to perform and more accurate than
the conventional NDT methods (Subramanian, 2018)gdod and bad parts can be

recognized from the frequency output speckles.dibadvantage of this method is the
6



contact between the part and the transducer whattesit difficult to test complex
geometry parts.

Recently, a continuous laser scanning via Lasemplzop/ibrometry (LDV) was
performed on a wind turbine to analyze the vibraiaharacteristics. The response was
measured to identify the mode shapes of the mawrigne (Yang & Allen, 2012). This
method used the Vibrometer on rotating parts.

LDV is a device used for measuring vibrational elaéeristics of a structure under
vibration loading. It has been used in recenty@aaerospace (aircraft composite
structure defects analysis), automotive, and bioklgnaterials such as fruits (Santulli &
Jeronimidis, 2006). The results show the veloampktudes of fruits under excitation, if
these amplitudes are in the acceptable frequemgerdhe fruit could be considered as
good. An experiment was conducted by employind D¥ to analyze the linearity and
nonlinearity of vibration characteristics to detdwt defects and flaws in the deformed
structures (Vanlanduit, Guillaume, Schoukens, &dtar2006).

The dynamic vibrations and Echo tests are peddrm many engineering fields such
as civil engineering to define the imperfectiortteé products and material. In these types
of tests, a pulse wave is used to excite the paheostructure by a hammer, the analysis
of this method is applied by observing and analyzhe reflected waves (Wong &
Toppings, 1988). Using the Vibration modal analgsasted in the 1970’s when the FFT
analyzer was developed during that time (SchwaRiéhardson, 1999). It is very
important to understand and define the resonarcgiéncies of a part or structure
because at some of these frequencies the strucanreave a high amplitude response
that can cause the structure damage. In a recpat,@new testing approach using the

7



Laser Scanning Vibrometer was used to detect #vesfin the material (Breaban,
Carlescu, Olaro, & Gh. Prisacaru, 2011). In thisez¥ment a PSV-300 laser Vibrometer
was used to measure the micro displacement inceityekresponse form of the polymers
as illustrated in Figure 2.2. In this experimentyhite noise vibration signal was used to
identify the resonance frequencies of the part uirdestigation (Breaban, Carlescu,

Olaro, & Gh. Prisacaru, 2011).
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Figure 2.2. PSV Frequency Domain Response (Santulli & Jeronimidis,
2006)

Laser Vibrometer can be used for micro-scanrigg;oupling the scanning head to a
microscope in order to get very small laser beaameter (1 um) for measuring non
periodic motions. This technology has been apgbedesting gyroscopes, micro

switches, and micro motors (Traynor). The setughisfsystem is shown in Figure 2.3.



Figure 2.3. Micro-Scanning Vibrometry (Traynor)

Many techniques have been used to analyze kinatvn testing data. In the paper by
Vanlanduit et al Singular value decomposition (3Mas proposed as a classification
method, the robust SVD employed for this purposkapplied on aluminum testing data
under different conditions such as fatigue, saw @aered with plastic, and covered
with acoustic material. Most of the work was foalis® a good part and defective cases,
one with small fatigue crack and the other witlyéafatigue crack (Vanlanduit, Parloo, &
Guillaume, A Robust Singular Value Decompositiom&tect Damage Under Changing
Operating Conditions and Structural Uncertainti€g).2.3., illustrates the difference in

the peaks among the good and defective parts.
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Figure 2.4. Good (Solid lines) and Defective (Dotted lines) Parts[14]
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Chapter 3
LASER SCANNING VIBROMETER

3.1 Resonance Testing
Resonance testing is a form of NDT testing in whighpart under investigation is
subjected to vibrational excitation. Resonancguescies represent a property of part or
structure, the value of these frequencies dependseomaterial type, stiffness and
boundary conditions of that structure (Schwarz &Hardson, 1999). The response of the
vibration can be obtained in two forms, the timendin and frequency domain.
3.2 Vibrometer Setup
Laser Scanning Vibrometer is an instrument thas lsser beam to measure velocity of
two dimensional surfaces. In this work, the mairppse of using this instrument is to
measure the velocity response of a part underatart The generated wave in the
controller can be selected in different forms sastsinusoidal Sweep, Burst Chirp,
White Noise and Square waves. The instrumentugegd with a velocity decoder that
decodes the velocities in the controller unit. Téege of the wave’s frequencies is from
0.01 Hz to 30 MHz (Polytec). This instrument isatifor testing parts where it is
difficult to place an accelerometer like turbinadés and any other parts under vibration
or movement effects.
3.2.1 Components of the Vibrometer
The instrument consists of:

1. Controller unit

2. Scanning head

11



3. Junction box

4. Workstation PC

Figure 3.2. Laser Scanning Head
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The controller unit generates the vibration sigarad decodes the velocity output signal
of the part under investigation. The scanning Helinterferometers to reflect the laser
beam. The connection interface between the unpsavided by the junction box which
connects the controller to the workstation PC. PReis provided with Polytec Scanning
Vibrometer (PSV) software, this software has thiéitgtio generate a scanning mesh
points and has multiple scanning options such asragus, single shot, and mesh
scanning.

3.2.2 Fundamental principle of Laser Scanning Vibrometer

The vibrational signal is generated in the congralinit in order to excite the object to be
tested, this signal could take any of these folmas are mentioned in section 3.2.

