K-8 Preservice Teachers' Numeracy Understanding Using the IKAN Survey

Heidi Eisenreich, Eryn M. Maher, Gregory Chamblee, Ha Nguyen, Tuyin An, Janel J. Smith Georgia Southern University

PRESENTATION GOALS

- Share preliminary results on K-8 Preservice Teachers' (PSTs') numeracy understanding
- Identify gaps PSTs may have had
- Implications for our program in terms of how to improve instruction

BACKGROUND (GNP)

Georgia Numeracy Project (GNP)

- Based on the New Zealand curriculum project
- Free, optional, evidence-based resource provided by the Georgia Department of Education and used by K-8 schools and districts
- Initial professional development available at state math conference (GCTM)
- One goal is to develop students' understanding of numbers and their ability to use numbers to solve problems and provide resources to support the building of students' numeracy skills
- 4 part process: GloSS/JAM, IKAN, Numeracy Intervention Instrument, and Intervention Activities.
- Uses two instruments to assess students:
 - Global Strategy Stage (GloSS) for grades 3-8
 OR Junior Assessment of Mathematics (JAM) for grade K-2
 - Individual assessment between teacher and student
- 2. Individual Knowledge Assessment of Number (IKAN) for K-8
 - Can be taken as a whole class, timed test, numeracy knowledge test
 - Used in the GNP to diagnose students' numeracy knowledge and inform teaching strategies moving forward
 - IKAN consists of 2 different instruments: Counting Interview or Written Instrument.
 - The Counting Interview assesses numeracy concepts students should master by Grade 2 (Stages 1 3).
 - 8 stages of number knowledge assessed:
 Stages 1-3 with counting for K-2 and Stages
 4-8 written for grades 3-8

GEORGIA SOUTHERN (GS)

Reasons to Implement the GNP at GS

- USG mandate to work on improving 3rd grade mathematics scores
- GS chose to work on numeracy
- Collaboration between College of Education and College of Science and Mathematics Faculty
- Work on increasing PSTs' ability to teach numeracy literacy
- Numeracy skills are foundational for our PSTs' teaching, so it is important for us (teacher educators) to understand PSTs' strength and weakness in this area
- To identify PSTs' number knowledge (number order and sequence, basic facts, fractions, and place value) and strategy stages.
- Chose IKAN because many of our PSTs will teach in Georgia
- It is reasonable to assess their mathematical content knowledge using an assessment instrument adopted by the state
- Students see how their own data affects instructional decisions and learning.
- Experiencing activities and strategies from the
 GNP is beneficial to PSTs' future teaching
- To prepare PSTs to work with the GNP and corresponding resources in their own classrooms
- Allow PSTs to see the data collection and implementation process

YEAR ONE IMPLEMETATION

Participants in Spring 2020

- Elementary Math Methods class (n=26)
- Mathematics Content classes (n = 27)

Instrument: **IKAN** Written Test

- Assesses 4 knowledge domains: Number Sequence and Order, Fractions, Place Value, and Basic Facts
- Stages 4-8 of number knowledge assessed.
- Assesses numeracy concepts students should master in Grades 3 - 8
- Four versions of the written IKAN
- IKAN 1 written assessment was used

Instructional Decisions:

- Meeting as a team to discuss data and options for instruction
- COVID limitations on instructional delivery for Fall 2020

FINDINGS

hematics Clas	ses (N = 27)								
Stage 4	Stage 5	Stage 6	Stage 7	`Stage 8					
26%	56%	19%	0%	0%					
Elementary Mathematics Methods Classes (N = 26) Stage 4 Stage 5 Stage 6 Stage 7 'Stage 8									
			Stage 7	`Stage 8					

- Most methods course PSTs were at stage 4, but PSTs immediately completing the content course at stage 5.
- Stage 4 is the beginning of part-whole relationship and is assumed to be the goal for PSTs by the end of Grade 3 (8-9 year olds).
- Results indicate PSTs who took the IKAN assessment reached the *third grade* goals of numeracy, but the test does not provide more information about what or how students know the concepts.
- PSTs should be at Stage 8 by the time they begin university coursework. Our PSTs would be considered "at risk" for their numeracy skills if they were at Stage 6 or below by eighth grade based on the IKAN results.

