Exploring the Effectiveness of an Online Genetics Laboratory on Narrow-Sense Heritability

Michael T. McClellan, Alexa A. Campos & Julie F. Westerlund

The rising STAR of Texas

MEMBER THE TEXAS STATE UNIVERSITY SYSTEM

Background

What is Heritability?

Heritability is the proportion of the total phenotypic variance (V_P) that is attributable to genetic variations (V_G) .

Broad-Sense Heritability

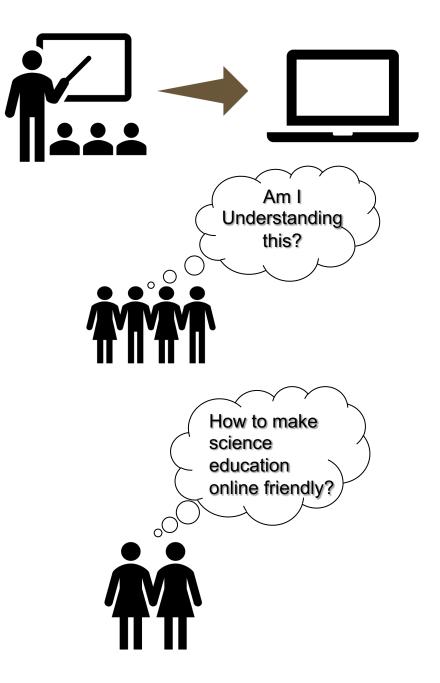
Is the proportion phenotypic variance (V_P) that is attributable to <u>all</u> genetic variations (V_G). (Example: Plant Disease-resistance) $H^2 = \frac{V_G}{V_P}$ $V_P = V_G$ $V_G = V_A + V_D + V_I$ Narrow-Sense Heritability

Is the proportion of phenotypic variance (V_P) that is attributable to <u>additive genetic</u> <u>variance (V_A). (Example: Height & Weight)</u> $h^2 = \frac{V_A}{V}$ V_P = V_A

Heritability values ranges from 0-1: 0 = having low heritability 1 = having high heritability

Introduction

Problem:


Transition of laboratories from in-person to online delivery.

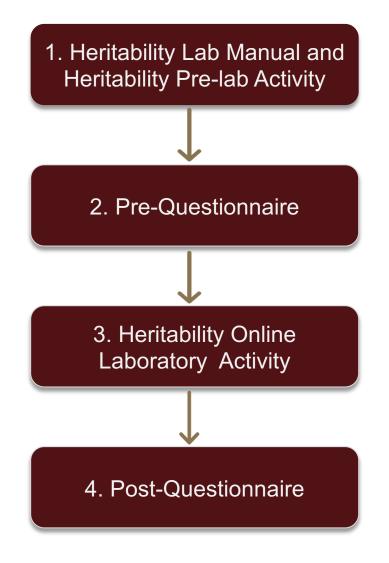
Why it matters?

 Difficulties in understanding narrow-sense heritability .

Potential Solutions

Creating an online genetics laboratory that still gives students a hands-on lab experience with a physical specimen.

Research Question


How effective is an online genetics laboratory activity that involves the calculation of narrow-sense heritability of physical specimens?

Experimental Design

Measurement of students' understanding of heritability

Sample Population:
Science Majors in an Online
Summer 2021 Genetics Course (n=56)

Research Question- How effective is an online genetics laboratory activity that involves the calculation of narrow-sense heritability of physical specimens?

Null Hypothesis:

There is not a significant difference between the genetics students' pre/post-questionnaire scores

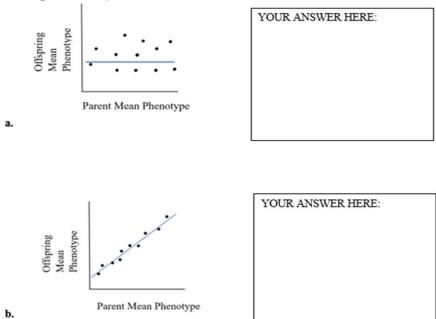
***** Alternative hypothesis:

There is a significant difference between the genetics students' pre/post-questionnaire scores

Questionnaire presented to students (Part 1)

