

DATABASE ENGINEERING

DATABASE ENGINEERING

LECTURE NOTES

Prepared by

Dr. Subasish Mohapatra

Department of Computer Science and Application

College of Engineering and Technology, Bhubaneswar

Biju Patnaik University of Technology, Odisha

http://www.cet.edu.in/

SYLLABUS

Course Code: PCCS4204 Subject Name: DataBase Engineering Credit:4

Module1: (12 Hrs)

Introduction to database Systems, Basic concepts &Definitions, Data Dictionary, DBA, File-oriented

system vs. Database System, Database Language.

Database System Architecture-Schemas, Sub Schemas & Instances, 3-level database architecture, Data

Abstraction, Data Independence, Mappings, Structure, Components & functions of DBMS, Data

models, Mapping E-R model to Relational, Network and Object Oriented Data models, types of

Database systems,

Storage Strategies: Detailed Storage Architecture, Storing Data, Magnetic Disk, RAID, Other Disks,

Magnetic Tape, Storage Access, File & Record Organization, File Organizations & Indexes, Order

Indices, B+ Tree Index Files, Hashing

Module2: (16 Hrs)

Relational Algebra, Tuple & Domain Relational Calculus, Relational Query Languages: SQL and QBE.

Database Design :-Database development life cycle(DDLC),Automated design tools, Functional

dependency and Decomposition, Dependency Preservation & lossless Design, Normalization, Normal

forms:1NF, 2NF,3NF,and BCNF, Multi-valued Dependencies, 4NF & 5NF.

Query processing and optimization: Evaluation of Relational Algebra Expressions, Query optimization.

Module3: (12 Hrs)

Transaction processing and concurrency control: Transaction concepts, concurrency control, locking and

Timestamp methods for concurrency control.

Database Recovery System: Types of Data Base failure & Types of Database Recovery, Recovery

techniques

Advanced topics: Object-Oriented & Object – Relational Database, Parallel & Distributed Database,

Introduction to Data warehousing & Data Mining

Text Books:

1. Database System Concepts by Sudarshan, Korth (McGraw-Hill Education)

2. Fundamentals of Database System By Elmasari &Navathe- Pearson Education

References Books:

(1) An introduction to Database System – Bipin Desai, Galgotia Publications

(2) Database System: concept, Design & Application by S.K.Singh (Pearson Education)

(3) Database management system by leon &leon (Vikas publishing House).

(4) Database Modeling and Design: Logical Design by Toby J. Teorey, Sam S. Lightstone, and Tom

Nadeau, “”, 4th Edition, 2005, Elsevier India Publications, New Delhi

(5) Fundamentals of Database Management System – Gillenson, Wiley India

CONTENTS

LECTURE-1: Introduction to Data

LECTURE-2: DBMS

LECTURE-3: 3 level Architecture of DBMS

LECTURE-4: Elements of DBMS

LECTURE-5: ER-MODEL

LECTURE-6: ER-DIAGRAM:

LECTURE-7: Advanced ER-Diagram:

LECTURE-8: Conversion of ER-Diagram to Relational Database

LECTURE-9: Record Based Logical Model

LECTURE-10: RELATIONAL MODEL

LECTURE-11: CONSTRAINTS

LECTURE-12: FILE ORGANISATION

LECTURE-13: INDEX

LECTURE-14: Clustering Index

LECTURE-15: B+ Tree Index

LECTURE-16: Hash File Organization

LECTURE-17: Query Processing

LECTURE-18: Evaluation of Expressions

LECTURE-19 Relational Algebra

LECTURE-20 Additional Operations

LECTURE-21 Tuple Relational Calculus

LECTURE-22 Structured Query Language (SQL)

LECTURE-23 Nested Sub queries

LECTURE-24 Integrity Constraints

LECTURE-25 Query by Example (QBE)

LECTURE-26 Relational Database Design

LECTURE-27 Closure of a set of Functional Dependencies

LECTURE-28 Loss less Decomposition

LECTURE-29 Normalization

LECTURE-30 Boyce-Code Normal Form (BCNF)

LECTURE-31 Query Processing

LECTURE-32 Query Optimization

LECTURE-33 Transaction

LECTURE-34 Problems due to locking

LECTURE-35 Multiversion Technique Based on Timestamp Ordering

LECTURE-36 Serializability

LECTURE-37 Object Oriented Databases

LECTURE-38 Parallel Database

Module-1:

LECTURE-1: Introduction to Data

Introduction:

In computerized information system data are the basic resource of the organization. So, proper

organization and management for data is required for organization to run smoothly. Database

management system deals the knowledge of how data stored and managed on a computerized

information system. In any organization, it requires accurate and reliable data for better decision

making, ensuring privacy of data and controlling data efficiently.

The examples include deposit and/or withdrawal from a bank, hotel, airline or railway reservation,

purchase items from supermarkets in all cases, a database is accessed.

What is data?

Data are the known facts or figures that have implicit meaning. It can also be defined as it is the

representation of facts, concepts or instructions in a formal manner, which is suitable for

understanding and processing. Data can be represented in alphabets (A-Z, a-z), digits (0-9) and

using special characters (+,-.#,$, etc)

e.g: 25, “ajit” etc.

Information:

Information is the processed data on which decisions and actions are based. Information can be

defined as the organized and classified data to provide meaningful values.

Eg: “The age of Ravi is 25”

File:

File is a collection of related data stored in secondary memory.

File Oriented Approach:

The traditional file oriented approach to information processing each application has a separate

master file and its own set of personal file. In file oriented approach the program dependent on the

files and files dependent upon the programs.

Disadvantages of file oriented approach:

1) Data redundancy and inconsistency:

The same information may be written in several files. This redundancy leads to higher

storage and access cost. It may lead data inconsistency that is the various copies of the same

data may present at multiple places for example a changed customer address may be

reflected in single file but not else where in the system.

2) Difficulty in accessing data :

The conventional file processing system do not allow data to be retrieved in a convenient

and efficient manner according to user choice.

3) Data isolation :

Because data are scattered in various files and files may be in different formats with new

application programs to retrieve the appropriate data is difficult.

4) Integrity Problems:

Developers enforce data validation in the system by adding appropriate code in the various

application program. How ever when new constraints are added, it is difficult to change the

programs to enforce them.

5) Atomicity:

It is difficult to ensure atomicity in a file processing system when transaction failure occurs

due to power failure, networking problems etc. (atomicity: either all operations of the

transaction are reflected properly in the database or non are)

6) Concurrent access:

In the file processing system it is not possible to access the same file for transaction at same

the time.

7) Security problems:

There is no security provided in file processing system to secure the data from unauthoriz-

ed user access.

LECTURE-2: DBMS

Database:

A database is organized collection of related data of an organization stored in formatted way which

is shared by multiple users.

The main feature of data in a database are:

1. It must be well organized

2. It is related

3. It is accessible in a logical order without any difficulty

4. It is stored only once

For example consider the roll no, name, address of a student stored in a student file. It is collection

of related data with an implicit meaning. Data in the database may be persistent, integrated and

shared.

Persistent:

If data is removed from database due to some explicit request from user to remove.

Integrated:

A database can be a collection of data from different files and when any redundancy among those

files are removed from database is said to be integrated data.

Sharing Data:

The data stored in the database can be shared by multiple users simultaneously without affecting the

correctness of data.

Why Database:

In order to overcome the limitation of a file system, a new approach was required. Hence a database

approach emerged. A database is a persistent collection of logically related data. The initial attempts

were to provide a centralized collection of data. A database has a self describing nature. It contains

not only the data sharing and integration of data of an organization in a single database.

A small database can be handled manually but for a large database and having multiple users it is

difficult to maintain it. In that case a computerized database is useful.

The advantages of database system over traditional, paper based methods of record keeping are:

 Compactness: No need for large amount of paper files

 Speed: The machine can retrieve and modify the data more faster way then human being

 Less drudgery: Much of the maintenance of files by hand is eliminated

 Accuracy: Accurate, up-to-date information is fetched as per requirement of the user at any

time.

Database Management System (DBMS):

A database management system consists of collection of related data and refers to a set of programs

for defining, creation, maintenance and manipulation of a database.

Function of DBMS:

1. Defining database schema: it must give facility for defining the database structure also

specifies access rights to authorized users.

2. Manipulation of the database: The dbms must have functions like insertion of record into

database, updation of data, deletion of data, retrieval of data

3. Sharing of database: The DBMS must share data items for multiple users by maintaining

consistency of data.

4. Protection of database: It must protect the database against unauthorized users.

5. Database recovery: If for any reason the system fails DBMS must facilitate data base

recovery.

Advantages of DBMS:

Reduction of redundancies:

Centralized control of data by the DBA avoids unnecessary duplication of data and effectively

reduces the total amount of data storage required avoiding duplication in the elimination of the

inconsistencies that tend to be present in redundant data files.

Sharing of Data:

A database allows the sharing of data under its control by any number of application programs or

users.

Data Integrity:

Data integrity means that the data contained in the database is both accurate and consistent.

Therefore data values being entered for storage could be checked to ensure that they fall with in a

specified range and are of the correct format.

Data Security:

The DBA who has the ultimate responsibility for the data in the dbms can ensure that proper access

procedures are followed including proper authentication to access to the DataBase System and

additional check before permitting access to sensitive data.

Conflict Resolution:

DBA resolve the conflict on requirements of various user and applications. The DBA chooses the

best file structure and access method to get optional performance for the application.

Data Independence:

Data independence is usually considered from two points of views; physically data independence

and logical data independence.

Physical Data Independence allows changes in the physical storage devices or organization of the

files to be made without requiring changes in the conceptual view or any of the external views and

hence in the application programs using the data base.

Logical Data Independence indicates that the conceptual schema can be changed without affecting

the existing external schema or any application program.

 Disadvantage of DBMS:

1. DBMS software and hardware (networking installation) cost is high

2. The processing overhead by the dbms for implementation of security, integrity and sharing of

the data.

3. Centralized database control

4. Setup of the database system requires more knowledge, money, skills, and time.

5. The complexity of the database may result in poor performance.

LECTURE-3: 3 level Architecture of DBMS

Database Basics:

Data Item:

The data item is also called as field in data processing and is the smallest unit of data that has

meaning to its users.

Eg: “e101”, ”sumit”

Entities and attributes:

An entity is a thing or object in the real world that is distinguishable from all other objects

Eg: Bank, employee, student

Attributes are properties are properties of an entity.

Eg: Empcode, ename, rolno, name

Logical data and physical data :

Logical data are the data for the table created by user in primary memory.

Physical data refers to the data stored in the secondary memory.

Schema and sub-schema :

A schema is a logical data base description and is drawn as a chart of the types of data that are used.

It gives the names of the entities and attributes and specify the relationships between them.

A database schema includes such information as :

 Characteristics of data items such as entities and attributes .

 Logical structures and relationships among these data items .

 Format for storage representation.

 Integrity parameters such as physical authorization and back up policies.

A subschema is derived schema derived from existing schema as per the user requirement. There

may be more then one subschema create for a single conceptual schema.

Three Level Architecture of DBMS :

Internal level

External level

Conceptual

level

View

user1

View

User2

View

User n

 Mapping supplied by DBMS

Conceptual view

Mapping supplied by DBMS/OS

Internal level

A database management system that provides three level of data is said to follow three-level

architecture .

 External level

 Conceptual level

 Internal level

External Level :

The external level is at the highest level of database abstraction . At this level, there will be many

views define for different users requirement. A view will describe only a subset of the database. Any

number of user views may exist for a given global schema(coneptual schema).

For example, each student has different view of the time table. the view of a student of BTech

(CSE) is different from the view of the student of Btech (ECE). Thus this level of abstraction is

concerned with different categories of users.

Each external view is described by means of a schema called sub schema.

Conceptual Level :

At this level of database abstraction all the database entities and the relationships among them are

included. One conceptual view represents the entire database. This conceptual view is defined by

the conceptual schema.

The conceptual schema hides the details of physical storage structures and concentrate on

describing entities, data types, relationships, user operations and constraints.

It describes all the records and relationships included in the conceptual view. There is only one

conceptual schema per database. It includes feature that specify the checks to relation data

consistency and integrity.

Internal level :

It is the lowest level of abstraction closest to the physical storage method used. It indicates how the

data will be stored and describes the data structures and access methods to be used by the database.

The internal view is expressed by internal schema.

The following aspects are considered at this level:

1. Storage allocation e.g: B-tree, hashing

2. Access paths eg. specification of primary and secondary keys, indexes etc

3. Miscellaneous eg. Data compression and encryption techniques, optimization of the internal

structures.

Database Users :

Naive Users :

Users who need not be aware of the presence of the database system or any other system supporting

their usage are considered naïve users . A user of an automatic teller machine falls on this category.

Online Users :

These are users who may communicate with the database directly via an online terminal or

indirectly via a user interface and application program. These users are aware of the database

system and also know the data manipulation language system.

Application Programmers :

Professional programmers who are responsible for developing application programs or user

interfaces utilized by the naïve and online user falls into this category.

Database Administration :

A person who has central control over the system is called database administrator .

The function of DBA are :

1. Creation and modification of conceptual Schema definition

2. Implementation of storage structure and access method.

3. Schema and physical organization modifications .

4. Granting of authorization for data access.

5. Integrity constraints specification.

6. Execute immediate recovery procedure in case of failures

7. Ensure physical security to database

Database language :

1) Data definition language (DDL) :

DDL is used to define database objects .The conceptual schema is specified by a set of

definitions expressed by this language. It also gives some details about how to implement

this schema in the physical devices used to store the data. This definition includes all the

entity sets and their associated attributes and their relationships. The result of DDL

statements will be a set of tables that are stored in special file called data dictionary.

2) Data Manipulation Language (DML) :

A DML is a language that enables users to access or manipulate data stored in the database.

Data manipulation involves retrieval of data from the database, insertion of new data into the

database and deletion of data or modification of existing data.

 There are basically two types of DML:

 Procedural: Which requires a user to specify what data is needed and how to get it.

 Non-Procedural: which requires a user to specify what data is needed with out

specifying how to get it.

3) Data Control Language (DCL):

 This language enables user to grant authorization and canceling authorization of database

objects.

LECTURE-4: Elements of DBMS

Elements of DBMS:

DML Pre-Compiler:

It converts DML statements embedded in an application program to normal procedure calls in the

host language. The pre-complier must interact with the query processor in order to generate the

appropriate code.

DDL Compiler:

The DDL compiler converts the data definition statements into a set of tables. These tables contains

information concerning the database and are in a form that can be used by other components of the

dbms.

File Manager:

File manager manages the allocation of space on disk storage and the data structure used to

represent information stored on disk.

Database Manager:

A database manager is a program module which provides the interface between the low level data

stored in the database and the application programs and queries submitted to the system.

The responsibilities of database manager are:

1. Interaction with File Manager: The data is stored on the disk using the file system which

is provided by operating system. The database manager translate the different DML

statements into low-level file system commands so the database manager is responsible for

the actual storing, retrieving and updating of data in the database.

2. Integrity Enforcement: The data values stored in the database must satisfy certain

constraints (eg: the age of a person can't be less then zero). These constraints are specified

by DBA. Data manager checks the constraints and if it satisfies then it stores the data in the

database.

3. Security Enforcement: Data manager checks the security measures for database from

unauthorized users.

4. Backup and Recovery: Database manager detects the failures occur due to different

causes (like disk failure, power failure, deadlock, software error) and restores the database

to original state of the database.

5. Concurrency Control: When several users access the same database file simultaneously,

there may be possibilities of data inconsistency. It is responsible of database manager to

control the problems occur for concurrent transactions.

Query Processor:

The query processor used to interpret to online user’s query and convert it into an efficient series of

operations in a form capable of being sent to the data manager for execution. The query processor

uses the data dictionary to find the details of data file and using this information it create query

plan/access plan to execute the query.

Data Dictionary:

Data dictionary is the table which contains the information about database objects. It contains

information like

1. external, conceptual and internal database description

2. description of entities, attributes as well as meaning of data elements

3. synonyms, authorization and security codes

4. database authorization

The data stored in the data dictionary is called meta data.

DBMS STRUCTURE:

Que: List four significant differences between a File-Processing System and a DBMS.

Ans: Some major differences between a database management system and a file-processing system

are:

• Both systems contain a collection of data and a set of programs which access that data. A

database management system coordinates both the physical and the logical access to the

data, whereas a file-processing system coordinates only the physical access.

Naïve user Application

programers

On line user DBA

Application

programs

System calls Ddl compiler

Application prog

obj code

Dml precomplier Query processor Ddl compiler

Database manager

File manager

Data file

Data dictionary

DBMS

• A database management system reduces the amount of data duplication by ensuring that a

physical piece of data is available to all programs authorized to have access to it, where as

data written by one program in a file-processing system may not be readable by another

program.

• A database management system is designed to allow flexible access to data (i.e., queries),

whereas a file-processing system is designed to allow predetermined access to data (i.e.,

compiled programs).

• A database management system is designed to coordinate multiple users accessing the same

data at the same time. A file-processing system is usually designed to allow one or more

programs to access different data files at the same time. In a file-processing system, a file

can be accessed by two programs concurrently only if both programs have read-only access

to the file.

Que: Explain the difference between physical and logical data independence.

Ans:

• Physical data independence is the ability to modify the physical scheme without making it

necessary to rewrite application programs. Such modifications include changing from

unblocked to blocked record storage, or from sequential to random access files.

• Logical data independence is the ability to modify the conceptual scheme without making it

necessary to rewrite application programs. Such a modification might be adding a field to a

record; an application program’s view hides this change from the program.

Que: List five responsibilities of a database management system. For each responsibility, explain

the problems that would arise if the responsibility were not discharged.

Ans: A general purpose database manager (DBM) has five responsibilities:

a. interaction with the file manager.

b. integrity enforcement.

c. security enforcement.

d. backup and recovery.

e. concurrency control.

If these responsibilities were not met by a given DBM (and the text points out that sometimes a

responsibility is omitted by design, such as concurrency control on a single-user DBM for a micro

computer) the following problems can occur, respectively:

a. No DBM can do without this, if there is no file manager interaction then nothing stored in

the files can be retrieved.

b. Consistency constraints may not be satisfied, when account balances could go below the

minimum allowed, employees could earn too much overtime (e.g.,hours > 80) or, airline

pilots may fly more hours than allowed by law.

c. Unauthorized users may access the database, or users authorized to access part of the

database may be able to access parts of the database for which they lack authority. For

example, a high school student could get access to national defense secret codes, or

employees could find out what their supervisors earn.

d. Data could be lost permanently, rather than at least being available in a consistent state that

existed prior to a failure.

e. Consistency constraints may be violated when intgrity constraints failed in a transaction. For

example, incorrect bank balances might be reflected due to simultaneous withdrawals and

deposits, and so on.

Que. What are five main functions of a database administrator?

Ans: Five main functions of a database administrator are:

 To create the scheme definition

 To define the storage structure and access methods

 To modify the scheme and/or physical organization when necessary

 To grant authorization for data access

 To specify integrity constraints

Que: List six major steps that you would take in setting up a database for a particular enterprise.

Ans: Six major steps in setting up a database for a particular enterprise are:

 Define the high level requirements of the enterprise (this step generates a document known

as the system requirements specification.)

 Define a model containing all appropriate types of data and data relationships.

 Define the integrity constraints on the data.

 Define the physical level.

 For each known problem to be solved on a regular basis (e.g., tasks to be carried out by

clerks or Web users) define a user interface to carry out the task, and write the necessary

application programs to implement the user interface.

 Create/initialize the database.

EXERCISE:

1. What is database management system?

2. What are the disadvantage of file processing system?

3. State advantage and disadvantage of database management system.

4. What are different types of database users?

5. What is data dictionary and what are its contents?

6. What are the functions of DBA?

7. What are the different database languages? Explain with example.

8. Explain the three layer architecture of DBMS.

9. Differentiate between physical data independence and logical data independence.

10. Explain the functions of database manager.

11. Explain meta data.

LECTURE-5: ER-MODEL

Data Model:

The data model describes the structure of a database. It is a collection of conceptual tools for

describing data, data relationships and consistency constraints and various types of data models

such as

1. Object based logical model

2. Record based logical model

3. Physical model

Types of data model:

1. Object based logical model

a. ER-model

b. Functional model

c. Object oriented model

d. Semantic model

2. Record based logical model

a. Hierarchical database model

b. Network model

c. Relational model

3. Physical model

Entity Relationship Model (ER Model)

The entity-relationship data model perceives the real world as consisting of basic objects, called

entities and relationships among these objects. It was developed to facilitate database design by

allowing specification of an enterprise schema which represents the overall logical structure of a

data base.

