Entity Relationship
Modeling - Principles

' mh” [[TE]

Illi'i
l'll'ri .

clan® el

IPI.ES'

|wh

Author: Alf A. Pedersen
This eBook is the intellectual property of the author.
© All rights reserved

Introduction.

Entity Relationship Modeling (ER modeling) is by far the most common way to
express the analytical result of an early stage in the construction of a new
database. This eBook describes the principles for ER modeling, as well as the
most important terms used in modeling a new database.

In the analysis phase, we are concerned about finding out about the business.
At this early stage, we normally do not talk about performance-specific
issues. The main goal of the Analysis phase is to determine what information
the business needs to perform a certain task (accounting, invoicing, customer
support), how that information should be best possibly organized, and what
are the relationships between the different sets of information. We start with
a few definitions:

1. Entity.

An entity is a specific object of interest to the business area. We might say
that in an accounting system, two things are basically necessary: Accounts
and transactions. In a customer support system, we would need to have
some information about customers, for a start. Each such unit of essential
information is named ‘an entity’, with a name and attributes.

2. Attributes.
Each entity will normally have one or more attributes. Attributes may be
thought of as smaller pieces of information within an entity. Together they

describe our entity to the degree we find necessary. An example is a
customer entity:

CUSTOMER

F CLUST_NO
* MAME

The entity is named CUSTOMER, and has two attributes, that we have found
to be important to know about the customer: Customer number and customer
name. Most likely, the customer will have several other attributes as well, but
that will show up during the analysis phase. The attributes have a # and a *
in front of them: A # means that the attribute is (part of) the primary key for
that entity. The primary key is a unique value for every new customer we get
so that we can uniquely identify him from all the other customers. The
attribute NAME has a * in front: This indicates that it is a mandatory
attribute; for every new customer, name MUST be filled in. The opposite is
also possible; if an attribute has an o in front of it, it is an optional attribute,
and a value is not required.

3. Relationships

In a relational database, all entities have bonds between them, expressed as
relationships. A relationship is a link between to entities, and it tells us
something about which relationships exists between our entities. The
following example illustrates this:

BALAMNCES
= # PERICD
* BALAMCE

ACCOUNTS| has
#FACCOUNT_N— — 7

walid for

* MAME

This sketch tells us that a given account MAY have zero or more balances, but
a given balance MUST BE valid for one and only one account. That sounds
reasonable. Reading ER diagrams with relationships, gives us a very quick
view of the logical structure of a database in the making, without thinking
about the physical implementation of it, at this point.

These are the basic elements you need to know about before starting out on
your ER modeling: Entities, their attributes, what uniquely identify an
occurrence of an entity, and what the relationships between the different
entities are.

The Entity.

1. The single entity

As we define different entities, we find that we are digging deeper and deeper
into the problem domain of the business we are modeling. The more we, as
system analysts, interact with the business we are modeling, the more
information we find belong in different entities. This is how the process works.

You should not be afraid to create new entities, if so just as placeholders for
ideas. In the analysis phase we need not be concerned about it; the analysis
phase is where we test out ideas, new questions, and eventually evolve
towards a solution which is sound, correct, and shows the business as it really
is (or as we would like it to be).

It is also a good idea to create attributes as they are coming up. Again, they
can be evaluated and thrown away later if we really do not need them. With a
good ER modeling tool, your ER diagram may be thought of as a sketchbook,
especially in an early phase of analysis.

Single entities are relatively easy to spot: An account is something different
from transactions or balances, and a customer is something different from an
order. However, customers and orders are related to each other through
relationships, as well as accounts are related to transactions and balances.
Sometimes we may enter a dilemma, when two or more entities actually look
very similar: F. inst.: What is really the difference between a customer and a
supplier?

Both entities have some form of identification; they both have a name,
address, telephones, contact persons etc. We may even have a discount
system for our customers, and our suppliers also give us some discount
mechanisms. The two are really quite like.

In our analysis work, we have two mechanisms for dealing with such
uncertainties:

2. The super-entity and the sub-entity.

If we first draw an entity we call BUSINESS CONTACT, and then draw two or
more entities inside the BUSINESS CONTACT entity, then BUSINESS
CONTACT becomes a super-entity, and the others become sub-entities of
BUSINESS CONTACT. The purpose of this is to verify if we really are talking
about different kinds of contacts:

ra !
BUSINESS CONTACT

CONTACT_ID

® NAME

[SUPPLIER SHAREHOLDER

(customer) [cLuB memBER

~, A

As we add attributes into this model, we must ask ourselves: The attribute I
am about to create; is it valid for all the sub-entities, or is it specific to only
one (or two...) of the sub-entities? If the attribute is valid for all sub-entities,
we place it in the super-entity in stead.

