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 Use a case study of 10 diverse OFRs to illustrate how monitoring 
data and mass balance models can be combined for screening-level 
exposure assessment (Table 1)

 Use existing measured air concentrations to guide emission rate 
estimates (“inverse modelling”)

 Evaluate the model with available monitoring data in other media
 Using a tiered approach (Figure 4), conduct a comparative 

screening-level assessment for 10 OFRs

 Measured concentrations in environmental media are limited for the 
majority of commercial chemicals, including organic flame 
retardants (OFRs) [1]; chemical emission rates are also uncertain

 Some OFRs are currently being evaluated to determine if they pose 
unacceptable risks to humans and the environment

 To assess risks, it is important to accurately characterize exposure, 
consequently, exposure data gaps can hinder application of risk-
based methods for chemical prioritization, screening and 
comprehensive assessments

 RAIDAR is a regional-scale, evaluative, fugacity-based, multimedia 
mass balance model that combines exposure and effect information 
for screening-level risk estimation (Figure 1) [2]

 Estimating exposure concentrations of OFRs and other organic 
pollutants requires information on the amount of chemical emitted 
to the environment and its mode-of-entry (MOE).

 Emission data, however, are often highly uncertain, resulting in 
challenges for performing the exposure assessment.

 Using a complementary approach, in which monitoring data are 
combined with model estimates, it is possible to use “inverse 
modelling” as a tool to strengthen the exposure assessment.
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Model Input Parameter Range of values

Molar mass, M (g/mol) 126.1 to 1366.9

Log KAW (dimensionless) -12.71 to -0.10

Log KOW (dimensionless) -0.85 to 12.95

Log liquid or sub-cooled liquid vapor pressure (/Pa) -15.57 to 1.56

HL- Air (h) 1.2 to 4 700

HL – Water (h) 66 to 87 300

HL – Soil (h) 130 to 175 000

HL – Sediment (h) 590 to 786 000

Biotransformation HL – Vertebrates (h) 1 to 59 000

Calibrated Regional-Scale Emission Rate, EA (kg/h) 0.0035 to 11.6

Table 2: Summary of RAIDAR input parameters for 10 OFRS 

 Case study chemicals comprise a diverse range of chemical properties
 Available monitoring data show high variability
 Inverse modelling provides exposure calculations that are in reasonable 

agreement with monitoring data across North America
 Uncertainty in exposure calculations approximates measured variability
 Relatively low range of risk quotients may be partially explained by the 

inverse relationship between emission rates and chemical persistence
 Model predictions can help guide future monitoring research, 

particularly for OFRs showing relatively high risk quotients
 Model uncertainty can be addressed by further measurements
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Figure 1: Conceptual overview of the RAIDAR model Table 1: 10 OFRs in case study

Chemical name Abbr. Median air 
concentration, pg/m3

2,4,6-Tribromophenyl allyl  ether ATE 0.70

Decabromodiphenyl ethane DBDPE 6.8

Tris(1-chloro-2-propanyl) phosphate TCPP 250

Tris(1,3-dichloro-2-propyl) phosphate TDCPP 56
Bis(2-ethylhexyl) 3,4,5,6-

tetrabromophthalate 
TBPH 2.5

2-Ethylhexyl-2,3,4,5 tetrabromobenzoate TBB 1.7

Dechlorane Plus DP 1.6

2-Ethylhexyl phosphate TEHP 8.6

Tris(2-butoxyethyl) phosphate TBEP 77

1,2-Bis(2,4,6-tribromophenoxy)ethane BTBPE 0.43

Figure 5: Maximum risk quotients from all model 
compartments for each OFR

Figure 6: Comparison of est. emission rates 
(EA) and overall chemical persistence (POV)

Figure 3: Model evaluation; error bars = 97.5%-ile predicted and 
minima and maxima reported measured concentrations

Figure 2: Summary of 3,120 measured concentrations of 10 
OFRs in temperate North America (NA), (sampling years)

Figure 4: Tiered approach adopted in deriving estimates of exposure using RAIDAR for 10 OFRs
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