Highlight the statement that applies to you Heritability Lab Pre-Questionnaire I will use a physical Heritability Lab Kit I will use a photo version of the Heritability Lab Kit Student Name: 1. The number of spots on the wings of 5 ladybugs (Labeled A-E) and 25 offspring ladybugs was measured. Each parent ladybug had 5 offspring (Labeled 1-5) for the F1 generation. Using the data table shown below, the given covariance (COV_{37}) and parental phenotypic variance (s_x^2) , as well as the equation sheet provided on page 4, calculate the parent mean, overall offspring mean, parent-offspring regression coefficient, and the narrow-sense heritability. a. Parent mean $(\overline{X})=$ (NOTE: Round to the nearest whole number) b. Overall offspring mean $(\overline{\mathbf{Y}}) =$ (NOTE: Round to the nearest whole number) c. Parent-Offspring Regression Coefficient (b)=

- c. Parent-Offspring Regression Coefficient (b)= (NOTE: $COV_{XY} = 42.3 \& s_X^2 = 92.5$) (NOTE: Round to the nearest hundredth)
- d. Narrow-Sense Heritability $(h^2) = _$
 - (NOTE: Round to the nearest hundredth)


Parent Label:	A	В	С	D	E
Number of Spots for Parent:	0	5	10	25	15
Parent Mean (X)					
F1 Offspring Label:	Number of spots for offspring of Parent A	Number of spots for offspring of Parent B	Number of spots for offspring of Parent C	Number of spots for offspring Parent D	Number of spots for offspring of Parent E
1	5	10	5	15	10
2	4	5	6	17	10
3	6	3	3	14	21
4	7	11	10	21	18
5	9	10	4	15	17
Individual Offspring Means (Yi):	6	8	5	16	17
Overall Offspring Mean (Ÿ):					

Questionnaire presented to students (Part 2)

 In few sentences, please describe the meaning of your narrow-sense heritability (h²) calculated in problem 1d.

3. Given the parent-offspring regression graph, state the expected narrow-sense heritability (h²) and regression coefficient (b) values for the graph. Also, in a few sentences, what conclusions can be drawn about the degree of heritability present in the population? (HINT: Is there high, medium, or low heritability; is the heritability due to environmental or additive genetic factors).

UN

Questionnaire presented to students (Part 3)

- Below you have been given terms and definitions. Match the definitions given to their corresponding terms.
 - i. Covariance (COV_{XY})_
 - Narrow-sense heritability (h²)_____
 - iii. Regression Coefficient (b)_____
 - iv. Phenotypic Variance (s²) _____

- Is a measure of the spread of distribution around the phenotype mean; it interprets how much variation exists within the sample.
- Estimates the proportion of phenotypic variation that is due to additive genetic variation
- c. Describes the slope of regression line of offspring mean phenotype v. parent's phenotype graph.
- d. Describes the degree to which parents and offspring vary together and is calculated as the average product of the deviation.

Hairs on Margin of True Leaf

Model Organism - *Brassica rapa* (Wisconsin Fast Plants)

Trait variability -the distribution of hair counts on the leaf margin of *Brassica rapa* plants is clearly not a trait that fits into distinct categories, (like hairs and no hairs) and thus can serve as a model for a heritability study

Inexpensive and can be conducted at home

Hairs on the leaf margin

Students established growing stations at home.

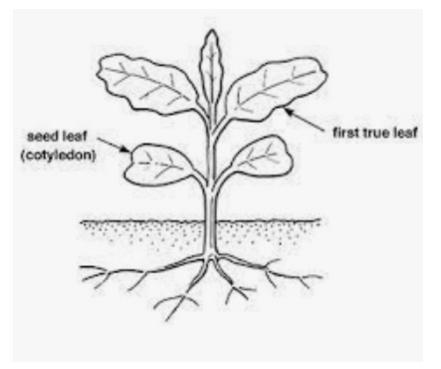


Figure 1: First day set up of Brassica rapa

✤ When the first true leaves are 2 cm long, the hairs along the leaf margin are counted.

Figure 2: First leaves

The leaves need to be at least 2 cm long, about the size of the smallest leaf shown at a minimum. The

difference between first leaves seen at the bottom right and the first true leaves is distinct.

