11...:0 **UNIL** | Université de Lausanne

Covid and the Athlete's Heart: Lessons Learned

Aaron Baggish MD

Professor of Medicine, Institut des sciences du sport (ISSUL) Centre hospitalier universitaire Vaudois (CHUV) University of Lausanne, Switzerland

Emeritus Director, Cardiovascular Performance Program Harvard Medical School, Boston, MA, USA Aaronleigh.baggish@unil.ch

Financial Disclosures

Funding Sources:

- National Institutes of Health
- American Heart Association
- American Society of Echocardiography
- Department of Defense
- National Football League Player's Association
- American Medical Society for Sports Medicine

Affiliations:

COVID-19 Cardiac

Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

∌@∿®

Chaolin Huang*, Yeming Wang*, Xingwang Li*, Lili Ren*, Jianping Zhao*, YiHu*, Li Zhang, Guohui Fan, Jiuyang Xu, Xiaoying Gu Zhenshun Cheng, TingYu, Jiaan Xia, Yuan Wei, Wenjuan Wu, Xuelei Xie, WenYin, Hui Li, Min Liu, Yan Xiaa, Hong Gao, Li Guo, Jungang Xie, Guanafa Wana, Ronamena Jiana, Zhanchena Gao, Oi Jin, Jianwei Wanat, Bin Caat

Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49.0 years (IQR 41.0-58.0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38). haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8.0 days [IQR 5.0-13.0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα.

of 112, 117, 1110, GSCF, 1P10, MCP1, MIP1A, and TNFα.	Sciences (L. Far, A. Co), and Department of Radiology (M. Liu MD), China-Japan Friendship Hospital, Beijing,		All patients (n=41)	ICU care (n=13)	No ICU care (n=28)	p value
syndrome corona-trus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies.	China; Institute of Respiratory Medicina, Chinese Academy of Medical Sciences, Peking Union Medical Colego, Reging: China (YWang, G Fan, X Gu, H Li,	Duration from illness onset to first admission	7.0 (4.0-8.0)	7.0 (4.0-8.0)	7.0 (4.0-8.5)	0.87
Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.	Prof B (ac); Department of Respiratory Medicine, Capital Medical University, Beijing,	Complications				
Copyright © 2020 Elsevier Ltd. All rights reserved. Introduction potentially more novel and severe zoonotic events to be	China (YWang HL; Prof BCao); Clinical and Research Center of Infectious Diseases, Beging Ditan Hospital, Capital Medical	Acute respiratory distress syndrome	12 (29%)	11 (85%)	1 (4%)	<0.0001
Coronaviruses are enveloped non-segmented positive sense RNA viruses belonging to the family Coronavirulae and the order Nidotrales and broadly distributed in humans and other marmals.' Although most human coronavirus infections are mild, the epidemics of the two becacoronaviruses, severe accute respiratory syndrome coronavirus (SARS-CoV) ⁺⁺ and Middle East respiratory syndrome coronavirus (MERS-CoV) ^{+,+} have caused more than 1000 cumulative cases in the syndrome cases in though the seven identified in Wuhan, and	(ProFX Li MD, Prof R Jang MD); NHC Key Laboratory of Systems Biology of Pathogens and	RNAaemia	6 (15%)	2 (15%)	4 (14%)	0.93
	Institute of Pathogen Biology (Prof L Ren PhD, YX iao MS, Prof L Guo PhD, Q Jin PhD,	Cycle threshold of RNAaemia	35.1 (34.7-35.1)	35-1 (35-1-35-1)	34.8 (34.1–35.4)	0.35
	Academy of Medical Sciences	Acute cardiac injury*	5 (12%)	4 (31%)	1(4%)	0.017
two decades, with mortality rates of 10% for SARS-CoV and 37% for MERS-CoV. ²⁹ The coronavtruses already provinces in China, and in Thatland, Japan, South Korea,	and Peking Union Medical	Acute kidney injury	3 (7%)	3 (23%)	0	0.027
tdentified might only be the up of the iceberg, with and the USA.**	Prof JXie MD), and Department	Secondary infection	4 (10%)	4 (31%)	0	0.0014
www.thelancet.com Vol 395 February 15 2020	497	Shock	3 (7%)	3 (23%)	0	0.027

UNIL | Université de Lausanne

COVID-19 Cardiac



JAMA Cardiology | Original Investigation Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19)

Tao Guo, MD; Yongzhen Fan, MD; Ming Chen, MD; Xiaoyan Wu, MD; Lin Zhang, MD; Tao He, MD; Hairong Wang, MD; Jing Wan, MD; Xinghuan Wang, MD; Zhibing Lu, MD

RESULTS Among 187 patients with confirmed COVID-19, 144 patients (77%) were discharged and 43 patients (23%) died. The mean (SD) age was 58.50 (14.66) years. Overall, 66 (35.3%) had underlying CVD including hypertension, coronary heart disease, and cardiomyopathy, and 52 (27.8%) exhibited myocardial injury as indicated by elevated TnT levels. The mortality during hospitalization was 7.62% (8 of 105) for patients without underlying CVD and normal TnT levels, 13.33% (4 of 30) for those with underlying CVD and normal TnT levels, 37.50% (6 of 16) for those without underlying CVD but elevated TnT levels, and 69.44% (25 of 36) for those with underlying CVD and elevated TnTs. Patients with underlying CVD were more likely to exhibit elevation of TnT levels compared with the patients without CVD (36 [54.5%] vs 16 [13.2%]). Plasma TnT levels demonstrated a high and significantly positive linear correlation with plasma high-sensitivity C-reactive protein levels ($\beta = 0.530$, P < .001) and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels ($\beta = 0.613$, P < .001). Plasma TnT and NT-proBNP levels during hospitalization (median [interquartile range (IQR)], 0.307 [0.094-0.600]; 1902.00 [728.35-8100.00]) and impending death (median [IQR], 0.141 [0.058-0.860]; 5375 [1179.50-25695.25]) increased significantly compared with admission values (median [IQR], 0.0355 [0.015-0.102]; 796.90 [401.93-1742.25]) in patients who died (P = .001; P < .001), while no significant dynamic changes of TnT (median [IQR], 0.010 [0.007-0.019]; 0.013 [0.007-0.022]; 0.011 [0.007-0.016]) and NT-proBNP (median [IQR], 352.20 [174.70-636.70]; 433.80 [155.80-1272.60]; 145.40 [63.4-526.50]) was observed in survivors (P = .96; P = .16). During hospitalization, patients with elevated TnT levels had more frequent malignant arrhythmias, and the use of glucocorticoid therapy (37 [71.2%] vs 69 [51.1%]) and mechanical ventilation (31 [59.6%] vs 14 [10.4%]) were higher compared with patients with normal TnT levels. The mortality rates of patients with and without use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers was 36.8% (7 of 19) and 21.4% (36 of 168) (P = .13).

Figure 2. Mortality of Patients With Coronavirus Disease 2019 (COVID-19) With/Without Cardiovascular Disease (CVD) and With/Without Elevated Troponin T (TnT) Levels

THE WALL STREET JOURNAL.

WORLD

The Soccer Match that Kicked Off Italy's Coronavirus Disaster

Decision to hold Atalanta-Valencia Champions League match in February accelerated spread of pandemic

February 19th, Milan ITALY

Atalanta vs. Valencia Champions League Match

45,732 Fans (~40K Bergamaschi)

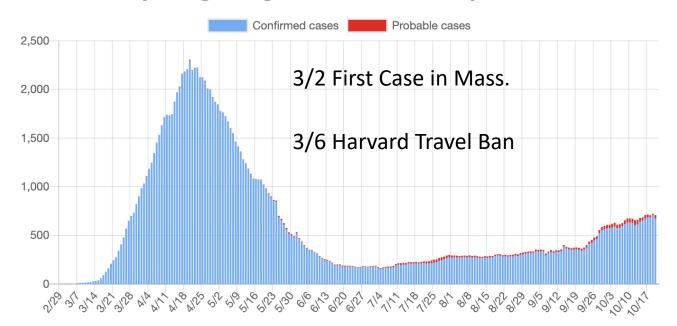
4 to 1 Victory for Italy

35% of team & staff infected within 7 days

1 month Bergamo death toll 10k, base pop. of 120K

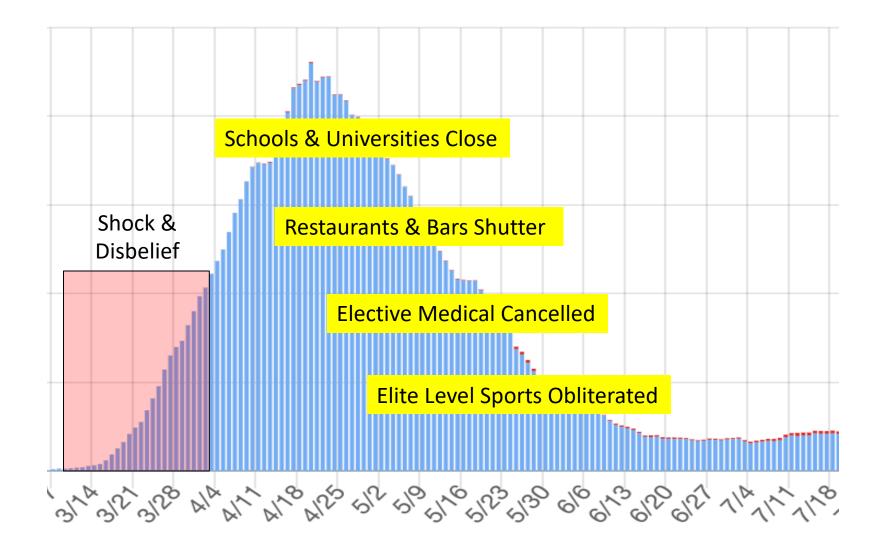
Valencia becomes Spanish Epicenter by early March

