
CS352 –ADVANCED
DATABASE SYSTEMS

UNIT 4 - SQL

Dr. John Conklin

Agenda

• SQL
• Commands
• Operators
• Conditions
• Syntax

• Joins
• Inner
• Outer
• Left
• Right

• Aliasing

• Grouping

SQL

What is SQL?

SQL (Structured Query Language): A standardized programming language used to manage and

manipulate relational databases.

Key Components

1.Data Definition Language (DDL):

1. CREATE: Define new database objects (tables, indexes).

2. ALTER: Modify existing database structures.

3. DROP: Delete database objects.

2.Data Manipulation Language (DML):

1. SELECT: Retrieve data from the database.

2. INSERT: Add new data into a table.

3. UPDATE: Modify existing data.

4. DELETE: Remove data from a table.

What is SQL?

3. Data Control Language (DCL):

1. GRANT: Provide user access privileges.

2. REVOKE: Remove user access privileges.

4. Transaction Control Language (TCL):

1. COMMIT: Save changes permanently.

2. ROLLBACK: Undo changes.

Example Query

 SELECT * FROM Employees WHERE Department = 'Sales';

Why Learn SQL?

• Universal Language: Widely used across various database systems (MySQL, PostgreSQL, SQL Server, etc.).

• Data Analysis: Essential for querying and analyzing data.

• Versatility: Used in data science, web development, business intelligence, and more.

COMMANDS

Overview of SQL Commands

- Data Definition Language (DDL)

- Data Manipulation Language (DML)

- Data Control Language (DCL)

- Transaction Control Language (TCL)

Data Definition Language (DDL)

- CREATE: Create a new table or database

CREATE TABLE Employees (

ID int,

Name varchar(255),

Position varchar(255)

);

- ALTER: Modify an existing database object

ALTER TABLE Employees

ADD COLUMN Salary int;

DROP: Delete an existing database object

 DROP TABLE Employees;

Data Manipulation Language (DML)

- SELECT: Retrieve data from the database

 SELECT * FROM Employees;

- INSERT: Add new data into a table

INSERT INTO Employees (ID, Name, Position)

VALUES (1, 'John Doe', 'Manager');

- UPDATE: Modify existing data

UPDATE Employees

SET Salary = 50000

WHERE ID = 1;

- DELETE: Remove data from a table

DELETE FROM Employees

WHERE ID = 1;

Data Control Language (DCL)

- GRANT: Provide user access privileges

 GRANT SELECT ON Employees TO User1;

- REVOKE: Remove user access privileges

 REVOKE SELECT ON Employees FROM User1;

Transaction Control Language (TCL)

- COMMIT: Save changes permanently

 COMMIT;

- ROLLBACK: Undo changes

 ROLLBACK;

- SAVEPOINT: Set a save point within a transaction

 SAVEPOINT Savepoint1;

Example Scenario

- Combine multiple SQL commands in a real-world scenario

BEGIN TRANSACTION;

INSERT INTO Employees (ID, Name, Position) VALUES (2, 'Jane Smith', 'Developer');

UPDATE Employees SET Salary = 60000 WHERE ID = 2;

COMMIT;

OPERATORS

Overview of SQL Operators

- Arithmetic Operators

- Comparison Operators

- Logical Operators

- Other Operators

Arithmetic Operators

- Addition (+)

 SELECT Salary + 5000 FROM Employees;

- Subtraction (-)

 SELECT Salary - 5000 FROM Employees;

- Multiplication (*)

 SELECT Salary * 1.10 FROM Employees;

- Division (/)

 SELECT Salary / 2 FROM Employees;

- Modulus (%)

 SELECT Salary % 1000 FROM Employees;

Comparison Operators
- Equal to (=)

 SELECT * FROM Employees WHERE Salary = 50000;

- Not equal to (<> or !=)

 SELECT * FROM Employees WHERE Salary <> 50000;

- Greater than (>)

 SELECT * FROM Employees WHERE Salary > 50000;

- Less than (<)

 SELECT * FROM Employees WHERE Salary < 50000;

- Greater than or equal to (>=)

 SELECT * FROM Employees WHERE Salary >= 50000;

- Less than or equal to (<=)

 SELECT * FROM Employees WHERE Salary <= 50000;

Logical Operators

- AND

 SELECT * FROM Employees WHERE Salary > 50000 AND Department = 'IT';

- OR

 SELECT * FROM Employees WHERE Department = 'IT' OR Department = 'HR';

- NOT

 SELECT * FROM Employees WHERE NOT Department = 'HR';

Other Operators

- BETWEEN

 SELECT * FROM Employees WHERE Salary BETWEEN 40000 AND 60000;

- IN

 SELECT * FROM Employees WHERE Department IN ('IT', 'HR');

- LIKE

 SELECT * FROM Employees WHERE Name LIKE 'J%';

- IS NULL

 SELECT * FROM Employees WHERE Salary IS NULL;

Example Scenario

- Using multiple operators in a query

SELECT * FROM Employees

WHERE (Salary > 50000 AND Department = 'IT') OR Name LIKE 'J%';

CONDITIONS

Overview of SQL Conditions

- WHERE Clause

- AND, OR, NOT

- BETWEEN

- IN

- LIKE

- IS NULL

WHERE Clause

- The WHERE clause is used to filter records

SELECT * FROM Employees

WHERE Salary > 50000;

AND, OR, NOT Operators

- AND: All conditions must be true

 SELECT * FROM Employees

 WHERE Salary > 50000 AND Department = 'IT';

- OR: Any condition can be true

 SELECT * FROM Employees

 WHERE Department = 'IT' OR Department = 'HR';

- NOT: Negates a condition

 SELECT * FROM Employees

 WHERE NOT Department = 'HR';

BETWEEN Operator

- The BETWEEN operator selects values within a given range

SELECT * FROM Employees

WHERE Salary BETWEEN 40000 AND 60000;

IN Operator

- The IN operator allows you to specify multiple values in a WHERE clause

SELECT * FROM Employees

WHERE Department IN ('IT', 'HR');

LIKE Operator

- The LIKE operator is used to search for a specified pattern in a column

SELECT * FROM Employees

WHERE Name LIKE 'J%';

IS NULL Operator

- The IS NULL operator is used to test for empty (NULL) values

SELECT * FROM Employees

WHERE Salary IS NULL;

Example Scenario

- Combining multiple conditions in a query

SELECT * FROM Employees

WHERE (Salary > 50000 AND Department = 'IT') OR Name LIKE 'J%';

PREDICATES

What are SQL Predicates?

◦ Predicates are conditions used in SQL statements

◦ Used to filter data and control the flow of queries

◦ Commonly used in WHERE, HAVING, and JOIN clauses

IS NULL Predicate

◦ Tests for empty (NULL) values

 SELECT * FROM Employees WHERE Salary IS NULL;

EXISTS Predicate

◦ Checks for the existence of rows in a subquery

Example 1: Checking for Existence To find customers who have placed at least one order,
you can use the EXISTS keyword as follows:

SELECT CustomerName FROM Customers c

WHERE EXISTS (SELECT 1 FROM Orders o WHERE o.CustomerID = c.CustomerID);

This query returns:

CustomerName

Alice

Bob

ANY Predicate

◦ Compares a value to any value in a list or subquery

SELECT * FROM Employees

WHERE Salary > ANY (SELECT Salary FROM Employees WHERE Department = 'IT');

ALL Predicate

◦ Compares a value to all values in a list or subquery

SELECT * FROM Employees

WHERE Salary > ALL (SELECT Salary FROM Employees WHERE Department = 'IT');

Example Scenario

◦ Using multiple predicates in a query

SELECT * FROM Employees

WHERE (Salary BETWEEN 50000 AND 80000)

AND Department IN ('IT', 'HR')

AND Name LIKE 'J%'

AND Salary IS NOT NULL;

SYNTAX

Basic SQL Commands

Categories of SQL Commands:

◦ - DDL (Data Definition Language)

◦ - DML (Data Manipulation Language)

◦ - DCL (Data Control Language)

◦ - TCL (Transaction Control Language)

Data Definition Language (DDL)

Key Commands:

- CREATE

- ALTER

- DROP

Examples:

CREATE TABLE Students (

StudentID int,

FirstName varchar(255),

LastName varchar(255)

);

Data Manipulation Language (DML)

Key Commands:

- SELECT

- INSERT

- UPDATE

- DELETE

Examples:

SELECT * FROM Students;

INSERT INTO Students (StudentID, FirstName, LastName) VALUES (1, 'John', 'Doe');

