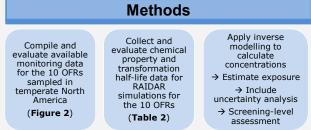
Applying the RAIDAR model for ecological risk assessment: A case study for 10 organic flame retardants

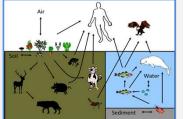
Todd Gouin^{1,2}, Alicia Falls², James Armitage^{2,3}, Liisa Toose², Mark Bonnell⁴, Jon Arnot^{2,3}

1 TG Environmental Research, Sharnbrook, UK, 2 ARC Arnot Research and Consulting, Toronto, Canada, 3 University of Toronto Scarborough, Toronto, Canada, 4 Environment and Climate Change Canada, Canada


Chemical name

Introduction

- Measured concentrations in environmental media are limited for the majority of commercial chemicals, including organic flame retardants (OFRs) [1]; chemical emission rates are also uncertain
- Some OFRs are currently being evaluated to determine if they pose unacceptable risks to humans and the environment
- To assess risks, it is important to accurately characterize exposure, consequently, exposure data gaps can hinder application of riskbased methods for chemical prioritization, screening and comprehensive assessments
- RAIDAR is a regional-scale, evaluative, fugacity-based, multimedia mass balance model that combines exposure and effect information for screening-level risk estimation (Figure 1) [2]
- Estimating exposure concentrations of OFRs and other organic pollutants requires information on the amount of chemical emitted to the environment and its mode-of-entry (MOE).
- Emission data, however, are often highly uncertain, resulting in challenges for performing the exposure assessment.
- Using a complementary approach, in which monitoring data are combined with model estimates, it is possible to use "inverse modelling" as a tool to strengthen the exposure assessment.


Objectives

- Use a case study of 10 diverse OFRs to illustrate how monitoring data and mass balance models can be combined for screening-level exposure assessment (Table 1)
- Use existing measured air concentrations to guide emission rate estimates ("inverse modelling")
- Evaluate the model with available monitoring data in other media
- Using a tiered approach (Figure 4), conduct a comparative screening-level assessment for 10 OFRs

Acknowledgements:

Environment and Climate Change Canada and American Chemistry Council Long-Range Research Initiative for project funding.

Model Input Parameter	Range of values
Molar mass, M (g/mol)	126.1 to 1366.9
Log K _{AW} (dimensionless)	-12.71 to -0.10
Log K _{ow} (dimensionless)	-0.85 to 12.95
Log liquid or sub-cooled liquid vapor pressure (/Pa)	-15.57 to 1.56
HL- Air (h)	1.2 to 4 700
HL – Water (h)	66 to 87 300
HL – Soil (h)	130 to 175 000
HL – Sediment (h)	590 to 786 000
Biotransformation HL – Vertebrates (h)	1 to 59 000
Calibrated Regional-Scale Emission Rate, E _A (kg/h)	0.0035 to 11.6

Table 2: Summary of RAIDAR input parameters for 10 OFRS

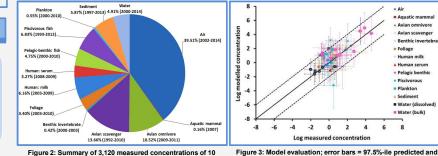
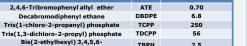



Figure 2: Summary of 3,120 measured concentrations of 10 OFRs in temperate North America (NA), (sampling years)

Ahhr

Results and Discussion

Median air

entration, pg/m³

. Air

Aquatic mamma Avian omnivor

Avian scavenge

Foliage

Human milk

Human serun

Pelagic benthi

Water (dissolve

Water (bulk)

8

6

ima and maxima reported measured conc

Piscivorous

- Plankton

A Sediment

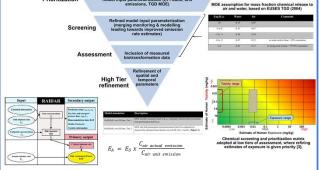
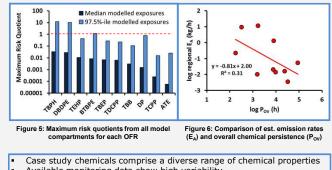



Figure 4: Tiered approach adopted in deriving estimates of exposure using RAIDAR for 10 OFRs

- Available monitoring data show high variability
- Inverse modelling provides exposure calculations that are in reasonable agreement with monitoring data across North America
- Uncertainty in exposure calculations approximates measured variability
- Relatively low range of risk quotients may be partially explained by the inverse relationship between emission rates and chemical persistence
- Model predictions can help quide future monitoring research,
- particularly for OFRs showing relatively high risk quotients Model uncertainty can be addressed by further measurements

- [1] Muir, D.C.G.; Howard, P. Environ. Sci. Technol., 2006, 40: 7157-7166
 [2] Arnot, J.A.; Mackay D. Environ. Sci. Technol., 2008, 42: 4648-4654
 [3] Embry et al. Crit Rev Toxicol 2014, 44(S3): 6-16