The generated laser beam passes through a bedi@rgBIS1) in the scanner head, the
beam splits into two beams, object and referenaenbethen the object beam goes into
the second splitter (BS2) aatft-plate which converts the linear polarized int@raular
beam (Polytec). The mirrors reflect the beam &silrface of the part under
investigation. A third beam splitter (BS3) splite reflected beam from the object; one
beam goes to the detector, while the other godset@&ragg cell which determines the
velocity sign (Polytec). Figure3.3. illustratee thrinciple of the laser beam in the
Vibrometer. In order to increase the accuracyeftesting process and to ensure higher
data quality, the scan and data acquisition doestad unless the signal is triggered.

This triggering minimizes the time domain data esro

13
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Figure 3.3. Optical Configurationsin Laser Scanner (Polytec)

3.2.3 Advantages of using Laser Scanning Vibrometer
Laser Vibrometer provides many advantages when acedio other vibrational signal
generators and acquisition systems.

1. No surface contact is required

2. Asignal can be generated in the same system

3. The system uses safe helium laser

4. Can measure velocities at multiple ranges (umB9dtm/s) and displacement (nm

to more than 41 mm)

5. Acquire data and triggers signal at the same time.

14



3.2.4 Polytec Scanning Vibrometer (PSV) software

The part under investigation has to be attachedeshaker, and then the laser beam has
to be pointing at the surface of the part. A masfsists of many nodes is generated on
the surface, this allows the laser beam to moeaeh point while sweeping the part at
certain frequency range. In this project, the aigypes are Burst Chirp, Sinusoidal, and
White Noise with frequency range of (0-5) KHz. \Iiéhsweeping the part with each
signal separately, the laser beam starts the dgtasition at each point of the mesh until
all points are scanned. The data in the PVS sodtvgan two forms, time domain data
(velocity vs. time) and frequency domain (veloaity frequency). Both data can be
analyzed in the PVS to determine the mode shapkaraplitudes for the good and
defective parts, the data can exported as a lexibfbe analyzed in MATLAB.

The PVS software has two modes, one is the acquisand the other is the presentation
mode. The acquisition mode has a live video in@ghe part on which the laser beam
can be moved to positions where the alignment ofdinates occur, then the mesh can
be defined on the part in squares or triangulapstia The mesh divides the part into
many elements and each element has node at eawdr toat connects it to the neighbor

element.
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Figure 3.4. Snapshot of Acquisition Interface

In the acquisition mode, the setting has todrmapeted before running the test. Two
important settings have to be set, the first isdiect the frequency range, and the second
is selecting the amplitude and wave type.

The output of the test is showing in small windama#led analyzer. The output type can
be selected as velocity or displacement in frequendime domain, the analyzer is on
X-Y coordinates. The scanning process starts pothts alignment by selecting points
on the objective surface, then moving the lasembeeaensure high laser concentration
on the surface in case of surface flatness problérhen, the next step before scanning
process is applying the mesh on any required drfeembject. Once these settings are
completed, the acquisition process can start byping all the nodes of the mesh.
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Figure 3.5. Time and Frequency Domain Response

The second mode of the PVS software is the digplage in which the analysis on the
data can be performed such as selecting the highgsitudes, define the mode shapes,
and calculating the magnitude and phase of thecitgland displacement signals. The
output can be displayed in 2D, 3D, animation, ngka points. Any of these display

methods can be applied on the velocity or displasgrutput.
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3.3 Experimental Samples

The samples are made of aluminum-6061 T6 whichthieproperties listed in Table 3.1.

Table3.1
Aluminum propertiesin Sl units

Property Value

Density 2700 Kg/m

Modulus of Elasticity 68 Gpa

Poisson’s Ratio 0.33

The dimensions of the samples are 201.68 mm XZ%3n X 1 mm. The defective
parts have a hole of 6.35 mm diameter, the ceiftirechole is located at distance 93.726

mm from the free end of the sample.

Figure 3.8. Defective Sample

While performing the experiments, each sampletinesttached permanently from one

side to the top surface of the shaker using twisbol
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A Labworks shaker model (ET-139) is employedthis work. This shaker has
vibration frequency range of up to 6.5 KHz andaih e used for general vibration

testing.
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Chapter 4
ANALYSIS METHODS
The analysis is performed on a cantilever beanherdefective and non-defective parts.
This type of beam has one of its ends fixed andather end is free as illustrated in

Figure 4.1.

Fixed

ond Free end \

Figure4.1. Cantilever Beam

4.1 Modal AnalysisUsing Finite Element Analysis (FEA)

A simulation of both good and bad parts was ceeateANSYS and NASTRAN NX8.0

to analyze the modal and harmonic characteristich as mode shapes and resonance
frequencies of the part as shown in Figure 4.2is $imulation represents the ideal
conditions of the vibrational test. The resonainequencies can be compared by
observing the location of the peaks, in which te&edtive part shows a skewing of the
peaks to the right. Another way to compare themasce frequencies is by observing the
ANSYS modeling frequency output table, which shomesdifference between both

parts.
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Figure4.2. ANSYS Simulation of Defective and Non-Defective parts

The modes and natural frequencies of any systerbeattained by mathematical
equations in analytical or numerical methods. @halytical method requires

representation of the system in mass-spring forrgdmerating the equation of motion

[MI{X £ G X B K IX 0= =
In which
[M] is the mass of system
[C] is the damping constant

[K Jis the stiffness

X, X, X are acceleration, velocity and displacement remy.

