
Unit 3: Database Management Systems

D R . J O H N C O N K L I N
C S 3 5 2 - A D V A N C E D D ATA B A S E S

Agenda

Today’s Topics:

1. Overview

2. Importance of Normalization

3. Database Dependencies

4. Step-by-Step Normalization

5. Logical Data Model Requirements

6. Subclass/Superclass Relationships

7. Associative Tables and M:N Relationships

8. Transaction Management Basics

9. Database Security Concepts

10. Summary of Expectations

11. Individual Project

• This unit focuses on transforming Enhanced ERDs into
logical data models.

• You will apply normalization to move data from UNF to
Boyce-Codd Normal Form (BCNF).

• Key areas include identifying primary and foreign keys,
modeling subclass/superclass relationships, and
understanding transaction and security principles.

Overview

Goal: To structure tables and relationships in a way that
minimizes data anomalies and ensures consistency.

Key Concept: Achieved by adhering to "Normal Forms" (e.g.,
1NF, 2NF, 3NF, BCNF) – a set of rules for database design.

What is Normalization?
(Briefly)

Definition: Normalization is the
process of organizing data in a
database to reduce data
redundancy and improve data
integrity.

Analogy: Think of it like
organizing a messy filing cabinet
or a disorganized library. We
want each piece of information
in its logical place, without
unnecessary duplicates.

1. Reason 1: Eliminates Data Redundancy

2. Reason 2: Ensures Data Integrity & Consistency
(Addressing Anomalies)

3. Reason 3: Improves Data Quality and Reliability

4. Reason 4: Optimizes Database Performance (for certain
operations)

5. Reason 5: Simplifies Database Design & Maintenance

Why Normalize?

1. Normalization is Key For…

2. Denormalization (Controlled Redundancy) is
Sometimes Used For…

The Trade-off: Normalization
vs. Denormalization (Briefly)

1. Normalization is Fundamental

2. Ensures Trustworthy Data:

3. Drives Efficiency.

4. Simplifies Management

5. Enables Better Decisions:

Key Takeaways

Database dependencies are fundamental
concepts in relational database design that help
ensure data integrity and guide the
normalization process. Here are the main types:

• Functional Dependencies (FD)

• Partial Dependencies

• Full Functional Dependencies

• Transitive Dependencies

• Multivalued Dependencies (MVD)

• Join Dependencies

• Inclusion Dependencies

• Key Dependencies

Database Dependencies

Functional
Dependencies
(FD)

A functional dependency X → Y means that for any two
rows in a table, if they have the same value for
attribute(s) X, they must have the same value for
attribute(s) Y. In other words, X uniquely determines Y.

Functional
Dependencies
(FD)

Example: In an Employee table, EmployeeID → Name, because each
employee ID corresponds to exactly one name.

Types of functional dependencies:
•Trivial FD: Y is a subset of X (like Name, Age → Name)
•Non-trivial FD: Y is not a subset of X
•Completely non-trivial FD: X and Y have no attributes in common

Partial
Dependencies

This occurs when a non-key attribute depends on only
part of a composite primary key, rather than the entire
key. This violates Second Normal Form (2NF).

Example: In a table with a composite key (StudentID,
CourseID), if StudentName depends only on StudentID
(not the full key), it's a partial dependency.

Full Functional
Dependencies

A non-key attribute depends on the
entire primary key, not just part of it. This
is required for 2NF compliance.

Transitive
Dependencies

When a non-key attribute depends on another non-key
attribute, which in turn depends on the primary key (A
→ B → C). This violates Third Normal Form (3NF).

Example: EmployeeID → DepartmentID →
DepartmentName creates a transitive dependency.

Multivalued
Dependencies
(MVD)

Occurs when one attribute determines multiple
independent sets of values.
Written as X →→ Y, meaning X multidetermines Y.

Example: In a table tracking Employee → Skills and
Employee → Projects, an employee can have
multiple skills and multiple projects independently.

Join
Dependencies

A table can be decomposed into smaller tables
and then rejoined without loss of information.
This is relevant for higher normal forms like
4NF and 5NF.

