Crop Health through Resistance Induction by means of ComCat®

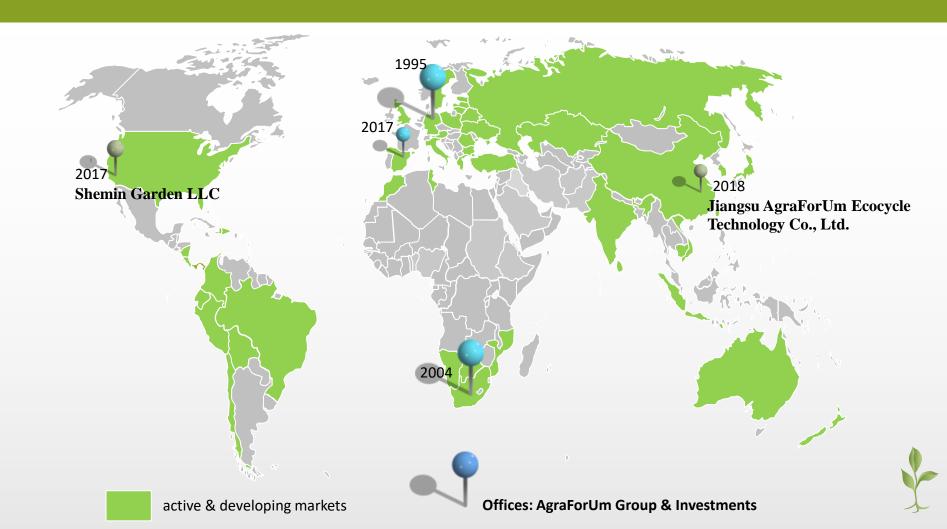
Presented by: Dr. Riaan Buitendag (PhD, Pr.Sci.Nat, Basos)

AgraForUm SA natural solutions for the future

TABLE OF CONTENTS

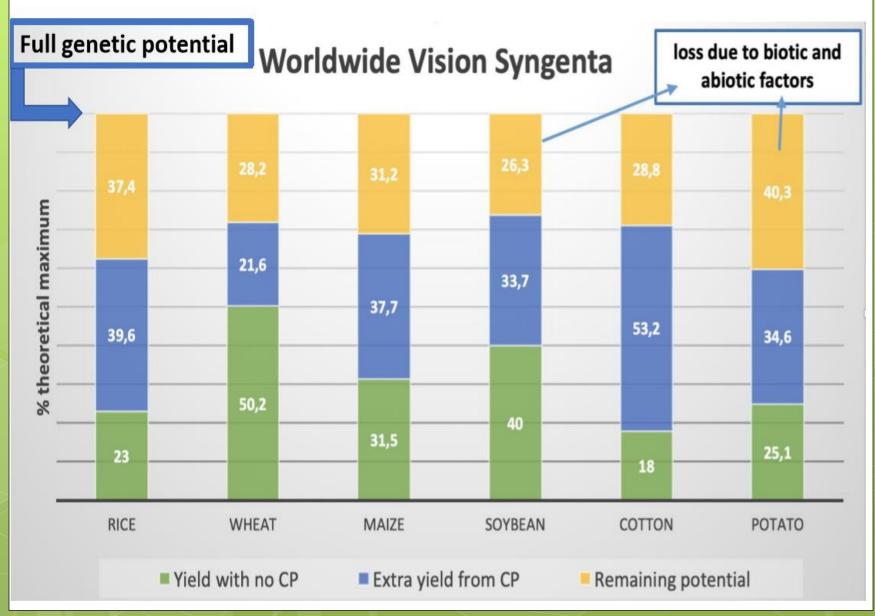
- History & Markets Agraforum Group
- Introduction
- Mode of Action
- Abiotic stress drought & cold
- Herbicide stress
- Biotic stress
- Biochemical data available on request
- Soil Health & Microbial activity
- Plant growth & Crop yields data available on request

History



- > 1995: AgraForUm Germany
- > 2004: AgraForUm South Africa (Pty) Ltd. was established mainly for R&D
- > 2008: Participation (50%) in BioPher (Pty) Ltd in South Africa for developing the Pheroid
 Technology in Agriculture
- > 2010: Foundation of AgraForUm Produktions GmbH, Bomlitz, Germany
- > 2012: Foundation of AgraForUm Vertriebs GmbH, Dohren (present location: Gadebusch, Germany)
- > 2016: Shareholding (25%) in Progress Agrar GmbH, Tostedt, Germany
- > 2017: Participation (20%) in Shemin Garden LLC Fresno, California
- > 2018: Participation (20%) in Jiangsu AgraForUm Ecocycle Technology Co. Ltd. Nantong, China
- > 2018: Shareholding (40%) in Lucky Plant GmbH, Bomlitz, Germany

Markets & Offices


What is **Resistance Induction of Crops?**

It is defined as an **enhancement** of the plant's own **defensive capacity** against a **broad spectrum of biotic** (pathogens) and **abiotic** (temperature, drought, herbicidal etc.) **stresses** that is ACQUIRED by an appropriate **signalling molecule/activator** (Hammerschmidt and Kuc, 1995).

We need to obtain functional activator/signalling molecules for Optimized Crop Health & Production!!!

Why is Crop Resistance Induction important in Agriculture?

In 1999 Khush reported that world-wide cereal crop YIELDS are yearly reduced as a consequence of Abiotic stresses (such as drought or abnormal temperatures), while Huckelhoven and Schweizer indicated in 2011 that diseases and insects (Biotic) were responsible for YIELD losses of up to 25% PER YEAR over their observation period.

Pius Floris. President of Plant Health Cure BV Netherlands, Fertasa 2019

Can we afford YIELD losses?

The FAO published that by 2050 agricultural production will have to increased by 70% to meet projected food demand.

We need to look for solutions!