The natural frequency of the system is found byetipgation:

_ |k
@, ‘\/; (4.2)
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The mode shapes and corresponding frequencies diepethe boundary conditions. In
this work, the samples are fixed from one sidefeg®lon the other side (cantilever beam).

The equation of motion of a cantilever beam:

2 2
(;j [E dY(x)
X

1= mMRY(X (4.3)

Where:
E is the modulus of elasticity
| is the moment of inertia

Y(x) is the displacement in Y-direction

(v, 1s the natural frequency

Boundary conditions of a cantilever beam are:
Y =0 at x=0, no deflection at the fixed end

(Z_Y =0 at x=0, no angular deflection at the fixed end

X

2
3—\2{ =0 at x=0 and x=L, no bending moment at the free end
X

d3y
ax®

=0 at x=L, no shear force at the free end

By applying the boundary conditions on the equatibmotion of the cantilever beam,
the frequency equation can be obtained:

cosf,L+ costB L =- (4.4)

Where 3= afm
El
Now the mode shapes equation can be obtaineddantdever beam:
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f (X) = Al(sin SL —sinhBL )(sinBx— sinlBx ¥ (cofL+ cosbL )(cfx—- cqgsh
(4.5)
Mode shapes and corresponding frequencies valyeshden the material properties and

boundary conditions. For a cantilever beam thefgegaare listed in Table 3.2.

Table4.1
Natural frequencies of first three modes

Mode Natural frequency

First El
w, =3.515 "
PAL

Second El
w, =22.03 Z
PAL

Third

\ PAL

4.2 Mathematical M odel

The model of each dynamical system representsahavior and characteristics when a
specific input signal is applied, then depending tbase characteristics, the system
responses with an output signal. In this work, ymandels in different forms are predicted
and evaluated using the experimental data. The diomain data of a non-defective part
is selected to perform this analysis. The predistestem models are used to calculate the
output y(t) when a specific input signai(t) is applied. Input signal is a sine sweep of

0.01-5000 KHZ, half of the signal data is used ¢ograte the model and the other half is
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used for validation. The predicted models quatday be measured by a parameter called

Final Prediction Error (FPE), which is given by:
FPE :V(1+%) (4.6)

Where:
V is the loss function
d is number of estimated parameters
N is number of values of the data set
This parameter is used to compare the predictecelmodhe quality of models increases
when the FPE value is reduced.
The types of evaluated models are:
a. Autoregressive-moving average model with exogemonsponent (ARMAX)
It is a time series model used for simulating aretljgcting economics and industrial
behavior. This model was introduced by Wold (1988 combination of
Autoregressive and Moving average models (Makrgl&Hibon). The model
eqguation consists of multiple polynomials and it b& written as
Ay =Bu+Ce e
In MATLAB, the order of each polynomial is des®d and has a value which can be

adjusted to get the best model results.

n, Order of the polynomial A(q)
n, Order of polynomial B(q)+1
n, Order of polynomial C(q)

n, Input-output delay
25



This model has been used to represent the relatipbstween the input and output
of a system (Fung, Wong, Ho, & Mignolet, 2003). Experimental time series data
(Time —Velocity) can be imported to MATLAB workspgdhen a selection of
ARMAX model parameters can be done by iteratiortd thre best model fit is

reached.

b. Box-Jenkins model (BJ)
It is a method uses time domain data to predigstesn model. The method follows five
steps to select, identify and perform an assessareodvnditional mean models
(Mathworks, n.d.). The steps of predicting the nale:

1. Keeping the time domain series stationary

2. Predicting the stationary for the data

3. Estimating the model parameters

4. Performing goodness fit checks to ensure the sys@m®mscribing the

experimental data

5. Generating Monte Carlo simulations for the futuneet data

The equation of the model is

y:§u+%e .8

During performing the model analysis il\IMLAB, the order of each polynomial
must be estimated in order to get the best fit. Adtation of each polynomial order are:

n, Order of B polynomial+1
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n. Order of C polynomial+1
n, Order of D polynomial+1

n, Order of F polynomial+1

n, Input delay

c. Output-error model (OE)
This model is generated when the disturbance extafig the output signal (Jamil,
Sharkh, & Hussain, 2008). The output is represeased function of the input and the
error.

d. System transfer function (TF)
The transfer function approach is used for modeding) analyzing dynamical systems.
This approach characterizes the input-output mahip of a dynamical system in a
form of mathematical equation that expresses tfierdntial equation which relates
input signals to output (Ogata, 2004).

Once the transfer function of a systenmisvin, then the response of that system

can be determined for any input signal. Each tearfsinction can be represented as a

block diagram as shown below.

X(s) - |G(s)] ~ ¥(s)

Where

G(s) :% Is the transfer function of a system.
X(s

4.3 PSV Analysis:
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The frequency domain data can be simulated in 8\ $bftware to get the mode shapes
and amplitude peaks for both good and bad parts.

The response from the laser Vibrometer is in fovas, time domain and frequency
domain. In the time domain, the collected velodidya is varying during (1.27 seconds)
time period. While in frequency domain, the velpds varying depending on the value
of the frequency. As itillustrated in Figure 3the velocity response has some
amplitudes at certain frequencies. These amplitadegenerated at the resonance
frequency of the part.