Inclusion
Dependencies

Specify that values in one relation must also appear
in another relation, similar to foreign key constraints.

Key
Dependencies

Candidate Key: Minimal set of attributes that
uniquely identify each row

Primary Key: The chosen candidate key

Foreign Key: Attributes that reference the
primary key of another table

Understanding these dependencies is crucial for database normalization,
which eliminates redundancy and prevents anomalies during insert, update,
and delete operations. Each normal form (1NF through 5NF) addresses
specific types of dependencies to improve database design quality.

https://claude.ai/public/artifacts/1ac1adcf-88f5-46d6-a9d9-c62f3bf6d27c

https://claude.ai/public/artifacts/1ac1adcf-88f5-46d6-a9d9-c62f3bf6d27c

1. Normalization structures data efficiently to minimize
redundancy.

2. Helps maintain data integrity across multiple tables.

3. Supports consistency in data updates, inserts, and
deletes.

4. Ensures logical structure aligns with business rules.

Step-by-Step Normalization

UNF:
Our Starting
Point:
Unnormalized
Data

Data is grouped without structure, prone to anomalies.

Let's imagine a single table that stores information about Orders,
Customers, and Products.

Observation: This table has many issues! Redundancy, repeating groups,
and potential for inconsistencies.

OrderID OrderDate CustomerID CustomerName CustomerAddress ProductCode ProductName ProductPrice Quantity

101 2024-06-01 CUST001 Alice Smith 123 Main St P001 Laptop 1200 1

101 2024-06-01 CUST001 Alice Smith 123 Main St P003 Mouse 25 2

102 2024-06-02 CUST002 Bob Johnson 456 Oak Ave P002 Keyboard 75 1

103 2024-06-03 CUST001 Alice Smith 123 Main St P001 Laptop 1200 1

103 2024-06-03 CUST001 Alice Smith 123 Main St P004 Monitor 300 1

Step 1: First
Normal Form
(1NF)

Removes repeating groups; each field contains atomic values.

Rules:

1. Eliminate repeating groups.

2. Each row must be unique

Our Data in 1NF

•Primary Key: (OrderID, ProductCode) - each combination is now unique.

OrderID ProductCode OrderDate CustomerID CustomerName CustomerAddress ProductName ProductPrice

101 P001 2024-06-01 CUST001 Alice Smith 123 Main St Laptop 1200

101 P003 2024-06-01 CUST001 Alice Smith 123 Main St Mouse 25

102 P002 2024-06-02 CUST002 Bob Johnson 456 Oak Ave Keyboard 75

103 P001 2024-06-03 CUST001 Alice Smith 123 Main St Laptop 1200

103 P004 2024-06-03 CUST001 Alice Smith 123 Main St Monitor 300

Still Problems? Yes, we have a lot of redundancy for Customer and Product details!

Step 2: Second
Normal Form
(2NF)

Removes partial dependencies; every non-key attribute fully depends on
the primary key.

Prerequisite: Must be in 1NF.

Our Data in 2NF (Split into 3 Tables)

OrderID OrderDate CustomerID

101 2024-06-01 CUST001

102 2024-06-02 CUST002

103 2024-06-03 CUST001

Table 1: Orders (PK: OrderID)

Table 2: Order_Items (PK: OrderID,
ProductCode) - Bridge Table

OrderID
ProductC
ode Quantity

101 P001 1

101 P003 2

102 P002 1

103 P001 1

103 P004 1

Table 3: Products (PK: ProductCode)

ProductCode ProductName ProductPrice

P001 Laptop 1200

P003 Mouse 25

P002 Keyboard 75

P004 Monitor 300

Still Problems? CustomerName and
CustomerAddress are still linked to
CustomerID in the Orders table, but
they don't depend on OrderID itself.

Step 3: Third
Normal Form
(3NF)

Removes transitive dependencies; attributes depend only on the key.