MODE OF ACTION

1. Apply Signaling Molecule (Activator)

ComCat[®]

2. Gene Expression

The memory of the cells carry the architect's plan for the suitable chemical reaction to fight towards stress situation.

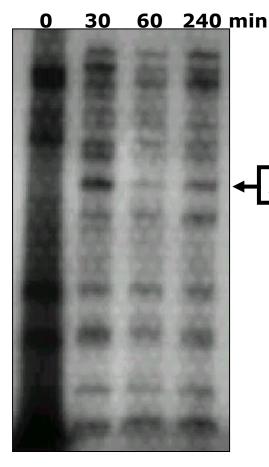
The plant is now able to fight against stress factors by means of Systemic Acquired

3. Proteins / Physical protection via certain substances

After the first application the plants produce defense **PR-proteins** and lignin/Callose for resistance.

A. ABIOTIC STRESSES

ComCat[®] and Induced Resistance against Abiotic stresses


DroughtCold

DROUGHT STRESS

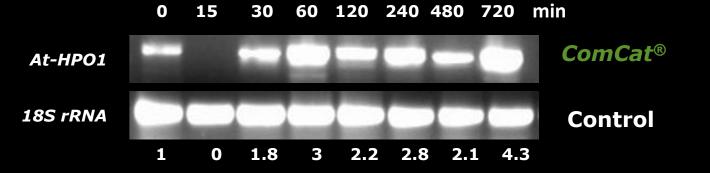
Gene Induction in Arabidopsis thaliana

Cloning of *At-HP01*

PERFORMED RT-PCR

Identified a <u>gene</u> in *A. THALIANA* that was expressed within 30 min after spraying with

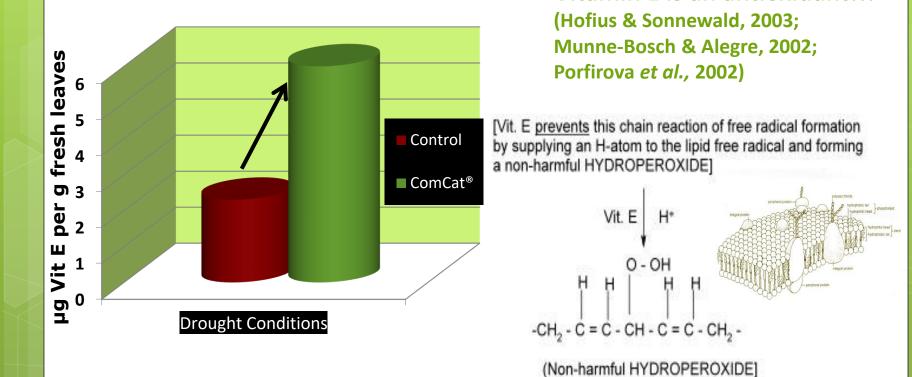
Athpo1 ComCat[®]


<u>Promoter analysis</u> of AtHP01 indicated that gene At-HPO1 is ALSO induced upon:

DROUGHT STRESS

[VISSER, B., 2004]

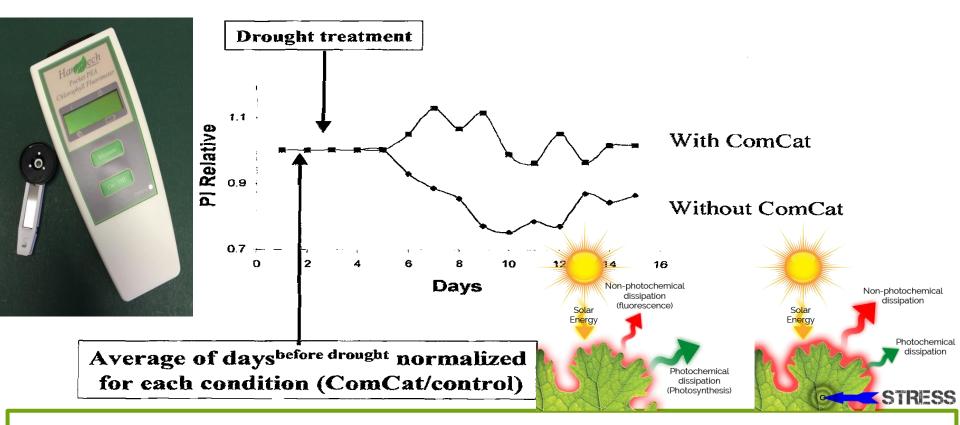
Activation of **AT-HP01 GENE EXPRESSION** compared to an internal **18S r-RNA CONTROL** (Visser, 2004)



DROUGHT STRESS

Vitamin E is an antioxidant!!!

Hypothesis on Vitamin E and Cellmembrane Protection


Creeping Bent grass Trial (2001) USA (Pretorius, 2001)

CHARACTERIZATION OF EIGHT VARIETIES OF PEA (PISUM SATIVUM) BY THE <u>JIP-TEST</u> (Chlorophyll Fluorescence)

A. Gonzales¹, L. Ayerbe¹, J. Sanches¹, <u>F. Reverchon²</u>, R. Maldonado-Rodriguez² and R. J. Strasser²

Relative Performance Index of Var 1 under Mild drought stress with and without (blue) Comcat

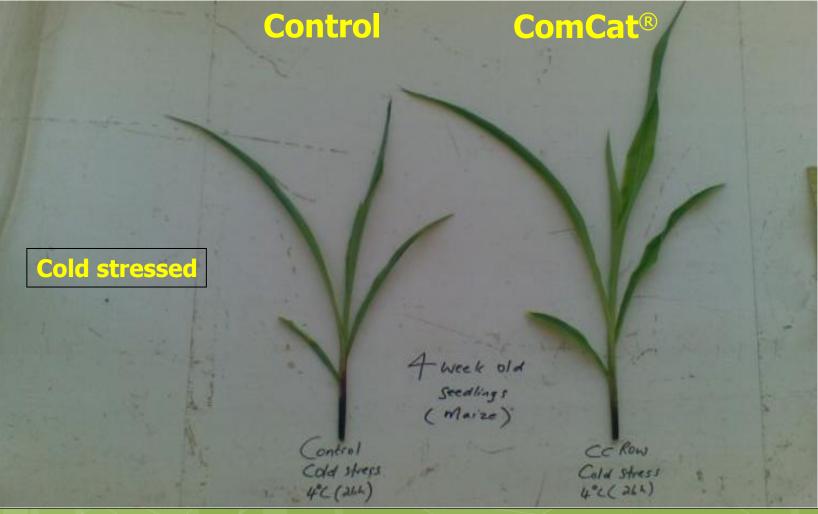
Comcat helps to prevent the decrease of the Performance Index under mild drought stress conditions.