4.4 Discriminant Analysis
It is a method used for classification when thermore than one group that differ in
some parameters’ values or types. This methodad to distinguish between these
groups. A fitting function is employed to credbe tlass type from experimental training
data which is used to classify any data under tiy&tson to recognize which group it is
belong to.
4.4.1 Purpose of discriminant analysis:

1. Creates a model that describes the difference leetwatterns with different

classes in terms of parameters

2. Predicts the class of unclassified testing data
4.4.2 Fisher Discriminant Analysis
It is a technique that produces a discriminant fimncto classify two types of data by
creating a projection on a line in such a way faemples are separated into their classes
(Bishop, 1995). This technique increases the diffee of variance between the classes
with respect to the variance of data of each cléss, np are two samples for classl and
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class2 respectively then the projectignof elementx, in thew direction can be given
by the scalar dot product:
y=wx (4.9)
In Fisher’s discriminant analysis both sampiesses are projected on the line, the

difference between the means of the projected sssnplused as a classification measure.

The mean of sample 1 and 2 are:

> X

=2 (4.10)
n
Z X
U, = x0D, . 0_41_)
n2

Where D, and D, are data of groupl and 2 respectively.

Then the means of the projected samples are giyen b

D wx

=P =Wy (4.12)
n

D wix

fy=— =Wy, (4.13)
n2

Also the difference between the means is given by
I~ 1y = W (14~ 14;) (4.14)

The scatter of the projected samples is

élzZZ(y_/?l)z:Z(th_wt:ul)zzzwt(x_,ul) (X—)'w (4.15)

yOR, XD, XD,
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S =D (Y= = Y (Wx—Wi)2= Y W(x-11,) (x— )W (4.16)

yoR, x0D, x(D,
Where B and P, are the projected data of both class samples.

In this discriminant analysis, the linear relatiopsbetween the original and the

projected data maximize the following criterion:

swy= e (4.17)

S +S
Since this classification based on the directibthe projection line, thus it is necessary

to evaluate the criteriod(w) as an explicit function af . The scatter matrices are

calculated in terms of the mean and the data df sample and they can be written as:

31 = Z (X_tul)(x_lul)t :(8)
XDy

= Z (X= 1) (X— 11,)' (4.19)

xaD,

The summation of both scatter matrices is given by

SH=9+S @2
Then equations (4.15) and (4.16) can be written as
& =wWSw (4.21)
S =wSw 4.22)
Then
S +5 = WSW+WSw=w (S, +S)w (4.23)

Substituting equation (4.20) leads to

5.+5: =WSW (4.24)
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Similarly the numerator of equation (4.17) can b&eamed in terms ofw

(& _1272)2 = (W, —wWis,)® (4.25)

= Vv[(/’ll _:uz)(,ul_:uz)w (4.26)

Then simply J(w) can be found as a function of

wSw

JW) = WS w

(4.27)

Where S; = (4 = 1) (1, = 11,)'
For better classification results, the greaterdtiference between the projected samples

means the better the classification.

(/’Ipl - /’Ip2)2

J(v) = 5 .
St S

(4.28)

The greater the difference between the projecteahsmkeads to more accurate
classification.

4.6 Neural Network

This classification method uses the input trairdaga to generate an output classification
pattern. This method can be used to solve differgrs of problems by using some tools
such as fitting, pattern recognition, clusteringg ame series tools. In this work, a neural
network is used to classify train the experimed#dh sets into two classes, then according
to the output classification, the classifier usedest any other sets of data. The network
consists of two layers, one is hidden and the skthe output neurons, the range of the
output signal is 0-1. In this analysis, a frequewnelocity data is imported in MATLAB.

This data contains data of ten non-defective anddefective samples. Each sample has
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6400 sampling rate, so the total of samples isQBopf either O or 1 output. The type of
the network is two-layer feed-forward with sigmdididen and output neurons, which
means that the input data information is movingrty one direction (forward) and it does
not have any loops. The network uses a back patjgagin order to update the values of
bias and weights by estimating the gradient thraihghconjugant gradient method. The
fundamental principle of Neural Network is basedlmvalues of the classified data, and
depending on the weight of the values, the class ty identified. The Network consists
of nodes connected by arrows, each arrow has afispdicection and weight. The main
process occurs in the hidden layer which decides$yibe of the class based on the weight
value as illustrated in Fig [4.4], the green arrog@esent the greater value of weight while
the blue arrows represent the smaller values; @lcearding to that, node “C” chooses the
value from input node “A”, and node “D” selects thput “B”. The hidden layers send the
class information to the output to compare it wiftb desired values (0, 1). The network
error can be determined by subtracting the hiddgars output from the desired output.
The back propagation technique in the network edus reduce the error value until the
lowest value of error is reached. This techniquanieffective computational method for

finding the error function with respect to the netlwweights (Bishop, 1995).