UNIL | Université de Lausanne

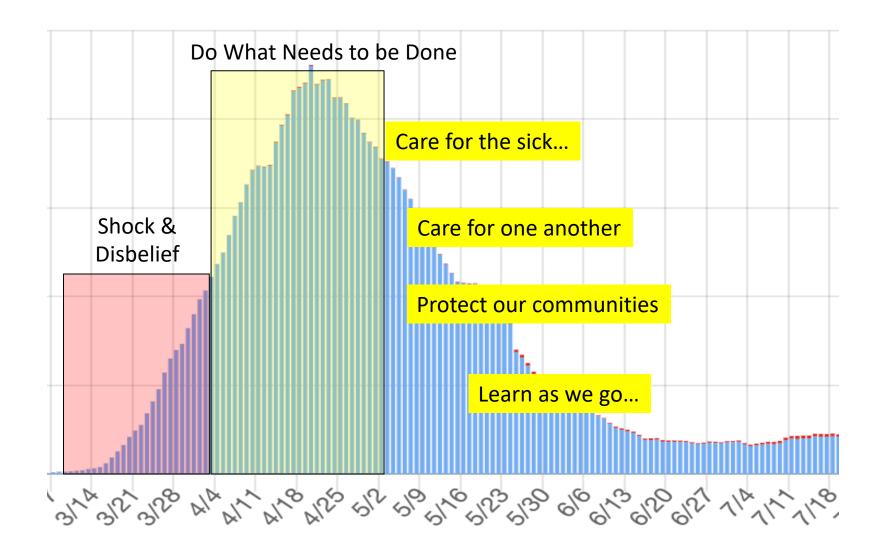


Coronavirus Cases In Massachusetts

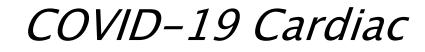
Rolling average Total cases Daily cases


Here's the 7-day rolling average of new cases each day:

11...:0



The 5 Day Demise of Elite US Sport


11 ...:0

UNIL | Université de Lausanne

CLINICAL RESEARCH Heart failure

Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study

Cristina Basso (a) ^{1†}, Ornella Leone (a) ^{2†}, Stefania Rizzo (a) ¹, Monica De Gaspari¹, Allard C. van der Wal³, Marie-Christine Aubry⁴, Melanie C. Bois (a) ⁴, Peter T. Lin (a) ⁴, Joseph J. Maleszewski (a) ⁴, and James R. Stone (a) ⁵*

¹Gerdowacular Pathology, Asienda Ospedaliana, Department of Candiac, Thoracic and Vacular Sciences and Rubic Health, University of Padua, Padua, Italy, ¹Candiowacular and Candia: Transplant Rethology Unit, Department of Pathology, Sant Oncole/Habighi University Hospital, Bologna, Italy, ¹Amsterdam University Madical Canters, University of Amsterdam, Amsterdam, The Netherlands, ¹Department of Pathology, Mayo Clinic, Rochester, MN, USA; and ¹Department of Pathology, Masachusetts General Hospital and Huwerd Madical School, Boston, MJ, USA

Received 30 April 2020; revised 17 June 2020; editorial decision 28 July 2020; accepted 28 July 2020; online publish-shead-of-print 24 September 2020

See page 3836 for the editorial comment on this article (doi: 10.1093/eurheartj/ehaa727)

Aims	Coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been associated with cardiovascular features of myocardial involvement including elevated serum troponin lev- els and acute heart failure with reduced ejection fraction. The cardiac pathological changes in these patients with COVID-19 have yet to be well described.
Methods and results	In an international multicentre study, cardiac tissue from the autopsies of 21 consecutive COVID-19 patients was assessed by cardiovascular pathologists. The presence of myocarditis, as defined by the presence of multiple foci of inflammation with associated myocyte injury, was determined, and the inflammatory cell composition analysed by immunohistochemistry. Other forms of acute myocyte injury and inflammation were also described, as well as con- onary artery, endocardium, and pericardium involvement. Lymphocytic myocarditis was present in 3 (14%) of the cases. In two of these cases, the T lymphocytes were CD4 predominant and in one case the T lymphocytes were CD8 predominant. Increased interstitial macrophage infitration was present in 18 (86%) of the cases. A mild peri- carditis was present in four cases. Acute myocyte injury in the right ventricle, most probably due to strain/oven- load, was present in four cases. Acute myocyte injury in the right ventricle, most probably due to strain/oven- load, was present in four cases. There was a non-significant trent doward higher serum troponin levels in the patients with myocarditis compared with those without myocarditis. Disrupted coronary artery plaques, coronary artery aneurysms, and large pulmorary emboli were not identified.
Conclusions	In SARS-CoV-2 there are increased interstitial macrophages in a majority of the cases and multifocal lymphocytic myocarditis in a small fraction of the cases. Other forms of myocardial injury are also present in these patients. The macrophage infiltration may reflect underlying diseases rather than COVID-19.

Keywords Myocarditis • Macrophages • COVID-19 • SARS • SARS-CoV-2 • Heart • Myocardium • Autopsy

Cytokine-mediated injury

Hemodynamic injury

Myocardial viral invasion

Underlying CV disease

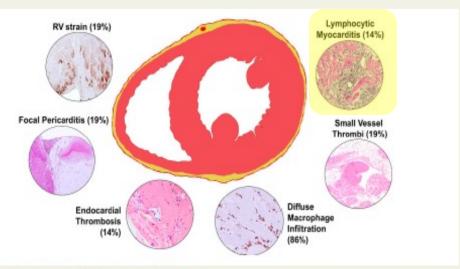



Figure 7 Cardiac pathological changes associated with COVID-19.

UNIL | Université de Lausanne

Heart Rhythm Disorders

Sudden Death in Young Adults

An Autopsy-Based Series of a Population Undergoing Active Surveillance

Robert E. Eckart, DO,* Eric A. Shry, MD,† Allen P. Burke, MD,‡ Jennifer A. McNear, MD,* David A. Appel, MD,* Laudino M. Castillo-Rojas, MD,* Lena Avedissian, MD,§ Lisa A. Pearse, MD,‡ Robert N. Potter, MPH,‡ Ladd Tremaine, MD,‡ Philip J. Gentlesk, MD,* Linda Huffer, MD,§ Stephen S. Reich, MD,* William G. Stevenson, MD,∥ for the Department of Defense Cardiovascular Death Registry Group

San Antonio, Texas; Landstuhl, Germany; Washington, DC; and Boston, Massachusetts

- Objectives The purpose of this study was to define the incidence and characterization of cardiovascular cause of sudden death in the young.
- Background The epidemiology of sudden cardiac death (SCD) in young adults is based on small studies and uncontrolled observations. Identifying causes of sudden death in this population is important for guiding approaches to prevention.
- Methods We performed a retrospective cohort study using demographic and autopsy data from the Department of Defense Cardiovascular Death Registry over a 10-year period comprising 15.2 million person-years of active surveillance.
- Results
 We reviewed all nontraumatic sudden deaths in persons 1.8 years of age and over. We identified 902 subjects in whom the adjudicated cause of death was of potential cardiac etiology, with a mean age of 38 ± 11 years. The mortatily rate for SCD per 100,000 person-years for the study period was 6.7 for males and 1.4 for females (p < 0.0001). Sudden death was attributed to a cardiac condition in 715 (79.3%) and was unexplained in 187 (20.7%). The incidence of sudden unexplained death (SUD) was 1.2 per 100,000 person-years for persons <35 years of age, and 2.0 per 100,000 person-years for those ≥35 years of age (p < 0.001). The incidence of fatal atherosclerotic coronary artery disease was 0.7 per 100,000 person-years for those <35 years of age, and 3.7 per 100,000 person-years for those <35 years of the second sec
- Conclusions Prevention of sudden death in the young adult should focus on evaluation for causes known to be associated with SUD (e.g. primary arrhythmia) among persons <35 years of age, with an emphasis on atherosclerotic coronary disease in those >35 years of age. (J Am Coil Cardiol 2011;58:1254-61) @ 2011 by the American College of Cardiology Foundation

Sudden death of the healthy young adult is uncommon, but receives substantial attention from the media and raises issues of accountability for screening programs (1). The