Sorghum: Growth under drought conditions, Wilber Ellis, USA

Sorghum ComCat® seed treatment [Drought tolerance], Wilber Ellis, USA

ComCat[®] = WECO 1090

DROUGHT TEST Sorghum NK7829 Planted: July 2, 2008 WECO 1090


ComCat®

DROUGHT TEST Sorghum NK7829 Planted: July 2, 2008 No Treatment

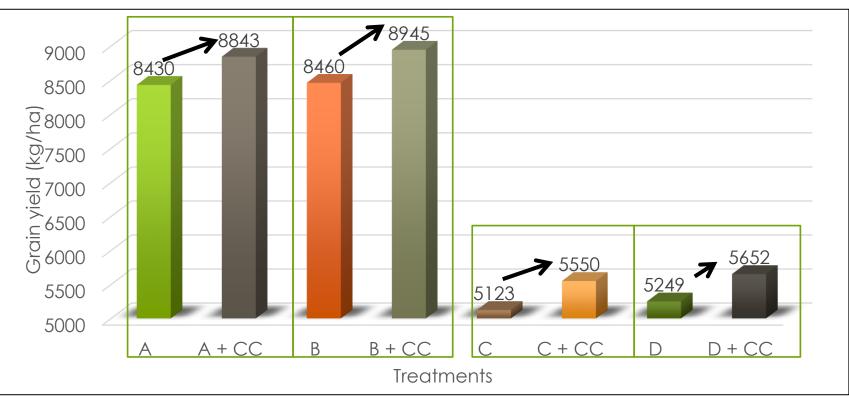
Control



Maize seed treatment trial with ComCat[®] and cold stress University of the Free State 4°C for 24h

COLD STRESS

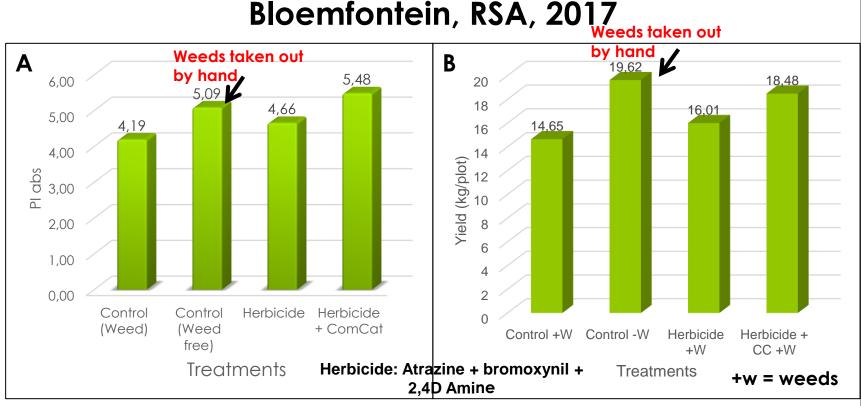
Sorghum: Cold stress Wilber Ellis, 2009, USA



Literature references & Temperature stresses - He and others 1991, Katsumi 1991, Kamuro and Takatsuto 1991

HERBICIDE STRESS & ComCat®

Crop Yield & Maize
Chlorophyll Fluorescence & Maize
Crop growth & Wheat
Herbicide efficacy & ComCat[®]
Herbicide residues in soil & ComCat[®]


Initial trials: Herbicide stress and Maize South Africa

CC = ComCat[®].

A/C/D: Acetochlor (HRAC K3 - growth inhibitor) + Atrazine +Terbuthylazine (HRAC C1- PSII inhibitor). B: Glyphosate: HRAC G9 (EPSP synthase inhibitor).

Reduction of herbicide stress on the maize plant by ComCat[®]

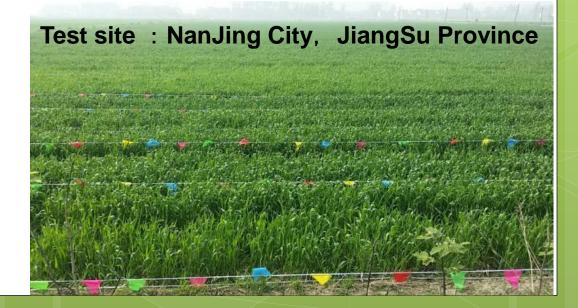
Fv/Fm is a parameter widely used to indicate the maximum quantum efficiency of Photosystem II. **Plabs** shows how efficient is the Fv/Fm system functioning.

Acetochlor (HRAC K3 - growth inhibitor) + Atrazine +Terbuthylazine (HRAC C1- PSII inhibitor).

