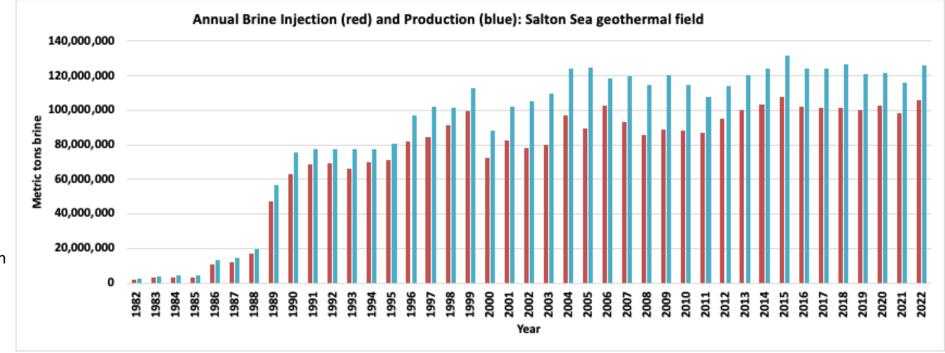


Lithium is one of many metals in the Salton Sea geothermal brines that are of strategic (critical*) interest.


Field: Well: Temperature (° C) ^g Depth (m) ^h	Salton Sea 52—14 ^b 330 2500—3220	<u>Commodity</u>	Main use	<u>Import reliance</u>	<u>Import sources</u>
Constituent Na Ca K	54,800 28,500 17,700	Li 200 ppm	Batteries	>90%	Argentina, Chile, China
Fe Mn SiO ₂ i Zn Sr B Ba Li Mg Pb	1,710 1,500 >588 507 421 271 ≃210 209 49	Mn 1500 ppm	Steel-making	100%	S. Africa, Australia, Gabon, Georgia
		Zn 500 ppm	Galvanizing	76% (refined)	China, Peru, Australia
Cu Cd NH ₄ Cl Br	7 2 330 157,500 111	K 18000 ppm	Fertilizer	93%	Canada, Russia, Belarus
CO ₂ i HCO ₃ H ₂ S SO ₄ TDS	1,580 NA 10 53 26.5%	Sr 400 ppm	Magnets	100%	Mexico, Germany, China
McKibben & Hardie 1997		Rb 90 ppm	Quantum	100%	Canada, China
			computers		

^{*(}Used in defense/technology; supplies are at risk (high import reliance) and the main source nations are our adversaries).

Long-term consistency in brine and Li production (10 power plants)

- Annual Li production = mass of brine × Li conc. × recovery efficiency for the current 400 MWe capacity field.
- Using 20-year avg. of brine production (120,000,000 metric t/y), 200 ppm Li, and a recovery factor of 90%, 21,600 metric tons/y Li metal (115,000 metric tons/y LCE) could be recovered now (3.6 M EVs/y).
- If field expands from 400 to max of ~3000 MWe, production could reach ~863,000 mt/y LCE (27 M EVs/y).
- For comparison, global Li production in 2024 was 1,276,000 mt/y LCE (USGS).

Salton Sea Geothermal Field production and injection data from CA Dept. of Conservation

Dobson et al., 2023

Revenue potential from additional brine minerals (10 power plants)

Potential metric tons of metals per year at 90% recovery efficiency:

Meta	al ppm	Rate %	of 2023	US Consumption
Mn	1500	162,000 tpy	24	
Li	198	21,384 tpy	~67	(McKibben & Strir
Zn	500	54,000 tpy	6	All geothermal met
Sr	421	45,468 tpy	967	stage, no commerc
K	17,700	1,911,600 tpy	45	anticipated within

(McKibben & Stringfellow, 2025)

All geothermal metal recovery is in the demonstration/testing stage, no commercial production has been attained yet; anticipated within next 2 years.