Data Control Language (DCL)

Key Commands:

- GRANT

- REVOKE

Examples:

 GRANT SELECT ON Students TO user_name;

Transaction Control Language (TCL)

Key Commands:

- COMMIT

- ROLLBACK

- SAVEPOINT

Examples:

COMMIT;

ROLLBACK;

The SELECT Statement

Basic Syntax:

 SELECT column1, column2 FROM table_name;

Filtering Data:

 Using WHERE clause

Example:

 SELECT * FROM Students WHERE LastName = 'Doe';

Aggregation Functions

Common Functions:

- COUNT()

- SUM()

- AVG()

- MIN()

- MAX()

Examples:

SELECT COUNT(*) FROM Students;

SELECT AVG(Grade) FROM Enrollments;

Group By and Having Clauses

Group By: Used to group rows that have the same values

Example:

 SELECT COUNT(StudentID), CourseID FROM Enrollments

 GROUP BY CourseID;

Having: Used to filter groups

Example:

 SELECT COUNT(StudentID), CourseID FROM Enrollments

 GROUP BY CourseID

 HAVING COUNT(StudentID) > 5;

Subqueries

What is a Subquery?

A query within another query

Examples:

 SELECT * FROM Students

 WHERE StudentID IN

 (SELECT StudentID FROM Enrollments WHERE CourseID = 101);

JOINS

Introduction to SQL Joins

What are SQL Joins?

- Used to combine rows from two or more tables

- Based on a related column between them

Types of Joins

Common Types of Joins:

- INNER JOIN

- LEFT JOIN (or LEFT OUTER JOIN)

- RIGHT JOIN (or RIGHT OUTER JOIN)

- FULL OUTER JOIN

INNER JOIN

Returns records that have matching values in both tables

Example:

SELECT column_name(s)

FROM table1

INNER JOIN table2

ON table1.column_name = table2.column_name;

INNER JOIN Example

Example:

SELECT Students.FirstName, Courses.CourseName

FROM Students

INNER JOIN Enrollments ON Students.StudentID = Enrollments.StudentID

INNER JOIN Courses ON Enrollments.CourseID = Courses.CourseID;

LEFT JOIN

Returns all records from the left table, and the matched records from the right

table

Example:

SELECT column_name(s)

FROM table1

LEFT JOIN table2

ON table1.column_name = table2.column_name;

LEFT JOIN Example

Example:

SELECT Students.FirstName, Courses.CourseName

FROM Students

LEFT JOIN Enrollments ON Students.StudentID = Enrollments.StudentID

LEFT JOIN Courses ON Enrollments.CourseID = Courses.CourseID;

RIGHT JOIN

Returns all records from the right table, and the matched records from the left

table

Example:

SELECT column_name(s)

FROM table1

RIGHT JOIN table2

ON table1.column_name = table2.column_name;

RIGHT JOIN Example

Example:

SELECT Students.FirstName, Courses.CourseName

FROM Students

RIGHT JOIN Enrollments ON Students.StudentID = Enrollments.StudentID

RIGHT JOIN Courses ON Enrollments.CourseID = Courses.CourseID;

FULL OUTER JOIN

Returns all records when there is a match in either left or right table

Example:

SELECT column_name(s)

FROM table1

FULL OUTER JOIN table2

ON table1.column_name = table2.column_name;

FULL OUTER JOIN Example

Example:

SELECT Students.FirstName, Courses.CourseName

FROM Students

FULL OUTER JOIN Enrollments ON Students.StudentID = Enrollments.StudentID

FULL OUTER JOIN Courses ON Enrollments.CourseID = Courses.CourseID;

ALIASING

What is Aliasing?

◦ Aliasing refers to using temporary names to refer to database tables or columns in SQL

queries.

◦ Aliases provide a way to simplify complex queries and improve readability.

Why Use Aliasing?

◦ Simplifies Queries: Makes complex SQL queries easier to read and understand.

◦ Avoids Ambiguity: Helps distinguish between columns with the same name in different

tables.

◦ Enhances Clarity: Provides meaningful names that reflect the purpose of the data.

Table Aliases

Syntax: SELECT * FROM table_name AS alias_name;

Example:

SELECT e.name, d.department_name

FROM employees AS e

JOIN departments AS d

ON e.department_id = d.id;

Explanation: The alias e is used for the employees’ table and d for the departments’

table.