When we work like this, we will (most likely) see that information-wise, there
is no difference between a customer and supplier: They are two things of the
same kind. However; shareholder may be something different:

BUSINESS CONTACT
CONTACT_ID

* HAE
* TELEFHOME (ﬁ Sﬂﬁﬁl'lsﬂHtEE?
» enteren pare | CUSTOMER

SUPPLIER CLUB MEMBER

"

We see that our analysis has led us to understand that there are really no
difference in the information needs whether it is customers, suppliers or club
members (we run a customer club...), But we need to track each
shareholder’'s number of shares. The best thing to do until further, is to
remove the three common entities and replace them by a type:

Ccategorized
BUSINESS CONTACT
CONTACT_ID as CONTACT TYPE
T NAWE — — —{# TYPE
= TELEFHOME categary | = DESCRIPTION
* ENTERED DATE far

We can read from this that each BUSINESS CONTACT must be categorized as
one and only one contact type, while CONTACT TYPE may be a category for
zero or more BUSINESS CONTACTSs. Contact type will here typically be
customers, suppliers, club-members, or whatever business contact we have.
We can se that we have built much more flexibility into the system by using
super- and sub-entities in an early stage of analysis. We will return to this
model after the chapter on allowed relationship types.

By the way, what about the SHAREHOLDER?

Well, the shareholder was a bit different from our other business contacts. If
we want to keep the entity, we must give it all the attributes of BUSINSS
CONTACT, in addition to the number of shares attribute, and keep it as an
own entity. However, we will remove it totally for now, and save it for a later
occasion.

Attributes in entities.

1. Most common metadata on attributes.

We take for granted, that doing a major analysis study in a given field, you
use tools that are appropriate. As for the choice of a modeling tool, I give no
concrete recommendations: I have used Oracle Designer (formerly Oracle
CASE*Method) for the last 15 years, and I have found it to be a powerful and
rich system, which delivers in many more areas than I have needed to use it
for. I am probably a little biased here.

However, a toolset should include reusable objects: The results from the
analysis phase should be the basis for generating a logical database model
with tables and all other database objects for use in the design phase, as well
as functions should be used for generating candidate modules.

Furthermore, the database objects should be used to generate the DDL (Data
Definition Language) scripts for physically building all the elements of the
database, as well as the candidate modules should be used to generate
running program modules. Not that I expect a system to be 100% generated
- far from it.

However, with such functionality you could show a prototype, which
illustrated the resulting, needed functionality, but without the last finishing
touch, or the most advanced business constraints built into it.

As you enter attributes, it is important that you can define their descriptions,
optionality, data format and -length restrictions for later use in design. Here
is what I would recommend you to: If at all possible, place each and every
attribute in a domain.

A domain is a container that holds general descriptions, as well as data types
and length, and in certain circumstances also can keep legal values or legal
ranges for a domain. By relating every attribute to a domain definition, you
ensure that if you change the domain, the change is reflected for all attributes
that belong to that domain. A short example, taken from Oracle Designer:

ggg ﬁgi]RErrrlD Daornain MONEY
[+ Preferences Value 0.01]
I?"IE Values Walue Type Literal
-0 Usages High Yalue 99993509

: 00 inciusions
-] Sub Domains
[+ Usages
[+ Inclusions

148 NAME

[Ll.BA CcCml IERTE

High Yalue Type Literal

Ahbreviation

Meaning

l%uh”DxEl#‘ - |

Display Sequence |5

We se that the domain MONEY has a legal range between 0.01 and
999,999.99. It sounds fair: Money must have some minimum value. How
about maximum? This domain was created for use in transactions, and we
have a rule in the business saying that no transaction larger than a million is
allowed, for security reasons.

Now, we have suddenly gotten the opportunity to define a business rule here!
This definition WILL result in a constraint in the complete database, at the
end of the design phase, like this:

PROMPT Creating Check Constraint on "TRANSACTIONS'

ALTER TABLE TRANSACTIONS

ADD (CONSTRAINT AVCON_1071502401_VALUE_000 CHECK (VALUE BETWEEN
0.01 AND 999999.99)).

But we are too far into design now: Let us step back, and look at how we can
define a type-domain as well:

R iR

CHAR_ID E Marme
Subset Of
[+ Preferences £ :
[-}-X% 13 Allowable Values —— |Autharity
SRS IR %+ |= attributes in Don
[+ Usages

O fnciusions I MNUMBER
[} Sub Domains : —Auerace Att Lenol 6
g ?S?QE.S == | FMaximum AttLen 12
+1-0 Inciusions
B¢ MAME ﬁ —Aft Decimal Place 2

Since we have the legal range constraint defined, we should be able to reduce
the length of the domain. Since the MONEY domain is attached to the
transaction amount attribute in some transaction, changes in the domain
have immediate impact. I will stress this: Relate all attributes to its domain,
like this:

— Attributes
M arme Format Maslen | Dec | Primary
TRAMSACTIOMN_MO MUMBER E 14 1 |Inique tranza
TOATE DATE [[Tranzaction d:
ALLIE rOME™ 12 2l [0 [Transactionm

The best advice I can give, is: Do not settle for tools that do not support most
of your development cycle.