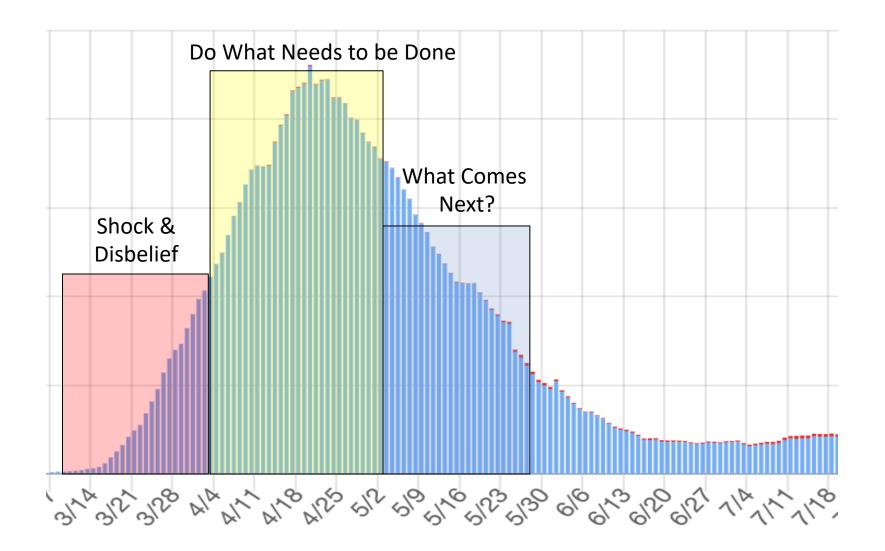
Manuscript received November 22, 2010; revised manuscript received December 22, 2010, accepted January 31, 2011.

relative importance of different etiologies of sudden death varies among studies. Among cohorts collected using passive surveillance (e.g., newspaper accounts and Internet queries), hypertrophic cardiomyopathy was the most commonly identified abnormality in sudden death of young adults and young athletes (2–4). Passive surveillance methods are, however, subject to ascertainment and referral bias. Studies utilizing active surveillance to collect all deaths in a defined population, found by administrative diagnostic coding or death certificate review, have found either no identifiable structural abnormality or coronary artery disease (CAD) in the majority of cases of sudden death (5–11).

Despite advances in defining the causes of sudden death and dramatic developments in the ability to screen for genetic diseases and premature atherosclerosis (12–24), recommendations for screening the young, apparently healthy adult have not changed over the past 4 decades. Table 3Cause-Specific Findings in 902 Cases of
Adjudicated Unanticipated Sudden Cardiac Death
Stratified by Age <35 Years and ≥35 Years in a
Cohort Undergoing Active Surveillance

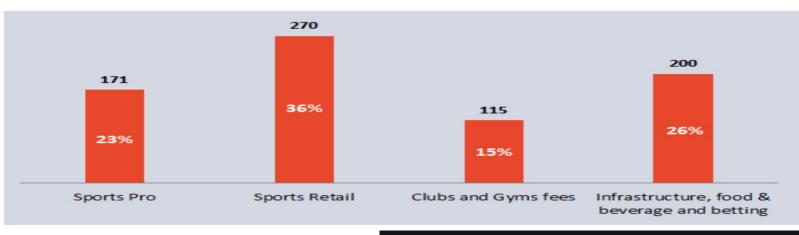
Findings	<35 Yrs of Age (n = 298)	≥35 Yrs of Age (n = 604)	p Value
Sudden unexplained death	123 (41.3%)	64 (10.6%)	<0.001
Atherosclerotic disease	69 (23.2%)	442 (73.2%)	<0.001
Hypertrophic cardiomyopathy	38 (12.8%)	19 (3.1%)	<0.001
Myocarditis	17 (5.7%)	13 (2.2%)	0.009
Idiopathic dilated cardiomyopathy	14 (4.7%)	21 (3.5%)	0.478
Anomalous coronary artery	12 (4.0%)	1 (0.2%)	<0.001
Hypertensive cardiomyopathy	11 (3.7%)	15 (2.5%)	0.419
Arrhythmogenic RV dysplasia	4 (1.3%)	6 (1.0%)	0.737
Ischemic cardiomyopathy	2 (0.7%)	14 (2.3%)	0.135
Other*	8 (2.7%)	9 (1.5%)	_

Data presented as raw (columnar percent [incidence]). *Other cases (n = cases <35 years of age, cases \geq 35 years of age, respectively): additional causes of death associated with coronary artery disease included coronary artery bridge (n = 6, 1), spontaneous coronary thrombosis (n = 1, 2%) and spontaneous coronary dissection (n = 0, 1); causes of death associated with valvular heart disease included aortic valve disease (n = 0, 3), mitral valve disease (n = 1, 1), and endocarditis (n = 0, 1).

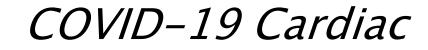

RV = right ventricle.

From the "Brooke Anny Methcal Center, San Actonio, Texas (Hamistual Regional Medical Center, Landstuhl, Germany, ‡Armed Forces Institute of Pathology, Washington, DC; \$Walter Reed Anny Methcal Center, Washington, DC, and the [Brdgham & Wornevi's Hoopital, Boston, Massachusetts, Dr. Appel is currently affiltated with Mathgan Anny Methcal Centes, Statik, Washington, Dr. Pearse is currently affiltated with Mathgan Anny Methcal Centes, Statik, Washington, Dr. Pearse is currently affiltated with Mathgan Anny Methcal Centes, Statik, Washington, Dr. Pearse is Landstuhl, Gosmany: Dr. Centlesk is currently affiltated with Caedology Consultants Lida, Norlök, Visginia. The opinions and research constanted herein are the protutions of the authors and are not to be constitued a metin are the protuent of the authors in the opinions and research constanted herein are the protuones of the authors and are not to be constitued a sofficial os reflecting the views of the Department of the Anny or the Department of Defranse. All authors have septored that they have no selationships selevant to the contents of this paper to disclose.

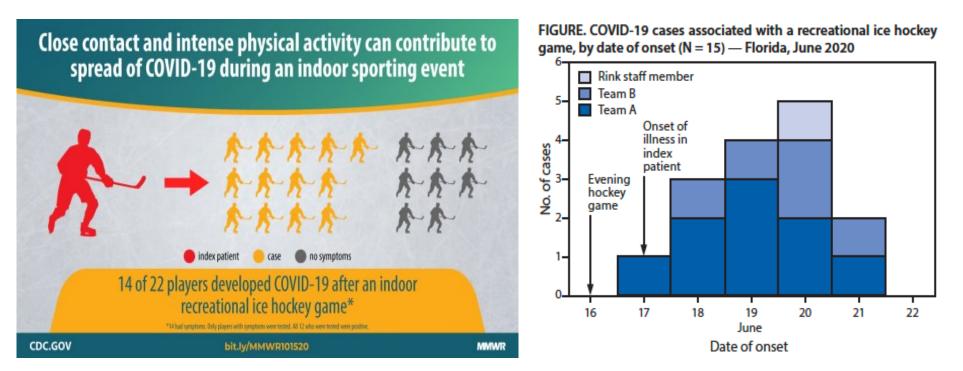
Mail



UNIL | Université de Lausanne



Global Revenues- Sports Industry- US\$ billion



Morbidity and Mortality Weekly Report

An Outbreak of COVID-19 Associated with a Recreational Hockey Game — Florida, June 2020

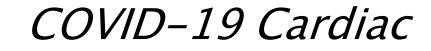
David Atrubin1; Michael Wiese2; Becky Bohinc3

events.

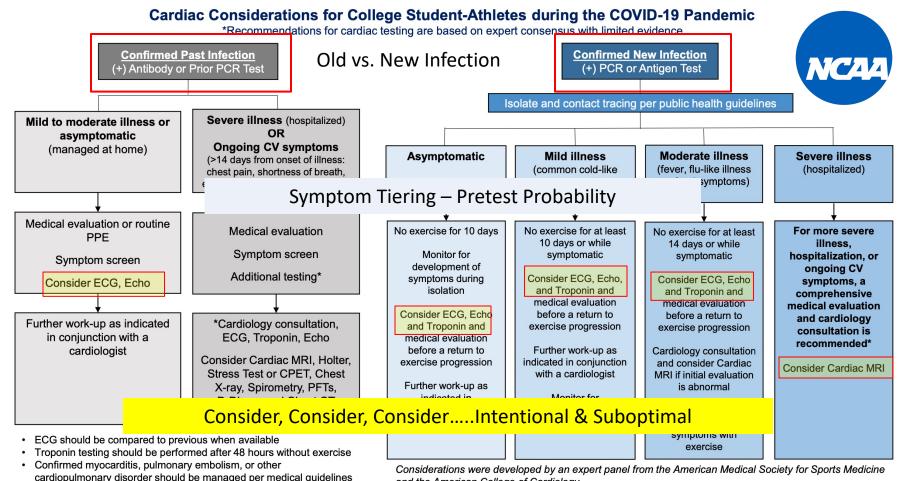
Resurgence of sport in the wake of COVID-19: cardiac considerations in competitive athletes

Aaron Baggish,¹ Jonathan A Drezner ⁽¹⁾,² Jonathan Kim,³ Matthew Martinez,⁴ Jordan M Prutkin⁵