Input Hidden Output

Figure4.3. Neural Network Layers
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The network input and hidden layers contain bidges The network in Fig 4.5.,

consists of input layex], hidden layerZ), and output layeryj. The weight can be

calculated by combining the bias of thji hidden elementv(ﬁo) with the weight of the

input layer Q/vilj) (Bishop, 1995), and it can be written as:
d
a; = Y WX + W, (4.29)

For simplicity, the bias term could be eliminated &quation (4.29) could be rewritten

as:

d
a =Y wix (4.30)

i=1
A continuous sigmoidal function is used to activifiie hidden unit ;) which is
represented in equation (4.31)
z,=9(q) (4.31)

Since this network contains two layers, skcond layer is used to compute the
output. Then the output of the hidden units carepeesented in the same way used in

the first layer
a, = z Wé?) z, (4.32)
i=1

In order to obtain the activation of tlkéh output, the linear equation (4.32) could be

transformed using a nonlinear functig.) (Bishop, 1995).

Y =0(@,) (4.33)

The final network equation is written in the follmg form
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EETORTLTORTEY) (439

Figure 4.4. Feed-Forward Network with Two Layers (Bishop,
1995)

Figure4.5. Neural Network Design in MATLAB

The percentage of well and misclassified dataréoning, testing, and validation is
estimated by a confusion matrix. The diagonal shooveect predictions, while the other

values show the incorrect prediction or the misifeedd data.

34



Training Confusion Matrix Validation Confusion Matrix

Output Class
Output Class

Target Class Target Class

Test Confusion Matrix All Confusion Matrix

Output Class
Output Class

Target Class Target Class

Figure 4.6. Confusion Matrix

The neural network toolbox in MATLAB splits the danhto three groups training,
validation, and testing. The percentage of eaohmrs selected by user and can be
adjusted to get better classification results. ffaming and validation groups affect the
training process by adjusting the error and theegdization of the network until the
generalization stops improving.

4.6 Hilbert Huang Transform

Hilbert Huang Transform (HHT) is an algorithm uses-linear non-stationary time
domain signal such as white noise wave to obtarfréguency output. This algorithm
decomposes the signal into intrinsic mode functidii$) which are a simple oscillatory

harmonic functions having the same number of highemplitudes (extrema) and zero
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crossing and it can be described on x-y graph bipbig amplitudes on the y-axis and
frequency along the x-axis. There are two stegslkow in order to use HHT algorithm:
1. Empirical mode decomposition (EMD)
2. Hilbert spectral analysis

The EMD is used to convert the non- linear tiroendin data into IMF. A process
called sifting is applied to find the IMF from givelata. During this process, the local
upper amplitudes and lower amplitudes of the tim@ ére evaluated, then these
amplitudes are connected by a spline line to crigateipper and lower envelopes. The
average of these envelopes represent the frequeneyonent which is then subtracted

from the original signal (Kim & Oh, 2009).

Lo i ]
r-“.- J’.‘Hﬂmll"'l,'."i".llu W ﬂl i 't

Figure4.7. Sifting Process (Kim & Oh, 2009)
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Figure4.8. EMD Analysisfor 9 IMFs

The Hilbert spectral analysis used for evaluathegihstantaneous frequency of IMF.

When the time domain signalt) which includes a velocity changes over time is-non
stationary, then the evaluated analytic sigr@) is given by
Z(t) = x(t) +i y(t) (4.35)

Where y(t) represents HHT ok(t) and it is given by

Y =2p | @ds (4.36)
7' t-s

p is the Cauchy principle value. The polar equatibthe analytic signak(t) is
z(t) =a(t)exp(ft)) (4.37)

Here, a(t) is the amplitude or called the envelope functidni(& Zhang, 2009) and can

be written as\/ x(t)* + y(t)* , and8(t) is the phase which is given kwctan% ). The
X
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instantaneous frequenay is the time derivative of the phase, it is writt&n% and

it is showing in Figure 4.10., as amplitudes argdlantaneous frequency. The Hilbert

Huang Spectrum can be expressed as a functiomefand frequency
H(t,w)=r) a(t)exp ¢ )it) (4.38)
i=1

In equation (4.38)r is the residue (Hui & Zhang, 2009). The Local MaadiSpectrum

of the IMF function is given by
.
h = [ H, (t, wydt 4.39)
0

Once the decomposition process is appliegidecomposed Time-Velocity signal of
each Empirical mode will have an envelope functiad phase. The summation of the

Empirical modes leads to the original sigx) .

Xt)=Y E t) 40)
Where

E (t) The Empirical mode function

n Total number of Empirical modes

o
o 2000 4000 6OOO 8000 10000 12000 14000 16000 18000
Frequency

Figure4.9. Hilbert Spectrum
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Chapter 5

RESULTS

In this chapter, the techniques presented in chépte are used for classification on the
same dataset. The data was obtained via PSV Vds®meter setup discussed in chapter

three.

5.1 System Model

The model of the system can be identified and satedl in MATLAB by using the
(velocity-time) data, and according to the relasioip between the input and the output,
the parameters of each model can be estimated tbhegbest model fit. In MATLAB
there are many suggested models can be performadyoset of data using the system
identification toolbox, and the final results oéteimulation can be plotted over the
experimental graph in order to observe the accundexach system. The main purpose
of estimating the model for the none-defective partto generate an ideal model that
represents the good parts, then from any colledd¢a from other samples can be used to
compare response with the ideal case. In this@edtie ideal model was predicted and
generated using the non-defective sample. Thergemeetal data was collected under
vibrational conditions of a sinusoidal sweep ofL{B8) KHZ and the response was
collected using the Laser Scanning Vibrometer.