Main Features of ER-MODEL:

 Entity relationship model is a high level conceptual model

 It allows us to describe the data involved in a real world enterprise in terms of objects and

their relationships.

 It is widely used to develop an initial design of a database

 It provides a set of useful concepts that make it convenient for a developer to move from a

basic set of information to a detailed and description of information that can be easily

implemented in a database system

 It describes data as a collection of entities, relationships and attributes.

Basic Concepts:

The E-R data model employs three basic notions : entity sets, relationship sets and attributes.

Entity Sets:

An entity is a “thing” or “object” in the real world that is distinguishable from all other objects. For

example, each person in an enterprise is an entity. An entity has a set properties and the values for

some set of properties may uniquely identify an entity. BOOK is entity and its properties (called as

attributes) bookcode, booktitle, price etc.

An entity set is a set of entities of the same type that share the same properties, or attributes. The set

of all persons who are customers at a given bank.

Attributes:

An entity is represented by a set of attributes. Attributes are descriptive properties possessed by

each member of an entity set.

Customer is an entity and its attributes are customerid, custmername, custaddress etc.

An attribute as used in the E-R model, can be characterized by the following attribute types.

a) Simple and Composite Attribute:

Simple attributes are the attributes which can’t be divided into sub parts, e.g. customerid, empno

Composite attributes are the attributes which can be divided into subparts, e.g. name consisting of

first name, middle name, last name and address consisting of city, pincode, state.

b) Single-Valued and Multi-Valued Attribute:

The attribute having unique value is single –valued attribute, e.g. empno, customerid, regdno etc.

The attribute having more than one value is multi-valued attribute, eg: phone-no, dependent name,

vehicle.

c) Derived Attribute:

The values for this type of attribute can be derived from the values of existing attributes, e.g. age

which can be derived from currentdate – birthdate and experience_in_year can be calculated as

currentdate-joindate.

d) NULL Valued Attribute:

The attribute value which is not known to user is called NULL valued attribute.

Relationship Sets:

A relationship is an association among several entities. A relationship set is a set of relationships of

the same type. Formally, it is a mathematical relation on n>=2 entity sets. If E1, E2…En are entity

sets, then a relation ship set R is a subset of

 {(e1,e2,…en) | e1Є E1, e2 Є E2.., en Є En}

where (e1,e2,…en) is a relation ship.

Consider the two entity sets customer and loan. We define the relationship set borrow to denote the

association between customers and the bank loans that the customers have.

Mapping Cardinalities:

Mapping cardinalities or cardinality ratios, express the number of entities to which another entity

can be associated via a relationship set. Mapping cardinalities are most useful in describing binary

relationship sets, although they can contribute to the description of relationship sets that involve

more than two entity sets. For a binary relationship set R between entity sets A and B, the mapping

customer loan borrow

cardinalities must be one of the following:

1. One to One:

An entity in A is associated with at most one entity in B, and an entity in B is associated with at

most one entity in A.

Eg: relationship between college and principal

2. One to Many:

An entity in A is associated with any number of entities in B. An entity in B is associated with at the

most one entity in A.

Eg: Relationship between department and faculty

3. Many to One:

An entity in A is associated with at most one entity in B. An entity in B is associated with any

number in A.

4. Many to Many:

Entities in A and B are associated with any number of entities from each other.

More about Entities and Relationship:

Recursive Relationships:

When the same entity type participates more than once in a relationship type in different roles, the

relationship types are called recursive relationships.

Participation Constraints:

The participation constraints specify whether the existence of any entity depends on its being

related to another entity via the relationship. There are two types of participation constraints

college principal has

Department Faculty Works
in

1 1

1 M

M

emp Department
Works

1

M

customer account
deposits

N

a) Total : When all the entities from an entity set participate in a relationship type, is called total

participation. For example, the participation of the entity set student on the relationship set must

‘opts’ is said to be total because every student enrolled must opt for a course.

b) Partial: When it is not necessary for all the entities from an entity set to particapte in a

relationship type, it is called partial participation. For example, the participation of the entity set

student in ‘represents’ is partial, since not every student in a class is a class representative.

Weak Entity:

Entity types that do not contain any key attribute, and hence can not be identified independently are

called weak entity types. A weak entity can be identified by uniquely only by considering some of

its attributes in conjunction with the primary key attribute of another entity, which is called the

identifying owner entity.

Generally a partial key is attached to a weak entity type that is used for unique identification of

weak entities related to a particular owner type. The following restrictions must hold:

 The owner entity set and the weak entity set must participate in one to may relationship set.

This relationship set is called the identifying relationship set of the weak entity set.

 The weak entity set must have total participation in the identifying relationship.

Example:

Consider the entity type Dependent related to Employee entity, which is used to keep track of the

dependents of each employee. The attributes of Dependents are: name, birthdate, sex and

relationship. Each employee entity set is said to its own the dependent entities that are related to it.

However, not that the ‘Dependent’ entity does not exist of its own, it is dependent on the Employee

entity.

Keys:

Super Key:

A super key is a set of one or more attributes that taken collectively, allow us to identify uniquely an

entity in the entity set. For example , customer-id, (cname, customer-id), (cname, telno)

Candidate Key:

In a relation R, a candidate key for R is a subset of the set of attributes of R, which have the

following properties:

1. Uniqueness: No two distinct tuples in R have the same values for the candidate key

2. Irreducible: No proper subset of the candidate key has the uniqueness property that is

the candidate key. Eg: (cname,telno)

Primary Key:

The primary key is the candidate key that is chosen by the database designer as the principal means

of identifying entities within an entity set. The remaining candidate keys if any, are called Alternate

Key.

LECTURE-6: ER-DIAGRAM:

The overall logical structure of a database using ER-model graphically with the help of an ER-

diagram.

Symbols use ER- diagram:

 composite attribute
entity

Weak entity

attribute

Multi valued attribute

Derived attribute

Key attribute

Relationship

Identifying

Relationship

One-to -one One-to -many

many-to -one many-to -many

1 1
1 m

m 1
m n

Total participation Partial participation

A Univeristy registrar's office maintains data about the following entities:

(a) Course, includeing number,title,credits,syllabus and prereqisites

(b) course offering,including course number,year,semester,section number,instructor timings,

 and class room

(c) Students including student-id,name and program

(d) Instructors, including identification number,name,department and title

further, the enrollment of students in courses and grades awarded to students in each course they are

enrolled for must be appropriate modeled.

Construct an E-R diagram for the registrar's office. Document all assumptions that you may make

about the mapping constratints

Cosidet a university database for the scheduling of class rooms for final exams. This database could

be modeled as the single entity set exam, with attributes course-name,section-number,room-number

and time, Alternatively, one or more additional entity sets would be defined, along with relationship

sets to replae some of the attributes of the exam entity set, as

 course with attributes name,department and c-number

 section with attributes s-number and enrollment and dependent as a weak entity set on

course

 room with attributes r-number,capacity and building

LECTURE-7: Advanced ER-Diagram:

Abstraction is the simplification mechanism used to hide superfluous details of a set of objects. It

allows one to concentrate on the properties that are of interest to the application. There are two main

abstraction mechanism used to model information:

Generalization and specialization:

Generalization is the abstracting process of viewing set of objects as a single general class by

concentrating on the general characteristics of the constituent sets while suppressing or ignoring

their differences. It is the union of a number of lower-level entity types for the purpose of

producing a higher-level entity type. For instance, student is a generalization of graduate or

undergraduate, full-time or part-time students. Similarly, employee is generalization of the classes

of objects cook, waiter, and cashier. Generalization is an IS_A relationship; therefore, manager

IS_AN employee, cook IS_AN employee, waiter IS_AN employee, and so forth.

Specialization is the abstracting process of introducing new characteristics to an existing class of

objects to create one or more new classes of objects. This involves taking a higher-level, and using

additional characteristics, generating lower-level entities. The lower-level entities also inherits the,

characteristics of the higher-level entity. In applying the characteristics size to car we can create a

full-size, mid-size, compact or subcompact car. Specialization may be seen as the reverse process of

generalization addition specific properties are introduced at a lower level in a hierarchy of objects.

EMPLOYEE(empno,name,dob)

FULL_TIME_EMPLOYEE(empno,salary)

PART_TIME_EMPLOYEE(empno,type)

Faculty(empno,degree,intrest)

Staff(empno,hour-rate)

Teaching (empno,stipend)

employee

empno

dob

Is

_a

Is

_a

Full time

 employee

Part-time

employee

Is

_a

Is

_a

Is

_a

Is

_a

faculty staff teaching casual

Generalization Specialization

degree Intrest Intrest Classificatio

n
hourra

te

degree degree

name

Aggregation:

Aggregation is the process of compiling information on an object, there by abstracting a higher

level object. The entity person is derived by aggregating the characteristics of name, address, ssn.

Another form of the aggregation is abstracting a relationship objects and viewing the relationship as

an object.

Job

Employe

e

Branch

Works

on

Manag
es

Manager

ER- Diagram For College Database

LECTURE-8: Conversion of ER-Diagram to Relational Database

Conversion of Entity Sets:

1. For each strong entity type E in the ER diagram, we create a relation R containing all the

single attributes of E. The primary key of the relation R will be one of the key attribute of R.

STUDENT(rollno (primary key),name, address)

FACULTY(id(primary key),name ,address, salary)

COURSE(course-id,(primary key),course_name,duration)

DEPARTMENT(dno(primary key),dname)

2. For each weak entity type W in the ER diagram, we create another relation R that contains

all simple attributes of W. If E is an owner entity of W then key attribute of E is also include

In R. This key attribute of R is set as a foreign key attribute of R. Now the combination of

primary key attribute of owner entity type and partial key of the weak entity type will form

the key of the weak entity type

GUARDIAN((rollno,name) (primary key),address,relationship)

Conversion of Relationship Sets:

Binary Relationships:

 One-to-One Relationship:

For each 1:1 relationship type R in the ER-diagram involving two entities E1 and E2 we

choose one of entities(say E1) preferably with total participation and add primary key

attribute of another E as a foreign key attribute in the table of entity(E1). We will also include

all the simple attributes of relationship type R in E1 if any, For example, the department

relationship has been extended tp include head-id and attribute of the relationship.

DEPARTMENT(D_NO,D_NAME,HEAD_ID,DATE_FROM)

 One-to-Many Relationship:

For each 1:N relationship type R involving two entities E1 and E2, we identify the entity type

(say E1) at the N-side of the relationship type R and include primary key of the entity on the

other side of the relation (say E2) as a foreign key attribute in the table of E1. We include all

simple attribute (or simple components of a composite attribute of R (if any) in the table E1)

For example:

The works in relationship between the DEPARTMENT and FACULTY. For this relationship

choose the entity at N side, i.e, FACULTY and add primary key attribute of another entity

DEPARTMENT i.e., DNO as a foreign key attribute in FACULTY.

FACULTY(CONTAINS WORKS_IN RELATIOSHIP)

(ID, NAME, ADDRESS, BASIC_SAL, DNO)

 Many-to-Many Relationship:

For each M:N relationship type R, we create a new table (say S) to represent R, we also

include the primary key attributes of both the participating entity types as a foreign key

attribute in S. Any simple attributes of the M:N relationship type (or simple components as a

composite attribute) is also included as attributes of S.

For example:

The M:N relationship taught-by between entities COURSE and FACULTY should be

represented as a new table. The structure of the table will include primary key of COURSE

and primary key of FACULTY entities.

TAUGHT-BY (ID (primary key of FACULTY table), course-id (primary key of COURSE

table)

 N-ary Relationship:

For each N-ary relationship type R where n>2, we create a new table S to represent R, We

include as foreign key attributes in S the primary keys of the relations that represent the

participating entity types. We also include any simple attributes of the N-ary relationship type

(or simple components of complete attribute) as attributes of S. The primary key of S is

usually a combination of all the foreign keys that reference the relations representing the

participating entity types.

LOAN-SANCTION (cusomer-id, loanno, empno, sancdate, loan_amount)

 Multi-Valued Attributes:

For each multivalued attribute ‘A’, we create a new relation R that includes an attribute

corresponding to plus the primary key attributes k of the relation that represents the entity

type or relationship that has as an attribute. The primary key of R is then combination of A

and k.

For example, if a STUDENT entity has rollno, name and phone number where phone number

is a multivalued attribute then we will create table PHONE (rollno, phoneno) where primary

key is the combination. In the STUDENT table we need not have phone number, instead if

can be simply (rollno, name) only.

PHONE(rollno, phoneno)

Customer Loan

Employee

Loan -

sanctio

n

 Converting Generalisation /Specification Hierarchy to Tables:

A simple rule for conversion may be to decompose all the specialized entities into table in

case they are disjoint, for example, for the figure we can create the three tables as:

Account (account_no, name, branch, balance)

Saving_Account (account-no, intrest)

Current_Account (account-no, charges)

Account

Account_n
o

branch

Is-a

Saving Current

intrest charges

generalisation
specialisation

name

LECTURE-9: Record Based Logical Model

Hierarchical Model:

 A hierarchical database consists of a collection of records which are connected to one

another through links.

 A record is a collection of fields, each of which contains only one data value.

 A link is an association between precisely two records.

 The hierarchical model differs from the network model in that the records are organized as

collections of trees rather than as arbitrary graphs.

Tree-Structure Diagrams:

 The schema for a hierarchical database consists of

o boxes, which correspond to record types

o lines, which correspond to links

 Record types are organized in the form of a rooted tree.

o No cycles in the underlying graph.

o Relationships formed in the graph must be such that only

one-to-many or one-to-one relationships exist between a parent and a child.

Database schema is represented as a collection of tree-structure diagrams.

 single instance of a database tree

 The root of this tree is a dummy node

 The children of that node are actual instances of the appropriate record type

When transforming E-R diagrams to corresponding tree-structure diagrams, we must ensure that the

resulting diagrams are in the form of rooted trees.

Single Relationships:

 Example of E-R diagram with two entity sets, customer and account, related through a

binary, one-to-many relationship depositor.

 Corresponding tree-structure diagram has

o the record type customer with three fields: customer-name, customer-street, and

customer-city.

o the record type account with two fields: account-number and balance

o the link depositor, with an arrow pointing to customer

 If the relationship depositor is one to one, then the link depositor has two arrows.

 Only one-to-many and one-to-one relationships can be directly represented in the

hierarchical mode.

Transforming Many-To-Many Relationships:

 Must consider the type of queries expected and the degree to which the database schema fits

the given E-R diagram.

 In all versions of this transformation, the underlying database tree (or trees) will have

replicated records.

 Create two tree-structure diagrams, T1, with the root customer, and T2, with the root

account.

 In T1, create depositor, a many-to-one link from account to customer.

 In T2, create account-customer, a many-to-one link from customer to account.

Virtual Records:

 For many-to-many relationships, record replication is necessary to preserve the tree-

structure organization of the database.

 Data inconsistency may result when updating takes place

 Waste of space is unavoidable

 Virtual record — contains no data value, only a logical pointer to a particular physical

record.

 When a record is to be replicated in several database trees, a single copy of that record is

kept in one of the trees and all other records are replaced with a virtual record.

 Let R be a record type that is replicated in T1, T2, . . ., Tn. Create a new virtual record type

virtual-R and replace R in each of the n – 1 trees with a record of type virtual-R.

 Eliminate data replication in the following diagram ; create virtual-customer and virtual-

account.

 Replace account with virtual-account in the first tree, and replace customer with virtual-

customer in the second tree.

 Add a dashed line from virtual-customer to customer, and from virtual-account to account,

to specify the association between a virtual record and its corresponding physical record.

Network Model:

 Data are represented by collections of records.

o similar to an entity in the E-R model

o Records and their fields are represented as record type

 type customer = record type account = record type

 customer-name: string; account-number: integer;

 customer-street: string; balance: integer;

 customer-city: string;

 end end

 Relationships among data are represented by links

o similar to a restricted (binary) form of an E-R relationship

o restrictions on links depend on whether the relationship is many-to-many, many-to-

one, or one-to-one.

Data-Structure Diagrams:

 Schema representing the design of a network database.

 A data-structure diagram consists of two basic components:

o Boxes, which correspond to record types.

o Lines, which correspond to links.

 Specifies the overall logical structure of the database.

For every E-R diagram, there is a corresponding data-structure diagram.

Since a link cannot contain any data value, represent an E-R relationship with attributes with a

new record type and links.

To represent an E-R relationship of degree 3 or higher, connect the participating record types

through a new record type that is linked directly to each of the original record types.

1. Replace entity sets account, customer, and branch with record types account, customer, and

branch, respectively.

2. Create a new record type Rlink (referred to as a dummy record type).

3. Create the following many-to-one links:

o CustRlink from Rlink record type to customer record type

o AcctRlnk from Rlink record type to account record type

o BrncRlnk from Rlink record type to branch record type

The DBTG CODASYL Model:

o All links are treated as many-to-one relationships.

o To model many-to-many relationships, a record type is defined to represent the relationship

and two links are used.

DBTG Sets:

o The structure consisting of two record types that are linked together is referred to in the

DBTG model as a DBTG set

o In each DBTG set, one record type is designated as the owner, and the other is designated as

the member, of the set.

o Each DBTG set can have any number of set occurrences (actual instances of linked records).

o Since many-to-many links are disallowed, each set occurrence has precisely one owner, and

has zero or more member records.

o No member record of a set can participate in more than one occurrence of the set at any

point.

o A member record can participate simultaneously in several set occurrences of different

DBTG sets.

LECTURE-10: RELATIONAL MODEL

RELATIONAL MODEL

Relational model is simple model in which database is represented as a collection of “relations”

where each relation is represented by two-dimensional table.

The relational model was founded by E. F. Codd of the IBM in 1972. The basic concept in the

relational model is that of a relation.

Properties:

o It is column homogeneous. In other words, in any given column of a table, all items are of

the same kind.

o Each item is a simple number or a character string. That is a table must be in first normal

form.

o All rows of a table are distinct.

o The ordering of rows with in a table is immaterial.

o The column of a table are assigned distinct names and the ordering of these columns is

immaterial.

Domain, attributes tuples and relational:

Tuple:

Each row in a table represents a record and is called a tuple .A table containing ‘n’ attributes in a

record is called is called n-tuple.

Attributes:

The name of each column in a table is used to interpret its meaning and is called an attribute.Each

table is called a relation. In the above table, account_number, branch name, balance are the

attributes.

Domain:

A domain is a set of values that can be given to an attributes. So every attribute in a table has a

specific domain. Values to these attributes can not be assigned outside their domains.

Relation:

A relation consist of

o Relational schema

o Relation instance

Relational Schema:

A relational schema specifies the relation’s name, its attributes and the domain of each attribute. If

R is the name of a relation and A1, A2,…An is a list of attributes representing R then

R(A1,A2,…,An) is called a Relational Schema. Each attribute in this relational schema takes a

value from some specific domain called domain(Ai).

Example:

PERSON (PERSON_ID:INTEGER, NAME:STRING, AGE:INTEGER, ADDRESS:STRING)

Total number of attributes in a relation denotes the degree of a relation since the PERSON relation

scheme contains four attributes, so this relation is of degree 4.

Relation Instance:

A relational instance denoted as r is a collection of tuples for a given relational schema at a specific

point of time.

A relation state r to the relations schema R(A1, A2…, An) also denoted by r(R) is a set of n-tuples

R{t1,t2,…tm}

Where each n-tuple is an ordered list of n values

T=<v1,v2,….vn>

Where each vi belongs to domain (Ai) or contains null values.

The relation schema is also called ‘intension’ and the relation state is also called ‘extension’.

Eg: Relation schema for Student

STUDENT(rollno:string, name:string, city:string, age:integer)

Relation instance:

Student:

Rollno Name City Age

101 Sujit Bam 23

102 kunal bbsr 22

Keys:

Super key:

A super key is an attribute or a set of attributes used to identify the records uniquely in a relation.

For example, customer-id, (cname, customer-id), (cname,telno)

Candidate key:

Super keys of a relation can contain extra attributes. Candidate keys are minimal super keys. i.e,

such a key contains no extraneous attribute. An attribute is called extraneous if even after removing

it from the key, makes the remaining attributes still has the properties of a key(atribute represents

entire table).

In a relation R, a candidate key for R is a subset of the set of attributes of R, which have the

following properties:

 Uniqueness: no two distinct tuples in R have the same values for

 the candidate key

 Irreducible: No proper subset of the candidate key has the

 uniqueness property that is the candidate key.

 A candidate key’s values must exist. It can’t be null.

 The values of a candidate key must be stable. Its value can not change outside the

control of the system.

Eg: (cname,telno)

Primary key:

The primary key is the candidate key that is chosen by the database designer as the principal

means of identifying entities with in an entity set. The remaining candidate keys if any are

called alternate key.

LECTURE-11: CONSTRAINTS

RELATIONAL CONSTRAINTS:

There are three types of constraints on relational database that include

o DOMAIN CONSTRAINTS

o KEY CONSTRAINTS

o INTEGRITY CONSTRAINTS

DOMAIN CONSTRAINTS:

It specifies that each attribute in a relation an atomic value from the corresponding domains. The

data types associated with commercial RDBMS domains include:

o Standard numeric data types for integer

o Real numbers

o Characters

o Fixed length strings and variable length strings

Thus, domain constraints specifies the condition that we to put on each instance of the relation.

So the values that appear in each column must be drawn from the domain associated with that

column.

Rollno Name City Age

101 Sujit Bam 23

102 kunal bbsr 22

Key Constraints:

This constraints states that the key attribute value in each tuple msut be unique .i.e, no two tuples

contain the same value for the key attribute.(null values can allowed)

Emp(empcode,name,address) . here empcode can be unique

Integrity CONSTRAINTS:

There are two types of integrity constraints:

o Entity Integrity Constraints

o Referential Integrity constraints

Entity Integrity Constraints:

It states that no primary key value can be null and unique. This is because the primary key is used to

identify individual tuple in the relation. So we will not be able to identify the records uniquely

containing null values for the primary key attributes. This constraint is specified on one individual

relation.

Referential Integrity Constraints:

It states that the tuple in one relation that refers to another relation must refer to an existing tuple in

that relation. This constraints is specified on two relations. If a column is declared as foreign key

that must be primary key of another table.

Department (deptcode, dname)

Here the deptcode is the primary key.

Emp (empcode, name, city, deptcode).

Here the deptcode is foreign key.

CODD'S RULES

Rule 1 : The information Rule.
"All information in a relational data base is represented explicitly at the logical level and in exactly

one way - by values in tables."

Everything within the database exists in tables and is accessed via table access routines.

Rule 2 : Guaranteed access Rule.
"Each and every datum (atomic value) in a relational data base is guaranteed to be logically

accessible by resorting to a combination of table name, primary key value and column name."

To access any data-item you specify which column within which table it exists, there is no reading

of characters 10 to 20 of a 255 byte string.

Rule 3 : Systematic treatment of null values.
"Null values (distinct from the empty character string or a string of blank characters and distinct

from zero or any other number) are supported in fully relational DBMS for representing missing

information and inapplicable information in a systematic way, independent of data type."

If data does not exist or does not apply then a value of NULL is applied, this is understood by the

RDBMS as meaning non-applicable data.

Rule 4 : Dynamic on-line catalog based on the relational model.
"The data base description is represented at the logical level in the same way as-ordinary data, so

that authorized users can apply the same relational language to its interrogation as they apply to the

regular data."

The Data Dictionary is held within the RDBMS, thus there is no-need for off-line volumes to tell

you the structure of the database.

Rule 5 : Comprehensive data sub-language Rule.
"A relational system may support several languages and various modes of terminal use (for

example, the fill-in-the-blanks mode). However, there must be at least one language whose

statements are expressible, per some well-defined syntax, as character strings and that is

comprehensive in supporting all the following items

 Data Definition

 View Definition

 Data Manipulation (Interactive and by program).

 Integrity Constraints

 Authorization.

Every RDBMS should provide a language to allow the user to query the contents of the RDBMS

and also manipulate the contents of the RDBMS.

Rule 6 : .View updating Rule
"All views that are theoretically updateable are also updateable by the system."

Not only can the user modify data, but so can the RDBMS when the user is not logged-in.

Rule 7 : High-level insert, update and delete.
"The capability of handling a base relation or a derived relation as a single operand applies not only

to the retrieval of data but also to the insertion, update and deletion of data."

The user should be able to modify several tables by modifying the view to which they act as base

tables.

Rule 8 : Physical data independence.
"Application programs and terminal activities remain logically unimpaired whenever any changes

are made in either storage representations or access methods."

The user should not be aware of where or upon which media data-files are stored

Rule 9 : Logical data independence.
"Application programs and terminal activities remain logically unimpaired when information-

preserving changes of any kind that theoretically permit un-impairment are made to the base

tables."

User programs and the user should not be aware of any changes to the structure of the tables (such

as the addition of extra columns).

Rule 10 : Integrity independence.
"Integrity constraints specific to a particular relational data base must be definable in the relational

data sub-language and storable in the catalog, not in the application programs."

If a column only accepts certain values, then it is the RDBMS which enforces these constraints and

not the user program, this means that an invalid value can never be entered into this column, whilst

if the constraints were enforced via programs there is always a chance that a buggy program might

allow incorrect values into the system.

Rule 11 : Distribution independence.
"A relational DBMS has distribution independence."

The RDBMS may spread across more than one system and across several networks, however to the

end-user the tables should appear no different to those that are local.

Rule 12 : Non-subversion Rule.
"If a relational system has a low-level (single-record-at-a-time) language, that low level cannot be

used to subvert or bypass the integrity Rules and constraints expressed in the higher level relational

language (multiple-records-at-a-time)."

LECTURE-12: FILE ORGANISATION

FILE ORGANISATION AND ITS TYPES:

A file organization is a technique to organize data in the secondary memory. File organization is a

way of arranging the records in a file when the file is stored on the disk. Data files are organized so

as to facilitate access to records and to ensure their efficient storage. A DBMS supports several file

organization techniques.

(File organization techniques)

Heap files (unordered file)

Basically these files are unordered file. It is the simplest and most basic type. These files consist of

randomly ordered records. The records will have no particular order.The operations we can perform

on the records are insert , retrieve and delete. The features of the heap file organization are:

 New records can be inserted in any empty space that can accommodate them.

 When old records are deleted, the occupied space becomes empty and available for any new

insertion.

 If updated records grow, they may need to be relocated to a new empty space. This needs to

keep a list of empty space.

Advantage of heap files:

1. This is a simple file organization method

2. Insertion is somehow efficient

3. Good for bulk-lading data into a table.

4. Best if file scans are common or insertions are frequent

Disadvantages of heap files:

1. Retrieval requires a linear search and is inefficient

Sequential

Access only?

Yes

One access key ?

Sequential

File organization

Direct

Access only?

Multi key

organization

Inverted file

structure

Multi list file

structure

organization

Direct file

organization

Index sequential

file organization

Direct file

organization

Binary

search tree
B tree B + tree

Yes
No

No

Yes No

2. Deletion can result in unused space/need for reorganization

Sequential file organization:

The most basic way to organize the collection of records in a file is to use sequential organization.

Records of the file are stored in sequence by the primary key field values/ They are accessible only

in the order stored i.e, in the primary key order. This kind is of file organization works well for tasks

which need to access nearly every record in a file. Eg. Payroll..

In a sequentially organized file records are written consecutively when the file is created and must

be accessed consecutively when the file later used for input.

A sequential file maintains the records in the logical sequence of its primary key values. Sequential

file are inefficient for random access. And files can be stored on devices like magnetic tape that

allow sequential access. As records are in sorted order it will use binary search technique to search

for a record.

Advantages of sequential file organization:

 It is fast and efficient when dealing with large volumes of data that need to be processed

periodically(batch system)

Disadvantages of sequential file organization:

 Requires that all new transactions be sorted into the proper sequence for sequential access

processing

 Locating, storing, modifying, deleting or adding records in the file require rearranging the

file/

 This method is too slow to handle application requiring immediate updating or responses.

Indexed sequential file organization:

It organized the file like a large dictionary, i.e, records are stored in order of the key, but an

index is kept which also permits a type of direct access. The records are stored sequentially by

primary key values and there is an index built over the primary key field.

An index is a set of index value, address pairs. Indexing associates a set of objects to a set pf

orderable quantities, that are usually smaller in number or their properties. Thus an index is a

mechanism for faster search. Although the indices and the data blocks are kept physically, they

are logically distinct.

A sequential file that is indexed on its primary key is called an index sequential file. The index

allows for random access to records, while the sequential storage of the records of the file

provides easy access to the sequential records. An addition feature of this file system is the

overflow area. The overflow area provides additional space for record addition without the need

to create.

Advantage of ISAM indexes:

1. Because the whole structure is ordered to a large extent, partial (like ty%) and

range(between 12 and 29) based retrievals can often benefit from the use of this type of

index.

2. ISAM is good for static tables because there are usually fewer index levels than B-tree

3. In general there are fewer disk I/Os required to access data, provided there is no overflow.

Disadvantage of ISAM indexes:

1. ISAM is still not as quick as some in hash file organization

2. Overflow can be a real problem in highly volatile table.

Hashed file organization:

Hashing is the most common form of purely random access to a file or database. It is also used to

access columns that do not have a index as an optimization technique. Hash functions calculate the

address of the page in which the record is to be stored based on one or more fields in the record.

The records in a hash file appear randomly distributed across the available space. It requires some

hashing algorithm and the technique. Hashing algorithm converts a primary key value into a record

address.

Advantage of hashed file organization:

1. Insertion or search on hash key is fast.

2. Best if equality search is needed on hash key

Disadvantage of hashed file organization:

1. It is a complex file organization method

2. search is slow

3. It suffers from disk space overhead

4. Unbalanced buckets degrade performance

5. Range search is slow

LECTURE-13: INDEX

Types of Indexes:

 Indexing mechanisms used to speed up access to desired data.

o E.g., author catalog in library

 Search Key - attribute to set of attributes used to look up records in a file.

 An index file consists of records (called index entries) of the form

 Index files are typically much smaller than the original file

 Two basic kinds of indices:

o Ordered indices: search keys are stored in sorted order

o Hash indices: search keys are distributed uniformly across “buckets” using a “hash

function”.

Ordered Indices

Indexing techniques evaluated on basis of:

1. In an ordered index, index entries are stored sorted on the search key value. E.g.,

author catalog in library.

2. Primary index: in a sequentially ordered file, the index whose search key specifies the

sequential order of the file.

a. Also called clustering index

b. The search key of a primary index is usually but not necessarily the primary key.

3. Secondary index: an index whose search key specifies an order different from the

sequential order of the file. Also called

non-clustering index.

4. Index-sequential file: ordered sequential file with a primary index.

There are two types of ordered indices that we can use:

Dense index:

 An index record appears for every search-key value in the file. In a dense primary index, the index

record contains the search-key value and a pointer to the first data record with that search-key

value. The rest of the records with the same search key-value would be stored sequentially after the

first record, since, because the index is a primary one, records are sorted on the same search key.

Dense index implementations may store a list of pointers to all records with the same search-key

value; doing so is not essential for primary indices.

Sparse index:

An index record appears for only some of the search-key values. As is true in dense indices, each

index record contains a search-key value and a pointer to the first data record with that search-key

value. To locate a record, we find the index entry with the largest search-key value that is less than

or equal to the search-key value for which we are looking. We start at the record pointed to by that

index entry, and follow the pointers in the file until we find the desired record.

Primary Indexes:

A primary index is an ordered file whose records are of fixed length with two fields. The first field

is of the same data types as the ordering key filed of the data file and the second field is a pointer to

a disk block- a block address. The ordering key field is called the primary key of the data file. There

is one index entry in the index file for each block in the data file. Each index entry has the value of

the primary key field for the first record in a block and a pointer to other block as its two fields

values.

The first record of each block of the data file is known as anchor record of the block.

Primary index is an example of non dense index

Primary Block

key value pointer

Abhay
Bapi

William

(Primary indexes on the ordering key field)

A major problem with primary index as with any ordered file- is insertion and deletion of records.

With a primary Index, the problem is compounded because if we attempt to insert a record in its

correct position in the data file, we not only have to move records to make space for the new record

but also have to change some index entries because moving records will change the anchor records

of some blocks.

Bapi

Bikash

Abhay

Amit

Asit

William

Wood

LECTURE-14: Clustering Index

Clustering Indexes:

If the records of a file are physically ordered on a non key field that does not have a distinct value

for each record, that filed is called the clustering filed of the file. We can create a different type of

index called clustering index to speed up retrieval of records that have the same value for the

clustering field. This differs from a primary index, which requires that the ordering field of the data

file have a distinct value for each record.

 A clustering index is also an ordered file with two fields, the first field is of the same type as

the clustering field of the data file and the second field is block pointer. There is one entry in the

clustering index for each distinct value of the clustering field, containing that value and a pointer to

the first block in the data file that has a record with that value for its clustering field.

A clustering index is another example of non dense index.

Clustering field block pointer deptno ename

Secondary Indexes:

A secondary index also is an ordered file with two fields and as in the other indexes, the second

filed is a pointer to a disk block. The first field is of the same type as some non ordering field of the

data file. The field on which the secondary index is constructed is called an indexing field of the

file. Whether its values are distinct for every record or not.

10

20

30

20

20

20

10

10

10

30

30

There can be many secondary indexes and hence indexing fields for the same file.

Primary and Secondary Indices:

Secondary indices have to be dense.

1. Indices offer substantial benefits when searching for records.

2. When a file is modified, every index on the file must be updated, Updating indices

imposes overhead on database modification.

3. Sequential scan using primary index is efficient, but a sequential scan using a secondary

index is expensive

a. each record access may fetch a new block from disk

LECTURE-15: B+ Tree Index

B+-Tree Index Files:

B+-tree indices are an alternative to indexed-sequential files.

1. Disadvantage of indexed-sequential files: performance degrades as file grows, since many

overflow blocks get created. Periodic reorganization of entire file is required.

2. Advantage of B+-tree index files: automatically reorganizes itself with small, local,

changes, in the face of insertions and deletions. Reorganization of entire file is not required

to maintain performance.

3. Disadvantage of B+-trees: extra insertion and deletion overhead, space overhead.

4. Advantages of B+-trees outweigh disadvantages, and they are used extensively.

A B+-tree is a rooted tree satisfying the following properties:

1. All paths from root to leaf are of the same length

2. Each node that is not a root or a leaf has between [n/2] and n children.

3. A leaf node has between [(n–1)/2] and n–1 values

4. Special cases:

a. If the root is not a leaf, it has at least 2 children.

b. If the root is a leaf (that is, there are no other nodes in the tree), it can have between

0 and (n–1) values.

Example of a B+-tree

B+-Tree File Organization

1. Index file degradation problem is solved by using B+-Tree indices. Data file degradation

problem is solved by using B+-Tree File Organization.

2. The leaf nodes in a B+-tree file organization store records, instead of pointers.

3. Since records are larger than pointers, the maximum number of records that can be stored in

a leaf node is less than the number of pointers in a non leaf node.

BB++--TTrreeee NNooddee SSttrruuccttuurree

Typical node

Ki are the search-key values

Pi are pointers to children (for non-leaf nodes) or pointers

to records or buckets of records (for leaf nodes).

The search-keys in a node are ordered

 K1 < K2 < K3 < . . . < Kn–1

4. Leaf nodes are still required to be half full.

5. Insertion and deletion are handled in the same way as insertion and deletion of entries in a

B+-tree index.

B-Tree Index Files

1. Similar to B+-tree, but B-tree allows search-key values to appear only once; eliminates

redundant storage of search keys.

2. Search keys in non leaf nodes appear nowhere else in the B-tree; an additional pointer field

for each search key in a non leaf node must be included.

3. Generalized B-tree leaf node

4. Non leaf node – pointers Bi are the bucket or file record pointers.

B-Tree Index File Example:

Advantages of B-Tree indices:

 May use less tree nodes than a corresponding B+-Tree.

 Sometimes possible to find search-key value before reaching leaf node.

Disadvantages of B-Tree indices:

 Only small fraction of all search-key values are found early

 Non-leaf nodes are larger, so fan-out is reduced. Thus, B-Trees typically have

greater depth than corresponding B+-Tree

 Insertion and deletion more complicated than in B+-Trees

 Implementation is harder than B+-Trees.

Typically, advantages of B-Trees do not out weigh disadvantages.

LECTURE-16: Hash File Organization

Hash File Organization

In a hash file organization, we obtain the address of the disk block containing a desired record

directly by computing a function on the search-key value of the record. In our description of

hashing, we shall use the term bucket to denote a unit of storage that can store one or more records.

A bucket is typically a disk block, but could be chosen to be smaller or larger than a disk block.

Formally, let K denote the set of all search-key values, and let B denote the set of all bucket

addresses. A hash function h is a function from K to B. Let h denote a hash function.

To insert a record with search key Ki, we compute h(Ki), which gives the address of the bucket for

that record. Assume for now that there is space in the bucket to store the record. Then, the record is

stored in that bucket.

To perform a lookup on a search-key value Ki, we simply compute h(Ki), then search the bucket

with that address. Suppose that two search keys, K5 and K7, have the same hash value; that is,

h(K5) = h(K7). If we perform a lookup on K5, the bucket h(K5) contains records with search-key

values K5 and records with search key values K7. Thus, we have to check the search-key value of

every record in the bucket to verify that the record is one that we want. Deletion is equally

straightforward. If the search-key value of the record to be deleted is Ki, we compute h(Ki), then

search the corresponding bucket for that record, and delete the record from the bucket.

Hash Indices

Hashing can be used not only for file organization, but also for index-structure creation. A hash

index organizes the search keys, with their associated pointers, into a hash file structure. We

construct a hash index as follows. We apply a hash function on a search key to identify a bucket,

and store the key and its associated pointers in the bucket (or in overflow buckets). Figure shows a

secondary hash index on the account file, for the search key account-number. The hash function in

the figure computes the sum of the digits of the account number modulo 7. The hash index has

seven buckets, each of size 2 bucket sizes). One of the buckets has three keys mapped to it, so it has

an overflow bucket. In this example, account-number is a primary key for account, so each search

key has only one associated pointer. In general, multiple pointers can be associated with each key.

We use the term hash index to denote hash file structures as well as secondary hash indices. Strictly

speaking, hash indices are only secondary index structures. A hash index is never needed as a

primary index structure, since, if a file itself is organized by hashing, there is no need for a separate

hash index structure on it. However, since hash file organization provides the same direct access to

records that indexing provides, we pretend that a file organized by hashing also has a primary hash

index on it.

Advantages of hashing:

1. Exact key matches are extremely quick

2. Hashing is very good long keys, or those with multiple columns, provided the complete key

value is provided for the query

3. This organization usually allows for the allocation of disk space so a good deal of disk

management is possible

4. No disk space is used by this indexing method

Disadvantages of hashing:

1. It becomes difficult to predict overflow because the working of the hashing algorithm will

not be visible to the DBA

2. No sorting of data occurs either physically or logically so sequential access is poor

3. This organization usually takes a lot of disk space to ensure that no overflow occurs.

LECTURE-17: Query Processing

Query Processing
Query Processing would mean the entire process or activity which involves query translation into

low level instructions, query optimization to save resources, cost estimation or evaluation of query,

and extraction of data from the database.

Goal: To find an efficient Query Execution Plan for a given SQL query which would minimize the

cost considerably, especially time.

Cost Factors: Disk accesses [which typically consumes time], read/write operations [which

typically needs resources such as memory/RAM].

The major steps involved in query processing are depicted in the figure below;

Let us discuss the whole process with an example. Let us consider the following two relations as the

example tables for our discussion;

Employee(Eno, Ename, Phone)

Proj_Assigned(Eno, Proj_No, Role, DOP)

where,

Eno is Employee number,

Ename is Employee name,

Proj_No is Project Number in which an employee is assigned,

Role is the role of an employee in a project,

DOP is duration of the project in months.