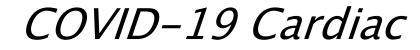
Posted on April 24, 2020 by BMJ


Table 1 Cardiac evaluation in athletes with prior COVID-19 infection

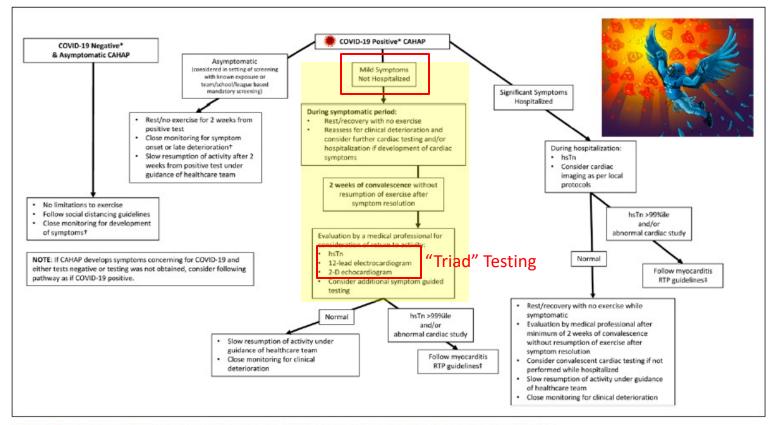
Clinical scenario		
Athletes with <i>prior asymptomat</i> confirmed antibody to severe ac syndrome coronavirus 2	safety. There are fundamental questions	COVID-19 should be h a history of new-onset in the absence of fever
	about now COVID-19 will leave its), palpitations or exercise aluation, regardless of
Athletes with a <i>history of mild i</i>	mark on the millions of athletes world-	in athletes with new-onset or exercise intolerance. licate viral-induced myocardial
hospitalized) related to confirm	• 1 • 1 1 • • • • • • • • • • • • • • •	I Q waves, ST segment ST segment elevation and
	provent further uppercent loss of life	aluation, regardless of in athletes with new-onset or exercise intolerance.
Athletes with a history of mode	While these questions will be asked by	re likely in patients with a
suspected COVID-19	the men and women on the front lines of	ee, and normal cardiac function build be established prior to a nsidered based on clinical jury.†
Athletes with a history of COVIL (regardless of severity) and doo	attricte care, they will only be answered gi	ld be gradual and under the ist.
myocardial injury as indicated b of the following: in-hospital ECC or NP elevation, arrhythmia or i function	by the chaming of experiences and the	including serial cardiac in athletes with initially n.
*ECG as a screening test to exc be warranted based on clinical : †Cardiac MRI should be perform	pooling of rigorously collected data.	s. Additional evaluation may najor adverse cardiovascular


hs-Tn, high-sensitivity cardiac troponin; LGE, late gadolinium enhancement; NP, natriuretic peptide.

Mil


UNIL | Université de Lausanne

and the American College of Cardiology



Circulation

VIEWPOINT

A Game Plan for the Resumption of Sport and Exercise After Coronavirus Disease 2019 (COVID-19) Infection

Figure. Coronavirus disease 2019 return-to-play algorithm for competitive athlete and highly active people.

*Typical testing obtained via a nasopharyngeal swab. All athletes with positive testing should be isolated for 2 weeks regardless of symptoms. The clinical or cardiac symptoms develop, follow appropriate clinical pathway. ‡Given lack of clear pathophysiology, we recommend the American College of Cardiology/American Heart Association Athlete myocarditis guidelines. CAHAP indicates competitive athlete or highly-active person; COVID-19, coronavirus disease 2019; hsTn, high-sensitivity troponin-I; and RTP, return-to-play. Reproduced with Permission from JAMA Cardiology⁵ Copyright@2020. American Medical Association. All rights reserved.

11 ... : 0

COVID-19 Cardiac

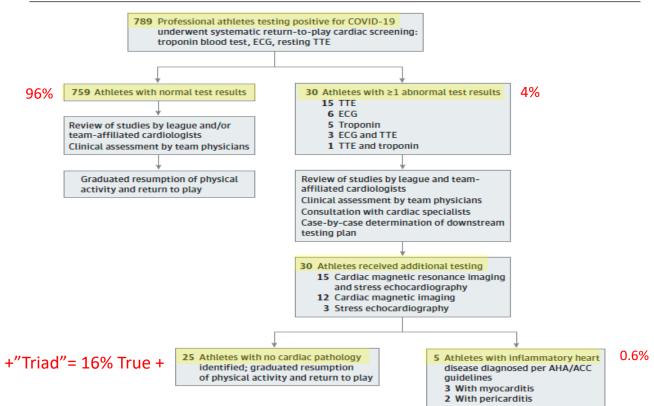
"Triad" Testing: Early Experience

Asymptomatic & Mild COVID-19

Lots of Testing, Very Little Pathology



Jamain Stephens, a football player at California University of Pennsylvania and the son of a former Steelers first round-draft pick, has died at the age of 20 of what was initially described as COVID-19 complications but was later said to be unconfirmed.



JAMA Cardiology | Original Investigation

Prevalence of Inflammatory Heart Disease Among Professional Athletes With Prior COVID-19 Infection Who Received Systematic Return-to-Play Cardiac Screening

Matthew W. Martinez, MD; Andrew M. Tucker, MD; O. Josh Bloom, MD, MPH; Gary Green, MD; John P. DiFiori, MD; Gary Solomon, PhD; Dermot Phelan, MD, PhD; Jonathan H. Kim, MD, MSc; Willem Meeuwise, MD, PhD; Allen K. Sills, MD; Dana Rowe, BA; Isaac I. Bogoch, MD; Paul T. Smith, MD; Aaron L. Baggish, MD; Margot Putukian, MD; David J. Engel, MD

Resumption of Sport at the United States Olympic and Paralympic Training Facilities During the COVID-19 Pandemic

Ankit B. Shah, MD, MPH,*[†] Dustin Nabhan, DC,[‡] Robert Chapman, PhD,[§] George Chiampas, DO,^{II} Jonathan Drezner, MD,[¶] J. Tod Olin, MD, MSCS,[#] David Taylor, BPhys (Hons), MHPS (Hons),[‡] Jonathan T. Finnoff, DO,[‡] and Aaron L. Baggish, MD**

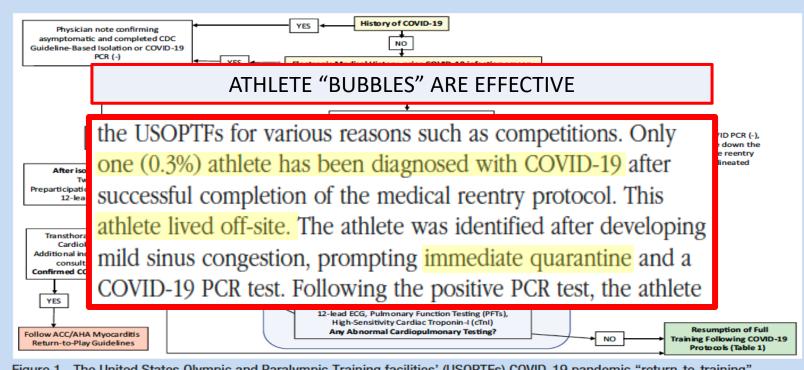


Figure 1. The United States Olympic and Paralympic Training facilities' (USOPTFs) COVID-19 pandemic "return-to-training" protocol. Ab, antibody; COVID-19, coronavirus disease 2019; cTnl, cardiac specific troponin I assay; ECG, electrocardiogram; PCR, polymerase chain reaction; PFT, pulmonary function testing; SS, signs and symptom survey.

UNIL | Université de Lausanne

COVID-19 Cardiac

JAMA Cardiology | Special Communication

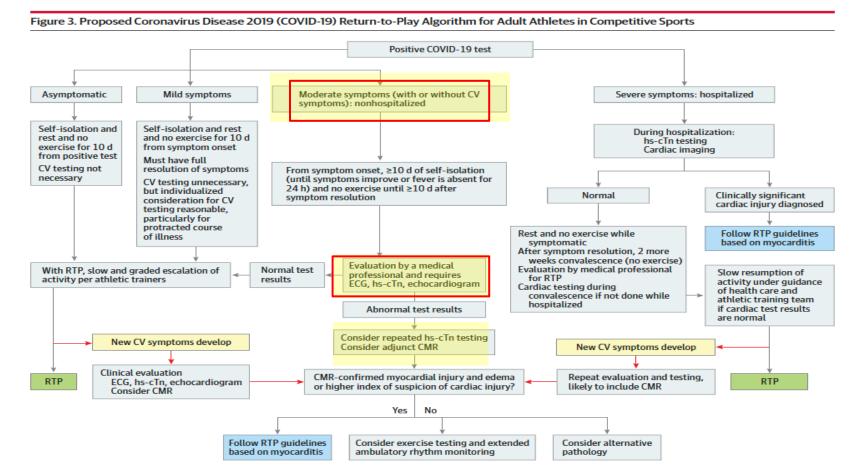
Coronavirus Disease 2019 and the Athletic Heart Emerging Perspectives on Pathology, Risks, and Return to Play

Jonathan H. Kim, MD, MSc; Benjamin D. Levine, MD; Dermot Phelan, MD, PhD; Michael S. Emery, MD, MS; Mathew W. Martinez, MD; Eugene H. Chung, MD, MSc; Paul D. Thompson, MD; Aaron L. Baggish, MD

What Is Known About the Effects of COVID-19 Infection on the Heart For Individuals With Mild or No Symptoms Symptoms defining mild COVID-19 include nonspecific and selflimited fatigue; anosmia or ageusia; nausea, vomiting, and/or diarrhea; headache; cough; sore throat; and nasopharyngeal congestion.¹¹ Progression to moderate or severe disease and the potential need for hospitalization are characterized by the onset of systemic symptoms (persistent fever [temperature \geq 100.4 °F] or chills, myalgias, severe lethargy, and hypoxia or pneumonia) and/or cardiovascular (CV) symptoms (dyspnea and chest pain, tightness, or pressure at rest or during exertion).¹¹ In patients hospitalized with moderate or severe COVID-19, particularly among those with underlying CV conditions, cardiac injury is common (>20% of cases).^{2,12,13} However, the pathogenesis of

Myocarditis (Probable Acute Myocarditis With Both of the Following Criteria)

- Clinical syndrome, including acute heart failure, angina-type chest pain, or known myopericarditis of less than 3 months' duration.
- Otherwise unexplained increase in serum troponin levels, ischemic 12-lead electrocardiogram changes, arrhythmias or high-grade atrioventricular block, regional wall-motion abnormalities, or pericardial effusion. Additional cardiac magnetic resonance imaging findings that suggest myocarditis in the short-term clinical setting include altered tissue signals on T2-weighted or T1-weighted images and late gadolinium enhancement.