Bromoxynil (HRAC C3 - PSII), 2,4 D (HRAC 0, Growth regulator)

Effect of ComCat[®] to support the growth of wheat plants when herbicides were applied 2018

Dr. Rasine Zhang Plum Agrochemical Consulting & Service Co., Ltd., China


Treatment Date : 10th March. 2018

Survey time : 18d after treatment


Wheat variety: Ning Mai 5

Sowing date : 14th Nov, 2017

Field weeds : amur foxtail, Alopecurus japonicus Density of weeds : 2578/m²

Results-Wheat-Pyroxsulam-Isoproturon-ComCat®

Dr. Rasine Zhang Plum Agrochemical Consulting & Service Co., Ltd., China

Weed Pressure

18d after treatment

Treatments:

1. Control

2. 7.5% Pyroxsulam 20ml/mu+ 50% Isoproturon 250g/mu

3. 7.5% Pyroxsulam 20ml/mu+ 50% Isoproturon 250g/mu+ AnnGro

4. 7.5% Pyroxsulam 20ml/mu+ 50% Isoproturon 250g/mu + ComCat

More studies on herbicide stress and ComCat® planned!

ALS inhibitor (HRAC B2)

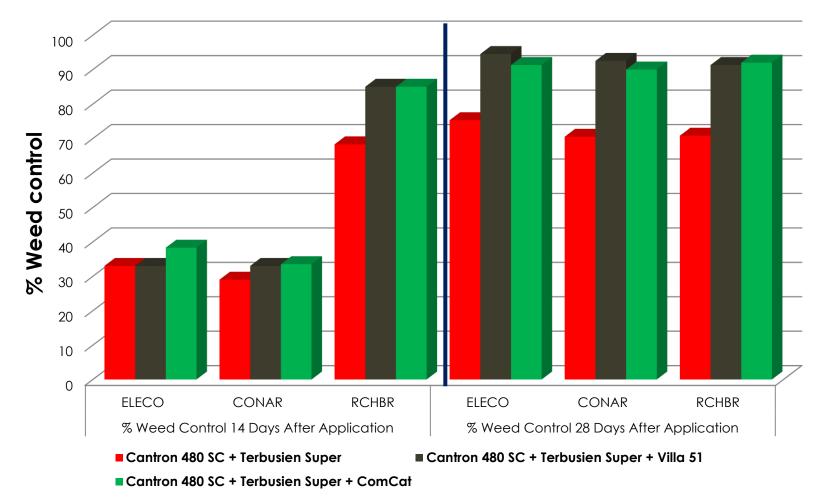
Results-Wheat-Pyroxsulam-Isoproturon-ComCat[®]

Quantification of data 18d after treatment application

Treatment	Dosage (g or ml/mu)	Plant height(cm)	Stem diameter (m	m)
Control		38 b	2.765 c	Weed Pressure!
7.5% Pyroxsulam + 50% Isoproturon	20mL/mu+250g/mu	46.5 b	3.4625 bc	
7.5% Pyroxsulam + 50% Isoproturon +AnnGro	20mL/mu+250g/mu	48.25 b	4.0625 b	
7.5% Pyroxsulam + 50% Isoproturon + ComCat	20mL/mu+250g/mu 100 g /ha	54.5 a	5.4525 a	

Dr. Rasine Zhang Plum Agrochemical Consulting & Service Co., Ltd., China

Herbicide efficacy and ComCat®?


	Locality:	"In De Middel",Sch	oemanskloo	f, Mpumala	inga Provi	nce, Sout	th Afric	a		
	Co-operator:	Stone Creek Research Facility								
	GPS:	S 25° 23' 52.50 E 30° 37' 2	23.55							
	Climatic Zone:	CWa – Temperate climate.	Dry winters, hot s	ummer						
	Crop:	Maize	Variet	y: PAN3P502	R					
	Plant Date:	15th Jan 2016Water regime:Dry Land								
	Soil:	Clay: 37% Silt: 15%	Sand: 58%	3.9%	pH: 6					
	Product usage	Active ingre	dient							
				Common Nam	e Scie	ntific name	Abbrev	% Ground Cover		
ComCat			GRASSES/SEDGES		Eleusine coracana ELECO 1					
Cantron 480 SC Mesotrione 480g/ℓ SC		0g/ł SC	Goose grass	Eleusine c	oracana	ELECO	10%			
Terbusien Super 600 SC Atrazine/terbuthylazine 300/300g/Ł		e 300/300g/ł SC	BROADLEAF Field bindweed		ılus arvensis	CONAR	20%			
Villa 51 (adjuvant) Isotridecanol 918 g/ł SL - NIS		g/ł SL - NIS	Mexican Richardia Cocklebur		braziliensis strumarium	RCHBR XANST	15% 10%			

Independent study – Brink Enterprises

Post emergence treatments applied as a broadcast application over the rows at the BBCH 14 and BBCH17 growth stages of maize with a spray volume of 200 ℓ/ha.

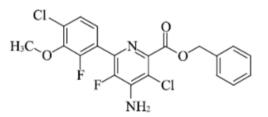
Mesotrione - HRAC F2 (HPPD inhibitor), atrazine + terbuthylazine (HRAC C1- PSII inhibitor)

Comparative Influence of ComCat[®] on CANTRON 480 SC + TERBUSIEN SUPER 600 SC treatments with regards to HERBICIDAL EFFICACY in maize

植物生长调节剂碧护[®]与除草剂混用 对杂草和作物的影响

Effects of herbicide tank-mixed with Vitacat® on weeds and crops

Weeds Research Laboratory of Nanjing Agricultural University 2019



研究背景/Research Background

Rinskor (3% florpyrauxifen-benzyl EC) ——Hormone herbicide

is an aryl pyridine carbamate and synthetic auxin herbicide developed by Dow AgriSciences Company. **Group 4**

The herbicide is mainly used in paddy fields to control grasses, broad-leaved weeds, sedges and aquatic weeds. Affect cell wall plasticity and nucleic acid metabolism. Synthetic auxins also affect protein synthesis, cell division and growth, and stimulate ethylene evolution

Materials: Barnyard grass (*Echinochloa crusgalli* var. *mitis*) and Rice (*Oryza sativa*) minghui63

表1供试药剂的种类、剂型和品牌

供试药剂	剂型	商品名	生产单位
Chemical	formulation	Trade name	Manufacturer
Florpyrauxifen-benzyl	3% (EC)	Rinskor	Dow AgroSciences
Secondary metabolites	0.136% (WP)	VitaCat [®]	AgraForUm

Table 1 Type, formulation and brand of test herbicides

The symptoms of barnyard grass and rice were observed and recorded on the 1st, 3rd, 5th and 7th day after treatment, and the damaged comprehensive index of barnyard grass and rice were calculated. The leaves of barnyard grass and rice were taken for the determination of physiological indexes.