Relationships.

1. Introduction

Relationships are the bonds between entities. They tell about certain rules
that apply if you want to insert, update or delete occurrences (rows) from
what later becomes tables. Relationships also tell us much about the logic
connections between entities. In the physical design of the database,
relationships become constraints that govern how you are allowed to
manipulate data in the different tables. The relationships are there to enforce
referential integrity: That your system, when it refers to something that is
supposed to be in another table; it is actually there.

Relationships, as we use them in analysis, are in some ways in contrast to
what is allowed when you physically transform the ER model to a physical,
live database. This is due to the fact that in analysis, we model the business,
but in design, we have to abide by laws of the database system. This is all,
again, to enforce referential integrity; securing that your database does not
get corrupt.

2. Three types of relationships

We have three types of relationships:

One-to-one relationships
One-to-many relationships
Many-to-many relationships.

For each relationship type, we may have one or both ends optional or
mandatory, which give us a total of 10 different theoretical variations of
relationships between entities. However; some of them are actually
impossible logically, and a few other are so far-fetched that you probably
have some less well-thought constructs in your analysis if you need them.

2.1 One-to-one relationships.

Mandatory-mandatory

came

propucT | oM SUPPLIER
origin | PRODUCT

of

This relationship says; a given product MUST come from one and only one
supplier product. A given supplier product MUST be the origin for one and
only one product.

It sounds right, but it is not. If the supplier product is the origin of one single
product, then the attributes of the supplier product most likely should be
included in our product entity. Furthermore, we can deduct from this model
that we cannot enter a NEW product unless a supplier product exists.
However, we cannot enter a NEW supplier product before it has a product to

relate to. It is a deadlock: We will never be able to enter anything into these
two entities (when they become tables). This will do us no good; it is a result
of theory, and not practice.

Mandatory-optional

came
propucT | oM SUPPLIER
arigin | PRODUCT
of

This one is a little more flexible: a product MAY come from one and only one
supplier product; however, a given supplier product MUST BE the origin of
one and only one product. See the above relationship on how to solve this

properly.
Optional-optional

come

of

At last some freedom: A given product MAY come from one and only one
supplier product, and a supplier product MAY BE the origin of one and only
one product.

Do they seem a bit far-fetched? Yes they are. They are a signal of lacking
analysis, for all practical purposes. Most likely, as said, the supplier product
entity is really nothing more than a set of attributes in the product entity.
One-to-one relationships are a signal that you have different entities that are
probably the same entity.

2.2 One-to-many relationships.

Mandatory-mandatory

CUSTOMER |_Pace ORDER
helong
.

This signals that an order (in this case) MUST belong to ONE AND ONLY ONE
customer, and a customer MUST place ONE OR MORE orders. While
theoretically possible to construct, this relationship would violate constraints
in the database: It will not be possible to create a new customer if there are
no orders; however, an order cannot be created without customers.

Mandatory-optional

10

cusToMER | P8 _ __| ORDER

helong
to

A new customer MUST place one or more orders, while an order MAY belong
to a customer. Note that the order can exist without a customer, while you
cannot have customers who do not have any orders. Well, there might be
such a situation, but I find it hard. I would have looked more deeply into the
problem domain. This relationship is possible, but relates to odd business
rules.

Optional-optional

CUSTOMER | 57— . = ORDER

This is a weak relationship. A customer MAY place zero or more orders, while
an order MAY belong to one and only customer. This is a so-called indecisive
mode, normally used when you have two or more entities sharing an arc
(more on this later). It may be used for optional attributes; however, an
optional attribute is in itself a reason for further investigation: The problem
domain may be incompletely analyzed. Be sure that the right questions have
been asked - and have been answered.

Optional-mandatory

CUSTOMER | PC8 ORDER
helang
to

By far the most common and useful relationship you can have: A
customer MAY have zero or more orders, while an order MUST belong
to one and only one customer. This relationship solves all the most
common relationships between entities in the analysis.

2.3 Many-to-many relationships.

Mandatory-mandatory

CUSTOMER |28 ORDER

helong
to

This relationship is impossible, for the same reason as the other mandatory-
mandatory relationships: It is a catch-22, or deadlock: Neither entity may
have new occurrences (rows) before the other has got its.

11

Mandatory-optional

cusTomer [P __| ORDER
helong

to

This is a relationship that needs to be resolved; analysis is unclear.