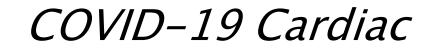
JAMA Cardiology | Special Communication

Coronavirus Disease 2019 and the Athletic Heart Emerging Perspectives on Pathology, Risks, and Return to Play

Jonathan H. Kim, MD, MSc; Benjamin D. Levine, MD; Dermot Phelan, MD, PhD; Michael S. Emery, MD, MS; Mathew W. Martinez, MD; Eugene H. Chung, MD, MSc; Paul D. Thompson, MD; Aaron L. Baggish, MD

11, 11

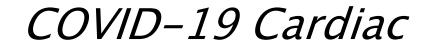
COVID-19 Cardiac



BIG	I Ų 🗫 M 🔀 🌾 🗛 N N 🚳 🕥 ₽ R 绑
9/16/2020 9:12:11 AM The Big Ten Conference Adopts Stringent Mo to Resume October 23-24, 2020	Medical Protocols; Football Season
Following cardiac evaluation, student-athletes must receive clearance from	isive cardiac testing to include labs and <mark>biomarkers, ECG, Echocardiogram and a Cardiac MRI.</mark> from a cardiologist designated by the university for the primary purpose of cardiac clearance for return to game competition is 21 days following a COVID-19 positive diagnosis.

MANDATORY SCREENING MRI!!!

11 ... : 0



LLC+ Cardiac Injury = 2 to 15%

Pericardial Injury = 0 to 40%

Isolated LGE = 0 to 46%

The "ORCCA" Registry

Outcomes Registry for Cardiac Conditions in Athletes

Aaron Baggish Nathanial Moulson Bradley Petek

Jonathan Drezner Kimberly Harmon

Members of the ORCCA Study Group:

Steering Committee:

Irfan M. Asif, MD, Aaron L. Baggish, MD, James Borchers, MD, Jonathan A. Drezner, MD, Katherine M. Edenfield, MD, Michael S. Emery, MD, MS, Kyle Goerl, MD, Brian Hainline, MD, Kimberly G. Harmon, MD, Jonathan H. Kim, MD, MSc, Stephanie Kliethermes, PhD, William E. Kraus, MD, Rachel Lampert, MD, Matthew Leiszler, MD, Benjamin D. Levine, MD, Matthew W. Martinez, MD, Nathaniel Moulson, MD, Francis G. O'Connor, MD, MPH, Manesh R. Patel, MD, Bradley J. Petek, MD, Dermot Phelan, MD, Lawrence D Rink, MD, Herman A Taylor, MD, MPH.

COVID-19 Cardiac

 $\bigcirc \bigcirc$

Circulation

ORIGINAL RESEARCH ARTICLE

SARS-CoV-2 Cardiac Involvement in Young Competitive Athletes

Nathaniel Moulson, MD'; Bradley J. PetekO, MD'; Jonathan A. Drezner, MD; Kimberly G. Harmon, MD; Stephanie A. Kliethermes(), PhD; Manesh R. Patel, MD; Aaron L. Baggish(), MD; for the Outcomes Registry for Cardiac Conditions in Athletes Investigators†

BACKGROUND: Cardiac involvement among hospitalized patients with severe coronavirus disease 2019 (COVID-19) is common and associated with adverse outcomes. This study aimed to determine the prevalence and clinical implications of COVID-19 cardiac involvement in young competitive athletes.

METHODS: In this prospective, multicenter, observational cohort study with data from 42 colleges and universities, we assessed the prevalence, clinical characteristics, and outcomes of COVID-19 cardiac involvement among collegiate athletes in the United States. Data were collected from September 1, 2020, to December 31, 2020. The primary outcome was the prevalence of definite, probable, or possible COVID-19 cardiac involvement based on imaging definitions adapted from the Updated Lake Louise Imaging Criteria. Secondary outcomes included the diagnostic yield of cardiac testing, predictors for cardiac involvement, and adverse cardiovascular events or hospitalizations.

RESULS: Among 19 378 athletes tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, 3018 (mean age, 20 years [SD, 1 year]; 32% female) tested positive and underwent cardiac evaluation. A total of 2820 athletes underwent at least 1 element of cardiac triad testing (12-lead ECG, troponin, transfroracic echocardiography) followed by cardiac magnetic at lass1 1 element of cardiac triad lasting (12-lead ECG, troponte, transfloracic achocardiography) followed by cardiac magnetic resonance imaging (CMR) if chincally indicated in contrast, primary screening CMR was performed in 198 athletas. Abnormal findings suggestive of SARS-CoV-2 cardiac involvement were detacted by ECG (21 of 2009 [0,7%]), cardiac troponin (24 of 2719 [0,9%]), and transfloracic echocardiography (24 of 2556 [0,9%]). Definite, probatile, or possible SARS-CoV-2 cardiac involvement was identified in 21 of 2018 (0,7%) athletas, including 15 of 2820 (0,5%) who underward tolically indicated CMR (n=119) and 6 of 198 (0,7%) who underward primary scenaring CMR. Accordingly, the diagnostic yield of CMR for SARS-CoV-2 cardiac involvement was: 42 times higher for a clinically indicated CMR (15 of 110 [12,9%]) wereas a primary scenaring CMR (6 of 198 [20%]). Alter duationation can card sax, productors of SARS-CoV-2 cardiac involvement fuelded cardiopulmonary symptoms (odds ratio, 31 [86% C1, 12, 77]) or at laset 1 abnormal studies to save a low or activate involvement fuelded cardiopulmonary symptoms (odds ratio, 31 [86% C1, 12, 77]) or at laset 1 abnormal interaction contrast plane interaction (odds ratio, 324) [85% C1, 132, 1052]). Fire (0.2%) athlates required hospitalization for noncardiac complications of COMD-19. During clinical surveillance (median follow-up, 113 days [interquartile range-90 146]), there was 1 (0.03%) adverse cardiac event, likely unrelated to SARS-CoV-2 infection.

CONCLUSIONS: SARS-CoV-2 infection among young competitive athletes is associated with a low prevalence of cardiac Involvement and a low risk of clinical events in short-term follow-up.

Key Wests: athletes = COMD-19 = myocarditis = return to sport = SARS-CoV-2

Editorial, see p 267

ardiac involvement associated with adverse out-19).1 Limited data exist on the prevalence and clinical comes is common among hospitalized patients relevance of cardiac involvement in nonhospitalizedwith severe coronavirus disease 2019 (COVID- and otherwise healthy-populations including young

Correspondence to: Aaron L. Baggish, MD, Cardionacular Performance-Program, Wassachusetta General Hospital, Yawkey Suite 35, 55 Pruit Street, Boston, MA 02114. Email abaggish@partners.org 'N. Moulson and ELI. Petak contributed equally.

1A complete list of the members of the Dutcomex Registry for Cardiac Conditions in Athletes Study Group is provided in the Data Supplement. Continuing medical education (CME) credit is available for this article. Go to http://crea.abajournaluorg to take the quic. The Data Supplement, potcast, and transcript are evaluable with this article at www.ahajournels.org/doi/suppl/10.1161/circulationaha.121.084824. For Sources of Funding and Disclosures, see page 265.

© 2021 American Heart Association, Inc.