Rinskor is an aryl pyridine carbamate and synthetic auxin herbicide

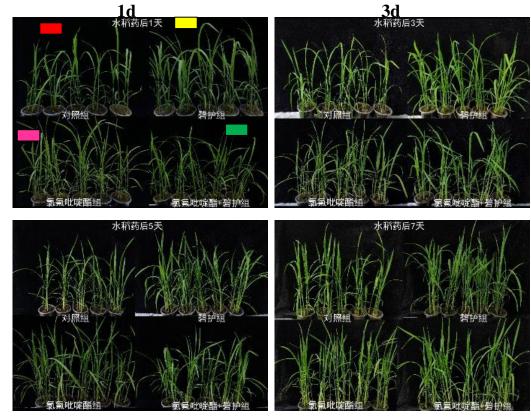
INVESTIGATION OF PHYTOTOXICITY

表3氯氟吡啶酯杂草和作物药害症状判断药害级别标准

Table 3 Scoring criteria of Florpyrauxifen-benzyl injury level on weeds and crops

表4 3%氯氟吡啶酯乳油药后不同天数的下的无芒稗药害综合指数表

 Table 4 Composite injury index of *Echinochloa crusgalli*. var. *mitis* treated by 3% Florpyrauxifenbenzyl EC and 3% Florpyrauxifen-benzyl EC + VitaCat at different days after application


HIS	Injury symptoms on treated plants							
0	No symptom	处理 Experimental treatments	剂量 Dose	1D	3D	5D	7D	9D
1	Plant growth inhibited slightly. Entire plant wilted, all leaves drooped slightly, but no other symptom occurred. Yellow leaves appear on a small part of the	对照 Control Check	对照 Control Check		0%	0%	0%	0%
	leaves. Less than 20% of leaves had necrotic spots		45 - 4	00/	0%	0%	0%	00/
	Entire plant wilted including the young leaves. The discolored stem and old leaf	VitaCat	45 g/ha	0%	0%	0%	0%	0%
2	petiole wilted and the degree of whitening of the stem is more serious. 20-40% of leaves were dead.	3%氯氟吡啶酯乳油	1200mL/ha	25%	45%	57%	65%	83%
	of leaves were dead.	3% Florpyrauxifen-benzyl EC	12001112/114					0370
3	Young leaves curled and etiolated. Entire plant etiolated. Roots decomposed and	3%氯氟吡啶酯乳油+碧护®	1200 mL/ha				1 1	
5	separated to stem.40-60% of leaves were dead.	3% Florpyrauxifen-benzyl EC +	+45 g/ha	28%	49%	60%	83%*	97%*
	The leaves of the plants are completely brown and fall off, the roots and stems	VitaCat	145 g/11					
4	are deformed, the stems are separated with the roots. Plants tissue discomposed.	备注: 氯氟吡啶酮	酯组与氯氟吡啶	酯+碧护	组差异显	著用*表	示	
	Entire plant etiolated more seriously. 60-80% of leaves were dead.	Remarks: The difference	between the ch	lorofluor	opyridyl	ester gro	up and th	ne
	The whole plant withered completely. The leaves of the plants are completely	chlorofluoropyryl ester	+ Bi protection	group is	significa	nt. * indi	cates。	
5	brown and fall off, and the roots and stem completely separated and decomposed. More than 80% of the leaves die, or the entire plant dies.							

Investigation on the safety of rice

Comprehensive index of rice Injury symptoms

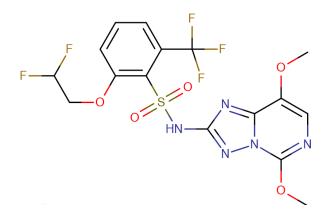
处理	剂量	1d	24	5d	7d
Experimental treatments	Dose	10	3d	30	7u
对照	对照				
Control Check		0%	0%	0%	0%
VitaCat	45 g/ha		0%	0%	0%
3%氯氟吡啶酯乳油	1000 1.4	0.04	00/	0.04	0.04
3% Florpyrauxifen-benzyl EC	1200mL/ha	0%	0%	0%	0%
3%氯氟吡啶酯乳油+碧护®	1200 mL/ ha	00/	0.04	0.04	0.04
3% Florpyrauxifen-benzyl EC + VitaCat	+45 g/ha	0%	0%	0%	0%

- Control VitaCat

- _____ · -
- 3% Florpyrauxifen-benzyl EC
- 3% Florpyrauxifen-benzyl EC + VitaCat

5d

Yield characteristics of rice


处理Treatments	株高 height(cm)	剑叶面积 flag leaf area (cm ²)	分蘖数 tiller number	穂长 panicle length (cm)	单穗饱粒数 number of full grains per panicle	结实率 seed setting rate (%)	千粒重 thousand grain weight(g)	单株产量 grain weight per plant(g)	理论产量 theoretical yield (kg/mu)
Control	127.87±1.46b	58.52±2.2b	8.89±0.38c	23.32±1.08 b	110.33±18.03b	82.69±5.19b	30.74±0.95b	45.09±0.32a	1002.94±40.86b
VitaCat	147.13±1.35a	67.97±2.74a	$12.22 \pm 0.77a$	28.27 ± 1.47 a	128.56±8.18a	87.15±1.76a	33.39±1.68a	48.2±1.81a	1185.53±40.23a
3% Florpyrauxifen- benzyl EC	127.37±3.94b	57.9±6.57b	9.33±1.53bc	22.41±2.18 b	97.67±7.23b	77.14±2.44b	28.13±1.67c	44.53±3.6a	973.98±100.2b
3% Florpyrauxifen- benzyl EC + VitaCat	131.63±4.71b	65.74±4.44ab	11.22±1.35ab	24.9±1.45b	115.78±7.37a	$84.27 \pm 1.84a$	32.02±0.6ab	49.64±3.97a	1184.08±83.1a