Optional-optional

CUSTOMER 22258 __| ORDER

helong 7
to

This is a very useful relationship: It implies what we call an ‘intersection
entity’, which will give an entity holding all legal combinations of orders and
customers. This many-to-many relationship is much used in an early stage of
analysis to indicate just that. This is such a useful relationship that I will
evaluate it right here:

We return to the model of business contact and contact type we had earlier:

categorized
BUSINESS CONTACT
CONTACT_ID S CONTACT TYPE
= NAE — — | # TYPE
= TELEPHONE category | DESCRIFTION
= ENTERED DATE for

The way this is constructed, it only allows for a business to exist once. If we
want a customer also to be a supplier, he must get a new contact id, and all
information must be re-entered. We can (partly) solve it by making the
primary key a combination of contact id and contact type:

categorized
BLISINESS COMTACT | g5 COMTACT TYPE
CONTACT ID —— — & TveE
* NAME category | = pEscRIPTION
* TELEPHONME far

* EMTERED DATE

Note the vertical bar on the crow’s foot: It indicates that the relationship is
part of the primary key in contact id. This is one of the most common errors
being made in ER modeling.

This is a violation of the Second Normal Form. Name, telephone and entered
date have nothing to do with contact type, only with business contact. We see
that we are not able to properly represent the fact that a business contact
may be a number of contact types. Here we can take full use of the many-to-
many relationship capabilities:

12

categorized
BUSIMESS COMTACT | 45 COMTACT TYPE
COMNTACT_ID -—————

* MAME

* TELEFHOME

* ENTERED DATE

This relationship says that a business contact MAY BE categorized as zero or
more contact types, while a given contact type MAY BE a category for zero or
more business contacts. This is total freedom. However, as stated earlier, we
have no way of representing this in a physical database, and we have no way
of taking care of all intersections in the ER model either, so we dissolve the
relationship like this:

BLISINESS CONTACT

CONTACT_ID CONTACT TYPE
* HAWE # TYPE
= TELEFHOME DESCRIFTION

" ENTERED DATE

|c|assiﬂes

lhas

role for l i farm of

[CONTF-.CT ROLE]

We may now read all rows in contact role to find out which roles a given
business contact has towards our business.

Do not be afraid to use this construction. In my experience, it will always add
flexibility into the finished analysis result.

3. Involuted (or recursive) relationships.

Involuted, or recursive, relationships, are self-relationships; relationships
from and to the same entity.

This is a special construction normally used to represent a hierarchical tree
structure. This kind of relationship alone has just as many possibilities as the
ones discussed above have together. However; most of the combinations just
theoretically usable: For all practical reasons they are impossible since they
relate back to themselves; you cannot relate to something that do not exist
yet. Constraints will be broken in the database. We will therefore concentrate
on the three forms of involuted relationships that may be of any use to you:

One-to-one relationship, optional-optional

13

—

P ™
hushand of
i i
PERSOMN j
-
wyife of

This may be a useful relationship. The relationship makes it possible for you,
if you wish, to be married to one person (at the time). However, if you want
historical data as to who you were married to earlier (as it happens to often
today), you need more analysis.

If you substitute PERSON with PRODUCT, this relationship may also be used

for suggesting an alternative product, if the original is sold out, or is no longer
manufactured.

One-to-many, optional-optional

-~ T
ok g 5,
far 'I
FERSOM j
-
manager
for

This is a classical hierarchy, or tree structure. Note however that any one
person MAY work for ZERO OR ONE AND ONLY ONE manager, while a given
person MAY be manager for zero or more persons.

Many-to-many, optional-optional

_ T
-,
rmanager
for “'/ \
FPERSOM /
-
o rk
far

This is a network structure. In a project-organized environment, any one
person MAY have ZERO or more managers, while any person MAY be manager
for ZERO OR MORE persons. This construction is also good for decomposition
of products: If you swap PERSON with PRODUCT, we may read it as: A
product MAY contain zero or more (sub)products, while a given (sub)product
MAY be a part of zero or more products.

As with all many-to-many relationships, we must create an intersection

entity, and resolve the many-to-many relationship into two one-to-many
relationships:

14

PERSOM

managerI |W|:|rk

for | for
wiork manager
for M Ao

PROJECT
MEMBER

When naming both ends of relationships, try to find meaningful and
descriptive phrases so it feels natural to read the relationships back and forth.
Note how we have read all the relationships in this chapter. Avoid, if you can,
words like ‘is’, *has’, 'in’. Those are quite meaningless. (Although I cannot
help myself, either, at times...)

15

Using Arcs.

What is an arc?

An arc is a constraint that crosses to or more relationships going into an
entity, and it indicates that the relationships in the arc are mutually exclusive.

I will explain it with graphics:

SHAREHOLDER BUSIMNESS COMNTACT

* MO OF SHARES # COWTACT_ID
HAME

" TELEPHOME
" ENTERED DATE

|make

make

|
|
|
4
P
|
made hy }a made by

e — - — —

TRANSACTIONS
TRANSACTION_NO

* TDATE
T OWeLLE

The arc in this model tells that for any one transaction, it is either valid for a
shareholder, or for a business contact, never both at the same time. In my
opinion, arcs are a result of insufficient analysis: We must have both
relationships optional and that reduces the strength of referential integrity.
Furthermore, it is an indecisive signal: ‘We are not sure here, choose for
yourself’. They also give a signal about a possible missing business rule, also.