Column Aliases

Syntax: SELECT column_name AS alias_name FROM table_name;

Example:

SELECT first_name AS fname, last_name AS lname

FROM employees;

Explanation: The alias fname is used for first_name and lname for last_name.

Practical Example

Combining Table and Column Aliases:

SELECT e.first_name AS fname, e.last_name AS lname, d.department_name AS dept

FROM employees AS e

JOIN departments AS d

ON e.department_id = d.id;

Explanation: Using both table and column aliases for clarity and simplicity.

Benefits of Aliasing

◦ Improves Readability: Easier to follow and understand SQL queries.

◦ Reduces Typing: Shorter aliases save time and effort.

◦ Prevents Errors: Minimizes confusion with long table or column names.

Common Use Cases

◦ Joining Multiple Tables: Helps manage queries with multiple joins.

◦ Subqueries: Simplifies nested queries and improves readability.

◦ Temporary Calculations: Used for columns created on the fly (e.g., calculations).

Best Practices

◦ Use Meaningful Aliases: Choose aliases that convey the purpose of the table or

column.

◦ Consistency: Stick to a consistent naming convention for aliases.

◦ Document Queries: Comment your code to explain the purpose of aliases.

Conclusion

◦ Aliasing is a powerful tool in SQL that enhances query readability and maintainability.

◦ Proper use of aliases can significantly simplify complex database queries.

◦ Implement best practices to make the most out of aliasing in your SQL code.

GROUPING

What is Grouping in SQL?

◦ Grouping in SQL is a method used to aggregate data across multiple records.

◦ It allows for performing aggregate functions like SUM, COUNT, AVG, MAX, and MIN on

grouped data.

Why Use Grouping?

◦ Simplifies Data Analysis: Aggregates data to provide summarized insights.

◦ Enhances Data Organization: Groups related data for easier interpretation.

◦ Facilitates Reporting: Provides a basis for creating detailed reports.

Basic Syntax

The GROUP BY clause is used in a SELECT statement to group rows that have the same

values in specified columns.

Syntax:

SELECT column1, aggregate_function(column2)

FROM table_name

GROUP BY column1;

Example Query

Example:

SELECT department, COUNT(employee_id) AS employee_count

FROM employees

GROUP BY department;

Explanation: This query counts the number of employees in each department.

Using HAVING Clause
The HAVING clause is used to filter groups based on conditions.

Syntax:

SELECT column1, aggregate_function(column2)

FROM table_name

GROUP BY column1

HAVING condition;

Example:

SELECT department, COUNT(employee_id) AS employee_count

FROM employees

GROUP BY department

HAVING COUNT(employee_id) > 5;

Explanation: This query filters to only include departments with more than 5 employees.

Aggregate Functions

Common aggregate functions used with GROUP BY:

- SUM: Calculates the total sum of a numeric column.

- COUNT: Counts the number of rows.

- AVG: Calculates the average value of a numeric column.

- MAX: Finds the maximum value in a column.

- MIN: Finds the minimum value in a column.

Practical Example

Example:

SELECT product_category, SUM(sales) AS total_sales

FROM sales_data

GROUP BY product_category;

Explanation: This query calculates the total sales for each product category.

Benefits of Grouping

◦ Improves Data Insight: Provides summarized views of large datasets.

◦ Enhances Query Performance: Reduces the amount of data processed by focusing on

groups.

◦ Simplifies Report Generation: Aggregated data is easier to present and interpret.

Common Use Cases

◦ Sales Reporting: Summarizing sales by region, product, or time period.

◦ Employee Analysis: Counting employees in each department or location.

◦ Financial Summaries: Aggregating financial data like expenses and revenue.

Conclusion

◦ Grouping in SQL is a fundamental technique for data aggregation and analysis.

◦ It enhances the ability to extract meaningful insights from large datasets.

◦ Mastering the GROUP BY clause and aggregate functions is essential for effective SQL

querying.

INDIVIDUAL PROJECT

Individual Project
◦ Description: Using the DBMS you chose in the previous Discussion Board assignment, download and install that software

to prepare for the Database and Data Model to be created. Once the software is running and the database is available,
complete the following:

◦ Create the physical data model for the logical data model you submitted in IP3. This should include all of the data
definition language SQL.

