

Sports Hematology Issues

Amy P. Powell, MD, FACP, FAMSSM Team Physician, University of Utah Professor (Clinical), Department of Orthopaedics Adjunct Professor, Department of Medicine

Learning objectives

- Describe the epidemiology, clinical presentation, diagnosis, and management of :
 - Physiologic anemia
 - Iron Deficiency
 - Foot strike hemolysis
 - Sickle cell trait/sickle cell anemia

Question:

• 21 yo female track athlete presents for consultation after screening labs showed a hematocrit of 32. The most common cause of low hematocrit in athletes is:

- a) iron deficiency anemia
- b) dilutional pseudoanemia
- c) sickle cell trait
- d) laboratory error

Question:

• 21 yo female track athlete presents for consultation after screening labs showed a hematocrit of 32. The most common cause of low hematocrit in athletes is:

- a) iron deficiency anemia
- b) dilutional pseudoanemia
- c) sickle cell trait
- d) laboratory error

Microsoft clipart

Dilutional Pseudoanemia

- Most common cause of "anemia" in athletes ¹
- Hemoglobin concentration is lower than the usually defined limits of normal ¹
- Red cell mass is actually unchanged or even expanded
 - Not decreased as it is in most true anemias ²⁻⁴

- 1. Shaskey DJ. Sports Med 2000;29(1):27-38
- 2. Wells CL. Eur J Appl Physiol 1982;48:41-9
- 3. Dill DB. *Med Sci Sports* 1974;6:1-7
- 4. Weight LM. Eur J Appl Physiol 1991;62:358-62

Dilutional Pseudoanemia

- Plasma volume expansion has a larger percentage increase compared to red cell mass expansion ¹
- Plasma volume expansion may be 6-25% greater than baseline ²
 - Pathophysiology poorly understood
 - Occurs within 3 hours following acute exercise
 - Degree of expansion correlates with amount and intensity of exercise ³

- 1. Shaskey DJ. *Sports Med* 2000;29(1):27-38
- 2. Balaban EP. *Clin Sports Med* 1992;11(2):313-25
- 3. Eichner ER. *Physician Sports Med* 1986;14(9):122-30

Dilutional Pseudoanemia

- Favorable adaptation to exercise ¹
 - Decreased viscosity allows for greater cardiac output
 - Greater overall oxygen delivery despite lower hemoglobin concentration
- Causes a mild anemia at best
- Should not affect MCV, Ferritin, RDW, or haptoglobin
- No associated symptoms
- Should normalize in 3-5 days if training stops

Microsoft clipart

1. Pate R. Physician Sports Med 1983;11:115

Case 1.

- 19 yo female nordic skier presents with fatigue, impared ability to train.
- No change in training volume/intensity
- Lives at 4500 ft. Trains at 7800 ft. No change.
- Normal menstrual cycles
- PE: WNL
- Labs: Hb 13.8, Hct 39, ferritin 19
- What do you do?

Iron Deficiency

- Iron plays a key role in sports performance
- Iron deficiency is most prevalent nutritional deficiency in the US
 - 20% menstruating females
 - Iron deficiency with anemia prevalent in 1-3% of population
 - Up to 82% female athletes have ferritin <25 μ/L^{1}

Iron Deficiency in Athletes

- Where is the iron loss?
 - Nutritional Deficits
 - Blood Loss- menstrual, GI, GU
 - Iron regulatory hormones
 - Malabsorption

Celiac disease and anemia

- Multiple mechanisms
 - Reduced absorption of supplemental iron
 - Malabsorption of B12/folic acid
 - Component of anemia of chronic disease
 - GI blood loss through intestinal inflammatory changes- unclear

Hepcidin (AKA LEAP-1 or HAMP)

- Key hormonal negative regulator of intestinal iron absorption
- Increases with inflammatory stimuli (cytokine IL-6) or elevated iron (acute phase reactant)
- Peaks 3-6 hours after exercise
 - Increased in low energy availability
- Reduces intestinal iron absorption
- Hepcidin levels are lower in the morning, increase throughout the day
 - Consider timing of meals

Iron Deficiency in Athletes

- Laboratory evaluation:
 - CBC
 - Serum Iron, TIBC, and Ferritin
- Microcytic anemia with low ferritin (<10 μ/L) and low serum iron
 - Elevated TIBC
 - Low iron saturation (Fe/TIBC <15%)
- Nonathletic source must be adequately ruled out

Microsoft clipart

Sim M, et al. Iron considerations for the athlete: a narrative review. Eur J Appl Physiol. 2019

Iron-Deficiency Anemia

- Treatment
 - Adequate dietary intake in foods with Fe
 - Recommended Dietary Allowance
 - Women 14-18: 15 mg/day
 - Women 19-50: 18 mg/day
 - Consumption of foods that enhance Fe absorption
 - Foods with ascorbic acid (eg. orange juice)
 - Fe supplementation
 - Ferrous sulfate, ferrous bisglycinate
 - 6-12 months to replete stores
- Expect to see improved Hgb/Hct within 12 weeks of tx

McClung JP. Iron status and the female athlete. *Journal of Trace Elements in Medicine and Biology*, Vol 26, Issues 2-3, June 2012, 124-6 Robertson JA, Ray TR. Hematologic Problems in Athletes. Netter's Sports Medicine. 2010. Chpt 26. 209-211 Shaskey DJ, Green GA. Sports Haematology. *Sports Med* 2000;29(1):27-38.

Non-anemic Iron Deficiency

- Controversial- ferritin low, Hgb/HCT normal
- Rat model- may lead to exercise dysfunction via muscle enzymatic disruption¹
- Impact on sports performance is controversial
 - Early studies show no correlation between IDNA and performance
 - Some research suggests impact on endurance activities in those with IDNA
 - Early management prevents development of IDA
- 1. Finch CA. J Clin Invest 1976;58:447-53
- 2. Newhouse IJ. MSSE 1989;21:263-8
- 3. Celsing F. *MSSE* 1986;18:156-61
- 4. Matter M. *Clin Sci* 1987;72:415-22
- 5. Dellavalle DM, Haas JD. Med Sci Sports Exerc. 2012 Aug;44(8):1552-9.6.
- 6. Dellavalle DM, Haas JD. Med Sci Sports Exerc. 2013 Nov 5. [Epub ahead of print]

Serum Supplementation Plan Ferritin (ferrous sulfate)		Supplementation Plan (ferrous bisglycinate)	
<12 ug/L	Supplement with: • 100-150 mg/day of elemental iron (ex: 500-750mg/day of ferrous sulfate)	Supplement with: • 50 mg/day of elemental iron	
	Continue to reassess every 12 weeks (iron deficient with or without anemia).	Continue to reassess every 12 weeks (iron deficient with or without anemia).	
12-20 ug/L	Supplement with: • 65-130 mg/day of elemental iron (325- 650 mg/day ferrous sulfate)	Supplement with: • 25-50 mg/day of elemental iron	
	Continue to reassess every 12 weeks (iron deficient with or without anemia)	Continue to reassess every 12 weeks (iron deficient with or without anemia).	
21-35 ug/L Supplement with: • 25-65 mg/day of elemental iron (125-325 mg/day ferrous sulfate)		Supplement with: • 25 mg/day of elemental iron	
	Continue to reassess every 12 weeks (iron deficient with or without anemia).	Continue to reassess every 12 weeks (iron deficient with or without anemia).	
>35 ug/L ^{4,5,7}	 Previously Deficient: Maintain current dose until 3 months of normal tests (>35 ug/L) 	 Previously Deficient: Maintain current dose until 3 months of normal tests (>35 ug/L) 	
	Serum Ferritin <12 ug/L 12-20 ug/L 21-35 ug/L >35 ug/L ^{4,5,7}	Serum FerritinSupplementation Plan (ferrous sulfate)<12 ug/LSupplement with: • 100-150 mg/day of elementaliron (ex: 500-750mg/day of ferrous sulfate)<12 ug/LContinue to reassess every 12 weeks (iron deficient with or without anemia).12-20 ug/LSupplement with: • 65-130 mg/day of elementaliron (325- 650 mg/day ferrous sulfate)Continue to reassess every 12 weeks (iron deficient with or without anemia).Supplement with: • 65-130 mg/day of elementaliron (325- 650 mg/day ferrous sulfate)Continue to reassess every 12 weeks (iron deficient with or without anemia)Supplement with: • 25-65 mg/day of elementaliron (125-325 mg/day ferrous sulfate)Continue to reassess every 12 weeks (iron deficient with or without anemia).Supplement with: • 25-65 mg/day of elementaliron (125-325 mg/day ferrous sulfate)Supplement with: • 25-65 mg/day of elementaliron (125-325 mg/day ferrous sulfate)Supplement with: • 25-65 mg/day of elementaliron (125-325 · mg/day ferrous sulfate)Supplement with: • 25-65 mg/day of elementaliron (125-325 · mg/day ferrous sulfate)Supplement with or without anemia).Supplement with: • 25-65 mg/day of elementaliron (125-325 · mg/day ferrous sulfate)<	

Case 1.

- 19 yo female nordic skier presents with fatigue, impared ability to train.
- No change in training volume/intensity
- Lives at 4500 ft. Trains at 7800 ft. No change.
- Normal menstrual cycles
- PE: WNL
- Labs: Hb 13.8, Hct 39, ferritin 19
- What do you do?

Patient-oriented approach

- With symptoms, evaluate:
 - CBC (MCV- low)
 - Ferritin- low
 - Serum Iron (low) and TIBC (high)
 - Consider hemoglobin electrophoresis to rule out thalassemia or sickle cell disease
 - If iron deficiency found, rule out GI or GU blood loss before supplementation

Shaskey DJ. Sports Med 2000;29(1):27-38

- Described in 1881 in a soldier who had repeated attacks of hemoglobinuria after marching ¹
- Intravascular hemolysis linked to mechanical trauma ("footstrike hemolysis")²
- Elite endurance runners most susceptible, but has been described in swimmers, triathletes, and aerobic dancers ³⁻⁵

- 1. Fleischer R. Berl Klin Wochenschr 1881;18:691
- 2. Shaskey DJ. Sports Med 2000;29(1):27-38
- 3. O' Toole ML. *MSSE* 1988;20:272-5
- 4. Selby BG. Am J Med 1986;81:791-4
- 5. Schwellnus MP. Physician Sports Med 1989;17(8):55-67

- Anemia is macrocytic with increased reticulocyte count
 - Selective destruction of older, smaller RBCs
- Hemoglobinuria may be present
- If hemolysis is suspected, labs should be obtained within hours of a workout
 - Serum haptoglobin will be reduced
 - Scavenger for free iron- binds hemoglobin
 - Circulating haptoglobin is used faster than production

Shaskey DJ. Sports Med 2000;29(1):27-38

 Clinically significant hemolysis resulting in hemoglobinuria and anemia is rare¹

- Hemolysis significant to cause anemia should prompt work-up to exclude inherited membrane defects
 - Hereditary spherocytosis
 - Paroxysmal nocturnal hemoglobinuria ¹

1. Balaban EP. Clin Sports Med 1992;11(2):313-25

Sports Related Anemias

Туре	Frequency	MCV	Haptoglobin	Ferritin
Dilutional Pseudoanemia	Common	Normal	Normal	Normal
Iron Deficiency	Common	Low	Normal	Low
Athletic Hemolysis	Rare	High	Low	Normal

Sickle cell

Definition

Sickle Cell **Disease**:

Genetic hemoglobinopathy

- Results in deformation, increased rigidity, and destruction of RBCs
- Vasoocclusive and pro-inflammatory disease process
- Chronic multi-organ system disease
- Severe morbidity and mortality

http://UpToDateonline.com

Microsoft clipart

Madigan and Malik, Expert Rev in Mol Med 8: (9) 1-18, 2006

Sickle Cell TRAIT

• Sickle Cell **Trait**:

- Controversial
- Usually asymptomatic and without anemia
- Pathology usually limited to renal and splenic vascular beds

Sickle Cell Mutation:

- β-globin gene (chromosome 11q) mutation
 - $\alpha_2\beta_2 = normal hemoglobin$
 - $\alpha_2 \beta S$ = heterozygote = Sickle trait
 - $\alpha_2 S_2$ = homozygous recessive = Sickle cell disease
- Autosomal recessive genetic disease
 - Mutations represent different regional genetic characteristics
 - Severity of STC mutation is variable and may confer different risk to an individual athlete

Epidemiology

Worldwide:

- Areas of Prevalence
 - Sub-Saharan Africa
 - SCT frequency 10-40%
 - Highest rates in Ghana,
 - Nigeria, Uganda
 - SCD frequence </= 2%</p>

Microsoft clipart

USA:

- Sickle cell trait = 2.5 3 million (1 in 12) African Americans
- Sickle cell disease = 72,000 (1/500 African American births)

Clinical Presentation

Sickle Cell Trait:

Increased risk of:

- UTI in women
- Hematuria (4X risk)
- Hyposthenuria
- Splenic sequestration / infarction at high altitude (>10,000 ft)
- Exertional Heat Illness / Sudden Death (37 X increased risk in DI football players)

Sickle Cell Trait in Military/Sport

- 1970 Four Deaths in Military Recruits
 - 4 more with exertional rhabdomyolsis
- 1974 Colorado football player died
- 1970-1985 Several collapses and deaths in military
- Air Force temporarily banned SCT applicants

Microsoft clipart

Pathophysiology

- Oxygen displaced from HbS:
 - Strenuous exercise
 - Lactic acidosis
 - Increased tissue temperatures
 - Dehydration
 - Decreased blood volume secondary to muscle demands
- Sickling leads to vascular obstruction -> ischemic rhabdomyolysis

NEJM 1985;312(25):1623-31 Curr Sports Med Rep 2007;6(3)134-135 Am J Hematol 2000;63:205-11

- Exertional collapse associated with SCT
 - Risk factors
 - Clinical features
 - management

- Risk factors:
 - Heat
 - Altitude
 - Early season (deconditioned athletes)
 - High intensity training
 - Repeated sprints
 - Fast tempo multi-station drills
 - Near maximal exertion

- Clinical features:
 - Athlete has muscle pain and weakness
 - Muscles may look/feel normal
 - Differs from cramps (no locked up muscles)
 - Athlete slumps to ground but usually can communicate
 - Differs from cardiac arrest
 - Tachypnea is present secondary to lactic acidosis, but athlete moves air well
 - Differs from acute asthma attack
 - Rectal temp <103
 - Differs from heat stroke

- Management
 - ABCs
 - Cool if appropriate
 - Oxygen
 - IV access
 - Attach AED
 - ED transport if not rapidly improving

NCAA Sickle Cell testing

- Conducted on all US newborns
- Required for all NCAA athletes now (or sign a waiver)
 - All athletes allowed to compete

Precautions for SCT athletes

- "Universal Precautions"
- Acclimatize gradually
- Monitor hydration
 - Avoid diuretics
 - Consider testing urine concentrating ability in first AM void
- Modify workouts, condition gradually
 - Avoid sprints or repeats over 500m, and timed runs over ¹/₂ mile

Precautions for SCT athletes

- No participation during illness
- Avoid or acclimatize to altitude
- If cramping, heat illness or unusual symptoms
 - IV fluids, supplemental O₂, cooling
 - If no improvement, transport to ED

Precautions and Screening

• Does it help?

- No prospective data in sports
- After military implemented protocols, number of cases reduced
 - 1982-1986 compared with 1977-1981
 - Rate dropped from 32 to 14 per 100,000

Semin Hematol 1994;31(3):181-225

Summary

- Describe the epidemiology, clinical presentation, diagnosis, and management of :
 - Physiologic anemia
 - Iron Deficiency
 - Foot strike hemolysis
 - Sickle cell trait/sickle cell anemia

Thank you