Try to avoid arcs; however, in an early analysis phase, they are a good signal
about a problem domain that has to be explored further.

16

The Database Analysis Team
- A Teamwork

The importance of a professional Database analysis team.

The complexity and degree of computer involvement in the business is
constantly growing. No wonder; each 18th month, we can buy hardware with
twice the performance at the same price. We are therefore able to put more
demands on our software, until we reach some limit. However, it only takes
another 18 months; then we can buy new hardware without these limits...
and so on.

There is also a good reason for it: We may very well rely on a standard
system for our accounting or payroll routines, we can use market standards in
word processing and spreadsheets, and so on. What separates a high-
performing business from a failure is the way the CUSTOMER is reached for,
and how he is treated.

That is customer marketing and customer care. The customer is always the
business. If you do not have customers, you do not have a business.

If such a business exists, however, please let me know.

Such systems, systems that give the business an advance compared to its
competitors, we may call strategic systems. If two businesses buy the same
strategic system from the shelf, then they do not gain any system advantage
towards each other.

On the other hand, the business that is fastest to respond, and deliver, and at
the same time is competitive, will definitely have an advantage. In a world
with rising competition and globalization, this will grow more and more
important. Good news for the software industry and the analysis team...

In the analysis stage, we need an analysis team of both business experts as
well as experienced system analysts. In addition, we need tools that can help
us seeing the overall picture, as well as helping us further forward.

Top business experience is required in the analysis team in order to get in-
depth understanding of the business itself.

Remember: Our model, at this stage in development, must reflect the
business, not some constraints given by any tool or personal preferences.
This happens all too often and usually with not-to-good results.

In the analysis team, the system analysts must have an expert level
knowledge of business modeling. By business modeling, I mean exactly that.
I do not mean expert knowledge of f.i. Entity Relationship modeling without
relating it to the real world. However good a person may be educated,
nothing beats the experience earned from several similar tasks at the
equivalent level of complexity. How does one gain experience then?
Participate under a tutor. I would never hire a consultant without experience
and trust her to understand the complexity of my business, all by herself.

I will not go into detail as to the total project staff is composed. This will

depend on many outside factors, such as degree of participation from each
party, size of the project, formal requirements (public sector tends to require

17

at higher level of project staffing, partly due to rigorous documentation
requirements), etc. What we focus on is the tightly performing party that
determines the final business model: The experts on the business together
with the system analysts, preferably more than one in this phase.

Due to the increasing complexity that tends to be taken into systems
development, I cannot imagine a development project of any noticeable size
that should not use a development tool as support for the analysis team as
well as for each stage other of development. I regard the tool(s) chosen as an
integral part of the team. In many cases, the tool is also the communicator
between the business and the analyst.

I have often started a project by going through the way we communicate with
each other. In my experience, the business soon finds Entity Relationship
diagrams familiar, if not as familiar as to the system analysts. However, they
are a means of communication that work. The same may be said for function
diagrams, or function hierarchies. They are even easier to understand for a
non-system person.

You are free to use this eBook as a give-away in your ongoing or upcoming
projects.

18

Analysis progress

With the tools of today’s technology (laptops, projectors, computer networks
and not least, the Internet), the analysis process can take place literary
anywhere.

Actually, most processes are able to. For all practical purposes, we are more
mobile: some parts of the analysis progress may take place at the business
office, and other parts at the analyst’s office. They can communicate on the
net at any time, collaborating outside of formal meetings. No doubt, this is
increasing performance in the analysis progress, as well as saving time, and
thereby costs.

For instance, sometimes I do vital parts of a project at my home office, but
my tools repository (Oracle), resides on the server park at the office. I can
also get limited access to it for my customers, if I wish.

(Sidebar: The invention of home offices is perfect for employers: We, the
employees, work both day and night, and on top of it, we love it...Crazy
world).

OK, back to business: While we may have inherited a sketch of an ER model
from the strategy phase of the project, now is the time to start asking the
difficult questions. We will be probing that sketch, and stressing both the
model and the business representatives (yes, I am now talking on behalf of
the system analyst; since you are still reading this, most likely you are also
one).

The difference between an experienced and an un-experienced analyst can
make great differences on the finished work. While an un-experienced analyst
will try to fit the business’ points of view into the E-R model, the experienced
analyst will start to doubt some points of view, remembering her experiences
from two years back, in a similar situation.

This phase in the project is not about making nice models; it is about making
models that work, and making models that will work also if the business
perspective changes, somewhere in time. It will. It always does.

Building flexibility into a business model is really quite simple: Follow the
rules for the five Normal Forms (do at least 3NF!), and you have already
asked a lot of vital questions, securing flexibility. If you want an in-depth
study of the five Normal Forms, go to our eBooks section on our website
www.databasedesign-resource.com

The sooner we can ask, and collect answers, to questions about the business,
the faster the analysis progress will be. I must emphasize the importance of
delivering results to your customer as fast as you can, without compromising
quality; of course, it is the best way of making repetitive business too, as well
as marketing.

19

www.databasedesign-resource.com

Analysis trap 1
- Modeling with incompleteness

When we work on establishing the conceptual business model through Entity
Relationship modeling, one of the most common pitfalls we risk walking into
are:

You may be asked: ‘We need a system for reporting quarterly balances’. I
have seen models put up like this: (the example is from a real world situation
that eventually went wrong):

ACCOUNTS
ACCOUNT_NO

#
=
o
o
o
o

This was the first suggestion, which obviously will not pass the test of even
the First Normal form. They ended up with this:

PERIODS

PERIOD_NO
* DESCRIFTION
* NO_OF_DAYS

|
|va|id for

received in
ACCOUNTS
ACCOUNT_NO has I F:Q.AI.&L‘EI:EES
© MAME valid for
Nice enough.

But, this is based on a complete model of the reality? Where do we get our
BALANCE from? It does not come from out of the blue. A full and true picture
of the reality would be something like:

ACCOUNTS prein TRAMNSACTIONS
#FACCOUNT MO |~ ~— # TRANSACTION_MO
* MAME walid for * TDATE

* WALLUE

20

Quarterly balances are computed from of transactions. The entities for
BALANCES and PERIODS are denormalizations; derived (or computed values)
that has to come from transactions. It MAY be correct to use the former
model (in a data warehouse), but it violates 3NF if you expand your view to
look at the complete business model.

I call this The Analysis Trap 1. This may happen if one tries to limit the scope
of the task at hand, and it would lead us into a situation where, whenever a
transaction is inserted, updated or deleted, we MUST have a business rule
that says ‘Update BALANCES whenever something happens in
TRANSACTIONS. There may even be a worse cause for this analysis trap 1 to
happen: Someone might say: ‘Performance will be lacking if we do not sum
up here and there’. But those quotes are a certain sign that one is thinking
physical implementation of the model; tables, SELECT statements, and so on.
However,

A computer’s performance ability has NOTHING to do with the
analysis of the business!

(We will return to that in an upcoming Design Phase topic).

Remember, it is the business; how we run it (or would like to run it), that
determines what information (entities) we need, and how the different types
of information interact with each other (relationships). As you work your way
through the analysis phase, the business model (and implicitly the E-R model)
will become more and more accurate. Applying normalization techniques will
ensure low (or no) level of redundancy (repeating the same information),
and, as a consequence, also deliver a high level of referential integrity
(correct relationship values).

21

Analysis Trap 2
- Incomplete business understanding

The Analysis Trap 2 is about incomplete business understanding or
misinterpretation of the business processes. This is a common source for
inadequate data models. There are (at least) two factors that may lead to
this; The system analyst is lacking experience either from the specific
business area, or in general, and/or the business fails to bring forward
enough detailed information about the business needs.

I have come to the conclusion, after more than 15 years of ER modeling, and
a total of 28 years in the software industry, that more often than not, the
"professional" part in the business analysis task, the system analyst, must
take a fair share of the burden here.

Being a system analyst is not the same as being a programmer. These are
two distinct different professions, and different skills are necessary. It is not a
disadvantage for a system analyst to have a programming background; you
may quickly see areas where the model will influence the development phase
in a negative way.

Actually, problems with building queries against a relational database are very
often an effect of an inadequate (denormalized) database structure. The
opposite is also a fact: It is much easier to write optimal queries and updates
against a normalized database structure.

The business probably do not know data modeling in detail. That is why they
use consultants. However, some basic knowledge is required in order to
participate in the analysis phase. You may forward them this free eBook on
‘Entity Relationship Modeling - Principles’ as a primer to understand it. You
find it in our eBooks section. If the customer learns the basic principles, he is
much better prepared to communicate his business and have a dialogue with
the system analyst(s). Here are some common errors in ER modeling:

Failing to understand that the same information is repeated:

i ™
CUSTOMER
CUST_NO
* NAME
* BUSINESS ADDRESS
BUSINESS ZIP
BUSINESS CITY
0 DELIVERY ADDRESS
0 DELIVERY ZIP
.o DELWERY CITY

+ &

The business may say: For each customer, we need his business address and
his delivery address. That is two addresses. If you model it like this,

you are violating the First Normal Form: Repeating attributes/group of
attributes.

Ask questions such as:

* Does the customer have more than one delivery address after all?

22

* Does it ever happen that some customer asks for delivery, not to his
address, but to his customer’s address?