Circulation is semilable at www.ahajournalu.org/journal/circ

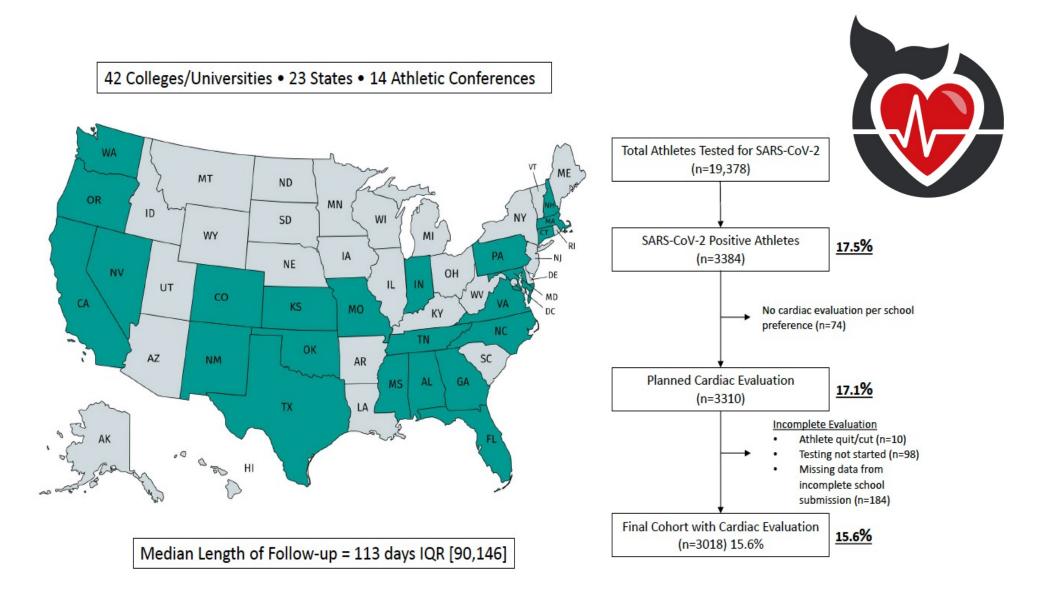
256 July 27, 2021

Circulation 2021;144:255-255. DOI: 10.1151/CIRCULATIONAHA.121.054824

BACKGROUND: Cardiac involvement among hospitalized patients with severe coronavirus disease 2019 (COVID-19) is common and associated with adverse outcomes. This study aimed to determine the prevalence and clinical implications of COVID-19 cardiac involvement in young competitive athletes.

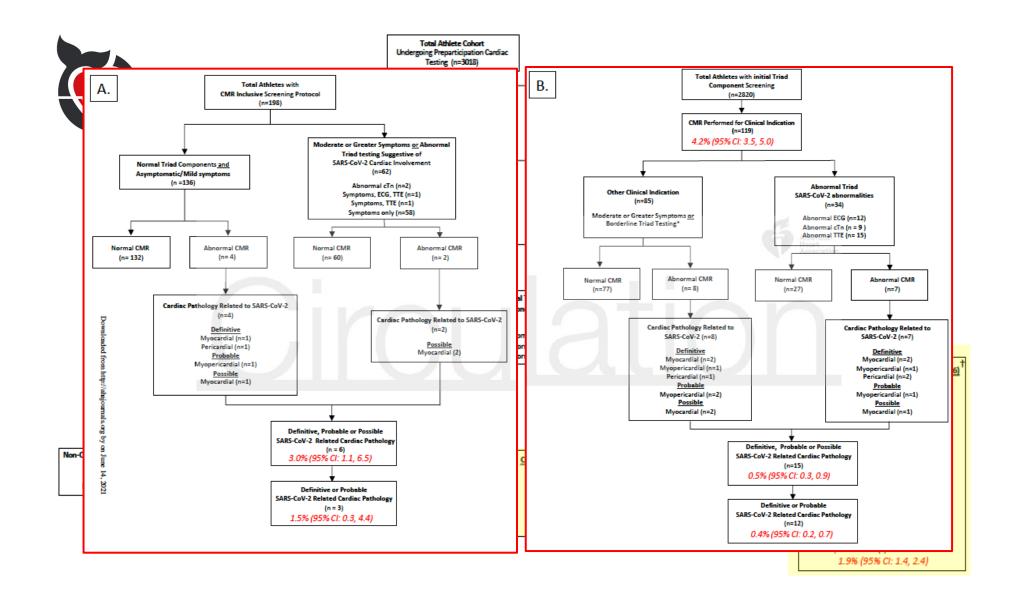
METHODS: In this prospective, multicenter, observational cohort study with data from 42 colleges and universities, we assessed the prevalence, clinical characteristics, and outcomes of COVID-19 cardiac involvement among collegiate athletes in the United States. Data were collected from September 1, 2020, to December 31, 2020. The primary outcome was the prevalence of definite, probable, or possible COVID-19 cardiac involvement based on imaging definitions adapted from the Updated Lake Louise Imaging Criteria. Secondary outcomes included the diagnostic yield of cardiac testing, predictors for cardiac involvement, and adverse cardiovascular events or hospitalizations.

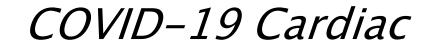
RESULTS: Among 19 378 athletes tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, 3018 (mean age, 20 years [SD, 1 year]; 32% female) tested positive and underwent cardiac evaluation. A total of 2820 athletes underwent at least 1 element of cardiac triad testing (12-lead ECG, troponin, transthoracic echocardiography) followed by cardiac magnetic resonance imaging (CMR) if clinically indicated. In contrast, primary screening CMR was performed in 198 athletes. Abnormal findings suggestive of SARS-CoV-2 cardiac involvement were detected by ECG (21 of 2999 [0.7%]), cardiac troponin (24 of 2719 [0.9%]), and transthoracic echocardiography (24 of 2556 [0.9%]). Definite, probable, or possible SARS-CoV-2 cardiac involvement was identified in 21 of 3018 (0.7%) athletes, including 15 of 2820 (0.5%) who underwent clinically indicated CMR (n=119) and 6 of 198 (3.0%) who underwent primary screening CMR. Accordingly, the diagnostic yield of CMR for SARS-CoV-2 cardiac involvement was 4.2 times higher for a clinically indicated CMR (15 of 119 [12.6%]) versus a primary screening CMR (6 of 198 [3.0%]). After adjustment for race and sex, predictors of SARS-CoV-2 cardiac involvement included cardiopulmonary symptoms (odds ratio, 3.1 [95% CI, 1.2, 7.7]) or at least 1 abnormal triad test result (odds ratio, 37.4 [95% CI, 13.3, 105.3]). Five (0.2%) athletes required hospitalization for noncardiac complications of COVID-19. During clinical surveillance (median follow-up, 113 days [interguartile range=90 146]), there was 1 (0.03%) adverse cardiac event, likely unrelated to SARS-CoV-2 infection.


CONCLUSIONS: SARS-CoV-2 infection among young competitive athletes is associated with a low prevalence of cardiac involvement and a low risk of clinical events in short-term follow-up.

Unil

UNIL | Université de Lausanne




Unil

COVID-19 Cardiac

UNIL | Université de Lausanne

The "ORCCA" Registry

Initial Conclusions

Cardiac screening unnecessary for all young competitive athletes -focus on moderate disease and symptoms on return to exercise-(Moulson et al. Circulation 2021)

MRI is not recommended as a primary screening modality

-reserve for use in patients with intermediate or greater pretest probability of disease (Petek et al. *BJSM* 2022)

Data suggest a benign clinical course for young competitive athletes with COVID-19 cardiac inflammation, long term f/u needed (Petek et al, *Circulation 2022*)

Screening will detect non-COVID cardiac issues more commonly (3:1) than true COVID cardiac involvement (Klein et al., *Heart, 2023*)

UNIL | Université de Lausanne

COVID-19 Cardiac

JAMA Cardiology | Original Investigation

Prevalence of Clinical and Subclinical Myocarditis in Competitive Athletes With Recent SARS-CoV-2 Infection Results From the Big Ten COVID-19 Cardiac Registry

Curt J. Daniels, MD; Saurabh Rajpal, MBBS, MD; Joel T. Greenshields, MS; Geoffrey L. Rosenthal, MD; Eugene H. Chung, MD; Michael Terrin, MD; Jean Jeudy, MD; Scott E. Mattson, DO; Ian H. Law, MD; James Borchers, MD; Richard Kovacs, MD; Jeffrey Kovan, DO; Sami F. Rifat, MD; Jennifer Albrecht, PhD; Ana I. Bento, PhD; Lonnie Albers, MD; David Bernhardt, MD; Carly Day, MD; Suzanne Hecht, MD; Andrew Hipskind, MD; Jeffrey Mjaanes, MD; David Olson, MD; Yvette L. Rooks, MD; Emily C. Somers, PhD; Matthew S. Tong, DO; Jeffrey Wisinski, DO; Jason Womack, MD; Carlie Esopenko, PhD; Christopher J. Kratochvil, MD; Lawrence D. Rink, MD; for the Big Ten COVID-19 Cardiac Registry Investigators

Key Points

Question What is the prevalence of myocarditis in competitive athletes after COVID-19 infection, and how would different approaches to screening affect detection?

Findings In this cohort study of 1597 US competitive collegiate athletes undergoing comprehensive cardiovascular testing, the prevalence of clinical myocarditis based on a symptom-based screening strategy was only 0.31%. Screening with cardiovascular magnetic resonance imaging increased the prevalence of clinical and subclinical myocarditis by a factor of 7.4 to 2.3%.

Meaning These cardiac magnetic resonance imaging findings provide important data on the prevalence of clinical and subclinical myocarditis in college athletes recovering from symptomatic and asymptomatic COVID-19 infections. IMPORTANCE Myocarditis is a leading cause of sudden death in competitive athletes. Myocardial inflammation is known to occur with SARS-CoV-2. Different screening approaches for detection of myocarditis have been reported. The Big Ten Conference requires comprehensive cardiac testing including cardiac magnetic resonance (CMR) imaging for all athletes with COVID-19, allowing comparison of screening approaches.