Our Data in 3NF (Split into 4 Tables)

Table 1: Orders (PK: OrderID) Table 2: Order_Items (PK: OrderID,
ProductCode)

OrderID OrderDate CustomerID

101 2024-06-01 CUST001

102 2024-06-02 CUST002

103 2024-06-03 CUST001

OrderID ProductCode Quantity

101 P001 1

101 P003 2

102 P002 1

103 P001 1

103 P004 1

Table 3: Products (PK: ProductCode)
Table 4: Customers (PK: CustomerID)

ProductCode ProductName ProductPrice

P001 Laptop 1200

P003 Mouse 25

P002 Keyboard 75

P004 Monitor 300

CustomerID CustomerName CustomerAddress

CUST001 Alice Smith 123 Main St

CUST002 Bob Johnson 456 Oak Ave

Beyond 3NF:
Boyce-Codd
Normal Form
(BCNF)

Prerequisite: Must be in 3NF.

When it matters: BCNF addresses
specific, less common Scenarios

Key difference from 3NF: 3NF allows a non-key attribute

to determine part of a candidate key. BCNF is stricter, ensuring that

any attribute that determines another attribute must be a full

candidate key itself.

For most practical applications, reaching 3NF is often sufficient

and provides a good balance between normalization benefits

and query complexity.

Summary of
Normal Forms
& What They
Achieve

1NF: Ensures atomicity of values and unique rows.

2NF: Eliminates partial dependencies (non-key attributes depend
on the entire primary key).

3NF: Eliminates transitive dependencies (non-key attributes do not
depend on other non-key attributes).

BCNF (Stricter 3NF): Addresses specific cases of overlapping
candidate keys.

The Normalized Advantage
• Less Data Redundancy
• High Data Integrity
• Reduced Anomalies
• Improved Data Quality
• Easier Maintenance & Scalability
• Foundation for Trustworthy Data-

Driven Decisions!

This Photo by Unknown Author is licensed under CC BY-NC

https://www.w3resource.com/sql-exercises/employee-database-exercise/sql-employee-database-exercise-40.php
https://creativecommons.org/licenses/by-nc/3.0/

1. Tables should reflect the normalized form to at least 3NF
or BCNF.

2. Primary Keys must be identified (bolded and
underlined).

3. Foreign Keys should be indicated (italicized and
underlined).

4. Ensure all relationships maintain referential integrity.

Logical Data Model
Requirements

1. Core Purpose & Definition

2. Key Components of a Logical Data Model

3. Requirements for a Good Logical Data Model

4. Inputs to Developing an LDM

5. Outputs of an LDM

By adhering to these requirements, an
organization can create an LDM that
serves as a robust blueprint for
database design, ensuring the resulting
system effectively supports business
operations and provides reliable, high-
quality data.

Logical Data
Model (LDM)
Requirements

1. Superclass: General entity (e.g., Customer, Employee).

2. Subclasses: Specialized roles (e.g., Supplier, Purchaser, Internal
Support).

3. Use 1:1 relationships where subclass shares PK with superclass.

4. Enforces consistent data modeling across inherited attributes.

Subclass/Superclass
Relationships

Subclass /
Superclass
Relationships

• Core Concepts

• Superclass (Parent/Base Class)

• Subclass (Child/Derived Class)

• "Is-a" Relationship

• Generalization vs.
Specialization
• Generalization (Bottom-Up)

• Specialization (Top-Down)

Key
Characteristics
& Inheritance

• Attribute Inheritance

• Method/Behavior Inheritance

• Overriding

• Polymorphism (Briefly)

• Types of Specialization (in Data Modeling /
EER)
• Disjoint vs. Overlapping Constraint

(Completeness/Participation)

• Total vs. Partial Constraint
(Cardinality/Completeness)

Benefits of
Subclass/Superclass
Relationships

• Code/Model Reusability: Inheriting common attributes and
behaviors reduces duplication, making models and code more
concise.

• Modularity: Breaks down complex systems into smaller,
manageable, and logically organized units.

• Extensibility: Easier to add new subclasses without modifying
existing superclass code, promoting future growth.

• Maintainability: Changes to shared logic in the
superclass automatically apply to all subclasses,
simplifying updates.