* Do customers sometimes refer to a branch address for business or delivery?

This model will let him have as many choices as he may wish. I do not say
this is good enough, though...

classified

b
cvsrowen | (cusronen ¥ |
* NAME validl ADDRESS A + TYPE

for DESCRIPTION

ADDRESS

Failing to build flexibility:

The business says; We have customers and suppliers. You might model it like
this,

CUSTOMER SUPPLIER

F CLST_MNO # SUFPP_NO
* MAME * MAME

While instead, you could ask:

Does it ever happen that a customer is also a supplier of other goods? It
happens more often than one should think. You could solve it like this,

BUSINESS 'D”ffmm CONTACT
CONTACT SR S S S SRS S TYPE

CONTACT_ID s # TYPE

* NAME * DESCRIFTION

We changed the name of CUSTOMER into BUSINESS CONTACT. Using the
many-to-many relationship in an early stage of analysis is a powerful
mechanism. It shows that a relationship is more complex than first
anticipated, and as long as that many-to-many relationship is there, it is a
reminder to resolve it at some point in time.

Even worse; The business might say: We identify our customers and suppliers
by a number from separate series to identify them, so we will need the
customer type as an additional means to identify them. Truly, this happens.
The analyst gives them this,

23

in form

ADDRESS BUSINESS CONTACT
f
TYEE CONTACT |[—— — —| TYPE
f TYPE # CONTACT_ID classifies + TYFE
BESCRIELD * NAME + DESCRIPTION
I classifies | Fig
| |
| ified
EESSI " walid far
CONTACT ADDRESS
+ GTREET
+ 7P
* CITY
+ COUNTRY

* ADDREESS PRIORITY

where the unique combination of Business contact no and contact type is the
primary key. (The vertical bar at the crow’s foot notates part of primary key).

This analysis trap breaks Second Normal Form. Name, address and so on is
not dependent on contact type, only on business contact. If a business
contact is both a customer and a supplier, all names and address information
etc. must be stored twice.

But what about the whole concept of customers and suppliers? They are only
two of several groups that are relating to the business. In an early stage, we
should rather say: We have several groups of business contacts, such as
customers, suppliers, and maybe other interest groups, all of which we may
have to deal with. In such cases, one may use the terms super-entity and
sub-entity as a very powerful illustration of generic (common) structures, like
this,

ra ™
BUSINESS CONTACT

CONTACT_ID

* NAWE

ADDRESS [SUFPLIER SHAREHOLDER

(customer | [cLuB mEMBER

Iclaasiﬂes |haa
|

classified
by valid for

CONTACT ADDRESS
* STREET

= ZIP

® CITY

* COUNTRY

* ADDRESS PRIORITY

We are trying to find all attributes for each sub-entity. Since they are

24

obviously closely related to each other, many of the attributes will be
common. As the analysis moves forward, we add attributes to each sub-
entity. Where an attribute exists in all sub-entities, we move it to the super-
entity. We se that actually, some of the sub-entities are different types of the
same thing, because they do not have un-common attributes:

¢ ™
BUSINESS CONTACT
CONTACT_ID
* MAME
o TELEPHOME
* ENTERED DATE
SHAREHOLDE
ADDRESS [CUSTDMER] [SUPPUERJ [* MO OF SHARES %
TYPE
TYPE [CLUE J
* DESCRIPTIO . A
| classifies |has
|
classified
by valid far
CONTACT ADDRESS
* 8TREET
* fIF
* CITY
* COUNTRY

* ADDRESS PRIORITY

Now we can be more specific:

BUSINESS

ADDRESS CONTACT

CONTACT_ID

T MAMWE

¥ TELEFHOME

" ENTERED DATE

I .
|I3|EISSIﬂES lias

classified A
by valid for L
SHAREHOLDER
CONTACT ADDRESS # SHAREHOLDER ID
= STREET T NAWE
= ZIp * TELERHOME
" iy valifd far = ENTERED DATE
" COUNTRY = MO OF SHARES

ADODRESS PRIORITY

The model is still not complete - Primary key definitions are insufficient.

Also, the arc between business contact and shareholder has to be studied
closer. Arcs are, in my opinion, a signal that the area is insufficiently studied:
What we really say with an arc is: It's either this or that. Choose your pick.
That is not good enough, in my opinion. Let us discuss this: The only
difference between any kind of business contact and a shareholder is that a

25

shareholder owns one or more stocks in our company. Otherwise, he may be
a customer, a supplier, or whatever.