OBJECTIVE To determine the prevalence of myocarditis in athletes with COVID-19 and compare screening strategies for safe return to play.

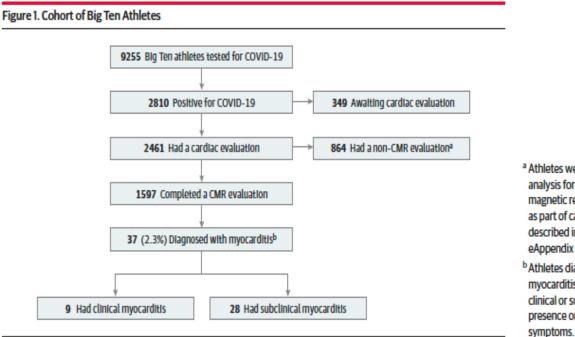
DESIGN, SETTING, AND PARTICIPANTS Big Ten COVID-19 Cardiac Registry principal investigators were surveyed for aggregate observational data from March 1, 2020, through December 15, 2020, on athletes with COVID-19. For athletes with myocarditis, presence of cardiac symptoms and details of cardiac testing were recorded. Myocarditis was categorized as clinical or subclinical based on the presence of cardiac symptoms and CMR findings. Subclinical myocarditis classified as probable or possible myocarditis based on other testing abnormalities. Myocarditis prevalence across universities was determined. The utility of different screening strategies was evaluated.

EXPOSURES SARS-CoV-2 by polymerase chain reaction testing.

MAIN OUTCOME AND MEASURE Myocarditis via cardiovascular diagnostic testing.

RESULTS Representing 13 universities, cardiovascular testing was performed in 1597 athletes (964 men [60.4%]). Thirty-seven (including 27 men) were diagnosed with COVID-19 myocarditis (overall 2.3%; range per program, 0%-7.6%); 9 had clinical myocarditis and 28 had subclinical myocarditis. If cardiac testing was based on cardiac symptoms alone, only 5 athletes would have been detected (detected prevalence, 0.31%). Cardiac magnetic resonance imaging for all athletes yielded a 7.4-fold increase in detection of myocarditis (clinical and subclinical). Follow-up CMR imaging performed in 27 (73.0%) demonstrated resolution of T2 elevation in all (100%) and late gadolinium enhancement in 11 (40.7%).

CONCLUSIONS AND RELEVANCE In this cohort study of 1597 US competitive athletes with CMR screening after COVID-19 infection, 37 athletes (2.3%) were diagnosed with clinical and subclinical myocarditis. Variability was observed in prevalence across universities, and testing protocols were closely tied to the detection of myocarditis. Variable ascertainment and unknown implications of CMR findings underscore the need for standardized timing and interpretation of cardiac testing. These unique CMR imaging data provide a more complete understanding of the prevalence of clinical and subclinical myocarditis in college athletes after COVID-19 infection. The role of CMR in routine screening for athletes safe return to play should be explored further.



Indiana University Michigan State University Northwestern University **Ohio State University** Penn State University Purdue University **Rutgers University** University of Iowa University of Maryland University of Michigan University of Minnesota University of Nebraska University of Wisconsin

Myocarditis Diagnosis Definitions

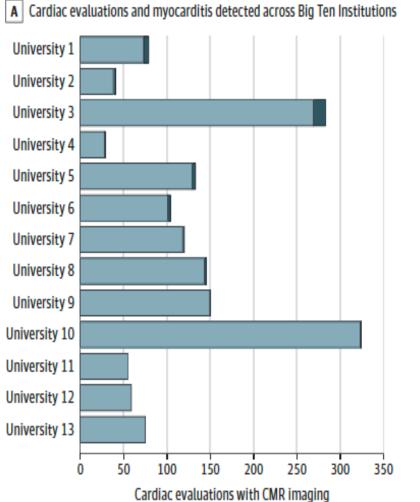
Myocarditis diagnoses were divided into 3 categories: (1) clinical myocarditis (cardiac symptoms present before or at the time of cardiac testing), (2) subclinical probable myocarditis (no cardiac symptoms) with abnormal ECG, echocardiogram, or troponin findings consistent with myocarditis, and (3) subclinical possible myocarditis (no cardiac symptoms) without abnormal ECG, echocardiogram, or troponin findings and only abnormal CMR imaging findings.

^a Athletes were excluded from analysis for not completing cardiac magnetic resonance (CMR) imaging as part of cardiac evaluation and described in more detail in eAppendix 2 in Supplement 1.
^b Athletes diagnosed with myocarditis were categorized as clinical or subclinical based on presence or absence of cardiac

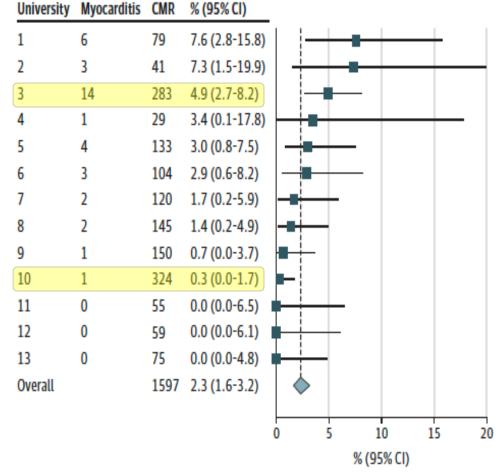
Unil

COVID-19 Cardiac

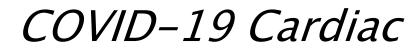
UNIL | Université de Lausanne


	Cardiac symp yocarditis Chest pain, palpitations Chest pain	Athlete	Cardiac symptoms	Troponin level	ECG findings	ECHO findings	Time from COVID-19 diagnosis, d	CMR imaging findings	Follow-up CMR imaging time and findings
	Chest pain, d Chest pain, d	Clinical m	yocarditis						
	Dyspnea Chest pain, palpitations Chest pain	1	Chest pain, palpitations	Elevated	Abnormal	Abnormal	46	↑T2, LGE	12 wk; Residual LGE
S	ubclini	cal probal	ole myocarditis						
1	0	None		Elevated	NCM	NCM	30	↑T1,↑ T2, LGE	Pending ^c
1	1	None		Elevated	NCM	NCM	14	↑ T2, LGE	Pending ^c
1	2	None		Elevated	NCM	NCM	14	↑T2, LGE	12 wk; Residual LGE
1	3	None		Elevated	NCM	NCM	11	↑T2, LGE	4 wk; Residual LGE
1	4	None		Normal	Abnormal	NCM	13	↑T1,↑ T2, LGE	Pending ^c
1	5	None		Normal	NCM	Abnormal	42	↓LVEF, LGE	13 wk; Residual LGE
1	6	None		Normal	NCM	Abnormal	12	↓LVEF, LGE	4 wk; Resolved ^b
1	7	None		Normal	NCM	Abnormal	25	↑T1, ↑T2, LGE	Pending ^c
1	None								Pending ^c
atic	None None None None None	Normal Normal Normal Normal Normal Normal iovascular magneti	NCM NCM NCM NCM NCM NCM NCM NCM NCM NCM NCM NCM cresonance;	20 177 48 177 14 177 11 177 19 177	2, LGE Pendii 1, 172, LGE Pendii 2, LGE 12 wk	; Resolved [®] ng ^e ; Residual LGE ; Resolved [®]	University 1	0 0	
lectr	ocardiogram; E	CHO, echocardlog	ram: LGE, late gadolinium	of CMR Imaging (subd	inical probable myocarditis) and	those with only CMR		0 10 20 30	40 50 60 70 COVID-19 diagnosis and CMR, d

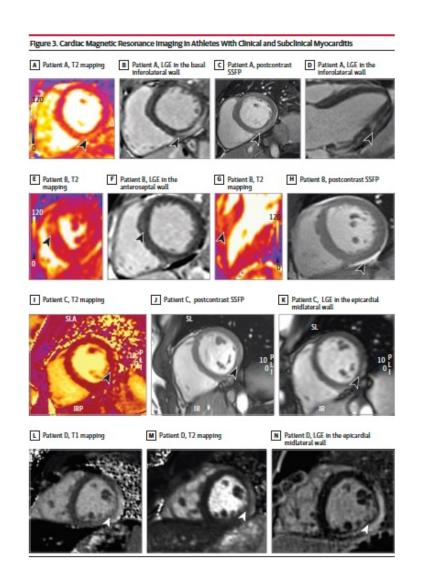
11...:0


UNIL | Université de Lausanne

COVID-19 Cardiac

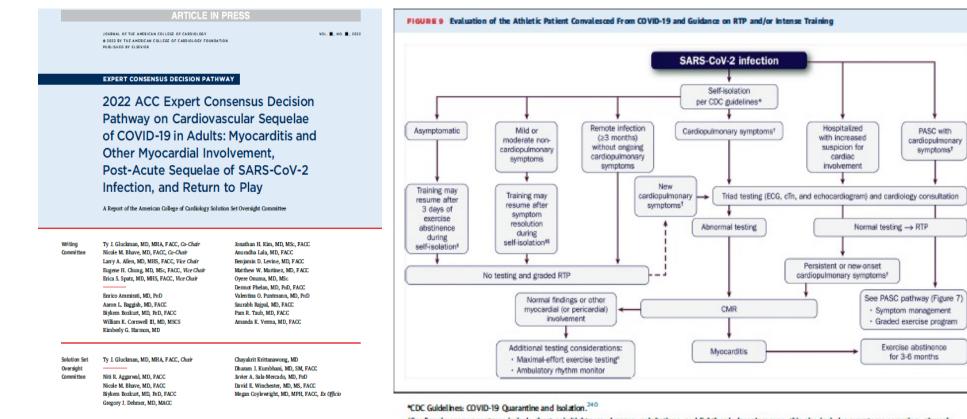


B Myocarditis cases in those with CMR evaluations



UNIL | Université de Lausanne

?