5.1.1  Autoregressive-moving average model (ARMAX)

The predicted model here is a combination of Augoessive and Moving average

models with exogenous component. The parametersevibend using trial and error
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method in order to get the best fit compared teeerpental data graplEquation (4.7)
represents ARMAX modealnd can be written as a function of time
AQ)y(t) = B(q)u(t) + C(a)e(t) (5.1)
A(Q) =1-3.4297"+ 4.784*- 3.307°+ 0.948¢%'
B(q) =2404y™" + 480§ 7° - 2404°
C(Q)=1-2.472"+ 2.48°- 0.971p°- 0.1993+ 0.3028- 0.144
Loss function: 0.0111811
FPE: 0.0112166

Sampling interval: 7.8125e-005

The block diagram of the ARMAX system is shown igu¥e 5.1., where the input and

output relationship can be observed including ffeces of dynamical disturbance.

et) —m

Disturbance

u(t) F——

P f(c)2

Figure5.1. ARMAX Block Diagram

The order of the model polynomials are found to be
n,=4

n,=3
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5T ARMAX: [na nb nc nk] -

Orders: 4351

Equation: Ay=Bu+Ce

Method: Prediction error method

Name: amx4361

Focus: Simulation | [Nitialstater |, 40 -

Dist.model: Estimate Covarance. |potimate -

teration 20 Fit: 0.023 Improvement 0 %
Display | Continue iter |

| tteration Options... | | Order Editor... |

Figure5.2. ARMAX Parameters Setting

The ARMAX system model is shown in Figure 5.3.,tf@d on top of the experimental
data graph. From the output figure, it can be amhedl that the model has a good fit and

it represents the true model as a combination tafragressive-moving averages models.
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Figure5.3. ARMAX Mode

5.1.2 Box-Jenkins model
The general form of this of this model can be writas a mathematical equation that
relates the output to the input signals that chamgth time. Equation (5.2) shows the

model input-output relationship:

_ B C(a)
t) = t t 5.2
y(®) F(q)u()+D(q)e() (5.2)

B(q) = -67867 - 2007 °+ 2.436 0Gp°— 1.567 Q4
C(q) =1-1.396 ™ + 0.0877¢°+ 1.225° 0.803%
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D(q)=1-2.149"+ 1.1087%+ 1.197°- 1.582'+ 0.3H%8+ 0.185

F(@)=1-297+q”

Loss function: 0.00854264

FPE: 0.00857601

Sampling interval: 7.8125e-005

The order and the polynomial parameters are fosnmgurial and error method. This

type of model can be represented in a block diaghatrelates the output to the input

signal, taking in consideration the effects of dly@amical disturbance.

e(t) bl_l
Disturbance yit)

uft) F——m

et fla)2

Figure 5.4. Box-Jenkins Block Diagram

In this model, the order of the polynomials wa®astimated to get the best fit when

plotted on the same graph of the experimental data.
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Structure: BJ: [nb ne nd nf k] -

Orders: 445724

Equation: y=[B/Flu+[C/D]e

KMethod: Prediction error method

Name: Box-Jenkins

Focus: Simulation  * Initial =tate: Estimate -

Dist.model: Estimate Covariance: |poyimate -

teration 17 Fit: 0.023 Improvement 0 %
Display | Continue iter |

| iteration Options... | | Order Editor... |

Figure 5.5. Box-Jenkins Parameter s Setting

The model output shows a good response and anaediirto the original experimental

data.

Bow-Jenkins
Experimental
151 1

“elocity [m/s]
[}
o
1

O5F -

_1 1 1 1 1 1 1 1
0.7 0.8 ns 1 121 1.2 1.3 14
Time [g]

Figure 5.6. Box-Jenkins M odel
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5.1.3 Output-error model (OE)

The general form of the OE model can be written as

_B(9)
y() = %U(t) +e(t) (5.3)

The values of the parameters polynomials are:
B(q) = 2074 - 178572 - 265@°+ 2363"
F(@)=1-297+q”

Loss function: 0.0230658

FPE: 0.0230996

Sampling interval: 7.8125e-005

e(t) * P

Disturbance y(t)

ult) BIF

e fa)

Figure5.7. Output-Error Block Diagram

The results of this model shows that the FPE i230D096, which is higher than the other

models; this makes OE model less accuracy.
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The parameters were computed in MATLAB, also theeoof the polynomials were
estimated using trial and error.

Figure 5.9 shows the estimated parameters whichedeeted by trial and error until best
fit is reached. The output of the model is plotbedr the experimental data, as it can be

seen that the model has a good fit in approximahegystem model.

Structure: OE: [nb nf nk] v

Orders: 471

Equation: y=[BiFju+e

Method: Prediction error method

Name: 0ed21

Focus: Simulation Initial state: Estimate -

Dist. model: HMone Covariance: Estimate -

fteration 11 Fit: 0.0231 Improvement 0 %
Dizplay | Continue iter |

| teration Options... | | Order Editor... |

i Estimate. | |  Close | | Help |

Figure 5.8. Output-Error Parameters Setting
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Figure5.9. Output-Error Mode

5.1.4 Process model transfer function
This model represents the ratio of the output &itiput. The equation below is

transfer function of the cantilever beam that iscdusom the good sample.