With this information, let us write a query to find the list of all employees who are working in a

project which is more than 10 months old.

SELECT Ename

FROM Employee, Proj_Assigned

WHERE Employee.Eno = Proj_Assigned.Eno AND DOP > 10;

Input:

A query written in SQL is given as input to the query processor. For our case, let us consider the

SQL query written above.

Step 1: Parsing

In this step, the parser of the query processor module checks the syntax of the query, the user’s

privileges to execute the query, the table names and attribute names, etc. The correct table names,

http://3.bp.blogspot.com/-q8kgpgvYS-E/VCQ6hbin8FI/AAAAAAAABKc/M1JI___HJfw/s1600/queryprocessing.jpg

attribute names and the privilege of the users can be taken from the system catalog (data

dictionary).

Step 2: Translation

If we have written a valid query, then it is converted from high level language SQL to low level

instruction in Relational Algebra.

For example, our SQL query can be converted into a Relational Algebra equivalent as follows;

πEname(σDOP>10 Λ Employee.Eno=Proj_Assigned.Eno(Employee X Prof_Assigned))

Step 3: Optimizer

Optimizer uses the statistical data stored as part of data dictionary. The statistical data are

information about the size of the table, the length of records, the indexes created on the table, etc.

Optimizer also checks for the conditions and conditional attributes which are parts of the query.

Step 4: Execution Plan

A query can be expressed in many ways. The query processor module, at this stage, using the

information collected in step 3 to find different relational algebra expressions that are equivalent

and return the result of the one which we have written already.

For our example, the query written in Relational algebra can also be written as the one given below;

πEname(Employee ⋈Eno (σDOP>10 (Prof_Assigned)))

So far, we have got two execution plans. Only condition is that both plans should give the same

result.

Step 5: Evaluation

Though we got many execution plans constructed through statistical data, though they return same

result (obvious), they differ in terms of Time consumption to execute the query, or the Space

required executing the query. Hence, it is mandatory choose one plan which obviously consumes

less cost.

At this stage, we choose one execution plan of the several we have developed. This Execution plan

accesses data from the database to give the final result.

In our example, the second plan may be good. In the first plan, we join two relations (costly

operation) then apply the condition (conditions are considered as filters) on the joined relation. This

consumes more time as well as space.

In the second plan, we filter one of the tables (Proj_Assigned) and the result is joined with the

Employee table. This join may need to compare less number of records. Hence, the second plan is

the best (with the information known, not always).

Query Tree

Used in query representation used in parsing.

Query Optimization:

A single query can be executed through different algorithms or re-written in different forms and

structures. Hence, the question of query optimization comes into the picture – Which of these forms

or pathways is the most optimal? The query optimizer attempts to determine the most efficient way

to execute a given query by considering the possible query plans.

There are broadly two ways a query can be optimized:

1.Analyze and transform equivalent relational expressions: Try to minimize the tuple and

column counts of the intermediate and final query processes (discussed here).

2.Using different algorithms for each operation: These underlying algorithms determine how

tuples are accessed from the data structures they are stored in, indexing, hashing, data retrieval

and hence influence the number of disk and block accesses (discussed in query processing).

Analyze and transform equivalent relational expressions

Here, we shall talk about generating minimal equivalent expressions. To analyze equivalent

expression, listed are a set of equivalence rules. These generate equivalent expressions for a query

written in relational algebra. To optimize a query, we must convert the query into its equivalent

form as long as an equivalence rule is satisfied.

1.Conjunctive selection operations can be written as a sequence of individual selections.

This is called a sigma-cascade.

Explanation: Applying condition intersection is expensive. Instead, filter out tuples

satisfying condition (inner selection) and then apply condition (outer selection) to the

then resulting fewer tuples. This leaves us with less tuples to process the second time. This

can be extended for two or more intersecting selections. Since we are breaking a single

condition into a series of selections or cascades, it is called a “cascade”.

2.Selection is commutative.

Explanation: condition is commutative in nature. This means, it does not matter whether

we apply first or first. In practice, it is better and more optimal to apply that selection

first which yields a fewer number of tuples. This saves time on our outer selection.

3.All following projections can be omitted, only the first projection is required. This is

called a pi-cascade.

Explanation: A cascade or a series of projections is meaningless. This is because in the end,

we are only selecting those columns which are specified in the last, or the outermost

projection. Hence, it is better to collapse all the projections into just one i.e. the outermost

projection.

4.Selections on Cartesian Products can be re-written as Theta Joins.

 Equivalence 1

Explanation: The cross product operation is known to be very expensive. This is

because it matches each tuple of E1 (total m tuples) with each tuple of E2 (total n

tuples). This yields m*n entries. If we apply a selection operation after that, we would

have to scan through m*n entries to find the suitable tuples which satisfy the condition

. Instead of doing all of this, it is more optimal to use the Theta Join, a join specifically

designed to select only those entries in the cross product which satisfy the Theta

condition, without evaluating the entire cross product first.

 Equivalence 2

Explanation: Theta Join radically decreases the number of resulting tuples, so if we

apply an intersection of both the join conditions i.e. and into the Theta Join itself,

we get fewer scans to do. On the other hand, a condition outside unnecessarily

increases the tuples to scan.

5.Theta Joins are commutative.

Explanation: Theta Joins are commutative, and the query processing time depends to some

extent which table is used as the outer loop and which one is used as the inner loop during the

join process (based on the indexing structures and blocks).

6.Join operations are associative.

 Natural Join

Explanation: Joins are all commutative as well as associative, so one must join those

two tables first which yield less number of entries, and then apply the other join.

 Theta Join

Explanation: Theta Joins are associative in the above manner, where involves

attributes from only E2 and E3.

7.Selection operation can be distributed.

 Equivalence 1

Explanation: Applying a selection after doing the Theta Join causes all the tuples

returned by the Theta Join to be monitored after the join. If this selection contains

attributes from only E1, it is better to apply this selection to E1 (hence resulting in a

fewer number of tuples) and then join it with E2.

 Equivalence 2

Explanation: This can be extended to two selection conditions, and , where

Theta1 contains the attributes of only E1 and contains attributes of only E2. Hence,

we can individually apply the selection criteria before joining, to drastically reduce the

number of tuples joined.

8.Projection distributes over the Theta Join.

 Equivalence 1

Explanation: The idea discussed for selection can be used for projection as well. Here,

if L1 is a projection that involves columns of only E1, and L2 another projection that

involves the columns of only E2, then it is better to individually apply the projections on

both the tables before joining. This leaves us with a fewer number of columns on either

side, hence contributing to an easier join.

 Equivalence 2

Explanation: Here, when applying projections L1 and L2 on the join, where L1

contains columns of only E1 and L2 contains columns of only E2, we can introduce

another column E3 (which is common between both the tables). Then, we can apply

projections L1 and L2 on E1 and E2 respectively, along with the added column L3. L3

enables us to do the join.

9.Union and Intersection are commutative.

Explanation: Union and intersection are both distributive; we can enclose any tables in

parantheses according to requirement and ease of access.

10. Union and Intersection are associative.

Explanation: Union and intersection are both distributive; we can enclose any tables in

parantheses according to requirement and ease of access.

11. Selection operation distributes over the union, intersection, and difference

operations.

Explanation: In set difference, we know that only those tuples are shown which belong to

table E1 and do not belong to table E2. So, applying a selection condition on the entire set

difference is equivalent to applying the selection condition on the individual tables and then

applying set difference. This will reduce the number of comparisons in the set difference step.

12. Projection operation distributes over the union operation.

Explanation: Applying individual projections before computing the union of E1 and E2 is

more optimal than the left expression, i.e. applying projection after the union step.

http://4.bp.blogspot.com/-A-wg5QntMxc/VCQ8Xpuyi0I/AAAAAAAABKo/jQkQ4dAV2Kg/s1600/Query_Process1.jpg

LECTURE-18: Evaluation of Expressions

Evaluation of Expressions

 So far: we have seen algorithms for individual operations

 Alternatives for evaluating an entire expression tree

 Materialization: generate results of an expression whose inputs are relations or are

already computed, materialize (store) it on disk. Repeat.

 Pipelining: pass on tuples to parent operations even as an operation is being

executed

 We study above alternatives in more detail

Materialization

 Materialized evaluation: evaluate one operation at a time, starting at the lowest-level. Use

intermediate results materialized into temporary relations to evaluate next-level operations.

 E.g., in figure below, compute and store

then compute the store its join with customer, and finally compute the projections on customer-

name.

 Materialized evaluation is always applicable

 Cost of writing results to disk and reading them back can be quite high

 Our cost formulas for operations ignore cost of writing results to disk, so

- Overall cost = Sum of costs of individual operations +

 cost of writing intermediate results to disk

 Double buffering: use two output buffers for each operation, when one is full write it to disk

while the other is getting filled

 Allows overlap of disk writes with computation and reduces execution time

Pipelining

 Pipelined evaluation : evaluate several operations simultaneously, passing the results of one

operation on to the next.

 E.g., in previous expression tree, don’t store result of instead, pass tuples directly to

the join.. Similarly, don’t store result of join, pass tuples directly to projection.

 Much cheaper than materialization: no need to store a temporary relation to disk.

 Pipelining may not always be possible – e.g., sort, hash-join.

 For pipelining to be effective, use evaluation algorithms that generate output tuples even as

tuples are received for inputs to the operation.

 Pipelines can be executed in two ways: demand driven and producer driven

 In demand driven or lazy evaluation

 system repeatedly requests next tuple from top level operation

 Each operation requests next tuple from children operations as required, in order to

output its next tuple

 In between calls, operation has to maintain “state” so it knows what to return next

 Each operation is implemented as an iterator implementing the following operations

- open()

 E.g. file scan: initialize file scan, store pointer to beginning of file as

state

 E.g.merge join: sort relations and store pointers to beginning of sorted

relations as state

- next()

 E.g. for file scan: Output next tuple, and advance and store file

pointer

 E.g. for merge join: continue with merge from earlier state till

next output tuple is found. Save pointers as iterator state.

- close()

 In produce-driven or eager pipelining

 Operators produce tuples eagerly and pass them up to their parents

- Buffer maintained between operators, child puts tuples in buffer, parent

removes tuples from buffer

- if buffer is full, child waits till there is space in the buffer, and then generates

more tuples

 System schedules operations that have space in output buffer and can process more

input tuples

Evaluation Algorithms for Pipelining

 Some algorithms are not able to output results even as they get input tuples

 E.g. merge join, or hash join

 These result in intermediate results being written to disk and then read back always

 Algorithm variants are possible to generate (at least some) results on the fly, as input tuples are

read in

 E.g. hybrid hash join generates output tuples even as probe relation tuples in the in-

memory partition (partition 0) are read in

 Pipelined join technique: Hybrid hash join, modified to buffer partition 0 tuples of

both relations in-memory, reading them as they become available, and output results

of any matches between partition 0 tuples

- When a new r0 tuple is found, match it with existing s0 tuples, output

matches, and save it in r0

- Symmetrically for s0 tuples

Complex Joins

 Join involving three relations: loan depositor customer

 Strategy 1. Compute depositor customer; use result to compute loan (depositor

customer)

 Strategy 2. Computer loan depositor first, and then join the result with customer.

 Strategy 3. Perform the pair of joins at once. Build and index on loan for loan-number, and on

customer for customer-name.

 For each tuple t in depositor, look up the corresponding tuples in customer and the

corresponding tuples in loan.

 Each tuple of deposit is examined exactly once.

 Strategy 3 combines two operations into one special-purpose operation that is more

efficient than implementing two joins of two relations.

Module-2:

LECTURE-19

Relational Algebra:

Basic operations:

1. Selection (σ) Selects a subset of rows from relation.

2. Projection (π) Selects a subset of columns from relation.

3. Cross-product (×) Allows us to combine two relations.

4. Set-difference () Tuples in relation. 1, but not in relationn. 2.

5. Union (U) Tuples in reln. 1 and in reln. 2.

6. Rename(ρ) Use new name for the Tables or fields.

Additional operations:

7. Intersection (∩), Join(), Division(÷): Not essential, but (very!) useful.

Since each operation returns a relation, operations can be composed! (Algebra is

“closed”.)

Projection

 Deletes attributes that are not in projection list.

 Schema of result contains exactly the fields in the projection list, with the same names that

they had in the (only) input relation. (Unary Operation)

 Projection operator has to eliminate duplicates! (as it returns a relation which is a set)

o Note: real systems typically don’t do duplicate elimination unless the user explicitly

asks for it. (Duplicate values may be representing different real world entity or

relationship).

Example: Consider the BOOK table:

πTitle(BOOK) =

Selection

 Selects rows that satisfy selection condition.

 No duplicates in result

 Schema of result identical to schema of (only) input relation.

 Result relation can be the input for another relational algebra operation! (Operator

composition.)

Example: For the example given above:

 σAcc-no>300(BOOK) =

Acc-No Title Author

100 “DBMS” “Silbershatz”

200 “DBMS” “Ramanuj”

300 “COMPILER” “Silbershatz”

400 “COMPILER” “Ullman”

500 “OS” “Sudarshan”

600 “DBMS” “Silbershatz”

Title

“DBMS”

“COMPILER”

“OS”

Acc-

No

Title Author

400 “COMPILER

”

“Ullman”

500 “OS” “Sudarshan”

600 “DBMS” “Silbershatz”

σTitle=”DBMS”(BOOK)=

πAcc-no (σTitle=”DBMS” (BOOK))=

Union, Intersection, Set-Difference

 All of these operations take two input relations, which must be union-compatible:

o Same number of fields.

o Corresponding’ fields have the same type.

 What is the schema of result?

Consider:

 Borrower Depositor

List of customers who are either borrower or depositor at bank= πCust-name (Borrower) U

πCust-name (Depositor)=

Customers who are both borrowers and depositors = πCust-name

(Borrower) ∩ πCust-name (Depositor)=

Customers who are borrowers but not depositors = πCust-name (Borrower) πCust-name

(Depositor)=

Acc-

No

100

200

600

Acc-

No

Title Author

100 “DBMS” “Silbershatz”

200 “DBMS” “Ramanuj”

600 “DBMS” “Silbershatz”

Cust-name

Shyam

Cust-

name

Ram

Suleman

Cust-name

Ram

Shyam

Suleman

Radeshyam

Cust-

name

Loan-no

Ram L-13

Shyam L-30

Suleman L-42

Cust-name Acc-no

Suleman A-100

Radheshyam A-300

Ram A-401

Cartesian-Product or Cross-Product (S1 × R1)

 Each row of S1 is paired with each row of R1.

 Result schema has one field per field of S1 and R1, with field names `inherited’ if possible.

 Consider the borrower and loan tables as follows:

Borrower: Loan:

Cross product of Borrower and Loan, Borrower × Loan =

The rename operation can be used to rename the fields to avoid confusion when two field names are

same in two participating tables:

For example the statement, ρLoan-borrower(Cust-name,Loan-No-1, Loan-No-2,Amount)(Borrower × Loan) results

into- A new Table named Loan-borrower is created where it has four fields which are renamed as

Cust-name, Loan-No-1, Loan-No-2 and Amount and the rows contains the same data as the cross

product of Borrower and Loan.

Loan-borrower:

Cust-

name

Loan-No-1 Loan-

No-2

Amount

Ram L-13 L-13 1000

Ram L-13 L-30 20000

Ram L-13 L-42 40000

Shyam L-30 L-13 1000

Shyam L-30 L-30 20000

Shyam L-30 L-42 40000

Suleman L-42 L-13 1000

Suleman L-42 L-30 20000

Suleman L-42 L-42 40000

Borrower.Cust-

name

Borrower.Loan-

no

Loan.Loan-

no

Loan.Amount

Ram L-13 L-13 1000

Ram L-13 L-30 20000

Ram L-13 L-42 40000

Shyam L-30 L-13 1000

Shyam L-30 L-30 20000

Shyam L-30 L-42 40000

Suleman L-42 L-13 1000

Suleman L-42 L-30 20000

Suleman L-42 L-42 40000

Loan-no Amount

L-13 1000

L-30 20000

L-42 40000

Cust-name Loan-no

Ram L-13

Shyam L-30

Suleman L-42

Rename Operation:

It can be used in two ways :

 return the result of expression E in the table named x.

 return the result of expression E in the table named x with the attributes

renamed to A1, A2,…, An.

 It’s benefit can be understood by the solution of the query “ Find the largest account balance

in the bank”

It can be solved by following steps:

 Find out the relation of those balances which are not largest.

 Consider Cartesion product of Account with itself i.e. Account × Account

 Compare the balances of first Account table with balances of second Account table in the

product.

 For that we should rename one of the account table by some other name to avoid the

confusion

It can be done by following operation

 ΠAccount.balance (σAccount.balance < d.balance(Account× ρd(Account))

 So the above relation contains the balances which are not largest.

 Subtract this relation from the relation containing all the balances i.e . Πbalance (Account).

So the final statement for solving above query is

 Πbalance (Account)- ΠAccount.balance (σAccount.balance < d.balance(Account× ρd(Account))

LECTURE-20

Additional Operations

Natural Join ()

 Forms Cartesian product of its two arguments, performs selection forcing equality on

those attributes that appear in both relations

 For example consider Borrower and Loan relations, the natural join between them

 will automatically perform the selection on the table returned by

Borrower × Loan which force equality on the attribute that appear in both Borrower

and Loan i.e. Loan-no and also will have only one of the column named Loan-No.

 That means = σBorrower.Loan-no = Loan.Loan-no (Borrower × Loan).

 The table returned from this will be as follows:

Eliminate rows that does not satisfy the selection criteria “σBorrower.Loan-no = Loan.Loan-no” from Borrower

× Loan =

And will remove one of the column named Loan-no.

 i.e. =

Division Operation:

 denoted by ÷ is used for queries that include the phrase “for all”.

 For example “Find customers who has an account in all branches in branch city

Agra”. This query can be solved by following statement.

 ΠCustomer-name. branch-name () ÷ Πbranch-name (σBranch-city=”Agra”(Branch)

 The division operations can be specified by using only basic operations as follows:

Let r(R) and s(S) be given relations for schema R and S with

 r ÷ s = ΠR-S(r) - ΠR-S ((ΠR-S (r) × s) - ΠR-S,S (r))

Cust-name Loan-no Amount

Ram L-13 1000

Shyam L-30 20000

Suleman L-42 40000

Borrower.Cust-

name

Borrower.Loan-

no

Loan.Loan-

no

Loan.Amount

Ram L-13 L-13 1000

Ram L-13 L-30 20000

Ram L-13 L-42 40000

Shyam L-30 L-13 1000

Shyam L-30 L-30 20000

Shyam L-30 L-42 40000

Suleman L-42 L-13 1000

Suleman L-42 L-30 20000

Suleman L-42 L-42 40000

LECTURE-21

Tuple Relational Calculus

Relational algebra is an example of procedural language while tuple relational calculus is a

nonprocedural query language.

A query is specified as:

{t | P(t)}, i.e it is the set of all tuples t such that predicate P is true for t.

The formula P(t) is formed using atoms which uses the relations, tuples of relations and fields of

tuples and following symbols

These atoms can then be used to form formulas with following symbols

For example : here are some queries and a way to express them using tuple calculus:

o Find the branch-name, loan-number and amount for loans over Rs 1200.

.

o Find the loan number for each loan of an amount greater that Rs1200.

o Find the names of all the customers who have a loan from the Sadar branch.

o Find all customers who have a loan , an account, or both at the bank

o Find only those customers who have both an account and a loan.

o Find all customers who have an account but do not have loan.

o Find all customers who have an account at all branches located in Agra

Domain Relational Calculus

1. Domain relational calculus is another non procedural language for expressing database

queries.

2. A query is specified as:

{<x1,x2,…,xn> | P(x1,x2,…,xn)} where x1,x2,…,xn represents domain variables. P represent a

predicate formula as in tuple calculus

 Since the domain variables are referred in place of tuples the formula doesn’t refer the fields

of tuples rather they refer the domain variables.

 For example the queries in domain calculus are mentioned as follows:

o Find the branch-name, loan-number and amount for loans over Rs 1200.

.

o Find the loan number for each loan of an amount greater that Rs1200.

o Find the names of all the customers who have a loan from the Sadar branch and find

the loan amount

o Find names of all customers who have a loan , an account, or both at the Sadar

Branch

o Find only those customers who have both an account and a loan.

o Find all customers who have an account but do not have loan.

o Find all customers who have an account at all branches located in Agra

 Outer Join.