Is CMR Screening Ready for Prime Time?

Characteristics of a "Good" Screening Test Inexpensive Lasy to administer Minimal discomfort Reliable (consistent) Valid (distinguishes dx from non-dx) Predictive of Outcomes ຸ Sources of Unreliability Biological variability ? Instrument variability Intra-observer variability ? Inter-observer variability

COVID-19 Cardiac

#Cardiopulmonary symptoms include chest pain/tightness, dyspnea, palpitations, and lightheadedness/syncope; this also includes symptoms occurring =1 week following COVID-19 mRNA vaccination.

#Strategies to minimize transmission of SARS-CoV-2 to other athletes 3-10 days following a positive COVID-19 test include 1) training in isolation, 2) participating in socially-distanced outdoor training, 3) training with a face mask in a well-ventilated facility with appropriate social distancing, and 4) participating in group training after a single negative NAAT (eq, RT-PCR test) or 2 negative rapid antigen tests 24-48 hours apart.

§Excludes prolonged, isolated anosmia/ageusia, which should not delay return to training.

[Maximal-effort exercise testing should be deferred until myocarditis has been excluded.

CDC – Centers for Disease Control and Prevention; CMR – cardiac magnetic resonance imaging; COVID-19 – novel coronavirus disease 2019, cTn – cardiac troponin; ECG – electrocardiogram; NAAT – nucleic add amplification test, PASC – post-acute sequelae of SARS-CoV-2 infection; RTP – return to play; RT-PCR – reverse transcription polymerase chain reaction, SARS-CoV-2 – severe acute respiratory syndrome coronavirus 2.

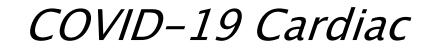
This document was approved by the American College of Catalityley Clinical Foldy Agroved Committee in February 2022. The American College of Caclifology expectation that this common the coll on Software Catalitana T. Hawe M, Mahne L, Oung EH, Spatz ES, Ammirati R, Bagdada, Beckards, Commer MWHIT, Hermen KK, Xiller H, Lah A, Levise ID, Macdinez-MW, Commo G, Palada T, Pantonasa W, Dajad S, Tabilty A, Wann AK. 2022 W, Cangert Consume Oxfording Database and American College of Catalichey Software Set Conservation involvement, part access and acceleration pathware an oracle and and main to glasg a separat of the American College of Catalichey Software Set Conservation Construct Labor Of Catelol 2022 W2124 (Cateloca) and and an to glasg a separat of the American College of Catelology Software Set Conservation Construct Labor Of Catelol 2022 W2124 (Cateloca) and and an to glasg a separat of the American College of Catelology Software Set Conservation Construct Labor Of Catelol 2022 W2124 (Cateloca) and and an United Set Catelocal Set Catelology Software Set Catelology Software

Copies: This document is available on the website of the American College of Cardiology (www.acc.org). For copies of this document, please contac Elsavier Inc, Reprint Department via fax (22) 632 (920 or e-mail (optimize)elsavier.com).

Pemission: Multiple copies, molification, alteration, enhancement, and/or distibution of this document are not permitted without the express permission of the American Collage of Cardiology. Requests may be completed enline via the Elsevier size (mps://www.slawier.com/khout/policies/ covorlad/terminission).

ISSN 0735-1097/\$36.00

Unil



Life After COVID??.....You Betcha

11...:0

PROTOCOL

Rationale and Design of the ORCCA (Outcomes Registry for Cardiac Conditions in Athletes) Study

Nathaniel Moulson, MD*; Bradley J. Petek ⁽⁰⁾, MD*; Michael J. Ackerman ⁽⁰⁾, MD, PhD; Timothy W. Churchill ⁽⁰⁾, MD; Sharlene M. Day ⁽⁰⁾, MD; Jonathan H. Kim ⁽⁰⁾, MD, MSc; Stephanie A. Kilethermes ⁽⁰⁾, PhD; Rachel Lampert ⁽⁰⁾, MD; Benjamin D. Levine ⁽⁰⁾, MD; Matthew W. Martinez, MD; Manesh R. Patel ⁽⁰⁾, MD; Dermot Phelan, MD; Kimberly G. Harmon ⁽⁰⁾, MD; Aaron L. Baggish ⁽⁰⁾, MD; Jonathan A. Drezner ⁽⁰⁾, MD

BACKGROUND: Clinical practice recommendations for participation in sports and exercise among young competitive athletes with cardiovascular conditions at risk for sudden death are based largely on expert consensus with a paucity of prospective outcomes data. Recent guidelines have taken a more permissive approach, using a shared decision-making model. However, the impact and outcomes of this strategy remain unknown.

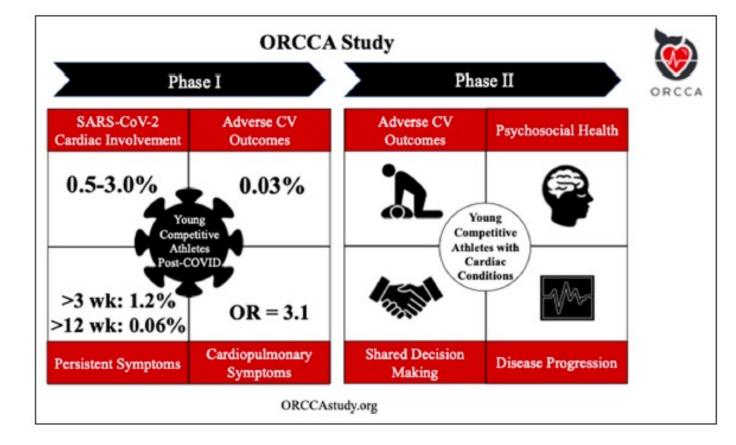
METHODS: The ORCCA (Outcomes Registry for Cardiac Conditions in Athletes) study is a prospective, multicenter, longitudinal, observational cohort study designed to monitor clinical outcomes in athletes with potentially life-threatening cardiovascular conditions. The study will assess sports eligibility decision-making, exercise habits, psychosocial well-being, and long-term cardiovascular outcomes among young competitive athletes with cardiovascular conditions. Competitive athletes aged 18 to <35 years diagnosed with a confirmed cardiovascular condition or borderline finding with potential increased risk of major adverse cardiovascular events are eligible. Outcomes will be monitored for an initial 5-year follow-up period or until age 35, and metrics of psychosocial well-being and composite adverse cardiovascular events including arrhythmias, sudden cardiac discontinue competitive sports participation.

CONCLUSIONS: The ORCCA study aims to assess the process and results of return to sport decision-making and to monitor major adverse cardiovascular events, exercise habits, and the psychosocial well-being among young competitive athletes diagnosed with confirmed cardiovascular conditions or borderline findings with potential increased risk of major adverse cardiovascular events. The results of this work will generate an evidence base to inform future quidelines.

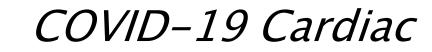
Key Words: athletes a cardiovascular disease a shared decision making a sudden cardiac arrest

The field of sports cardiology developed to provide care for athletic individuals with confirmed or suspected cardiovascular conditions across the age spectrum and at all levels of performance.¹⁻³ Clinical practice recommendations for sports and exercise eligibility in athletes with cardiovascular conditions have been developed by major societies, including the American Heart Association, American College of Cardiology, and the European Society of Cardiology.^{2,3} Although these recommendations, and subsequently clinical practice, have evolved with time to reflect more contemporary management approaches in situations of clinical uncertainty (le, shared decision-making), the evidence base underpinning these recommendations

Correspondence to: Jonathan A. Drezner, MD, UW Medicine Center for Sports Cardiology, Department of Family Medicine, University of Washington, Box 354060, Seattle, WA 98196. Email: jdrezner@uw.edu


"N. Moulson and B. J. Petek contributed equally and are co-first authors.

This article was sent to Mahasin S. Mujahid, PhD, MS, FAHA, Associate Editor, for review by expert referees, editorial decision, and final disposition. For Sources of Funding and Disclosures, see page 8.


© 2023 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley, This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

JAHA is available at: www.ahajournals.org/journal/jaha

11 ... : 0

ORCCA

OUTCOMES REGISTRY FOR CARDIAC CONDITIONS IN ATHLETES

Step 1

Submit your details

Step 3

Complete Informed Consent and HIPAA authorization forms Step 2

You'll be contacted by the ORCCA study team

Step 4

Enroll in the study and complete questionnaires

ORCCASTUDY.ORG

Unil