G(s) = Kp 1+Tzs2
(1+ ZZTWS+ (TWS) )(1+ Tp3s)

With

K,=-5

T, =0.007

¢ =0.001

T, =50

T,=0.2

A proportional gain Kp Jused which is a ratio of the controller outputhie error signal

the assigned value by trial and error is -5 whiskeg the actual behavior of the
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relationship between the time and velocity; morepwereasing the time reduces the
velocity amplitudes. The damping ratio is <1 whmbkes the system under damped,
which also represents the real case of a cantiles@m vibration.

The model has 1 zero and 3 poles and an integrétterzero time constant4), the time
constant of the complex poleBaf), and the time constant of real polé&gs) were

estimated to get the best accurate results.

[+7Ts [ ]
K pe
WO P17 (142 Ls+(TsP)1+ T, g

Input y(t)
Transfer Fcn

Figure 5.10. Open-Loop Transfer Function

T
- Process model
Expetimental

05r

“Walocity [mis]

N5+

Time [s]

Figure5.11. Process M odel
48



5.2  Fisher Discriminant Analysis
This analysis was performed using 10 non-defectaraples and 10 defective
samples at 6400 sampling rate which leads to uk28j000 values of frequency-
velocity data. In the final results, the outputgiraontains a curve that shows the

class of any unknown data of a sample under salpnational conditions.

Classification with Fisher Training Data

0,106 |

0.4 -

0.02 |

0.om -

Frequency

Figure5.12. Fisher Non-Defective Sample

The graph of Figure 5.13., represents the non-teépart, where most of the

amplitudes are below the classification curve.
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Clas=ificalion with Fisher Training Data

o.ov

Amipliude

0 00 1000 4500 2000 2500 3000 3500 4000 4500 5400
Frequency

Figure 5.13. Fisher Defective Sample

The defective part graph shows higher amplitudasphsses the classification line as
well as some of the amplitudes reaches the thé&etoporner of the graph.

5.3  Neural Network Classification

The Neural network classification is performed idey to get the class output of any
imported unknown sample. Once the classificatiaioise, validation takes action to
assure that the classification is accurate thenal percentage from the classification
data is used for testing the classifier. The aayucd all these classifier building stages is

shown in the confusion matrix, as illustrated igu¥e 5.15.

50
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Figure 5.14 Confusion Matrix of NN Classifier

The diagonal of each matrix represents the accpetentage of the data and the
total good percentage is located in the blue cethsle the red cells represent the
misclassified percentage. As shown in the matticasthe total percentage of the

training data is 78.3%, the validation is 78.4%, tlsting is 77.6%, and the overall

percentage is 78.2%.



The accuracy of the classifier did not reach th@%a®ecause of the large number -
128,000 experimental training data of non-defecéind defective samples.

Once the training process is done, the classdieeady for testing any unknown data
that is collected under the same vibrational coowlét of the classification data. Table
5.1 shows the results of testing 10 samples, gémesaf each sample is on the right
side of the table. The Neural Network results esented in a matrix form. In this
analysis the difference in the third column whiebnesents the average values of the
output is used to recognize the class of datagifautput number of any data under
investigation in the third column is < 0.34 thee #ample is non-defective. On the

other hand, if the value is> 0.34 then the samgieicdered as a defective.

Table5.1.
Neural Network results

Sample Outputl Output2 Type
1 0.6717 0.3264 Good
2 0.6705 0.3275 Good
3 0.6649 0.3331 Good
4 0.6692 0.3289 Good
5 0.6989 0.2993 Good
6 0.3158 0.6796 Bad
7 0.3055 0.6897 Bad
8 0.3055 0.6897 Bad
9 0.2969 0.6983 Bad
10 0.2996 0.6956 Bad

The dotted line in Figure 5.16 represent the baktiation, while the colored lines are the
classification data. It can be noticed that thesifger did not match the best fit because
of the type of data in which many values are theestor defective and non-defective

samples. The Mean Squared Error (MSE) is the @iffee between actual and desired
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output. The accuracy of the classifier increasesnWMSE has least value. The values of

MSE for best fit is found to be 0.15493 at epocB.38

Train
Walidation
Test

Mean Squared Error {mse)

1 1 1 | 1 1
0 50 100 150 200 250 300 350
389 Epochs

Figure5.15. NN Classification Accuracy

5.4 PSV Frequency Domain Comparison

From the PSV output analyzer for both good anddzadples, a difference could be
obtained by observing the location and the valdeseopeaks.

The data was collected for many samples underrdiifevibrational frequencies and
sampling rates. The test was performed on 8 samapl@400 sampling rate using white
noise wave at frequency of 1-5000 HZ. The figurelew show the difference between
the good and bad under same vibrational conditiBran graphs, at low frequencies the

amplitudes of the defective parts have higher \alueler the same testing conditions.
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Figure5.16. PSV Non-Defective Sample
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Figure5.17. PSV Defective Sample

According to the frequency experimental results,dbfective samples have higher
maximum amplitude of 0.3 m/s when compared to tB& én/s for none defective

samples.
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54  Hilbert Spectrum
This method is used to analyze the frequency douhaia when a non-stationary signal

(white noise) is applied.
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Figure5.18. Hilbert Spectrum Results
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Figure5.19. IMF Results
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55 FEA Modal Response

The model analysis is performed on Non-defectiwe Rafective samples as a “sanity

check”. This analysis represents the ideal resdléduminum-6061 cantilever samples.