Outer join operation is an extension of join operation to deal with missing information

 Suppose that we have following relational schemas:

Employee(employee-name, street, city)

Fulltime-works(employee-name, branch-name, salary)

A snapshot of these relations is as follows:

Employee:

Fulltime-works

employee-

name

street city

Ram M G Road Agra

Shyam New Mandi

Road

Mathura

Suleman Bhagat Singh

Road

Aligarh

employee-

name

branch-

name

salary

Ram Sadar 30000

Shyam Sanjay Place 20000

Rehman Dayalbagh 40000

Suppose we want complete information of the full time employees.

 The natural join ()will result into the loss of information for

Suleman and Rehman because they don’t have record in both the tables (left and right

relation). The outer join will solve the problem.

 Three forms of outer join:

o Left outer join(:the tuples which doesn’t match while doing natural join from

left relation are also added in the result putting null values in missing field of right

relation.

o Right outer join(:the tuples which doesn’t match while natural join from right

relation are also added in the result putting null values in missing field of left

relation.

o Full outer join(): include both of the left and right outer joins i.e. adds the

tuples which did not match either in left relation or right relation and put null in

place of missing values.

 The result for three forms of outer join are as follows:

Left join: =

Right join: =

Full join: =

employee-

name

street City branch-

name

salary

Ram M G Road Agra Sadar 30000

Shyam New Mandi

Road

Mathura Sanjay

Place

20000

Suleman Bhagat Singh

Road

Aligarh Null Null

employee-

name

street city branch-

name

salary

Ram M G Road Agra Sadar 30000

Shyam New Mandi

Road

Mathura Sanjay

Place

20000

Rehman null null Dayalbagh 40000

employee-

name

street city branch-

name

salary

Ram M G Road Agra Sadar 30000

Shyam New Mandi

Road

Mathura Sanjay

Place

20000

Suleman Bhagat Singh

Road

Aligarh null null

Rehman null null Dayalbagh 40000

LECTURE-22

Structured Query Language (SQL)

Introduction

 Commercial database systems use more user friendly language to specify the queries.

 SQL is the most influential commercially marketed product language.

 Other commercially used languages are QBE, Quel, and Datalog.

Basic Structure

 The basic structure of an SQL consists of three clauses: select, from and where.

 select: it corresponds to the projection operation of relational algebra. Used to list the

attributes desired in the result.

 from: corresponds to the Cartesian product operation of relational algebra. Used to list the

relations to be scanned in the evaluation of the expression

 where: corresponds to the selection predicate of the relational algebra. It consists of a

predicate involving attributes of the relations that appear in the from clause.

 A typical SQL query has the form:

 select A1, A2,…, An

 from r1, r2,…, rm

 where P

o Ai represents an attribute

o rj represents a relation

o P is a predicate

o It is equivalent to following relational algebra expression:

o

[Note: The words marked in dark in this text work as keywords in SQL language. For example

“select”, “from” and “where” in the above paragraph are shown in bold font to indicate that they

are keywords]

Select Clause

Let us see some simple queries and use of select clause to express them in SQL.

 Find the names of all branches in the Loan relation

 select branch-name

 from Loan

 By default the select clause includes duplicate values. If we want to force the elimination of

duplicates the distinct keyword is used as follows:

 select distinct branch-name

 from Loan

 The all key word can be used to specify explicitly that duplicates are not removed. Even if

we not use all it means the same so we don’t require all to use in select clause.

 select all branch-name

 from Loan

 The asterisk “*” can be used to denote “all attributes”. The following SQL statement will

select and all the attributes of Loan.

 select *

 from Loan

 The arithmetic expressions involving operators, +, -, *, and / are also allowed in select

clause. The following statement will return the amount multiplied by 100 for the rows in

Loan table.

 select branch-name, loan-number, amount * 10 from Loan.

Where Clause

 Find all loan numbers for loans made at “Sadar” branch with loan amounts greater than Rs

1200.

 select loan-number

 from Loan

 where branch-name= “Sadar” and amount > 1200

 where clause uses uses logival connectives and, or, and not

 operands of the logical connectives can be expressions involving the comparison operators

<, <=, >, >=, =, and < >.

 between can be used to simplify the comparisons

 select loan-number

 from Loan

 where amount between 90000 and 100000

From Clause

 The from clause by itself defines a Cartesian product of the relations in the clause.

 When an attribute is present in more than one relation they can be referred as relation-

name.attribute-name to avoid the ambiguity.

 For all customers who have loan from the bank, find their names and loan numbers

 select distinct customer-name, Borrower.loan-number

 from Borrower, Loan

 where Borrower.loan-number = Loan.loan-number

The Rename Operation

 Used for renaming both relations both relations and attributes in SQL

 Use as clause: old-name as new-name

 Find the names and loan numbers of the customers who have a loan at the “Sadar” branch.

 select distinct customer-name, borrower.loan-number as loan-id

 from Borrower, Loan

 where Borrower.loan-number = Loan.loan-number and

 branch-name = “Sadar”

we can now refer the loan-number instead by the name loan-id.

 For all customers who have a loan from the bank, find their names and loan-numbers.

 select distinct customer-name, T.loan-number

 from Borrower as T, Loan as S

 where T.loan-number = S.loan-number

 Find the names of all branches that have assets greater than at least one branch located in

“Mathura”.

 select distinct T.branch-name

 from branch as T, branch as S

 where T.assets > S.assets and S.branch-city = “Mathura”

String Operation

 Two special characters are used for pattern matching in strings:

o Percent (%) : The % character matches any substring

o Underscore(_): The _ character matches any character

 “%Mandi”: will match with the strings ending with “Mandi” viz. “Raja Ki mandi”, “Peepal

Mandi”

 “_ _ _” matches any string of three characters.

 Find the names of all customers whose street address includes the substring “Main”

 select customer-name

 from Customer

 where customer-street like “%Main%”

Set Operations

 union, intersect and except operations are set operations available in SQL.

 Relations participating in any of the set operation must be compatible; i.e. they must have

the same set of attributes.

 Union Operation:

o Find all customers having a loan, an account, or both at the bank

(select customer-name from Depositor)

 union

 (select customer-name from Borrower)

It will automatically eliminate duplicates.

o If we want to retain duplicates union all can be used

(select customer-name from Depositor)

 union all

 (select customer-name from Borrower)

 Intersect Operation

o Find all customers who have both an account and a loan at the bank

(select customer-name from Depositor)

 intersect

 (select customer-name from Borrower)

o If we want to retail all the duplicates

(select customer-name from Depositor)

 intersect all

 (select customer-name from Borrower)

 Except Opeartion

o Find all customers who have an account but no loan at the bank

(select customer-name from Depositor)

 except

 (select customer-name from Borrower)

o If we want to retain the duplicates:

(select customer-name from Depositor)

 except all

 (select customer-name from Borrower)

Aggregate Functions

 Aggregate functions are those functions which take a collection of values as input and return

a single value.

 SQL offers 5 built in aggregate functions-

o Average: avg

o Minimum:min

o Maximum:max

o Total: sum

o Count:count

 The input to sum and avg must be a collection of numbers but others may have collections

of non-numeric data types as input as well

 Find the average account balance at the Sadar branch

 select avg(balance)

 from Account

 where branch-name= “Sadar”

The result will be a table which contains single cell (one row and one column) having

numerical value corresponding to average balance of all account at sadar branch.

 group by clause is used to form groups, tuples with the same value on all attributes in the

group by clause are placed in one group.

 Find the average account balance at each branch

 select branch-name, avg(balance)

 from Account

 group by branch-name

 By default the aggregate functions include the duplicates.

 distinct keyword is used to eliminate duplicates in an aggregate functions:

 Find the number of depositors for each branch

 select branch-name, count(distinct customer-name)

 from Depositor, Account

 where Depositor.account-number = Account.account-number

 group by branch-name

 having clause is used to state condition that applies to groups rather than tuples.

 Find the average account balance at each branch where average account balance is more

than Rs. 1200

 select branch-name, avg(balance)

 from Account

 group by branch-name

 having avg(balance) > 1200

 Count the number of tuples in Customer table

 select count(*)

 from Customer

 SQL doesn’t allow distinct with count(*)

 When where and having are both present in a statement where is applied before having.

LECTURE-23

Nested Sub queries

A subquery is a select-from-where expression that is nested within another query.

Set Membership

The in and not in connectives are used for this type of subquery.

“Find all customers who have both a loan and an account at the bank”, this query can be written

using nested subquery form as follows

select distinct customer-name

from Borrower

where customer-name in(select customer-name

 from Depositor)

 Select the names of customers who have a loan at the bank, and whose names are neither

“Smith” nor “Jones”

select distinct customer-name

from Borrower

where customer-name not in(“Smith”, “Jones”)

 Set Comparison

Find the names of all branches that have assets greater than those of at least one branch located in

Mathura

select branch-name

from Branch

where asstets > some (select assets

 from Branch

 where branch-city = “Mathura”)

1. Apart from > some others comparison could be < some , <= some , >= some , = some , <

> some.

2. Find the names of all branches that have assets greater than that of each branch located in

Mathura

select branch-name

from Branch

where asstets > all (select assets

 from Branch

 where branch-city = “Mathura”)

 Apart from > all others comparison could be < all , <= all , >= all , = all , < >all.

Views

In SQL create view command is used to define a view as follows:

create view v as <query expression>

 where <query expression> is any legal query expression and v is the view name.

 The view consisting of branch names and the names of customers who have either an

account or a loan at the branch. This can be defined as follows:

create view All-customer as

(select branch-name, customer-name

from Depositor, Account

where Depositor.account-number=account.account-number)

union

(select branch-name, customer-name

from Borrower, Loan

where Borrower.loan-number = Loan.loan-number)

 The attributes names may be specified explicitly within a set of round bracket after the name

of view.

 The view names may be used as relations in subsequent queries. Using the view

Allcustomer

Find all customers of Sadar branch

select customer-name

from All-customer

where branch-name= “Sadar”

 A create-view clause creates a view definition in the database which stays until a command

- drop view view-name - is executed.

Modification of Database

Deletion

 In SQL we can delete only whole tuple and not the values on any particular

attributes. The command is as follows:

delete from r where P.

where P is a predicate and r is a relation.

 delete command operates on only one relation at a time. Examples are as follows:

 Delete all tuples from the Loan relation

delete from Loan

o Delete all of the Smith’s account record

delete from Depositor

where customer-name = “Smith”

o Delete all loans with loan amounts between Rs 1300 and Rs 1500.

 delete from Loan

where amount between 1300 and 1500

o Delete the records of all accounts with balances below the average at the bank

delete from Account

where balance < (select avg(balance)

from Account)

Insertion

In SQL we either specify a tuple to be inserted or write a query whose result is a

set of tuples to be inserted. Examples are as follows:

Insert an account of account number A-9732 at the Sadar branch having balance

of Rs 1200

insert into Account

values(“Sadar”, “A-9732”, 1200)

the values are specified in the order in which the corresponding attributes are

listed in the relation schema.

SQL allows the attributes to be specified as part of the insert statement

insert into Account(account-number, branch-name, balance)

values(“A-9732”, “Sadar”, 1200)

insert into Account(branch-name, account-number, balance)

values(“Sadar”, “A-9732”, 1200)

Provide for all loan customers of the Sadar branch a new Rs 200 saving account

for each loan account they have. Where loan-number serve as the account number

for these accounts.

insert into Account

select branch-name, loan-number, 200

from Loan

where branch-name = “Sadar”

Updates

Used to change a value in a tuple without changing all values in the tuple.

 Suppose that annual interest payments are being made, and all balances are to be

increased by 5 percent.

update Account

set balance = balance * 1.05

Suppose that accounts with balances over Rs10000 receive 6 percent interest,

whereas all others receive 5 percent.

update Account

set balance = balance * 1.06

where balance > 10000

update Account

set balance = balance * 1.05

where balance <= 10000

Data Definition Language

Data Types in SQL

 char(n): fixed length character string, length n.

 varchar(n): variable length character string, maximum length n.

 int: an integer.

 smallint: a small integer.

 numeric(p,d): fixed point number, p digits(plus a sign), and d of the p digits are

to right of the decimal point.

 real, double precision: floating point and double precision numbers.

 float(n): a floating point number, precision at least n digits.

 date: calendar date; four digits for year, two for month and two for day of month.

 time: time of day n hours minutes and seconds.

Domains can be defined as

create domain person-name char(20).

the domain name person-name can be used to define the type of an attribute just like

built-in domain.

Schema Definition in SQL

create table command is used to define relations.

create table r (A1D1, A2D2,… , AnDn,

<integrity constraint1>,

… ,

<integrity constraintk>)

where r is relation name, each Ai is the name of attribute, Di is the domain type of

values of Ai. Several types of integrity constraints are available to define in SQL.

Integrity Constraints which are allowed in SQL are

primary key(Aj1, Aj2,… , Ajm)

and

check(P) where P is the predicate.

drop table command is used to remove relations from database.

alter table command is used to add attributes to an existing relation

alter table r add A D

it will add attribute A of domain type D in relation r.

alter table r drop A

it will remove the attribute A of relation r.

LECTURE-24

Integrity Constraints

 Integrity Constraints guard against accidental damage to the database.

 Integrity constraints are predicates pertaining to the database.

 Domain Constraints:

 Predicates defined on the domains are Domain constraints.

 Simplest Domain constraints are defined by defining standard data types of the attributes

like Integer, Double, Float, etc.

 We can define domains by create domain clause also we can define the constraints on such

domains as follows:

create domain hourly-wage numeric(5,2)

constraint wage-value-test check(value >= 4.00)

 So we can use hourly-wage as data type for any attribute where DBMS will automatically

allow only values greater than or equal to 4.00.

 Other examples for defining Domain constraints are as follows:

create domain account-number char(10)

constraint account-number-null-test check(value not null)

create domain account-type char(10)

 constraint account-type-test

 check (value in (“Checking”, “Saving”))

By using the later domain of two above the DBMS will allow only values for any attribute having

type as account-type i.e. Checking and Saving.

 Referential Integrity:

 Foreign Key: If two table R and S are related to each other, K1 and K2 are primary keys of

the two relations also K1 is one of the attribute in S. Suppose we want that every row in S

must have a corresponding row in R, then we define the K1 in S as foreign key. Example in

our original database of library we had a table for relation BORROWEDBY, containing two

fields Card No. and Acc. No. . Every row of BORROWEDBY relation must have

corresponding row in USER Table having same Card No. and a row in BOOK table having

same Acc. No.. Then we will define the Card No. and Acc. No. in BORROWEDBY relation

as foreign keys.

 In other way we can say that every row of BORROWEDBY relation must refer to some row

in BOOK and also in USER tables.

 Such referential requirement in one table to another table is called Referential Integrity.

LECTURE-25

Query by Example (QBE)

Query by Example (QBE) is a method of query creation that allows the user to search for

documents based on an example in the form of a selected text string or in the form of a document

name or a list of documents. Because the QBE system formulates the actual query, QBE is easier to

learn than formal query languages, such as the standard Structured Query Language (SQL), while

still enabling powerful searches.

Selections in QBE

QBE uses skeleton tables to represent table name and fieldnames like:

Table name Field1 Field2 …..

For selection, P operator along with variable name/constant name is used to display one or more

fields.

Example 1:

Consider the relation: student (name, roll, marks)

The following query can be represented as:

SQL: select name from student where marks>50;

student name roll marks

 P.X >50

Here X is a constant; alternatively we can use _X as a variable.

Example 2:

For the relation given above

The following query can be represented as:

SQL: select * from student where marks>50 and marks <80;

student name roll marks

P. _X

We can use condition box to represent complex conditions.

Example 3:

For the relation given above

The following query can be represented as:

SQL: select name, roll from student where marks<50 or marks >80;

student name roll marks

 P.A P.B <50

 P.A P.B >80

OR operation retrieves results in multiple rows.

Example 4:

(Joins in QBE)

Consider the following tables:

Student (name, roll, marks)

Grades (roll, grade)

The following query can be represented as:

CONDITION

_X>50 _X<80

https://searchsqlserver.techtarget.com/definition/SQL

SQL: select s.name, g.grade from Student s, Grades g where s.roll=g.roll and s.marks>50;

Uses two skeleton tables:

Student name roll marks

 P.A _X >50

And

Grades roll grade

 _X P.B

Insertions in QBE:

Uses operator I. on the table.

Example: Consider the following query on Student table

SQL: insert into student values (‘abc’,10,60);

Student name roll marks

I. abc 10 60

Multiple insertions can be represented by separate rows in skeleton table.

Deletions in QBE:

Uses operator D. on the table.

Example: Consider the following query on Student table

SQL: delete from student where marks=0;

Student name roll marks

D. 0

Multiple deletions can be represented by separate rows in skeleton table.

Deletions without any condition can truncate the entire table.

Updation in QBE:

Uses operator U. on the table.

Example: Consider the following query on Student table

SQL: update student set mark=50 where roll=40;

Student name roll marks

U. 50

 40

LECTURE-26

RELATIONAL DATABASE DEGIN

Database design is a process in which you create a logical data model for a database, which store

data of a company. It is performed after initial database study phase in the database life cycle. You

use normalization technique to create the logical data model for a database and eliminate data

redundancy.

Normalization also allows you to organize data efficiently in a database and reduce anomalies

during data operation. Various normal forms, such as first, second and third can be applied to create

a logical data model for a database. The second and third normal forms are based on partial

dependency and transitivity dependency. Partial dependency occurs when a row of table is uniquely

identified by one column that is a part of a primary key. A transitivity dependency occurs when a

non key column is uniquely identified by values in another non-key column of a table.

Database Design Process:

We can identify six main phases of the database design process:

1. Requirement collection and analysis

2. Conceptual database design

3. Choice of a DBMS

4. Data model mapping(logical database design)

5. Physical database design

6. Database system implementation and tuning

1. Requirement Collection and Analysis
Before we can effectively design a data base we must know and analyze the expectation of

the users and the intended uses of the database in as much as detail.

 2. Conceptual Database Design
The goal for this phase is to produce a conceptual schema for the database that is

independent of a specific DBMS.

 We often use a high level data model such ER-model during this phase

 We specify as many of known database application on transactions as possible using a

notation that is independent of any specific dbms.

 Often the dbms choice is already made for the organization the intent of conceptual

design still to keep , it as free as possible from implementation consideration.

 3. Choice of a DBMS
The choice of dbms is governed by a no. of factors some technical other economic and still

other concerned with the politics of the organization.

The economics and organizational factors that offer the choice of the dbms are:

Software cost, maintenance cost, hardware cost, database creation and conversion cost,

personnel cost, training cost, operating cost.

4. Data model mapping (logical database design)

During this phase, we map the conceptual schema from the high level data model used on

phase 2 into a data model of the choice dbms.

5. Physical databse design

During this phase we design the specification for the database in terms of physical storage

structure ,record placement and indexes.

6. Database system implementation and tuning

During this phase, the database and application programs are implemented, tested and

eventually deployed for service.

Informal Guidelines for Relation Design

Want to keep the semantics of the relation attributes clear. The information in a tuple should

represent exactly one fact or an entity. The hidden or buried entities are what we want to discover

and eliminate.

 Design a relation schema so that it is easy to explain its meaning.

 Do not combine attributes from multiple entity types and relationship types into a single

relation. Use a view if you want to present a simpler layout to the end user.

 A relation schema should correspond to on entity type or relationship type.

 Minimize redundant information in tuples, thus reducing update anomalies

 If anomalies are present, try to decompose the relation into two or more to represent the

separate facts, or document the anomalies well for management in the applications

programs.

Minimize the use of null values. Nulls have multiple interpretations:

 The attribute does not apply to this tuple

 The attribute value is unknown

 The attribute value is absent

 The attribute value might represent an actual value

If nulls are likely (non-applicable) then consider decomposition of the relation into two or more

relations that hold only the non-null valued tuples.

 Do not permit the creation of spurious tuples

Too much decomposition of relations into smaller ones may also lose information or generate

erroneous information

 Be sure that relations can be logically joined using natural join and the result doesn't

generate relationships that don't exist

Functional Dependencies

FD's are constraints on well-formed relations and represent a formalism on the infrastructure of

relation.