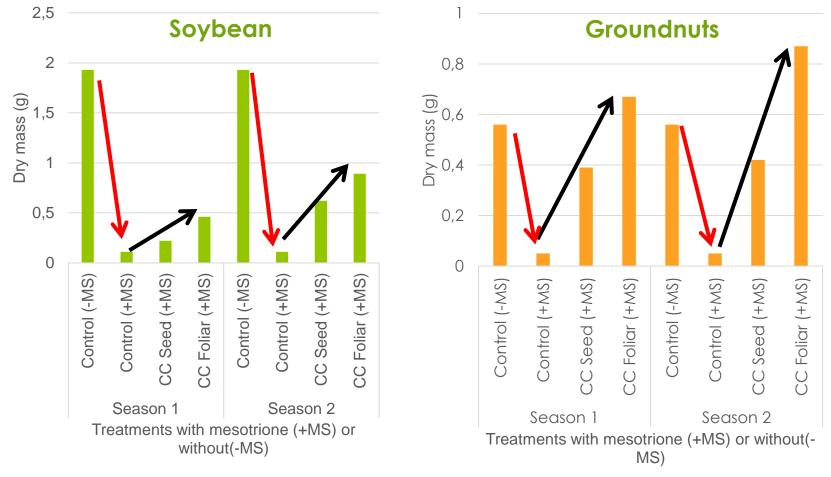
Note: Significance of difference between different lowercase letters at 0.05 level .

Effects on yield characteristics of rice treated with 3% Florpyrauxifen-benzyl EC (1200 mL/ha) \pm VitaCat (45 g/ha)

Penoxsulam—Strong ALS inhibitor (Group 2, HRAC B2)

Structural formula

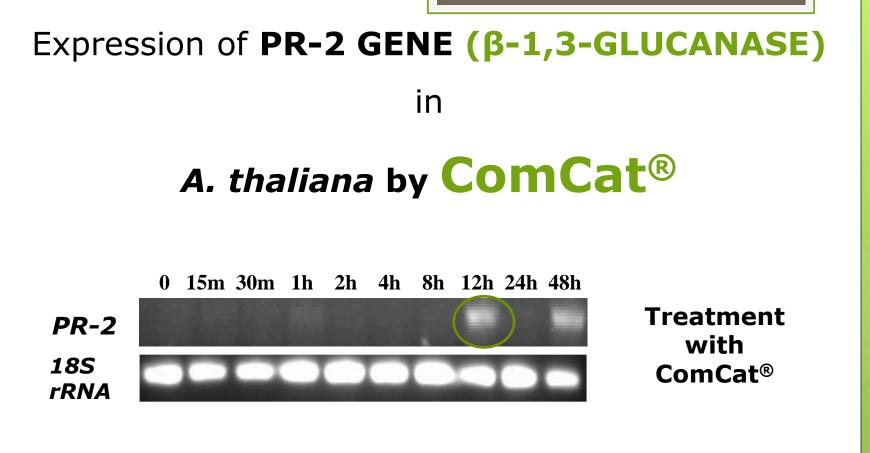
25g/L Penoxsulam OD, from Dow AgroSciences. It works by inhibiting acetyllactate synthetase (ALS). ALS is a catalytic enzyme involved in the biosynthesis of various amino acids.



Composite injury index of Barnyard grass

The stars of the	Time (d)						
Treatments	1d	3d	5d	7d			
Control	0	0	0	0			
VitaCat	0	0	0	0			
25g/L penoxsulam OD	1.6 a	7.2 a	47.6 a	59.2 b			
VitaCat+25g/L penoxsulam OD							
	2.4 a	8.8 a	49.2 a	70.8 a			

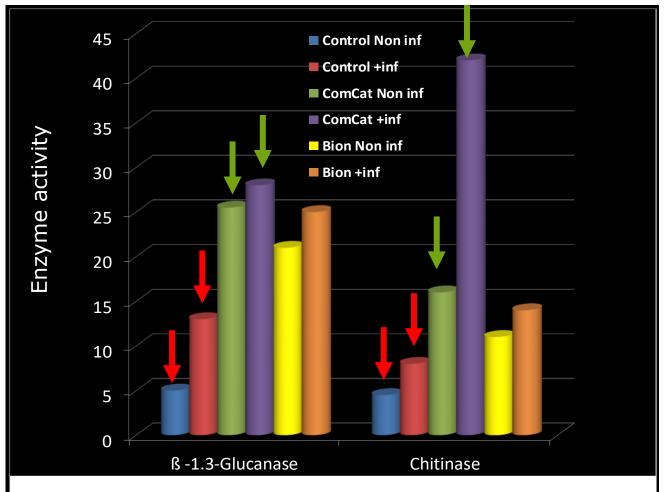
Alleviation of Mesotrione residue phytotoxicity on legumes using ComCat[®] University Free State, RSA


BIOTIC STRESS

ComCat[®] and Induced Resistance against Biotic stresses

• Fungal infections

Fungal Infection



NOTE

PR-2 GENE known to INDUCE β-1,3-GLUCANASE (PR-protein) and RESISTANCE TO biotic stress SUCH AS fungal infection

