
Step-by-Step Database Normalization Guide

What is Normalization?

Database normalization is the process of organizing data in a database to reduce redundancy and
improve data integrity. It involves decomposing tables into smaller, related tables and defining
relationships between them.

Goals of Normalization

Eliminate redundant data

Reduce storage space

Prevent data anomalies (insertion, update, deletion)

Ensure data consistency

Improve data integrity

Starting Example: Unnormalized Student Registration System

Let's work with this initial table that contains all information in one place:

Student_Course_Registration (Unnormalized)

Problems with this table:

Data redundancy (student info repeated for each course)

| StudentID | StudentName | StudentEmail | StudentPhone | CourseID | CourseName | Credits | InstructorID |
InstructorName | InstructorEmail | Department | RoomNumber | Grade | Semester |
|-----------|-------------|------------------|--------------|----------|---------------|---------|--------------|----------------|---
-------------------|------------|------------|-------|----------|
| S001 | Alice Brown | alice@email.com | 555-0101 | CS101 | Intro to CS | 3 | I001 | Dr. Smith |
smith@university.edu | Computer | R101 | A | Fall2024 |
| S001 | Alice Brown | alice@email.com | 555-0101 | MA201 | Calculus I | 4 | I002 | Dr. Johnson |
johnson@university.edu| Math | R205 | B+ | Fall2024 |
| S002 | Bob Green | bob@email.com | 555-0102 | CS101 | Intro to CS | 3 | I001 | Dr. Smith |
smith@university.edu | Computer | R101 | B | Fall2024 |
| S002 | Bob Green | bob@email.com | 555-0102 | EN101 | English Comp | 3 | I003 | Dr. Wilson |
wilson@university.edu | English | R150 | A- | Fall2024 |
| S003 | Carol White | carol@email.com | 555-0103 | MA201 | Calculus I | 4 | I002 | Dr. Johnson |
johnson@university.edu| Math | R205 | A | Fall2024 |

Storage waste

Update anomalies (changing Alice's phone requires multiple updates)

Insertion anomalies (can't add a course without a student)

Deletion anomalies (removing last student from a course loses course info)

First Normal Form (1NF)

Rules for 1NF:

1. Each column contains atomic (indivisible) values

2. Each column contains values of the same data type

3. Each row is unique

4. No repeating groups or arrays

Step 1: Check for 1NF Violations

Our table already satisfies 1NF because:

✅ All values are atomic (no comma-separated lists)

✅ Each column has consistent data types

✅ Each row is unique (combination of StudentID + CourseID)

✅ No repeating groups

Result: Our table is already in 1NF.

Second Normal Form (2NF)

Rules for 2NF:

1. Must be in 1NF

2. No partial dependencies (non-key attributes must depend on the entire primary key)

Step 2: Identify the Primary Key

The primary key is the combination: (StudentID, CourseID)

Step 3: Identify Partial Dependencies

Let's analyze each non-key attribute:

Attributes that depend only on StudentID (partial dependencies):

StudentID → StudentName

StudentID → StudentEmail

StudentID → StudentPhone

Attributes that depend only on CourseID (partial dependencies):

CourseID → CourseName

CourseID → Credits

CourseID → InstructorID

CourseID → InstructorName

CourseID → InstructorEmail

CourseID → Department

CourseID → RoomNumber

Attributes that depend on the full key (StudentID, CourseID):

(StudentID, CourseID) → Grade

(StudentID, CourseID) → Semester

Step 4: Decompose to Eliminate Partial Dependencies

Students Table:

Courses Table:

Enrollments Table:

StudentID	StudentName	StudentEmail	StudentPhone
S001	Alice Brown	alice@email.com	555-0101
S002	Bob Green	bob@email.com	555-0102
S003	Carol White	carol@email.com	555-0103

| CourseID | CourseName | Credits | InstructorID | InstructorName | InstructorEmail | Department | RoomNumber
|
|----------|---------------|---------|--------------|----------------|----------------------|------------|------------|
| CS101 | Intro to CS | 3 | I001 | Dr. Smith | smith@university.edu | Computer | R101 |
| MA201 | Calculus I | 4 | I002 | Dr. Johnson | johnson@university.edu| Math | R205 |
| EN101 | English Comp | 3 | I003 | Dr. Wilson | wilson@university.edu | English | R150 |

Result: Now in 2NF - all partial dependencies eliminated.

Third Normal Form (3NF)

Rules for 3NF:

1. Must be in 2NF

2. No transitive dependencies (non-key attributes cannot depend on other non-key attributes)

Step 5: Identify Transitive Dependencies

Looking at our Courses table:

Transitive Dependencies:

CourseID → InstructorID → InstructorName

CourseID → InstructorID → InstructorEmail

CourseID → InstructorID → Department (assuming instructor determines department)

Step 6: Decompose to Eliminate Transitive Dependencies

Students Table: (No changes - already in 3NF)

Instructors Table: (New table)

StudentID	CourseID	Grade	Semester
S001	CS101	A	Fall2024
S001	MA201	B+	Fall2024
S002	CS101	B	Fall2024
S002	EN101	A-	Fall2024
S003	MA201	A	Fall2024

StudentID	StudentName	StudentEmail	StudentPhone
S001	Alice Brown	alice@email.com	555-0101
S002	Bob Green	bob@email.com	555-0102
S003	Carol White	carol@email.com	555-0103

Courses Table: (Modified - removed transitive dependencies)

Enrollments Table: (No changes)

Result: Now in 3NF - all transitive dependencies eliminated.

Boyce-Codd Normal Form (BCNF)

Rules for BCNF:

1. Must be in 3NF

2. For every functional dependency A → B, A must be a superkey

Step 7: Check for BCNF Violations

Looking at our tables, let's check if all determinants are superkeys:

Students Table:

StudentID → StudentName, StudentEmail, StudentPhone

StudentID is the primary key (superkey) ✅

InstructorID	InstructorName	InstructorEmail	Department
I001	Dr. Smith	smith@university.edu	Computer
I002	Dr. Johnson	johnson@university.edu	Math
I003	Dr. Wilson	wilson@university.edu	English

CourseID	CourseName	Credits	InstructorID	RoomNumber
CS101	Intro to CS	3	I001	R101
MA201	Calculus I	4	I002	R205
EN101	English Comp	3	I003	R150

StudentID	CourseID	Grade	Semester
S001	CS101	A	Fall2024
S001	MA201	B+	Fall2024
S002	CS101	B	Fall2024
S002	EN101	A-	Fall2024
S003	MA201	A	Fall2024

Instructors Table:

InstructorID → InstructorName, InstructorEmail, Department

InstructorID is the primary key (superkey) ✅

Courses Table:

CourseID → CourseName, Credits, InstructorID, RoomNumber

CourseID is the primary key (superkey) ✅

Enrollments Table:

(StudentID, CourseID) → Grade, Semester

(StudentID, CourseID) is the primary key (superkey) ✅

Result: All tables are already in BCNF.

Fourth Normal Form (4NF)

Rules for 4NF:

1. Must be in BCNF

2. No multivalued dependencies

Step 8: Check for Multivalued Dependencies

Let's say we want to track student skills and student hobbies. A problematic design would be:

Student_Skills_Hobbies (Violates 4NF):

Multivalued Dependencies:

StudentID →→ Skill (independent of Hobby)

StudentID →→ Hobby (independent of Skill)

StudentID	Skill	Hobby
S001	Java	Reading
S001	Java	Swimming
S001	Python	Reading
S001	Python	Swimming
S002	JavaScript	Gaming
S002	React	Gaming

Step 9: Decompose to Eliminate Multivalued Dependencies

Student_Skills Table:

Student_Hobbies Table:

Result: Now in 4NF - multivalued dependencies eliminated.

Fifth Normal Form (5NF)

Rules for 5NF:

1. Must be in 4NF

2. No join dependencies that are not implied by candidate keys

Step 10: Check for Join Dependencies

Consider a scenario with Suppliers, Parts, and Projects:

Supplier_Part_Project (Potential 5NF violation):

If this can be losslessly decomposed into three binary relations and reconstructed, it might violate 5NF.

StudentID	Skill
S001	Java
S001	Python
S002	JavaScript
S002	React

StudentID	Hobby
S001	Reading
S001	Swimming
S002	Gaming

Supplier	Part	Project
S1	P1	J1
S1	P2	J1
S2	P1	J2

However, for most practical academic purposes, achieving 3NF or BCNF is sufficient.

Final Normalized Schema Summary

Our Final 3NF/BCNF Schema:

1. Students
Primary Key: StudentID

Attributes: StudentName, StudentEmail, StudentPhone

2. Instructors
Primary Key: InstructorID

Attributes: InstructorName, InstructorEmail, Department

3. Courses
Primary Key: CourseID

Foreign Key: InstructorID → Instructors(InstructorID)

Attributes: CourseName, Credits, RoomNumber

4. Enrollments
Primary Key: (StudentID, CourseID)

Foreign Keys:
StudentID → Students(StudentID)

CourseID → Courses(CourseID)

Attributes: Grade, Semester

Benefits Achieved

Before Normalization:

5 rows × 14 columns = 70 data points

Massive redundancy

Multiple anomalies

After Normalization:

Students: 3 rows × 4 columns = 12 data points

Instructors: 3 rows × 4 columns = 12 data points

Courses: 3 rows × 5 columns = 15 data points

Enrollments: 5 rows × 4 columns = 20 data points

Total: 59 data points (15% reduction)

Anomalies Eliminated:

✅ Update Anomaly: Changing a student's phone number requires only one update

✅ Insert Anomaly: Can add new courses without requiring student enrollment

✅ Delete Anomaly: Removing student enrollment doesn't lose course information

Practice Exercise for Students

Given this unnormalized table, normalize it step by step:

Library_System (Unnormalized)

Challenge: Normalize this table through 3NF, identifying all dependencies and creating the appropriate
tables with proper relationships.

| BookID | Title | AuthorName | AuthorEmail | PublisherName | PublisherAddress | MemberID | MemberName |
MemberPhone | BorrowDate | ReturnDate |
|--------|--------------|------------|-------------|---------------|------------------|----------|------------|-------------|--------
----|------------|
| B001 | Database 101 | John Smith | js@email.com| TechBooks | 123 Main St | M001 | Alice | 555-1111 |
2024-01-15 | 2024-02-15 |
| B002 | Java Guide | Jane Doe | jd@email.com| CodePress | 456 Oak Ave | M001 | Alice | 555-1111 |
2024-01-20 | 2024-02-20 |