Definition: A functional dependency (FD) on a relation schema R is a constraint X → Y, where X

and Y are subsets of attributes of R.

Definition: an FD is a relationship between an attribute "Y" and a determinant (1 or more other

attributes) "X" such that for a given value of a determinant the value of the attribute is uniquely

defined.

 X is a determinant

 X determines Y

 Y is functionally dependent on X

 X → Y

 X →Y is trivial if Y ⊆ X

Definition: An FD X → Y is satisfied in an instance r of R if for every pair of tuples, t and s: if t

and s agree on all attributes in X then they must agree on all attributes in Y

A key constraint is a special kind of functional dependency: all attributes of relation occur on the

right-hand side of the FD:

 SSN → SSN, Name, Address

 Example Functional Dependencies

Let R be

NewStudent(stuId, lastName, major, credits, status, socSecNo)

FDs in R include

 {stuId}→{lastName}, but not the reverse

 {stuId} →{lastName, major, credits, status, socSecNo, stuId}

 {socSecNo} →{stuId, lastName, major, credits, status, socSecNo}

 {credits}→{status}, but not {status}→{credits}

ZipCode→AddressCity

 16652 is Huntingdon’s ZIP

ArtistName→BirthYear

 Picasso was born in 1881

Autobrand→Manufacturer, Engine type

 Pontiac is built by General Motors with gasoline engine

Author, Title→PublDate

 Shakespeare’s Hamlet was published in 1600

Trivial Functional Dependency

The FD X→Y is trivial if set {Y} is a subset of set {X}

Examples: If A and B are attributes of R,

 {A}→{A}

 {A,B} →{A}

 {A,B} →{B}

 {A,B} →{A,B}

are all trivial FDs and will not contribute to the evaluation of normalization.

FD Axioms

Understanding: Functional Dependencies are recognized by analysis of the real world; no

automation or algorithm. Finding or recognizing them are the database designer's task.

FD manipulations:

 Soundness -- no incorrect FD's are generated

 Completeness -- all FD's can be generated

Axiom Name Axiom Example

Reflexivity
if a is set of attributes, b ⊆ a,

then a →b
SSN,Name → SSN

Augmentation
if a→ b holds and c is a set of

attributes, then ca→cb
SSN → Name then

SSN,Phone → Name, Phone

Transitivity
if a →b holds and b→c holds,

then a→ c holds
SSN →Zip and Zip → City then SSN →City

Union or Additivity

*

if a → b and a → c holds then

a→ bc holds
SSN→Name and SSN→Zip then SSN→Name,Zip

Decomposition or

Projectivity*

if a → bc holds then a → b

and a → c holds
SSN→Name,Zip then SSN→Name and SSN→Zip

Pseudotransitivity*
if a → b and cb → d hold then

ac → d holds
Address → Project and Project,Date →Amount then

Address,Date → Amount

(NOTE)
ab→ c does NOT imply a → c

and b → c

*Armstrong's Axioms (basic axioms)

LECTURE-27

CLOSURE OF A SET OF FUNCTIONAL DEPEDENCIES

Given a relational schema R, a functional dependencies f on R is logically implied by a set of

functional dependencies F on R if every relation instance r(R) that satisfies F also satisfies f.

The closure of F, denoted by F+, is the set of all functional dependencies logically implied by F.

The closure of F can be found by using a collection of rules called Armstrong axioms.

Reflexivity rule: If A is a set of attributes and B is subset or equal to A, then A→B holds.

Augmentation rule: If A→B holds and C is a set of attributes, then CA→CB holds

Transitivity rule: If A→B holds and B→C holds, then A→C holds.

Union rule: If A→B holds and A→C then A→BC holds

Decomposition rule: If A→BC holds, then A→B holds and A→C holds.

Pseudo transitivity rule: If A→B holds and BC→D holds, then AC→D holds.

Suppose we are given a relation schema R=(A,B,C,G,H,I) and the set of function dependencies

{A→B,A→C,CG→H,CG→I,B→H}

We list several members of F+ here:

1. A→H, since A→B and B→H hold, we apply the transitivity rule.

2. CG→HI. Since CG→H and CG→I , the union rule implies that CG→HI

 3. AG→I, since A→C and CG→I, the pseudo transitivity rule implies that AG→I holds

Algorithm of compute F+ :

To compute the closure of a set of functional dependencies F:

 F+ = F

repeat

 for each functional dependency f in F+

 apply reflexivity and augmentation rules on f

 add the resulting functional dependencies to F+

 for each pair of functional dependencies f1and f2 in F+

 if f1 and f2 can be combined using transitivity

 then add the resulting functional dependency to F+

until F+ does not change any further

large.

LECTURE-28

LOSS LESS DECOMPOSITION

A decomposition of a relation scheme R<S,F> into the relation schemes Ri(1<=i<=n) is said to be a

lossless join decomposition or simply lossless if for every relation R that satisfies the FDs in F, the

natural join of the projections or R gives the original relation R, i.e,

 R= R1(R) R2(R) …….. Rn(R)

If R is subset of R1(R) R2(R) …….. Rn(R)

Then the decomposition is called lossy.

DEPEDENCY PRSERVATION:

Given a relation scheme R<S,F> where F is the associated set of functional dependencies on the

attributes in S,R is decomposed into the relation schemes R1,R2,…Rn with the fds F1,F2…Fn, then

this decomposition of R is dependency preserving if the closure of F’ (where F’=F1 U F2 U … Fn)

Example:

Let R(A,B,C) AND F={A→B}. Then the decomposition of R into R1(A,B) and R2(A,C) is lossless

because the FD { A→B} is contained in R1 and the common attribute A is a key of R1.

Example:

Let R(A,B,C) AND F={A→B}. Then the decomposition of R into R1(A,B) and R2(B,C) is not

lossless because the common attribute B does not functionally determine either A or C. i.e, it is not

a key of R1 or R 2.

Example:

Let R(A,B,C,D) and F={A→B, A→C, C→D,}. Then the decomposition of R into R1(A,B,C) with

the FD F1={ A→B , A→C }and R2(C,D) with FD F2={ C→D} . In this decomposition all the

original FDs can be logically derived from F1 and F2, hence the decomposition is dependency

preserving also . the common attribute C forms a key of R2. The decomposition is lossless.

Example:

Let R(A,B,C,D) and F={A→B, A→C, A→D,}. Then the decomposition of R into R1(A,B,D) with

the FD F1={ A→B , A→D }and R2(B,C) with FD F2={ } is lossy because the common attribute B

is not a candidate key of either R1 and R2 .

In addition , the fds A→C is not implied by any fds R1 or R2. Thus the decomposition is not

dependency preserving.

Full functional dependency:

Given a relational scheme R and an FD X→Y ,Y is fully functional dependent on X if there is no Z,

where Z is a proper subset of X such that Z→Y. The dependency X→Y is left reduced, there being

no extraneous attributes attributes in the left hand side of the dependency.

Partial dependency:

Given a relation dependencies F defined on the attributes of R and K as a candidate key ,if X is a

proper subset of K and if F|= X→A, then A is said to be partial dependent on K

Prime attribute and non prime attribute:

 A attribute A in a relation scheme R is a prime attribute or simply prime if A is part of any

candidate key of the relation. If A is not a part of any candidate key of R, A is called a nonprime

attribute or simply non prime .

Trivial functional dependency:

 A FD X→Y is said to be a trivial functional dependency if Y is subset of X.

LECTURE-29

Normalization

While designing a database out of an entity–relationship model, the main problem existing in that

“raw” database is redundancy. Redundancy is storing the same data item in more one place. A

redundancy creates several problems like the following:

1. Extra storage space: storing the same data in many places takes large amount of disk space.

2. Entering same data more than once during data insertion.

3. Deleting data from more than one place during deletion.

4. Modifying data in more than one place.

5. Anomalies may occur in the database if insertion, deletion, modification etc are no done

properly. It creates inconsistency and unreliability in the database.

To solve this problem, the “raw” database needs to be normalized. This is a step by step process of

removing different kinds of redundancy and anomaly at each step. At each step a specific rule is

followed to remove specific kind of impurity in order to give the database a slim and clean look.

Un-Normalized Form (UNF)

If a table contains non-atomic values at each row, it is said to be in UNF. An atomic value is

something that can not be further decomposed. A non-atomic value, as the name suggests, can be

further decomposed and simplified. Consider the following table:

Emp-Id Emp-Name Month Sales Bank-Id Bank-Name

E01 AA Jan 1000 B01 SBI

 Feb 1200

 Mar 850

E02 BB Jan 2200 B02 UTI

 Feb 2500

E03 CC Jan 1700 B01 SBI

 Feb 1800

 Mar 1850

 Apr 1725

In the sample table above, there are multiple occurrences of rows under each key Emp-Id. Although

considered to be the primary key, Emp-Id cannot give us the unique identification facility for any

single row. Further, each primary key points to a variable length record (3 for E01, 2 for E02 and 4

for E03).

First Normal Form (1NF)

A relation is said to be in 1NF if it contains no non-atomic values and each row can provide a

unique combination of values. The above table in UNF can be processed to create the following

table in 1NF.

Emp-Id

Emp-Name Month Sales Bank-Id Bank-Name

E01 AA Jan 1000 B01 SBI

E01 AA Feb 1200 B01 SBI

E01 AA Mar 850 B01 SBI

E02 BB Jan 2200 B02 UTI

E02 BB Feb 2500 B02 UTI

E03 CC Jan 1700 B01 SBI

E03 CC Feb 1800 B01 SBI

E03 CC Mar 1850 B01 SBI

E03 CC Apr 1725 B01 SBI

As you can see now, each row contains unique combination of values. Unlike in UNF, this relation

contains only atomic values, i.e. the rows can not be further decomposed, so the relation is now in

1NF.

Second Normal Form (2NF)

A relation is said to be in 2NF f if it is already in 1NF and each and every attribute fully depends on

the primary key of the relation. Speaking inversely, if a table has some attributes which is not

dependant on the primary key of that table, then it is not in 2NF.

Let us explain. Emp-Id is the primary key of the above relation. Emp-Name, Month, Sales and

Bank-Name all depend upon Emp-Id. But the attribute Bank-Name depends on Bank-Id, which is

not the primary key of the table. So the table is in 1NF, but not in 2NF. If this position can be

removed into another related relation, it would come to 2NF.

Emp-Id Emp-Name Month Sales Bank-Id

E01 AA JAN 1000 B01

E01 AA FEB 1200 B01

E01 AA MAR 850 B01

E02 BB JAN 2200 B02

E02 BB FEB 2500 B02

E03 CC JAN 1700 B01

E03 CC FEB 1800 B01

E03 CC MAR 1850 B01

E03 CC APR 1726 B01

Bank-Id Bank-Name

B01 SBI

B02 UTI

After removing the portion into another relation we store lesser amount of data in two relations

without any loss information. There is also a significant reduction in redundancy.

Third Normal Form (3NF)

A relation is said to be in 3NF, if it is already in 2NF and there exists no transitive dependency in

that relation. Speaking inversely, if a table contains transitive dependency, then it is not in 3NF, and

the table must be split to bring it into 3NF.

What is a transitive dependency? Within a relation if we see

A → B [B depends on A]

And

B → C [C depends on B]

Then we may derive

A → C[C depends on A]

Such derived dependencies hold well in most of the situations. For example if we have

Roll → Marks

And

Marks → Grade

Then we may safely derive

Roll → Grade.

This third dependency was not originally specified but we have derived it.

The derived dependency is called a transitive dependency when such dependency becomes

improbable. For example we have been given

Roll → City

And

City → STDCode

If we try to derive Roll → STDCode it becomes a transitive dependency, because obviously the

STDCode of a city cannot depend on the roll number issued by a school or college. In such a case

the relation should be broken into two, each containing one of these two dependencies:

Roll → City

And

City → STD code

LECTURE-30

Boyce-Code Normal Form (BCNF)

A relationship is said to be in BCNF if it is already in 3NF and the left hand side of every

dependency is a candidate key. A relation which is in 3NF is almost always in BCNF. These could

be same situation when a 3NF relation may not be in BCNF the following conditions are found true.

1. The candidate keys are composite.

2. There are more than one candidate keys in the relation.

3. There are some common attributes in the relation.

Professor Code Department Head of Dept. Percent Time

P1 Physics Ghosh 50

P1 Mathematics Krishnan 50

P2 Chemistry Rao 25

P2 Physics Ghosh 75

P3 Mathematics Krishnan 100

Consider, as an example, the above relation. It is assumed that:

1. A professor can work in more than one department

2. The percentage of the time he spends in each department is given.

3. Each department has only one Head of Department.

The relation diagram for the above relation is given as the following:

The given relation is in 3NF. Observe, however, that the names of Dept. and Head of Dept. are

duplicated. Further, if Professor P2 resigns, rows 3 and 4 are deleted. We lose the information that

Rao is the Head of Department of Chemistry.

The normalization of the relation is done by creating a new relation for Dept. and Head of Dept. and

deleting Head of Dept. form the given relation. The normalized relations are shown in the

following.

Professor Code Department Percent Time

P1 Physics 50

P1 Mathematics 50

P2 Chemistry 25

P2 Physics 75

P3 Mathematics 100

Department Head of Dept.

Physics Ghosh

Mathematics Krishnan

Chemistry Rao

See the dependency diagrams for these new relations.

Fourth Normal Form (4NF)

When attributes in a relation have multi-valued dependency, further Normalization to 4NF and 5NF

are required. Let us first find out what multi-valued dependency is.

A multi-valued dependency is a typical kind of dependency in which each and every attribute

within a relation depends upon the other, yet none of them is a unique primary key.

We will illustrate this with an example. Consider a vendor supplying many items to many projects

in an organization. The following are the assumptions:

1. A vendor is capable of supplying many items.

2. A project uses many items.

3. A vendor supplies to many projects.

4. An item may be supplied by many vendors.

A multi valued dependency exists here because all the attributes depend upon the other and yet none

of them is a primary key having unique value.

Vendor Code Item Code Project No.

V1 I1 P1

V1 I2 P1

V1 I1 P3

V1 I2 P3

V2 I2 P1

V2 I3 P1

V3 I1 P2

V3 I1 P3

The given relation has a number of problems. For example:

1. If vendor V1 has to supply to project P2, but the item is not yet decided, then a row with a

blank for item code has to be introduced.

2. The information about item I1 is stored twice for vendor V3.

Observe that the relation given is in 3NF and also in BCNF. It still has the problem mentioned

above. The problem is reduced by expressing this relation as two relations in the Fourth Normal

Form (4NF). A relation is in 4NF if it has no more than one independent multi valued dependency

or one independent multi valued dependency with a functional dependency.

The table can be expressed as the two 4NF relations given as following. The fact that vendors are

capable of supplying certain items and that they are assigned to supply for some projects in

independently specified in the 4NF relation.

Vendor-Supply

Vendor Code Item Code

V1 I1

V1 I2

V2 I2

V2 I3

V3 I1

Vendor-Project

Vendor Code Project No.

V1 P1

V1 P3

V2 P1

V3 P2

 Fifth Normal Form (5NF)

These relations still have a problem. While defining the 4NF we mentioned that all the attributes

depend upon each other. While creating the two tables in the 4NF, although we have preserved the

dependencies between Vendor Code and Item code in the first table and Vendor Code and Item code

in the second table, we have lost the relationship between Item Code and Project No. If there were a

primary key then this loss of dependency would not have occurred. In order to revive this

relationship we must add a new table like the following. Please note that during the entire process

of normalization, this is the only step where a new table is created by joining two attributes, rather

than splitting them into separate tables.

Project No. Item Code

P1 11

P1 12

P2 11

P3 11

P3 13

 Let us finally summarize the normalization steps we have discussed so far.

Input

Relation

Transformation Output

Relation

All

Relations

Eliminate variable length record. Remove multi-attribute lines in table. 1NF

1NF

Relation

Remove dependency of non-key attributes on part of a multi-attribute

key.

2NF

2NF Remove dependency of non-key attributes on other non-key attributes. 3NF

3NF Remove dependency of an attribute of a multi attribute key on an

attribute of another (overlapping) multi-attribute key.

BCNF

BCNF Remove more than one independent multi-valued dependency from

relation by splitting relation.

4NF

4NF Add one relation relating attributes with multi-valued dependency.

LECTURE-31
QUERY PROCESSING

Query processing includes translation of high-level queries into low-level expressions that can be used at the

physical level of the file system, query optimization and actual execution of the query to get the result. It is a

three-step process that consists of parsing and translation, optimization and execution of the query submitted

by the user.

A query is processed in four general steps:

1. Scanning and Parsing

2. Query Optimization or planning the execution strategy

3. Query Code Generator (interpreted or compiled)

4. Execution in the runtime database processor

1. Scanning and Parsing

When a query is first submitted (via an applications program), it must be scanned and parsed to

determine if the query consists of appropriate syntax.

Scanning is the process of converting the query text into a tokenized representation.

The tokenized representation is more compact and is suitable for processing by the parser.

This representation may be in a tree form.

The Parser checks the tokenized representation for correct syntax.

In this stage, checks are made to determine if columns and tables identified in the query exist in the

database and if the query has been formed correctly with the appropriate keywords and structure.

If the query passes the parsing checks, then it is passed on to the Query Optimizer.

2. Query Optimization or Planning the Execution Strategy

For any given query, there may be a number of different ways to execute it.

Each operation in the query (SELECT, JOIN, etc.) can be implemented using one or more different

Access Routines.

For example, an access routine that employs an index to retrieve some rows would be more efficient

that an access routine that performs a full table scan.

The goal of the query optimizer is to find a reasonably efficient strategy for executing the query (not

quite what the name implies) using the access routines.

Optimization typically takes one of two forms: Heuristic Optimization or Cost Based Optimization

In Heuristic Optimization, the query execution is refined based on heuristic rules for reordering the

individual operations.

With Cost Based Optimization, the overall cost of executing the query is systematically reduced by

estimating the costs of executing several different execution plans.

3. Query Code Generator (interpreted or compiled)

Once the query optimizer has determined the execution plan (the specific ordering of access routines),

the code generator writes out the actual access routines to be executed.

With an interactive session, the query code is interpreted and passed directly to the runtime database

processor for execution.

It is also possible to compile the access routines and store them for later execution.

4. Execution in the runtime database processor

At this point, the query has been scanned, parsed, planned and (possibly) compiled.

The runtime database processor then executes the access routines against the database.

The results are returned to the application that made the query in the first place.

Any runtime errors are also returned.

Lecture-32
Query Optimization

To enable the system to achieve (or improve) acceptable performance by choosing a better (if not the

best) strategy during the process of a query. One of the great strengths to the relational database.

Automatic Optimization vs. Human Programmer

1. A good automatic optimizer will have a wealth of information available to it that human

programmers typically do not have.

2. An automatic optimizer can easily reprocess the original relational request when the

organization of the database is changed. For a human programmer, reorganization would

involve rewriting the program.

3. The optimizer is a program, and therefore is capable of considering literally hundreds of

different implementation strategies for a given request, which is much more than a human

programmer can.

4. The optimizer is available to a wide range of users, in an efficient and cost-effective manner.

The Optimization Process

1. Cast the query into some internal representation, such as a query tree structure.

2. Convert the internal representation to canonical form.

*A subset (say C) of a set of queries (say Q) is said to be a set of canonical forms for Q if and only if

every query Q is equivalent to just one query in C.

During this step, some optimization is already achieved by transforming the internal representation

to a better canonical form.

Possible improvements

a. Doing the restrictions (selects) before the join.

b. Reduce the amount of comparisons by converting a restriction condition to an equivalent

condition in conjunctive normal form- that is, a condition consisting of a set of restrictions

that are ANDed together, where each restriction in turn consists of a set of simple comparisons

connected only by OR's.

c. A sequence of restrictions (selects) before the join.

d. In a sequence of projections, all but the last can be ignored.

e. A restriction of projection is equivalent to a projection of a restriction.

f. Others

3. Choose candidate low-level procedures by evaluate the transformed query.

*Access path selection: Consider the query expression as a series of basic operations (join,

restriction, etc.), then the optimizer choose from a set of pre-defined, low-level

implementation procedures. These procedures may involve the user of primary key, foreign

key or indexes and other information about the database.

4. Generate query plans and choose the cheapest by constructing a set of candidate query plans first,

then choose the best plan. To pick the best plan can be achieved by assigning cost to each

given plan. The costs is computed according to the number of disk I/O's involved.

Module-3:

Lecture-33

Transaction

A transaction is the smallest unit of operation done on a database.

It can be basically of two types:

Read Transaction

Write Transaction

3.2. ACID Properties of transaction:

AAttoommiicciittyy:: ((aallll oorr nnootthhiinngg))

A transaction is said to be atomic if a transaction always executes all its actions in one step or not

executes any actions at all It means either all or none of the transactions operations are performed.

CCoonnssiisstteennccyy:: ((NNoo vviioollaattiioonn ooff iinntteeggrriittyy ccoonnssttrraaiinnttss))

A transaction must preserve the consistency of a database after the execution. The DBMS assumes

that this property holds for each transaction. Ensuring this property of a transaction is the

responsibility of the user.

IIssoollaattiioonn:: ((ccoonnccuurrrreenntt cchhaannggeess iinnvviissiibblleess))

The transactions must behave as if they are executed in isolation. It means that if several

transactions are executed concurrently the results must be same as if they were executed serially in

some order. The data used during the execution of a transaction cannot be used by a second

transaction until the first one is completed.

DDuurraabbiilliittyy:: ((ccoommmmiitttteedd uuppddaattee ppeerrssiisstt))

The effect of completed or committed transactions should persist even after a crash. It means once a

transaction commits, the system must guarantee that the result of its operations will never be lost, in

spite of subsequent failures.

3.3. States of a transaction:

A transaction must be in one of the following states:

 Active: the initial state, the transaction stays in this state while it is executing.

 Partially committed: after the final statement has been executed.

 Failed: when the normal execution can no longer proceed.

 Aborted: after the transaction has been rolled back and the database has been restored to its

state prior to the start of the transaction.

 Committed: after successful completion.

The state diagram corresponding to a transaction is shown in Figure.

We say that a transaction has committed only if it has entered the committed state. Similarly, we say

that a transaction has aborted only if it has entered the aborted state. A transaction is said to have

terminated if has either committed or aborted.

A transaction starts in the active state. When it finishes its final statement, it enters the partially

committed state. At this point, the transaction has completed its execution, but it is still possible that

it may have to be aborted, since the actual output may still be temporarily hiding in main memory

and thus a hardware failure may preclude its successful completion

The database system then writes out enough information to disk that, even in the event of a failure,

the updates performed by the transaction can be recreated when the system restarts after the failure.

When the last of this information is written out, the transaction enters the committed state.

Problems due to concurrency:

1) Lost update problem

2) Dirty Read problem

3) Incorrect summary problem

1. The lost update problem: A second transaction writes a second value of a data-item (datum)

on top of a first value written by a first concurrent transaction, and the first value is lost to

other transactions running concurrently which need, by their precedence, to read the first

value. The transactions that have read the wrong value end with incorrect results.

2. The dirty read problem: Transactions read a value written by a transaction that has been later

aborted. This value disappears from the database upon abort, and should not have been read

by any transaction ("dirty read"). The reading transactions end with incorrect results.

3. The incorrect summary problem: While one transaction takes a summary over the values of

all the instances of a repeated data-item, a second transaction updates some instances of that

data-item. The resulting summary does not reflect a correct result for any (usually needed

for correctness) precedence order between the two transactions (if one is executed before the

other), but rather some random result, depending on the timing of the updates, and whether

certain update results have been included in the summary or not.

Concurrency Control Techniques:

1) Locking

2) Timestamp ordering

3) Multi-version concurrency control

4) Optimistic concurrency control

http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

Locking (2-Phase Locking)

2PL protocol locks are applied and removed in two phases:

1. Expanding phase: locks are acquired and no locks are released.

2. Shrinking phase: locks are released and no locks are acquired.

Locks are of two types:

1. Binary Lock

2. Share/Exclusive (Read/Write) Lock

Binary Lock

A binary lock can have 2 States or values

 Locked (or 1) and

 Unlocked (or 0)

We represent the current state(or value) of the lock associated with data item X as LOCK(X).

Operations used with Binary Locking

1. lock_item : A transaction request access to an item by first issuing a lock_item(X)

operation.

o If LOCK(X) =1 or L(X) : the transaction is forced to wait.

o If LOCK(X) = 0 or U(x) : it is set to 1(the transaction locks the item) and the

transaction is a load to access item X.

2. unlock_item : After using the data item the transaction issues an operation unlock(X),

which sets the operation LOCK(X) to 0 i.e. unlocks the data item so that X may be

accessed by another transactions.

Transaction Rules for Binary Locks

Every transaction must obey the following rules :

A transaction T must issue the lock(X) operation before any read(X) or write(X) operations in T.

A transaction T must issue the unlock(X) operation after all read(X) and write(X) operations in T.

If a transaction T already holds the lock on item X, then T will not issue a lock(X) operation.

If a transaction does not holds the lock on item X, then T will not issue an unlock(X) operation.

SShhaarreedd//RReeaadd aanndd EExxcclluussiivvee//WWrriittee LLoocckk

The binary lock is too restrictive for data items because at most one transaction can hold on a given

item whether the transaction is reading or writing. To improve it we have shared and exclusive

locks in which more than one transaction can access the same item for reading purposes.i.e. the read

operations on the same item by different transactions are not conflicting.

In this types of lock, system supports two kinds of lock :

 Exclusive(or Write) Locks and

 Shared(or Read) Locks.

Shared Locks

If a transaction Ti has locked the data item A in shared mode, then a request from another

transaction Tj on A for :

 Write operation on A : Denied. Transaction Tj has to wait until transaction Ti unlock A.

 Read operation on A : Allowed.

Exclusive Locks
If a transaction Ti has locked a data item a in exclusive mode then request from some another

transaction Tj for

 Read operation on A : Denied

 Write operation on A : Denied

Operations Used with Shared and Exclusive Locks

1. Read_lock(A) or s(A)

2. Write_lock(A) or X(A)

3. Unlock(X) or U(A)

Implementation of Shared and Exclusive Locks

Shared and exclusive locks are implemented using 4 fields :

1. Data_item_name

2. LOCK

3. Number of Records and

4. Locking_transaction(s)

Again to save space, items that are not in the lock table are considered to be unlocked. The system

maintains only those records for the items that are currently locked in the lock table.

Value of LOCK(A) : Read Locked or Write Locked

 If LOCK(A) = write-locked – The value of locking transaction is a single transaction that

holds the exclusive(write) Lock on A.

 If LOCK(A) = read-locked – The value of locking transaction is a list of one or more

transactions that hold the Shared(read) on A.

Transaction Rules for Shared and Exclusive Locks

Every transaction must obey the following rules :

1. A transaction T must issue the operation s(A) or read_lock(A) or x(A) or write_lock(A)

before any read(A) operation is performed in T.

2. A transaction T must issue the operation x(A) or write_lock(A) before any write(A)

operation is performed in T.

3. After completion of all read(A) and write(A) operations in T, a transaction T must issue an

unlock(A) operation.

4. If a transaction already holds a read (shared) lock or a write (exclusive) lock on item A, then

T will not issue an unlock(A) operation.

5. A transaction that already holds a lock on item A, is allowed to convert the lock from one

locked state to another under certain conditions.

o Upgrading the Lock by Issuing a write_lock(A) Operation or Conversion of

read_lock() to write_lock() :

 Case 1 – When Conversion Not Possible : A transaction T will not issue a

write_lock(A) operation if it already holds a read (shared) lock or write

(exclusive) lock on item A.

 Case 2 – When Conversion Possible : If T is the only transaction holding a

read lock on A at the time it issues the

write_lock(A) operation, the lock can be upgraded;

o Downgrading the Lock by Issuing a read_lock(A) or Conversion of write_lock()

to read_lock() :

A transaction T downgrade from the write lock to a read lock by acquiring the

write_lock(A) or x(A), then the read_lock(A) or s(A) and then releasing the

write_lock(A) or x(A).

Lecture-34

Problems due to locking

1) deadlock

2) starvation

Deadlock:

It is an indefinite wait situation in which a series of transactions wait for each other for unknown

amount of time, it obeys the following conditions:

Hold & Wait

No Preemption

Mutual Exclusion

Circular Wait

Example:

For example, assume a set of transactions {T0, T1, T2, ...,Tn}. T0 needs a resource X to complete its

task. Resource X is held by T1, and T1 is waiting for a resource Y, which is held by T2. T2 is waiting

for resource Z, which is held by T0. Thus, all the processes wait for each other to release resources.

In this situation, none of the processes can finish their task. This situation is known as a deadlock.

Starvation:

It is a situation in which a transaction has locked a database for unfair means & all other

transactions are in indefinite waiting.

Starvation Deadlock

Starvation happens if same transaction is

always chosen as victim.

A deadlock is a condition in which two or more transaction

is waiting for each other.

It occurs if the waiting scheme for locked

items in unfair, giving priority to some

transactions over others.

A situation where two or more transactions are unable to

proceed because each is waiting for one of the other to do

something.

Starvation is also known as lived lock. Deadlock is also known as circular waiting.

Avoidance:

->switch priorities so that every thread has

a chance to have high priority.

-> Use FIFO order among competing

request.

Avoidance:

->Acquire locks are predefined order.

->Acquire locks at once before starting.

It means that transaction goes in a state

where transaction never progress.

It is a situation where transactions are waiting for each

other.

Timestamp Ordering

The timestamp-ordering protocol ensures serializability among transactions in their conflicting read

and write operations. This is the responsibility of the protocol system that the conflicting pair of

tasks should be executed according to the timestamp values of the transactions.

 The timestamp of transaction Ti is denoted as TS(Ti).

 Read time-stamp of data-item X is denoted by R-timestamp(X).

 Write time-stamp of data-item X is denoted by W-timestamp(X).

Timestamp ordering protocol works as follows −

 If a transaction Ti issues a read(X) operation −

o If TS(Ti) < W-timestamp(X)

 Operation rejected.

o If TS(Ti) >= W-timestamp(X)

 Operation executed.

o All data-item timestamps updated.

 If a transaction Ti issues a write(X) operation −

o If TS(Ti) < R-timestamp(X)

 Operation rejected.

o If TS(Ti) < W-timestamp(X)

 Operation rejected and Ti rolled back.

o Otherwise, operation executed.

Avoiding deadlock:

A major disadvantage of locking is deadlock which can be avoided using timestamp ordering as

follows:

There are two algorithms for deadlock avoidance.

 Wait/Die

 Wound/Wait

Here is the table representation of resource allocation for each algorithm. Both of these algorithms

take process age into consideration while determining the best possible way of resource allocation

for deadlock avoidance.

Wait/Die Wound/Wait

Older process needs a resource held by younger

process
Older process waits Younger process dies

Younger process needs a resource held by older

process
Younger process
dies

Younger process
waits

WWaaiitt--DDiiee SScchheemmee

In this scheme, if a transaction requests to lock a resource (data item), which is already held with a

conflicting lock by another transaction, then one of the two possibilities may occur −

 If TS(Ti) < TS(Tj) − that is Ti, which is requesting a conflicting lock, is older than Tj − then

Ti is allowed to wait until the data-item is available.

 If TS(Ti) > TS(tj) − that is Ti is younger than Tj − then Ti dies. Ti is restarted later with a

random delay but with the same timestamp.

This scheme allows the older transaction to wait but kills the younger one.

WWoouunndd--WWaaiitt SScchheemmee

In this scheme, if a transaction requests to lock a resource (data item), which is already held with

conflicting lock by some another transaction, one of the two possibilities may occur −

 If TS(Ti) < TS(Tj), then Ti forces Tj to be rolled back − that is Ti wounds Tj. Tj is restarted

later with a random delay but with the same timestamp.

 If TS(Ti) > TS(Tj), then Ti is forced to wait until the resource is available.

This scheme, allows the younger transaction to wait; but when an older transaction requests an item

held by a younger one, the older transaction forces the younger one to abort and release the item.

In both the cases, the transaction that enters the system at a later stage is aborted.

Multi-version Concurrency Control Techniques:

This concurrency control technique keeps the old values of a data item when the item is updated.

These are known as multiversion concurrency control, because several versions (values) of an item

are maintained.

When a transaction requires access to an item, an appropriate version is chosen to maintain the

serializability of the currently executing schedule, if possible. The idea is that some read operations

that would be rejected in other techniques can still be accepted by reading an older version of the

item to maintain serializability. When a transaction writes an item, it writes a new version and the

old version of the item is retained. Some multiversion concurrency control algorithms use the

concept of view serializability rather than conflict serializability.

An obvious drawback of multiversion techniques is that more storage is needed to maintain

multiple versions of the database items. However, older versions may have to be maintained

anyway—for example, for recovery purposes. In addition, some database applications require older

versions to be kept to maintain a history of the evolution of data item values.

The extreme case is a temporal database, which keeps track of all changes and the times at which

they occurred. In such cases, there is no additional storage penalty for multiversion techniques,

since older versions are already maintained.

Lecture-35

Multiversion Technique Based on Timestamp Ordering

In this method, several versions , , ..., of each data item X are maintained. For each version, the

value of version and the following two timestamps are kept:

1. read_TS: The read timestamp of is the largest of all the timestamps of transactions that have

successfully read version .

2. write_TS: The write timestamp of is the timestamp of the transaction that wrote the value of

version

Whenever a transaction T is allowed to execute a write_item(X) operation, a new version of item X

is created, with both the write_TS and the read_TS set to TS(T). Correspondingly, when a

transaction T is allowed to read the value of version Xi, the value of read_TS() is set to the larger of

the current read_TS() and TS(T).

To ensure serializability, the following two rules are used:

1. If transaction T issues a write_item(X) operation, and version i of X has the highest write_TS() of

all versions of X that is also less than or equal to TS(T), and read_TS() > TS(T), then abort and roll

back transaction T; otherwise, create a new version of X with read_TS() = write_TS() = TS(T).

2. If transaction T issues a read_item(X) operation, find the version i of X that has the highest

write_TS() of all versions of X that is also less than or equal to TS(T); then return the value of to

transaction T, and set the value of read_TS() to the larger of TS(T) and the current read_TS().

As we can see in case 2, a read_item(X) is always successful, since it finds the appropriate version

to read based on the write_TS of the various existing versions of X. In case 1, however, transaction

T may be aborted and rolled back. This happens if T is attempting to write a version of X that

should have been read by another transaction T whose timestamp is read_TS(); however, T has

already read version Xi, which was written by the transaction with timestamp equal to write_TS().

If this conflict occurs, T is rolled back; otherwise, a new version of X, written by transaction T, is

created. Notice that, if T is rolled back, cascading rollback may occur. Hence, to ensure

recoverability, a transaction T should not be allowed to commit until after all the transactions that

have written some version that T has read have committed.

Multiversion Two-Phase Locking Using Certify Locks

In this multiple-mode locking scheme, there are three locking modes for an item: read, write, and

certify, instead of just the two modes (read, write). Hence, the state of LOCK(X) for an item X can

be one of read-locked, write-locked, certify-locked, or unlocked.

In the standard locking scheme, once a transaction obtains a write lock on an item, no other

transactions can access that item. The idea behind multiversion 2PL is to allow other transactions T

to read an item X while a single transaction T holds a write lock on X. This is accomplished by

allowing two versions for each item X; one version must always have been written by some

committed transaction. The second version X is created when a transaction T acquires a write lock

on the item. Other transactions can continue to read the committed version of X while T holds the

write lock. Transaction T can write the value of X as needed, without affecting the value of the

committed version X. However, once T is ready to commit, it must obtain a certify lock on all items

that it currently holds write locks on before it can commit. The certify lock is not compatible with

read locks, so the transaction may have to delay its commit until all its write-locked items are

released by any reading transactions in order to obtain the certify locks. Once the certify locks—

which are exclusive locks—are acquired, the committed version X of the data item is set to the

value of version X, version X is discarded, and the certify locks are then released. In this

multiversion 2PL scheme, reads can proceed concurrently with a single write operation—an

arrangement not permitted under the standard 2PL schemes.

3.6.4. Optimistic Concurrency Control Techniques:

Basic idea: all transactions consist of three phases:

1. Read. Here, all writes are to private storage (shadow copies).

2. Validation. Make sure no conflicts have occurred.

3. Write. If Validation was successful, make writes public. (If not, abort!)

Useful in the following cases:

1. All transactions are readers.

2. Lots of transactions, each accessing/modifying only a small amount of data, large total

amount of data.

3. Fraction of transaction execution in which conflicts "really take place" is small compared to

total pathlength.

The Validation Phase

 Goal: to guarantee that only serializable schedules result.

 Technique: actually find an equivalent serializable schedule. In particular,

1. Assign each transaction a TN during execution.

2. Ensure that if you run transactions in order induced by "<" on TNs, you get an equivalent

serial schedule.

Suppose TN(Ti) < TN(Tj). Then if one of the following three conditions holds, it’s serializable:

1. Ti completes its write phase before Tj starts its read phase.

2. WS(Ti) intersect RS(Tj) = emptysetand Ti completes its write phase before Tj starts

its write phase.

3. WS(Ti) intersect RS(Tj) = WS(Ti) intersect WS(Tj) = emptysetand Ti completes its

read phase before Tj completes its read phase.

Recovery

Types of Failure

Failures may be

Transaction Caused by errors within the transaction processes.

System Caused by failure of network or operating system or physical threats to the

system as a whole.

Media Failure of hard disk, out of memory errors, out of disk space errors.

Reasons for Failure

Failure may be caused by a number of things.

A System Crash A hardware, software or network error causes the transaction to fail.

Transaction or System

error

Some operation in the transaction may cause the failure or the user may

interrupt the transaction.

Local Errors or

Exceptions

Conditions occur during the transaction that results in transaction

cancellation.

Concurrency Control

Enforcement

Several transactions may be in deadlock so the transaction may be aborted

to be restarted later.

Disk Failure Read Write error on the physical disk.

Physical Problems This can be any range of physical problems, such as power failure,

mounting wrong disk or tape by operator, wiring problems etc

Catastrophe Situations Large scale threats to the system and the data for example fire, cyclone,

security breaches etc.

Transaction errors, system errors, system crashes, concurrency problems and local errors or

exceptions are the more common causes of system failure. The system must be able to recover

from such failures without loss of data.

Log-Based Recovery

COMMIT

Signals the successful end of a transaction

• Any changes made by the transaction should be saved

• These changes are now visible to other transactions

ROLLBACK

Signals the unsuccessful end of a transaction

• Any changes made by the transaction should be undone

• It is now as if the transaction never existed

Log-Based Recovery

The most widely used structure for recording database modifications is the log. The log is a

sequence of log records and maintains a history of all update activities in the database. There are

several types of log records.

An update log record describes a single database write:

 Transactions identifier.

 Data-item identifier.

 Old value.

 New value.

Other special log records exist to record significant events during transaction processing, such as

the start of a transaction and the commit or abort of a transaction. We denote the various types of

log records as:

 <Ti start>.Transaction Ti has started.

 <Ti, Xj, V1, V2> Transaction Ti has performed a write on data item Xj. Xj had value V1

before write, and will have value V2 after the write.

 < Ti commit> Transaction Ti has committed.

 < Ti abort> Transaction Ti has aborted.

Whenever a transaction performs a write, it is essential that the log record for that write be created

before the database is modified. Once a log record exists, we can output the modification that has

already been output to the database. Also we have the ability to undo a modification that has already

been output to the database, by using the old-value field in the log records.

For log records to be useful for recovery from system and disk failures, the log must reside on

stable storage. However, since the log contains a complete record of all database activity, the

volume of data stored in the log may become unreasonable large.

DDeeffeerrrreedd DDaattaabbaassee MMooddiiffiiccaattiioonn

The deferred-modification technique ensures transaction atomicity by recording all database

modifications in the log, but deferring all write operations of a transaction until the transaction

partially commits (i.e., once the final action of the transaction has been executed). Then the

information in the logs is used to execute the deferred writes. If the system crashes or if the

transaction aborts, then the information in the logs is ignored.

 Let T0 be transaction that transfers $50 from account A to account B:

 T0: read (A);

 A: = A-50;

 Write (A);

 Read (B);

 B: = B + 50;

 Write (B).

IImmmmeeddiiaattee DDaattaabbaassee MMooddiiffiiccaattiioonn

The immediate-update technique allows database modifications to be output to the database while

the transaction is still in the active state. These modifications are called uncommitted modifications.

In the event of a crash or transaction failure, the system must use the old-value field of the log

records to restore the modified data items.

 Transactions T0 and T1 executed one after the other in the order T0 followed by T1. The

portion of the log containing the relevant information concerning these two transactions appears in

the following,

Portion of the system log corresponding to T0 and T1

 < T0 start >

 < T0, A, 1000, 950 >

 < T0, B, 2000, 2050 >

 < T0 commit >

 < T1 start >

 < T1, C, 700, 600 >

 < T0 commit >

CChheecckkppooiinnttss

When a system failure occurs, we must consult the log to determine those transactions that need to

be redone and those that need to be undone. Rather than reprocessing the entire log, which is time-

consuming and much of it unnecessary, we can use checkpoints:

 Output onto stable storage all the log records currently residing in main memory.

 Output to the disk all modified buffer blocks.

 Output onto stable storage a log record, <checkpoint>.

Lecture-36

Serializability:

When several concurrent transactions are trying to access the same data item, the instructions

within these concurrent transactions must be ordered in some way so as there are no problem in

accessing and releasing the shared data item. There are two aspects of serializability which are

described here:

Conflict Serializability

Two instructions of two different transactions may want to access the same data item in order to

perform a read/write operation. Conflict Serializability deals with detecting whether the

instructions are conflicting in any way, and specifying the order in which these two instructions

will be executed in case there is any conflict. A conflict arises if at least one (or both) of the

instructions is a write operation. The following rules are important in Conflict Serializability:

1. If two instructions of the two concurrent transactions are both for read operation, then

they are not in conflict, and can be allowed to take place in any order.

2. If one of the instructions wants to perform a read operation and the other instruction

wants to perform a write operation, then they are in conflict, hence their ordering is

important. If the read instruction is performed first, then it reads the old value of the data

item and after the reading is over, the new value of the data item is written. It the write

instruction is performed first, then updates the data item with the new value and the read

instruction reads the newly updated value.

3. If both the transactions are for write operation, then they are in conflict but can be

allowed to take place in any order, because the transaction do not read the value updated

by each other. However, the value that persists in the data item after the schedule is over

is the one written by the instruction that performed the last write.

It may happen that we may want to execute the same set of transaction in a different schedule on

another day. Keeping in mind these rules, we may sometimes alter parts of one schedule (S1) to

create another schedule (S2) by swapping only the non-conflicting parts of the first schedule.

The conflicting parts cannot be swapped in this way because the ordering of the conflicting

instructions is important and cannot be changed in any other schedule that is derived from the

first. If these two schedules are made of the same set of transactions, then both S1 and S2 would

yield the same result if the conflict resolution rules are maintained while creating the new

schedule. In that case the schedule S1 and S2 would be called Conflict Equivalent.

View Serializability:

This is another type of serializability that can be derived by creating another schedule out of an

existing schedule, involving the same set of transactions. These two schedules would be called

View Serializable if the following rules are followed while creating the second schedule out of

the first. Let us consider that the transactions T1 and T2 are being serialized to create two

different schedules S1 and S2 which we want to be View Equivalent and both T1 and T2 wants

to access the same data item.

1. If in S1, T1 reads the initial value of the data item, then in S2 also, T1 should read the

initial value of that same data item.

2. If in S1, T1 writes a value in the data item which is read by T2, then in S2 also, T1

should write the value in the data item before T2 reads it.

3. If in S1, T1 performs the final write operation on that data item, then in S2 also, T1

should perform the final write operation on that data item.

Except in these three cases, any alteration can be possible while creating S2 by modifying S1.

Lecture-37

Object Oriented Databases

Object oriented databases are also called Object Database Management Systems (ODBMS).

Object databases store objects rather than data such as integers, strings or real numbers. Objects

are used in object oriented languages such as Smalltalk, C++, Java, and others. Objects

basically consist of the following:

 Attributes - Attributes are data which defines the characteristics of an object. This data

may be simple such as integers, strings, and real numbers or it may be a reference to a

complex object.

 Methods - Methods define the behavior of an object and are what was formally called

procedures or functions.

Therefore objects contain both executable code and data

OObbjjeecctt PPeerrssiisstteennccee

With traditional databases, data manipulated by the application is transient and data in the

database is persisted (Stored on a permanent storage device). In object databases, the

application can manipulate both transient and persisted data.

WWhheenn ttoo UUssee OObbjjeecctt DDaattaabbaasseess

Object databases should be used when there is complex data and/or complex data relationships.

This includes a many to many object relationship. Object databases should not be used when

there would be few join tables and there are large volumes of simple transactional data.

Object databases work well with:

 CAS Applications (CASE-computer aided software engineering, CAD-computer aided

design, CAM-computer aided manufacture)

 Multimedia Applications

 Object projects that change over time.

 Commerce

OObbjjeecctt DDaattaabbaassee AAddvvaannttaaggeess oovveerr RRDDBBMMSS

 Objects don't require assembly and disassembly saving coding time and execution time to

assemble or disassemble objects.

 Reduced paging

 Easier navigation

 Better concurrency control - A hierarchy of objects may be locked.

 Data model is based on the real world.

 Works well for distributed architectures.

 Less code required when applications are object oriented.

OObbjjeecctt DDaattaabbaassee DDiissaaddvvaannttaaggeess ccoommppaarreedd ttoo RRDDBBMMSS

 Lower efficiency when data is simple and relationships are simple.

 Relational tables are simpler.

 Late binding may slow access speed.

 More user tools exist for RDBMS.

 Standards for RDBMS are more stable.

 Support for RDBMS is more certain and change is less likely to be required.

HHooww DDaattaa iiss SSttoorreedd

Two basic methods are used to store objects by different database vendors.

 Each object has a unique ID and is defined as a subclass of a base class, using inheritance to

determine attributes.

 Virtual memory mapping is used for object storage and management.

Data Warehouse

 A data warehouse is a subject-oriented, integrated, time-variant and non-volatile

collection of data in support of management's decision making process.

 Subject-Oriented: A data warehouse can be used to analyze a particular subject area.

For example, "sales" can be a particular subject.

 Integrated: A data warehouse integrates data from multiple data sources. For example,

source A and source B may have different ways of identifying a product, but in a data

warehouse, there will be only a single way of identifying a product.

 Time-Variant: Historical data is kept in a data warehouse. For example, one can

retrieve data from 3 months, 6 months, 12 months, or even older data from a data

warehouse. This contrasts with a transactions system, where often only the most recent

data is kept. For example, a transaction system may hold the most recent address of a

customer, where a data warehouse can hold all addresses associated with a customer.

 Non-volatile: Once data is in the data warehouse, it will not change. So, historical data

in a data warehouse should never be altered.

Data Warehousing Architecture & Components

Following diagram depicts different components of Data Warehouse architecture.

Operational Source System

It’s the traditional OLTP systems which stores transaction data of the organizations business. Its

generally used one record at any time not necessarily stores history of the organizations

information’s. Operational source systems generally not used for reporting like data warehouse.

Data Staging Area

http://www.bidw.org/wp-content/uploads/2012/08/Data-Warehouse-Architecture.jpg

Data staging area is the storage area as well as set of ETL process that extract data from source

system. It is everything between source systems and Data warehouse.

Data staging are never be used for reporting purpose. Data is extracted from source system and

stored, cleansed, transformed in staging area to load into data warehouse.

Staging are not necessarily the DBMS. It could be flat files also. Staging area can be structured like

normalized source systems. It totally depends on choice and need of development process.

Data Presentation Area

Data presentation area is generally called as data warehouse. It’s the place where cleaned,

transformed data is stored in a dimensionally structured warehouse and made available for analysis

purpose

Data Access Tools

once data is available in presentation area it is accessed using data access tools like Business

Objects.

Schema:

(Star schema)

The star schema architecture is the simplest data warehouse schema. It is called a star schema

because the diagram resembles a star, with points radiating from a center. The center of the star

consists of fact table and the points of the star are the dimension tables. Usually the fact tables in a

star schema are in third normal form(3NF) whereas dimensional tables are de-normalized. Despite

the fact that the star schema is the simplest architecture, it is most commonly used nowadays and is

recommended by Oracle.

Fact Tables

A fact table typically has two types of columns: foreign keys to dimension tables and measures

those that contain numeric facts. A fact table can contain fact's data on detail or aggregated level.

Dimension Tables

A dimension is a structure usually composed of one or more hierarchies that categorizes data. If a

dimension hasn't got a hierarchies and levels it is called flat dimension or list. The primary keys of

each of the dimension tables are part of the composite primary key of the fact table. Dimensional

attributes help to describe the dimensional value. They are normally descriptive, textual values.

Dimension tables are generally small in size then fact table.

Typical fact tables store data about sales while dimension tables data about geographic

region(markets, cities) , clients, products, times, channels.

The main characteristics of star schema:

1. Simple structure -> easy to understand schema

2. Great query effectives -> small number of tables to join

3. Relatively long time of loading data into dimension tables -> de-normalization,

redundancy data caused that size of the table could be large.

4. The most commonly used in the data warehouse implementations -> widely

supported by a large number of business intelligence tools

Data Mining:

Generally, data mining (sometimes called data or knowledge discovery) is the process of

analyzing data from different perspectives and summarizing it into useful information -

information that can be used to increase revenue, cuts costs, or both. Data mining software is

one of a number of analytical tools for analyzing data. It allows users to analyze data from

many different dimensions or angles, categorize it, and summarize the relationships identified.

Technically, data mining is the process of finding correlations or patterns among dozens of

fields in large relational databases.

While large-scale information technology has been evolving separate transaction and

analytical systems, data mining provides the link between the two. Data mining software

analyzes relationships and patterns in stored transaction data based on open-ended user

queries. Several types of analytical software are available: statistical, machine learning, and

neural networks. Generally, any of four types of relationships are sought:

 Classes: Stored data is used to locate data in predetermined groups. For example, a

restaurant chain could mine customer purchase data to determine when customers visit and

what they typically order. This information could be used to increase traffic by having daily

specials.

 Clusters: Data items are grouped according to logical relationships or consumer

preferences. For example, data can be mined to identify market segments or consumer

affinities.

 Associations: Data can be mined to identify associations. The beer-diaper example is an

example of associative mining.

 Sequential patterns: Data is mined to anticipate behavior patterns and trends. For example,

an outdoor equipment retailer could predict the likelihood of a backpack being purchased

based on a consumer's purchase of sleeping bags and hiking shoes.

Data mining consists of five major elements:

 Extract, transform, and load transaction data onto the data warehouse system.

 Store and manage the data in a multidimensional database system.

 Provide data access to business analysts and information technology professionals.

 Analyze the data by application software.

 Present the data in a useful format, such as a graph or table.

Techniques used in data mining:

 Association

Association is one of the best-known data mining technique. In association, a pattern is

discovered based on a relationship between items in the same transaction. That’s is the

reason why association technique is also known as relation technique. The association

technique is used in market basket analysis to identify a set of products that customers

frequently purchase together.

Retailers are using association technique to research customer’s buying habits. Based on

historical sale data, retailers might find out that customers always buy crisps when they buy

beers, and, therefore, they can put beers and crisps next to each other to save time for

customer and increase sales.

 Classification

Classification is a classic data mining technique based on machine learning. Basically,

classification is used to classify each item in a set of data into one of a predefined set of

classes or groups. Classification method makes use of mathematical techniques such as

decision trees, linear programming, neural network and statistics. In classification, we

develop the software that can learn how to classify the data items into groups. For example,

we can apply classification in the application that “given all records of employees who left

the company, predict who will probably leave the company in a future period.” In this case,

we divide the records of employees into two groups that named “leave” and “stay”. And

then we can ask our data mining software to classify the employees into separate groups.

 Clustering

Clustering is a data mining technique that makes a meaningful or useful cluster of objects

which have similar characteristics using the automatic technique. The clustering technique

defines the classes and puts objects in each class, while in the classification techniques,

objects are assigned into predefined classes. To make the concept clearer, we can take book

management in the library as an example. In a library, there is a wide range of books on

various topics available. The challenge is how to keep those books in a way that readers can

take several books on a particular topic without hassle. By using the clustering technique,

we can keep books that have some kinds of similarities in one cluster or one shelf and label

it with a meaningful name. If readers want to grab books in that topic, they would only have

to go to that shelf instead of looking for the entire library.

 Prediction

The prediction, as its name implied, is one of a data mining techniques that discovers the

relationship between independent variables and relationship between dependent and

independent variables. For instance, the prediction analysis technique can be used in the sale

to predict profit for the future if we consider the sale is an independent variable, profit could

be a dependent variable. Then based on the historical sale and profit data, we can draw a

fitted regression curve that is used for profit prediction.

 Sequential Patterns

Sequential patterns analysis is one of data mining technique that seeks to discover or

identify similar patterns, regular events or trends in transaction data over a business period.

In sales, with historical transaction data, businesses can identify a set of items that

customers buy together different times in a year. Then businesses can use this information to

recommend customers buy it with better deals based on their purchasing frequency in the

past.

 Decision trees

The A decision tree is one of the most common used data mining techniques because its

model is easy to understand for users. In decision tree technique, the root of the decision tree

is a simple question or condition that has multiple answers. Each answer then leads to a set

of questions or conditions that help us determine the data so that we can make the final

decision based on it. For example, We use the following decision tree to determine whether

or not to play tennis:

Starting at the root node, if the outlook is overcast then we should definitely play tennis. If it

is rainy, we should only play tennis if the wind is the week. And if it is sunny then we

should play tennis in case the humidity is normal.

Lecture-38

Parallel Database

A parallel database system performs parallel operations, such as loading data, building indexes

and evaluating queries.

Parallel databases can be roughly divided into two groups,

a) Multiprocessor architecture:

Shared memory architecture

Where multiple processors share the main memory space.

Shared disk architecture

Where each node has its own main memory, but all nodes share mass storage, usually a

storage area network. In practice, each node usually also has multiple processors.

Shared nothing architecture

Where each node has its own mass storage as well as main memory.

b) The other architecture group is called hybrid architecture, which includes:

 Non-Uniform Memory Architecture (NUMA), which involves the non-uniform memory

access.

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/Storage_area_network

 Cluster (shared nothing + shared disk: SAN/NAS), which is formed by a group of connected

computers.

Distributed Database:

A centralized distributed database management system (DDBMS) manages the database as if it

were all stored on the same computer. The DDBMS synchronizes all the data periodically and, in

cases where multiple users must access the same data, ensures that updates and deletes performed

on the data at one location will be automatically reflected in the data stored elsewhere.

The users and administrators of a distributed system, should, with proper implementation,

interact with the system as if the system was centralized. This transparency allows for the

functionality desired in such a structured system without special programming requirements,

allowing for any number of local and/or remote tables to be accessed at a given time across the

network.

The different types of transparency sought after in a DDBMS are

1. data distribution transparency,

2. heterogeneity transparency,

3. transaction transparency, and

4. performance transparency.

Data distribution transparency requires that the user of the database should not have to know

how the data is fragmented (fragmentation transparency), know where the data they access is

actually located (location transparency), or be aware of whether multiple copies of the data exist

(replication transparency).

Heterogeneity transparency requires that the user should not be aware of the fact that they are

using a different DBMS if they access data from a remote site. The user should be able to use the

same language that they would normally use at their regular access point and the DDBMS should

handle query language translation if needed.

Transaction transparency requires that the DDBMS guarantee that concurrent transactions do not

interfere with each other (concurrency transparency) and that it must also handle database recovery

(recovery transparency).

Performance transparency mandates that the DDBMS should have a comparable level of

performance to a centralized DBMS. Query optimizers can be used to speed up response time.

Types of DDB Design
Non-Partitioned, Non-Replicated

Partitioned, Non-Replicated

Non-Partitioned, Replicated

Partitioned, Replicated

Advantages of DDBMS's

- Reflects organizational structure

- Improved share ability

- Improved availability

- Improved reliability

- Improved performance

- Data are located nearest the greatest demand site and are dispersed to match business

requirements.

- Faster Data Access because users only work with a locally stored subset of the data.

- Faster data processing because the data is processed at several different sites.

-Growth Facilitation: New sites can be added without compromising the operations of other sites.

-Improved communications because local sites are smaller and closer to customers.

- Reduced operating costs: It is more cost-effective to add workstations to a network rather than

update a mainframe system.

- User Friendly interface equipped with an easy-to-use GUI.

- Less instances of single-point failure because data and workload are distributed among other

workstations.

- Processor independence: The end user is able to access any available copy of data.

Disadvantages of DDBMS

- Increased Cost

-Integrity control more difficult,

-Lack of standards,

-Database design more complex.

- Complexity of management and control. Applications must recognize data location and they must

be able to stitch together data from various sites.

- Technologically difficult: Data integrity, transaction management, concurrency control, security,

backup, recovery, query optimization, access path selection are all issues that must be addressed

and resolved

- Security lapses have increased instances when data are in multiple locations.

- Lack of standards due to the absence of communication protocols can make the processing and

distribution of data difficult.

- Increased storage and infrastructure requirements because multiple copies of data are required at

various separate locations which would require more disk space.

- Increased costs due to the higher complexity of training.

- Requires duplicate infrastructure (personnel, software and licensing, physical

location/environment) and these can sometimes offset any operational savings.

	CODD'S RULES
	Rule 1 : The information Rule.
	Rule 2 : Guaranteed access Rule.
	Rule 3 : Systematic treatment of null values.
	Rule 4 : Dynamic on-line catalog based on the relational model.
	Rule 5 : Comprehensive data sub-language Rule.
	Rule 6 : .View updating Rule
	Rule 7 : High-level insert, update and delete.
	Rule 8 : Physical data independence.
	Rule 9 : Logical data independence.
	Rule 10 : Integrity independence.
	Rule 11 : Distribution independence.
	Rule 12 : Non-subversion Rule.
	Query Processing

	Query by Example (QBE)
	RELATIONAL DATABASE DEGIN
	Database design is a process in which you create a logical data model for a database, which store data of a company. It is performed after initial database study phase in the database life cycle. You use normalization technique to create the logical ...
	Normalization also allows you to organize data efficiently in a database and reduce anomalies during data operation. Various normal forms, such as first, second and third can be applied to create a logical data model for a database. The second and th...
	Database Design Process:
	We can identify six main phases of the database design process:
	1. Requirement collection and analysis
	2. Conceptual database design
	3. Choice of a DBMS
	4. Data model mapping(logical database design)
	5. Physical database design
	6. Database system implementation and tuning
	1. Requirement Collection and Analysis
	2. Conceptual Database Design
	3. Choice of a DBMS (1)
	Informal Guidelines for Relation Design
	Functional Dependencies
	Trivial Functional Dependency

	FD Axioms
	Un-Normalized Form (UNF)
	First Normal Form (1NF)
	Second Normal Form (2NF)
	Third Normal Form (3NF)
	Boyce-Code Normal Form (BCNF)
	Fourth Normal Form (4NF)
	Atomicity: (all or nothing)
	Consistency: (No violation of integrity constraints)
	Isolation: (concurrent changes invisibles)
	Durability: (committed update persist)
	Operations used with Binary Locking
	Transaction Rules for Binary Locks

	(Shared/Read and Exclusive/Write Lock
	Shared Locks
	Exclusive Locks
	Operations Used with Shared and Exclusive Locks
	Implementation of Shared and Exclusive Locks
	Value of LOCK(A) : Read Locked or Write Locked

	Transaction Rules for Shared and Exclusive Locks

	Wait-Die Scheme
	Wound-Wait Scheme

	Log-Based Recovery
	Deferred Database Modification
	Immediate Database Modification
	Checkpoints
	Object Database Advantages over RDBMS
	Object Database Disadvantages compared to RDBMS
	How Data is Stored

	Data Warehousing Architecture & Components
	 Association
	Association is one of the best-known data mining technique. In association, a pattern is discovered based on a relationship between items in the same transaction. That’s is the reason why association technique is also known as relation technique. The...
	 Classification
	 Clustering
	 Prediction
	 Sequential Patterns
	 Decision trees