If we change the name of shareholder to stock, and we add a couple of
attributes, and we define a primary key for contact role, we get:

ADDRESS #B'-I':SD'L‘Tigf EGNT“CT CONTACT
TYPE NP TYPE
TYRE ~ TELERHONE # TYPE
* DESCRIFTION » ENTERED DATE DESCRIPTION
! ' 1 | .
|classifies |accessed |posess | contact tlassifies
| |via | as |
| | | |
|
; lid | | in farm
classified vall role of
[far far
CONTACT ADDRESS CONTACT ROLE
* STREET
= ZIp
LIy belong
* COUNTRY
* ADDRESS PRIORITY

STOCK

LOT MO
" ACUIRED DATE
" MO OF SHARES

26

Generic or specific models ?

We will look into the use of generic or specific database models in this
keynote.

There are many analysts who advocate for using generic ER models to build a
system, while others favor building it costumer-specific.

Actually, I slightly disagree with both directions.

I have studied many generic models. One common denominator is that
generic models try to capture everything imaginable in a certain field of
business, like financials, production, etc. If you need to cover everything
imaginable, you are probably already a customer of Oracle Financials,
Peoplesoft, or some other high-end ERP system.

The reason for starting a project involving ER modeling, design, development
and deployment of an application, is that the business wants to build
something unique; a new way of treating customers, new supply logistics, or
anything else that gives it a competitive edge. A generic model will involve
many entities, relationships, and probably business rules that are not relevant
to the business. It means developing functions that will never be used, an
extended database with tables that are never accessed, triggers that fire and
execute nothing; Even this code;

begin
null;
end;

Will have some impact on performance if it is executed often enough each
day. A model specifically designed for the business sounds good. However,
you have a chance of narrowing your scope too much, so that you build
inflexible limitations into the system. Refer to the keynote on Analysis Trap 2.

An experienced analyst brings with him into the project a perspective based
on earlier experience: He is able to recognize patterns in different areas of
the business domain.

The customer is an area for which a pattern can be given. There are many
common questions regarding customers, which can be reflected in a
recognizable pattern.

How we build a sales order is also a common pattern: At some point there is
a customer involved, the order is about one or more products, it should be
effectuated and delivered, someone’s has to pay, etc.

Patterns are studies of small, specific domains of a larger ER model, with one
(or a few) in- and outgoing links to surrounding domains of the ER model. An
experienced analyst will immediately recognize a given domain in the model
as something she has studied before, and knows about. She can therefore
bring added value into the ER model by discussing the domain with the
business, and ask ‘difficult’ questions, based on limitations that are obvious
with regards to the patterns of that domain, and which the analyst brings with
her, in her experience.

27

Main point:

If you go through a development cycle for a new application, it is because you
want something others do not have. You do it in order to gain some competitive
edge, or you are realizing a very new business idea. Either way, copying
something old is not too smart. However, keeping patterns, that cover separate
smaller domains of the model, at work, may build you a system that is not only
something unique, but also contains flexibility based on earlier, hard-earned
experience.

28

Important Analyst Ethics - Reminding Words

The analyst ethics and business.

You have done the job, and a complete (?) Entity Relationship model, with
Function Hierarchies, Events, and Business Constraints are all in place.

And, when conditions change, and the customer needs to order a rewrite, is
he happy? No.

If he knows he can just create a new customer type in the CUSTOMER_TYPE
table and then go on, without calling you, will he be happy then? I think so.

This is the responsibility of the system analyst: Giving the customer flexibility
for future growth and change, without those costly rewrites. As a consultant
you may disagree, you may just love those rewrites; an income generating
tool! But I can assure you: In the long run, you will win by building flexibility
and room for change for your customer.

I just read somewhere on the Internet: In the good old days, a dissatisfied
customer would tell his frustration to 6 others; in the days of the Internet, he
will tell it to 6.000 others.

I would not have liked that.

29

Summary.

Congratulations on completing your study on
Entity Relationship Modeling - Principles !

I hope this lecture has been a learning one, and that you may use it in your
future work on database design.

We would highly appreciate it if you took a couple of minutes to give us
feedback on this lecture. If there are things you didn’t understand, or you
disagree with, we would like to hear it from you.

Just send us an email so we can make changes where appropriate.

Search the net for +normal +form to find articles related to this lecture.

Have you considered our eBook Have you looked at our in-depth
On Database Normalization? lecture on Primary Keys?

; -3 SEQUENCES
> WATRALKES QU

> COMPOSITE KE
> SURROGATE KEY

> RUTOMUMBERS |-

Design for Performance is in the making!

http://www.databasedesign-resource.com
er-modeling@databasedesign-resource.com

30

http://www.databasedesign-resource.com/primary-keys.html
http://www.databasedesign-resource.com/primary-keys.html
http://www.databasedesign-resource.com/database-normalization.html
http://www.databasedesign-resource.com/database-normalization.html
mailto:er-modeling@databasedesign-resource.com
http://www.databasedesign-resource.com

	Cover Page
	Introduction
	Entities
	Attributes
	Relationships
	Arcs
	Analysis Team
	Analysis Progress
	Incompleteness
	Business Understanding
	Generic or Specific
	Analyst Ethics
	Summary