Fungal Infection

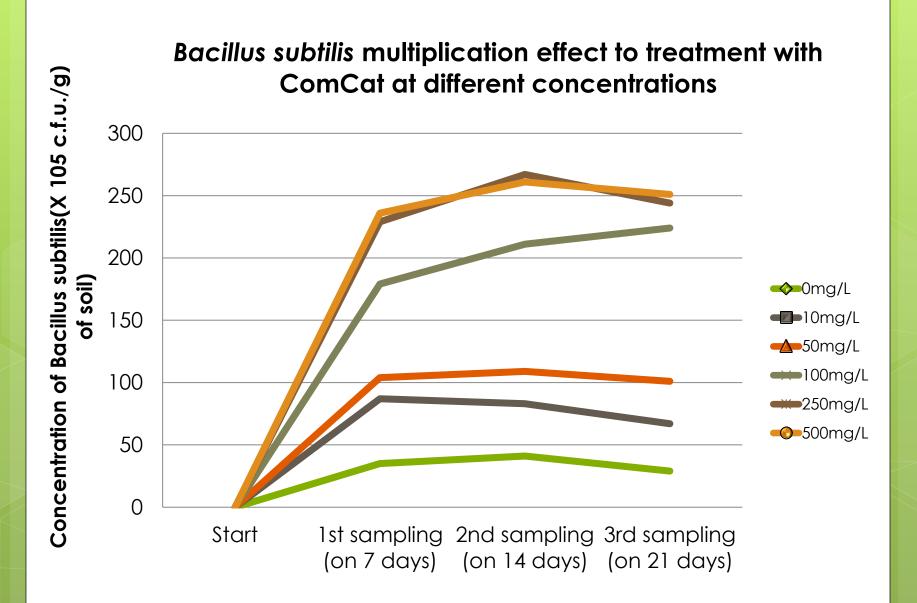
PR-PROTEIN INDUCTION IN SUNFLOWER, UFS

ComCat®

BIOCHEMICAL MECHANISMS

Information not presented, available on request

SOIL HEALTH & MICROBES


Initial trial on B. subtilis multiplication effect by ComCat® under laboratory conditions

Test institute: Research Institute of Korea Bio Co.LTD

Test procedure:

- Soil was sterilized via dry oven at 160°C for 3h.
- Preparation of aqueous ComCat[®] (5% a.i.) solutions: 0 mg/L, 10 mg/L, 50 mg/L, 100 mg/L, 250 mg/L, 500 mg/L.
- Addition of each solution to soil.
- Inoculation of *Bacillus subtilis* to soil (final concentration of *B. subtilis* was 2.1 X 10*5/g wet soil).
- Incubated in growth chamber (humidity 95%, temperature 27-30°C)
- Soil sampling and count of *B. subtilis* was done at 7 days intervals.

SOIL HEALTH & MICROBES

UNIVERSIDADE FEDERAL DE PELOTAS FACULDADE DE AGRONOMIA ELISEU MACIEL PROGRAMA DE PÓS GRADUAÇÃO EM CIÊNCIA E TECNOLOGIA DE SEMENTES

Compliments to:

Andermatt do Brasil Soluções Biológicas Ltda.

IVEL

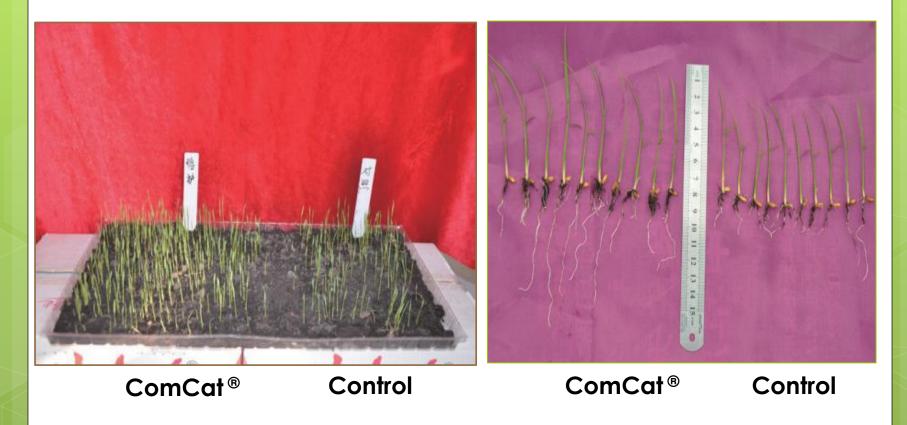
Responsáveis: Prof. Dr. Antonio Carlos Souza Albuquerque Barros Dr. Cassyo de Araujo Rufino; Msc. Otávio Correa; Msc. Ewerton Gewehr

ComCat[®]