Heritability Lab Activity (Video showing hair counting)

✤ When the first true leaves are 2 cm long, the hairs along the leaf margin are counted.

DISTRIBUTION OF TRUE LEAF HAIR COUNT FOUND ON BRASSICA RAPA

Figure 4: Hair Count Distribution of the First True Leaves

The ranges of hairs are placed along the X axis, while the number of plants is seen along the Y axis. A large proportion of the plants are in the 0-5 category, and the rest are evenly distributed into the ranges

set between 6-45 leaf hairs, with a few outliers.

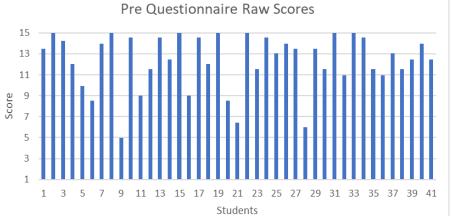
Table 1: Calculations of Narrow sense Heritability

The narrow sense heritability was calculated by dividing the covariance by the variance. The result was a

narrow sense heritability value of 0.206.

Sample	Parent	Offspring Average	Variance =249.36
J-J	18	8	Covariance = 51.31
J-L	28	21	b= 0.206
J-N	20	23	Narrow SenseHeritibility= 0.206
J-R	0	7	
J-A	15	31	
J-C	20	15	
J-E	18	43	
J-K	0	22	
J-L	20	11	
J-R2	28	29	
S-S	30	18	
S-A	28	13.33	
S-R	30	27.66	
C-C	30	35	
C-E	0	0	
C-H	20	1	
C-A	68	21	
C-K	0	18	
H-H	0	4	
H-G	28	0	
H-K	30	17.33	
H-E	0		

Results: Response Rate


Response Rate for Students that Completed Both Pre- and Post- Questionnaires

 41 out of 56 students completed both Pre- and Post-Questionnaires: 73% Response Rate

Results: Pre-Questionnaire and Post-Questionnaire

Table 1.

Raw Scores for Pre- Questionnaires and Post-Questionnaires

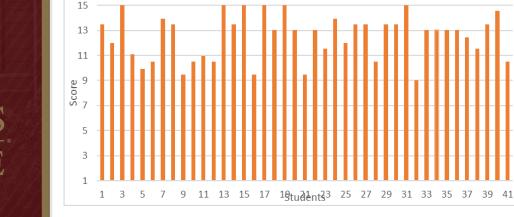


Table 2.

t-test for the Paired Pre-Questionnaire and Post-Questionnaire Sample Means

ŧ		Pre-Questionnaire Score Mean	Post-Questionnaire Score Mean
	Mean	9.01	9.18
Ð 41	Variance	3.82	1.74
	Observations (n) P(T<=t) one-tail	41 0.22	41
Ī	P(T<=t) two-tail	0.44	

Maximum Score for Questionnaires is 15 points

Note: p-value greater than 0.05, there is no significant difference between the students' pre- and post-questionnaire scores.

Conclusions

- Research Question: How effective is an online genetics laboratory activity that involves the calculation of narrow-sense heritability using physical specimens?
- Quantitative analysis: Pre- and Post-Questionnaire Analysis
 - Failed to reject null hypothesis: There was no significant difference between the genetics students' pre/post-questionnaire scores.
 - **Online** lab activity using physical specimens may not be be effective in helping students understand concepts of narrow-sense heritability.

Qualitative research: Qualitative analysis of student comments from open-response questions will be conducted to determine the hurdles student have in understanding the concepts of narrow-sense heritability.

Acknowledgements

- Ms. Alexa Campos (SURE Undergraduate Researcher)
- Dr. Julie Westerlund Texas State University Biology Department
- SURE Program: Funded by the US Department of Education HSI STEM program (84.031c), Award #P021C160036

QUESTIONS?

Visscher, P. M., Hill, W. G., & Wray, N. R. 2008. Heritability in the genomics era — concepts and misconceptions. *Nature Reviews Genetics*. 9(4). 255-266. <u>https://doi.org/10.1038/nrg2322</u>