• Clearer Data Modeling: Represents real-world
hierarchies intuitively, improving the clarity and
understanding of the data structure.

• Polymorphism (OOP): Enables flexible and powerful
code that can operate on objects of different types
through a common interface.

Example:
Employee
Hierarchy

Specialization: Each subclass adds specific
attributes (AnnualSalary, HourlyRate) and
provides its own calculatePayroll() logic.

Constraints (e.g., Disjoint, Total): An employee
can be either salaried or hourly (Disjoint).
Every employee must be one of these types
(Total).

Relationship: SalariedEmployee is an Employee,
HourlyEmployee is an Employee.

Inheritance: Both subclasses inherit EmployeeID, Name,
Address, DateOfHire.

1. Use associative tables like Orders to resolve many-
to-many relationships.

2. Composite Primary Key ensures unique records
(e.g., Customer_ID + Product_ID).

3. Foreign Keys link back to related parent tables
(e.g., Customers, Products).

4. Maintains transaction traceability.

Associative Tables and M:N
Relationships

Understanding
Database
Relationships
(Recap)

One-to-One (1:1)

One instance in Table A relates to exactly one instance in
Table B.

One-to-Many (1:N or 1:M)

One instance in Table A can relate
to many instances in Table B.
Each instance in Table B relates to
one instance in Table A.

The Challenge:
Many-to-Many
(M:N)
Relationships

An M:N relationship exists when one instance of Entity A can
relate to many instances of Entity B, AND one instance of Entity
B can relate to many instances of Entity A

Common Examples:

1. Students and Courses

2. Books and Authors

3. Orders and Products

Why M:N is a
Problem in
Relational
Databases

Relational database tables are designed for unique
rows and direct relationships (1:1, 1:N).

You cannot directly represent an M:N relationship
within two tables without severe issues.

Attempting Direct M: N Leads To:

1. Redundancy

2. Data Inconsistency

3. Difficulty Querying/Joining

The Solution:
Associative
Tables

Also Known As: Junction Table, Bridge
Table, Linking Table, Join Table.

What it is…

How It Works…

Anatomy of
an Associative
Table

Consists of:

1. Composite Primary Key

2. Foreign Keys

3. Optional Element: Additional Attributes

Step-by-Step
Example:
Students &
Courses

Conceptual M:N Relationship: A Student
can enroll in many Courses. A Course can
have many Students

Problematic Direct Implementation: If

you try to put CourseIDs in Student

table or StudentIDs in Course table,
you'd need multiple columns or
repeating groups, leading to
redundancy and anomalies.

Step-by-Step
Example: Students
& Courses
(Solution)

Solution: Introduce an

Associative Table

(e.g., Enrollments)

The Resulting
1:N
Relationships

The original M:N relationship is now replaced by two 1:N relationships:

• One Student can have many Enrollments. (Students 1:N Enrollments)

• One Course can have many Enrollments. (Courses 1:N Enrollments)

Benefits:

1. Resolves M:N Relationships

2. Eliminates Redundancy

3. Ensures Data Integrity

4. Allows for Relationship
Attributes

5. Facilitates Querying

This Photo by Unknown Author is licensed under CC BY-SA-NC

https://mlpp.pressbooks.pub/businesscomputers2019/chapter/access-chap-2/
https://creativecommons.org/licenses/by-nc-sa/3.0/

• ACID properties:

• Vital for multi-user environments and concurrent access.

Transaction Management
Basics

What is a
Transaction?

• Definition…

• Purpose…

• Analogy…

Why is Transaction Management
Crucial?

1. Data Integrity

2. Reliability

3. Consistency

4. Concurrently

5. Recovery

The ACID
Properties

A = Atomicity

- All or Nothing

C = Consistency

- From one consistent state to another.

This Photo by Unknown Author is licensed under CC BY-SA

https://devopedia.org/acid-transactions
https://creativecommons.org/licenses/by-sa/3.0/

The ACID
Properties

I = Isolation

- Execute concurrent transactions independently

D = Durability

- Once successfully committed,
changes are permanently stored.