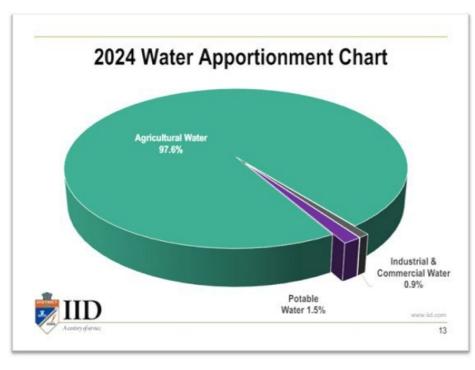
Annual IID water supply agreements for Li extraction plants

ESM - ATLiS project

3400 acre-feet/year*

CTR - Hell's Kitchen Lithium Phase 1 project

6500 acre-feet/year*


*collectively <0.25% of the total water delivered to customers by IID

BHER is still testing/refining their water use requirements

Industrial water use (1%) pales in comparison to Ag water use (98%).

Busse et al. (2024): water demand for all currently proposed geothermal production and lithium extraction facilities only accounts for ~4% of the historical water supply in the region. Regional water allocation will be more impacted by the proposed cuts to the region's water allocation from the Colorado River between now and 2050 than by any expansion of geothermal production with associated lithium extraction.

- 1.11 billion gallons/year
- 2.12 billion gallons/year

IID also <u>underuses</u> its Lower Basin C.R. compact allocation of 3.1M a-f almost every year; in recent years the underuse (underrun) was $\sim 100,000$ a-f annually, far more than that needed to supply planned annual geothermal and lithium needs for the foreseeable future.

MacDonald et al. (in press): a predictive model for water use by Li extraction from the geothermal brines; will be tested and calibrated once commercial Li production begins.

Advantages of producing critical minerals from geothermal brines as opposed to salars and hard rock deposits:

- No new drilling, blasting, grinding, rock leaching, tailings piles, pumping or evaporation ponds.
- Brine handing infrastructure is already capitalized and in place.
- Low areal footprint (~ 50 acres per extraction plant).
- Other mineral co-products (Mn, Zn, K) can add to the revenue steam.
- The brine reservoir is contiguous and relatively uniform in its composition and metal content. Production has been stable for over 40 years.
- Can self-supply low-carbon renewable electricity from power plants.
- Can self-supply carbonate from CO₂ in steam for making LCE.
- Can self-supply fresh water for Li processing from clean steam condensate.
- Spent brine reinjection into the hot reservoir and fast reaction with Li-bearing host rocks may enhance resource sustainability (under evaluation).

References

Busse, M.M., McKibben, M.A., Stringfellow, W., Dobson, P. and Stokes-Draut, J.R. (2024), *Impact of Geothermal Expansion and Lithium Extraction in the Salton Sea Known Geothermal Resource Area (SS-KGRA) on Local Water Resources*; Environmental Research Letters; https://iopscience.iop.org/article/10.1088/1748-9326/ad6a73/meta

Dobson, P., Araya, N., Brounce, M., Busse, M., Camarillo, M.K., English, L., Humphreys, J., Kalderon-Asael, B., McKibben, M., Millstein, D. and Nakata, N. (2023) *Characterizing the Geothermal Lithium Resource at the Salton Sea*. Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States), LBNL-2001557, 371 pp. https://escholarship.org/uc/item/4x8868mf

MacDonald, L., Gunawardhana, L., Camarillo, M.K., Stringfellow, W., McKibben, M.A., Dobson, P., Nico, P., Schill, E., Busse, M.M., (2025) *Pretreatment of Geothermal Brine for Lithium Recovery*; Geothermal Rising Conference; Reno, NV (submitted).

McKibben, M.A. and Stringfellow, W.T. (2025) *Recovery of Minerals from Geothermal Brines*, Ch. 20 In Geothermal Power Generation, 2nd Edition (Ronald DiPippo, Andrew Chiasson, and Luis Carlos Gutiérrez-Negrín, editors) Elsevier. https://doi.org/10.1016/B978-0-443-24750-7.00029-4