Two finite element analysis software packages (NR8MN NX8.0 and ANSYS 13.0) are

employed for this purpose. Tables 5.2 and 5.3 sthewatural frequencies in Hertz of

non-defective and defective samples in NASTRAN ANSYS respectively. From the

results, it can be seen that there is a differ&eteeen the samples due to the change in

the stiffness that is caused by the presence ettiefAlso the frequencies of the

defective samples are higher than the frequendirsrodefective.

There are some factor could cause the differerbgeen the FEA packages results

such as the meshing process, software solver henapplied boundary conditions.

Table5.2

NASTRAN results

Non-Defective Defective
22.90 22.90

143.00 143.00
263.00 281.00
401.00 402.00
624.00 636.00
784.00 785.00
796.00 853.00
1300.00 1300.00
1350.00 1450.00
1930.00 1940.00
1940.00 2110.00
2570.00 2710.00
2700.00 2820.00
3270.00 3590.00
3560.00 3620.00
3580.00 3650.00
4030.00 4480.00
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Table 5.3
ANSY Sresults

Non-Defective Defective
22.50 22.50
141.14 140.93
283.20 282.57
396.86 398.73
615.62 617.58
782.99 787.23
860.84 860.57
1305.60 1326.00
1471.50 1473.70
1969.80 2011.30
2135.60 2152.10
2781.40 2875.30
2872.10 2903.70
3532.90 3567.60
3694.20 3763.90
3750.10 3904.70
4625.30 4759.70




4550.00 4620.00 4873.20 5153.90
4870.00 5450.00 5674.70 5877.10

As shown in the ANSYS results that at low frequesdhe non-defective parts have a
slightly higher values; this is normally happen dgse the defects are identified at higher

frequencies.
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Chapter 6
CONCLUSION

The thesis’s main objective was to study the mathamies for NDT using a resonance

testing technique. The testing was performed uaihggh accuracy Laser Scanner

Vibrometer which generate vibrational signals aogugre data in time and frequency

domain at the same time. To achieve the succeasi&iification/classification, several

pattern recognition, FEA simulation, and system eliogg methods were applied. Some
of these methods used time domain data and otkessfrequency domain data and.

Based on the analysis and results of each methodn ibe noted that-

1. Performing the test in two domains increased thecgteness of the identification
process, so if some of the defect signals wereetgcted in one domain, then they
could be identified in the other domain.

2. The Modal analysis in ANSYS and NASTRAN NX8.0 regepted the ideal case of
defective and non-defective samples. This anajysigides all the information of the
natural frequencies and it shows how the valueg wieanging due to the presence of
the defects especially at high frequency ranger@h&as a small difference between
the results by ANSYS and NASTRAN NX8.0 that coutdditributed to the variation
in number of the elements, mesh accuracy, andaftware solver environment.

3. Fisher’s discriminant analysis showed effectivailtssby creating a classification
border to separate the majority of data values almownder the border. As described
in sections [4.5.2] and [5.2]. The output of thasslifier had two values, each one
represents a class type. In addition, the defecamples showed higher amplitude
values and then can be identified easily.
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4. Neural Network can be successfully used to idertkig/class of testing data.
However, data training should take place firstgenerating the class. Second, a
validation process should be carried out. Oncdrtiring and testing is done to
detect the accuracy of classifier on a sample dgtagesting process should be
performed on the actual dataset. The classificatsnlts showed the significant
difference in the sample’s output.

5. The Hilbert Huang Transform (HHT) provided promgiresults for the time domain
data, and then represented it as a frequency speetreach IMF. The energy of the
spectrum of the none-defective samples is condexitiet 3000 Hz, while for the
defective it is at lower frequency value. As illaed in Figure 5.18, the spread of the
amplitudes are different and the defective panshmeasily detected.

6. For the system identification approach, three syd#odels were predicted using
time domain data. Each model described the dynaiétevior of the non-defective
samples. The construction of system models waheghloy estimating the model’'s
parameters. Based on the final prediction erroE)RRlue, the model was selected.
The less the value of FPE, led to the best fit hddehis analysis, the Box-Jenkins
model showed the least value of (FPE) which is 80801. According to FPE, this
model considered as a best fit model to the expariat data that can describe the
system dynamical behavior.

7. Estimating the Transfer Function (TF) of any dyneethsystem is very important
because it determines the relationship betweemthe and the response of the

system. The experimental data and the transfetimshowed that the system was
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under damped and it has a damping ratio<l1. Thafeeafunction contained 1 zero

and 2 poles.
Based on the results analysis, Neural Network Meé#eems to have better output than
the other methods. The output of the classifieisesia of numbers, percentage of well
and miss classified data. The difference betweerothput number of good and bad has
an easy criterion of classifying the part as defeabr non-defective.

Finally, the Laser Scanning Vibrometer combimgith pattern recognition was a

successful approach in identifying the defectedspaith visible and invisible flaws.
This combination could add a crucial advantagegkégroduct’s quality control.
The future work could include using a micro lasearing Vibrometer which is able to
detect micro defects and surface flatness. More@vkigher frequency vibration is
recommended by using the highest range of the scg80MHZz) in order to get more
different amplitudes between the defective and defective samples. This
recommendation requires a higher frequency rangkeshFor better results, it is
recommended to use higher quality holding fixtumethe samples to represent the ideal

cantilever boundary conditions.
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