This Photo by Unknown Author is licensed under CC BY-SA

https://devopedia.org/acid-transactions
https://creativecommons.org/licenses/by-sa/3.0/

Transaction
States
(Lifecycle)

This Photo by Unknown Author is licensed under CC BY-SA

A transaction typically progresses through

several states:

• Active

• Partially Committed

• Committed

• Failed

• Aborted

• Terminated

https://devopedia.org/acid-transactions
https://creativecommons.org/licenses/by-sa/3.0/

1. Define roles and grant permissions based on the principle of
least privilege.

2. Access control enforces user-level security.

3. Encryption protects data at rest and in transit.

4. Auditing tracks changes and access to sensitive information.

Database Security Concepts

Why Database
Security
Matters

• Data is gold

• There are consequences of breaches…

• Treat Landscape

Core Pillars of Database Security:

1. Authentication - Who Are You?

2. Authorization - What Are You Allowed to Do?

3. Data Encryption - Protecting Confidentiality

4. Auditing & Monitoring - Who Did What, When?

5. Data Masking and Redaction - Limiting Exposure

6. Database Hardening - Securing the Environment

7. Backup & Recovery - Ensuring Availability

This Photo by Unknown Author is licensed under CC BY-SA-NC

https://technofaq.org/posts/2020/03/how-to-improve-cybersecurity-in-your-workplace/
https://creativecommons.org/licenses/by-nc-sa/3.0/

Layered Security
(Defense-in-
Depth)

• No Single Solution…

• Combined Approach…

• Continuous Improvement…

This Photo by Unknown Author is licensed under CC BY-SA

https://flexspan.blogspot.com/2018/03/gdpr-och-skolan.html
https://creativecommons.org/licenses/by-sa/3.0/

• Deliver two logical models:

• One for the provided unnormalized table.

• One transformed from your Enhanced ERD.

• Use correct notation for PKs and FKs.

• Normalize to BCNF and explain each step.

• Consider how your model supports security and
transaction reliability.

Summary and Expectations

Individual Project
D e s c r i p t i o n

Phase 3 IP has 2 parts:

Part 1: Analyze the following table (see the Word document called CS352 - IP3), and reorganize the table into Boyce-Codd Normal
Form, at each step describing what is needed to move to the next Normal Form and why each step meets the Normal Form
requirements.

Show un-normalized table given and progression through the normal forms up to Boyce Codd in logical data models.
Include explanation of how each normal form is met as you progress through the process of breaking down this un-normalized
table to tables meeting Boyce Codd normal form.

Part 2: In addition, transform your data model (your EERD created in phase 2 IP) into a logical model, to third
normal form. Describe why each table is in third Normal Form. In your logical data model identify the primary
keys in each table as bolded and underlined and each foreign key as italicized and underlined.

http://class.coloradotech.edu/CbFileShareCommon/ctu/cs352/Assignment_Assets/CS352_P3IP.docx

Individual Project
D e s c r i p t i o n

•

Submission for phase 3 IP includes:

•Logical Data Model for the supplied table (Part 1) with a description of how it moved through UNF
to 1NF to 2NF to 3NF and Boyce-Codd.

•Logical Data Model for Part 2 with a description of how each table is in third normal form.
Add both parts described to the project template section titled "Database Management Systems."
Name the document CS352_<First and Last Name>_IP2.docs, and submit the document for grading.

**ALL SUBMISISON SHOULD BE IN THE FORMAT OF A WORD DOCUMENT (.docx) AND NOT PDF.
ALSO, ALL SUBMISSIONS SHOULD BE ENTIRELY DOUBLE-SPACED AND FOLLOW ALL APA 7
RULES FOR FORMATTING, INCLUDING HEADERS, TITLE PAGE, TABLE OF CONTENTS,
REFERENCES, AND IN-TEXT CITATIONS.