Domain	Stage 4	Stage 5	Stage 6	Stage 7	Stage 8
	Questions	Questions	Questions	Questions	Questions
Number Sequence	1 (100%)	1 (100%)	1 (96%)	1 (93%)	None
and Order	2 (100%)	2 (96%)	2 (67%)	2 (78%)	
Fractions	3 (100%)	3 (48%)	3 (78%)	3 (74%)	1 (74%)
	4 (96%)	4 (78%)	4 (78%)	4 (7%)	2 (63%)
Place Value	5 (100%)	5 (33%)	5 (19%)	5 (93%)	3 (0%)
	6 (78%)	6 (56%)	6 (4%)	6 (7%)	4 (78%)
Basic Facts	7 (100%) 8 (93%)	7 (93%) 8 (96%)	7 (96%) 8 (89%)	7 (74%) 8 (74%)	5 (33%) 6 (30%) 7 (26%) 8 (22%)

- Our PSTs struggled most with Fractions, Place Value, and the last stage of "Basic Facts."
- Most of our PSTs (74%) were able to identify the greatest fraction in a list (Stage 8 Question 1) but had difficulty identifying the least (Stage 7 Question 4 7%). 78% were able to order fractions (Stage 5 Question 4; Stage 6 Question 3). PSTs struggled with other fraction conceptions such as: Write the fraction for five quarters (48%).
- Most of our PSTs (93%) were able to round a simple decimal to the nearest tenth. Most (78%) were also able write a number halfway between 4.8 and 4.7. However, PSTs struggled when asked questions that pushed them to use knowledge of groups of tens flexible such as: *How many thousands are in all of 6 456 894?* and *How many hundredths are in all of 6.073?*
- Finally, the four basic facts PSTs struggled with the most were converting between fractions, decimals, and percentages and identifying the least common multiple and greatest common factor of two numbers.

CONCLUSIONS

- PSTs' daily math vocabularies could be enhanced. For example, some of them didn't know the meaning of "quarters" and wrote "25" instead of 1/4
- The weaker domains focus on place value, especially when involving decimals, and division/conversion/LCM/GCF (these topics are taught in the first Mathematics Content course)
- The use of rigorous mathematical language matters in teaching place value (e.g., 1.3 should be read as one and three tenths)
- There might be a disconnect between the concrete understanding (using manipulatives) or representational understanding (drawings of those manipulatives) to the abstract (IKAN problems) in our teaching
- PSTs understand the "place" but not the relationships (place value tasks may help students to see different representations and understand the relationships)
- We can teach our PSTs to use the numeracy project in their own teaching
- Professional Development for current Mathematics
 Teacher Educators: ways to incorporate appropriate
 vocabulary into their classes

Future Steps

- Giving a pretest and posttest for all sections of the first Mathematics Content course (5 sections)
- Focusing on flexible representations for place value
- Continued professional development for math content instructors in teaching strategies, vocabulary instruction

RESOURCES

Questions and Answers for IKAN 1

	Part 1	Part 2	Part 3	Part 4	Part 5
1	What number is one more than 49? 50	What number is one more 599? 600	What number is one more 439 999?	Which decimal is the biggest, 0.639, 0.9, 0.84? 0.9	Which fraction is the biggest, ¾, 73/100, 7/10 3/4
2	What number is one less than 30? 29	What number is one less than 1000? 999	What number is one less than 801 000? 800 999	Which decimal is the smallest, 2.4, 2.71, 2.084?	Which is the smallest? 2/3 , 0.6 or 70 % 0.6
3	Write the fraction for one half. 1/2	Write the fraction for five quarters. 5/4	Write these fractions in order of size, smallest to biggest. 1/5, 1/7, 1/6 1/7, 1/6, 1/5	Which number is the same as 3/5? 5/3, 12/20, 1 2/3 4/6 12/20	How many hundredths are in all of 6.073? 607 or 607.3
4	Write the fraction for one fifth. 1/5	Write these fractions in order of size, smallest to biggest. 3/4, 1/4, 2/4, 3/4	Write 4 and 1/5 as a fraction. 21/5	Which fraction is the smallest, 3/8 4/10 1/3?	What number is half way between 4.8 and 4.7?
5	How many tens are in 80? 8	How many tens are in all of the number 832? 83 or 83.2	How many hundreds are in all of this number, 53 605? 536 or 536.05	Round the following decimal to the nearest tenth. 6.49 6.5	What is the simplest fraction for 80%? 4/5
6	What is the number for nine groups of ten? 90	What is the number for 49 groups of ten? 490	How many tenths are in all of the number, 5.8?	How many thousands are in all of 6 457 894? 6457 or 6457.894	What is 1.3 written as a percentage? 130%
7	7+7=? 14	7+9=? 16	15 – 8 = ? 7	63 ÷ 9 = ? 7	What is the least common multiple of 6 and 9? 18
8	Half of 18 is ? 9	5 x 7 = ? 35	6 x 7 = ? 42	What number divided by 7 gives 6? 42	What is the highest common factor of 36 and 48? 12

Link:

https://nzmaths.co.nz/ikan-forms

Or QR Code: