
How to Voice Enable your PowerApps Canvas App

Step 1: Pre-Requisites

Before starting, you'll need an Azure subscription, Azure Speech Services, PowerAutomate,

Power Apps Canvas App, CloudConvert, and an OpenAI API key that can access the Davinci-003

model.

Ensure you have all necessary permissions and access to create resources and configure

services in Azure.

Step 2: Create a PowerApps Canvas App

1. Create a new app and select the Phone template.

2. Add a Microphone control to the screen.

3. In the OnStop property of the Microphone control, add the following code:

ClearCollect(RecordCollection,Recorder.Audio);

Set(searchText, JSON(RecordCollection,JSONFormat.IncludeBinaryData));

Set(result,

AudioText2.Run(JSON(First(RecordCollection),JSONFormat.IncludeBinaryData)).result);

Set(searchText, Left(result, Len(result)));

4. Add a Label control to the screen and set its Text property to:

 Text(SearchText)

5. Add a Send button to the screen.

Step 3: Set up Azure Speech Services

1. Create a new Speech Service resource in Azure.

2. Obtain the Endpoint URL and Subscription Key for the Speech Service resource and keep

them handy.

Step 4: Create a Power Automate Flow

1. Create a new Flow in Power Automate from a PowerApps Trigger.

2. Add a Compose Inputs and a Parse JSON with the Outputs from Compose

3. Add a CloudConvert Connector and add Canvas App and use in the Flow and it will

convert the audio format from webm to wav.

4. Add a Cognitive Services action to the Flow and configure it to use the Speech Service

resource you created in Azure.

5. Create a Parse JSON to take the Results from Azure Cognitive Services Speech to Text.

6. Create a Compose 2 to parse the DISPLAY TEXT property from the BODY of the JSON.

7. Select RESPOND TO A POWERAPP OR FLOW, and Select TEXT, name the Result and Select

Outputs from the Compose 2.

6. Return the results in the form of TEXT back to the Canvas App’s Label Control.

Step 5: Set up OpenAI ChatGPT Davinci-003

1. Create an OpenAI API key that can access the Davinci-003 model.

2. Use the key to call the OpenAI GPT-3 API.

Step 6: Add the Chatbot Interface to Your PowerApps Canvas App

1. You should have a Label control on your screen to capture user Voice input.

2. Add a Gallery control to the screen to display the chatbot responses.

3. In the OnSelect property of the Send button, add the following code:

ClearCollect(varMyColl, ChatGPT.Completions({'Content-

Type':"application/JSON",model:"text-davinci-

003",prompt:Label2.Text,max_tokens:2000,temperature:0,top_p:1,n:1,stream: false

,stop:"\n"}));

Step 7: Test and Deploy Your Voice-Enabled PowerApps Canvas App

1. Test the app by speaking into the Microphone control and checking if the recognized

text appears in the Label control.

2. Test the chatbot by Sending the results from the Label control to check if the chatbot's

responses appear in the Gallery control.

3. Deploy the app to your organization's environment and make it available to end-users.

Note: Don't forget to replace the <YOURFLOW> and <YOURGALLERY> placeholders with the

actual names of your Flow and Gallery controls, respectively. Also, ensure that you have the

correct input/output parameters set up for your Flow and OpenAI GPT-3 API.