 Normalization & Logical Modeling Resources

Resources
D a t a b a s e M a n a g e m e n t S y s t e m s

A Database Management System (DBMS) is software
designed to define, create, maintain, and control
access to databases. It acts as an intermediary
between users and the database, ensuring that data is
consistently organized and remains easily accessible. A
DBMS allows for efficient data manipulation through
Structured Query Language (SQL), enabling operations
such as data retrieval, insertion, updating, and
deletion. It also supports key features like concurrency
control, transaction management, security
enforcement, and data integrity. By centralizing data
access and offering tools to manage large volumes of
structured information, a DBMS plays a critical role in
supporting data-driven decision-making across various
industries and applications.

Here are some helpful online resources for students:

1. IBM’s Database Normalization Tutorial
IBM Developer provides real-world examples of normalization
through BCNF. It’s especially good for reinforcing dependencies
and data anomalies with visuals.
2. Stanford University’s "Introduction to Databases"
A free online course that includes lectures and quizzes on ER
modeling and normalization. The interactive format helps
reinforce theory with application.

 https://databases.stanford.edu
3. "Database Design" by Adrienne Watt (Open Textbook Library)
Chapter 5 specifically covers normalization. It's well-structured
for undergraduate audiences and offers review questions.

 https://open.umn.edu/opentextbooks/textbooks/database-
design
4. SQLBolt – Visual SQL and Schema Practice
Though focused on SQL, SQLBolt’s ER diagram and schema
tutorials help students conceptualize relationships before
writing code.

 https://sqlbolt.com/

https://databases.stanford.edu/
https://sqlbolt.com/

INSTRUTOR

DR. JOHN CONKLIN

602.796.5972

PHONE

jconklin@coloradotech.edu

EMAIL

drjconklin.com

WEBSITE

https://drjconklin.com/

	Slide 1: Unit 3: Database Management Systems
	Slide 2: Agenda
	Slide 3: Overview
	Slide 4: What is Normalization? (Briefly)
	Slide 5: Why Normalize?
	Slide 6: The Trade-off: Normalization vs. Denormalization (Briefly)
	Slide 7: Key Takeaways
	Slide 8: Database Dependencies
	Slide 9: Functional Dependencies (FD)
	Slide 10: Partial Dependencies
	Slide 11: Transitive Dependencies
	Slide 12: Join Dependencies
	Slide 13: Key Dependencies
	Slide 14: Step-by-Step Normalization
	Slide 15: UNF: Our Starting Point: Unnormalized Data
	Slide 16: Step 1: First Normal Form (1NF)
	Slide 17: Step 2: Second Normal Form (2NF)
	Slide 18: Step 3: Third Normal Form (3NF)
	Slide 19: Beyond 3NF: Boyce-Codd Normal Form (BCNF)
	Slide 20: Summary of Normal Forms & What They Achieve
	Slide 21: Logical Data Model Requirements
	Slide 22:
	Slide 23: Subclass/Superclass Relationships
	Slide 24: Subclass / Superclass Relationships
	Slide 25: Key Characteristics & Inheritance
	Slide 26: Benefits of Subclass/Superclass Relationships
	Slide 27: Example: Employee Hierarchy
	Slide 28: Associative Tables and M:N Relationships
	Slide 29: Understanding Database Relationships (Recap)
	Slide 30: The Challenge: Many-to-Many (M:N) Relationships
	Slide 31: Why M:N is a Problem in Relational Databases
	Slide 32: The Solution: Associative Tables
	Slide 33: Anatomy of an Associative Table
	Slide 34: Step-by-Step Example: Students & Courses
	Slide 35: Step-by-Step Example: Students & Courses (Solution)
	Slide 36: The Resulting 1:N Relationships
	Slide 37: Transaction Management Basics
	Slide 38: What is a Transaction?
	Slide 39: The ACID Properties
	Slide 40: The ACID Properties
	Slide 41: Transaction States (Lifecycle)
	Slide 42: Database Security Concepts
	Slide 43: Why Database Security Matters
	Slide 44: Layered Security (Defense-in-Depth)
	Slide 45: Summary and Expectations
	Slide 46
	Slide 47
	Slide 48: Resources
	Slide 49: INSTRUTOR