Pelotas, RS 2015

SOIL HEALTH & MICROBES

ComCat[®] & Soybean Rhizobium activity

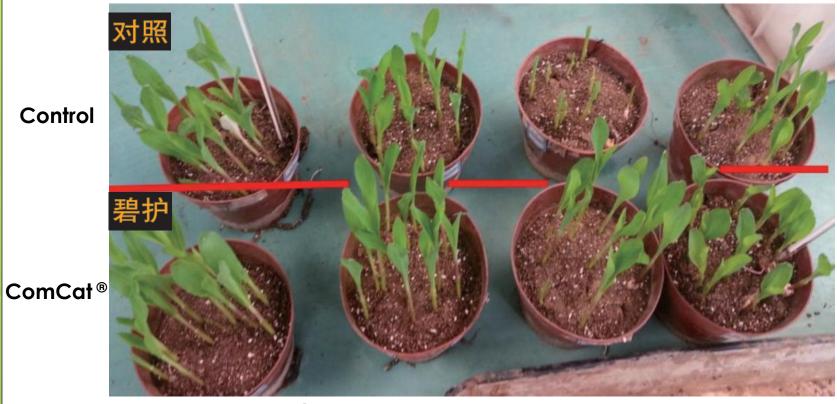

UNIVERSIDADE FEDERAL DE PELOTAS, BRAZIL

Inoculants and ComCat Synergy							
Treatments	Leaf Area (cm²/pot)	Foliar dry mass (g/pot)	Root dry mass (g/pot)*	Total Chlorophyll	Nodules dry mass (g/pot)*		
Control negative	716,791 h	3,6813 h	0,5888 h	34.6 c	0,0888 b		
Control inoculated	849,024 b	3,5453 b	0,8953 b	36,7 ab	0.2454 b		
Control positive	608,573 b	2,7241 b	0,4581 b	35,8 bc	0,1078 b		
Primax +SilCoat (5kg/ha)	894,794 b	4,0506 b	0,7691 b	32,6 bc	0,3076 b		
Primax +SilCoat (2,5kg/ha)	829,782 b	3,9499 b	0,6474 b	35,8 bc	0,2465 b		
ComCat (50mg/kg seeds)	1351,894 a	6,3569 a	2,1352 a	36,7 ab	0,6536 a		
ComCat (25mg/kg seeds)	899,946 b	4,2824 b	0,7825 b	36,9 ab	0,2024 b		
ComCat (10mg/kg seeds)	742,667 b	4,2323 b	0,5993 b	37,6 a	0,1243 b		
Primax+SilCoat (2,5kg/ha) +							
ComCat(10mg/kg seeds)	875,903 b	3,9285 b	0,6766 b	36,3 abc	0,1257 b		
C.V.(%)	22,8	24,7	17,1	9,77	31,5		
Duncan test 5%							
*Transformed data "arcsen((x/100)^1/2)"							

MORE SCIENTIFIC STUDIES PLANNED: COMCAT & SOIL MICROBIAL ACTIVITY

PLANT GROWTH

ComCat® & Seed treatment on Rice

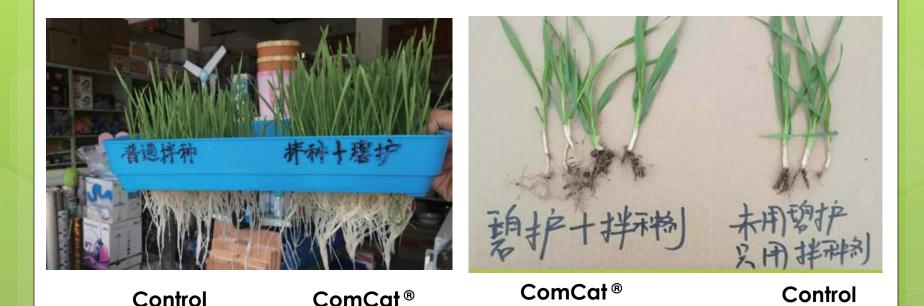

Dr. Rasine Zhang Plum Agrochemical Consulting & Service Co., Ltd., China

ComCat[®] seed treatment on rice, Vietnam

PLANT GROWTH

ComCat[®] & Seed treatment on corn

tebuconazole 1x


tebuconazole 4x tebuconazole 2x

Tebuconazole is a triazole fungicide

Dr. Rasine Zhang Plum Agrochemical Consulting & Service Co., Ltd., China

PLANT GROWTH

ComCat[®] & Seed treatment on wheat

Dr. Rasine Zhang Plum Agrochemical Consulting & Service Co., Ltd., China

CROP YIELD

CROP YIELD

INCREASED CROP <u>YIELDS</u> NOTED

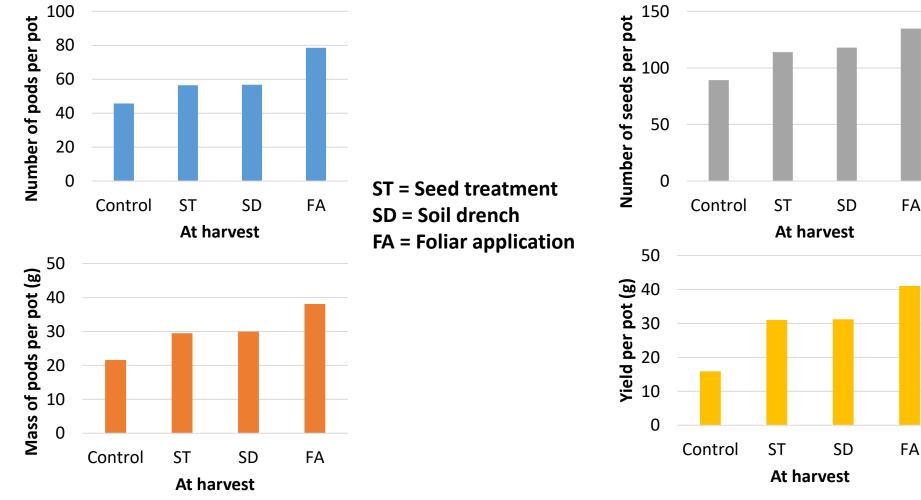
BY ComCat®

OVER SEVERAL SEASONS

Trial data not presented, available on request

CROP YIELD

Different application methods



and the

effect on yield parameters of soybean and groundnuts

Dr. E van der Watt MM Mota University of the Free State

Effect of different ComCat[®] application methods on yield components of soybean – UFS 2018

The effect of ComCat[®] applied as a seed treatment, soil drench and foliar application on groundnut yield components (UFS, 2018)

Treatment	Number of pods per pot	Mass of pods per pot (g)	Number of seeds per pot	Mass of seeds per pot (g) (yield per pot)
Control	47.50 c	22.62 c	72.75 c	18.35 c
Seed treatment	55.75 b	27.84 b	115.75 b	24.53 b
Soil drench	56.75 b	28.21 b	119.00 b	24.76 b
Foliar application	65.25 a	31.32 a	128.00 a	27.38 a
LSD _T (5%)	8.09	2.21	7.25	2.11

CONCLUSION

ComCat® IS WORKING IN YOUR CROPS

WHEN YOU ARE

SLEEPING!

THANK YOU

Thank you for your attention