◦ Your submission should include all DDL needed to:
• Create the tables

• Create the primary keys

• Create the foreign keys

• Add DML statements to:

• Add data of 1 customer who buys from the company

• Provide the DML to add 1 employee who interacts with customers

• Give DML to change data of the employee, giving the commission a 25% increase

• Give DML to delete the customer and employee data

• Write 3 SELECT statements:
• To select the customer details

• To select the employees’ details

• To show which employee services which customer

◦ Add the SQL for the DDL, DML, and SELECT statements to the " Advanced SQL " project template section."

◦ Name the document CS352_<First and Last Name>_IP4.doc.

Individual Project
◦ Submit your Word document and make sure that it contains the following:

• A screenshot of the ERD logical data model from previous assignments

• The DDL to create the tables, including the table definition and the primary and foreign key definitions

• The SQL to add data to the tables

• Add data of 1 customer who buys from the company

• Provide the DML to add 1 employee who interacts with customers

• Give DML to change data of the employee, giving the commission a 25% increase

• Give DML to delete the customer and employee data

• 3 SELECT statements, as follows:

• To select the customer details

• To select the employees’ details

• To show which employee services which customer

◦ Please submit your assignment.

◦ For assistance with your assignment, please use your textbook and all course resources.

Contact Information

Email: Jconklin@coloradotech.edu

Phone: 602.796.5972

Website: http://drjconklin.com

Office Hours: Wednesdays: 6:00 PM – 7:00 PM (CST)

Saturdays: 11:00 AM – 12:00 PM (CST)

Live Chats: Thursday/Friday: 7:00 PM – 8:00 PM (CST)

mailto:Jconklin@coloradotech.edu
http://drjconklin.com/

	Slide 1: CS352 – Advanced Database systems Unit 4 - SQL
	Slide 2: Agenda
	Slide 3: SQL
	Slide 4: What is SQL?
	Slide 5: What is SQL?
	Slide 6: Why Learn SQL?
	Slide 7: Commands
	Slide 8: Overview of SQL Commands
	Slide 9: Data Definition Language (DDL)
	Slide 10: Data Manipulation Language (DML)
	Slide 11: Data Control Language (DCL)
	Slide 12: Transaction Control Language (TCL)
	Slide 13: Example Scenario
	Slide 14: Operators
	Slide 15: Overview of SQL Operators
	Slide 16: Arithmetic Operators
	Slide 17: Comparison Operators
	Slide 18: Logical Operators
	Slide 19: Other Operators
	Slide 20: Example Scenario
	Slide 21: Conditions
	Slide 22: Overview of SQL Conditions
	Slide 23: WHERE Clause
	Slide 24: AND, OR, NOT Operators
	Slide 25: BETWEEN Operator
	Slide 26: IN Operator
	Slide 27: LIKE Operator
	Slide 28: IS NULL Operator
	Slide 29: Example Scenario
	Slide 30: Predicates
	Slide 31: What are SQL Predicates?
	Slide 32: IS NULL Predicate
	Slide 33: EXISTS Predicate
	Slide 34: ANY Predicate
	Slide 35: ALL Predicate
	Slide 36: Example Scenario
	Slide 37: Syntax
	Slide 38: Basic SQL Commands
	Slide 39: Data Definition Language (DDL)
	Slide 40: Data Manipulation Language (DML)
	Slide 41: Data Control Language (DCL)
	Slide 42: Transaction Control Language (TCL)
	Slide 43: The SELECT Statement
	Slide 44: Aggregation Functions
	Slide 45: Group By and Having Clauses
	Slide 46: Subqueries
	Slide 47: joins
	Slide 48: Introduction to SQL Joins
	Slide 49: Types of Joins
	Slide 50: INNER JOIN
	Slide 51: INNER JOIN Example
	Slide 52: LEFT JOIN
	Slide 53: LEFT JOIN Example
	Slide 54: RIGHT JOIN
	Slide 55: RIGHT JOIN Example
	Slide 56: FULL OUTER JOIN
	Slide 57: FULL OUTER JOIN Example
	Slide 58: aliasing
	Slide 59: What is Aliasing?
	Slide 60: Why Use Aliasing?
	Slide 61: Table Aliases
	Slide 62: Column Aliases
	Slide 63: Practical Example
	Slide 64: Benefits of Aliasing
	Slide 65: Common Use Cases
	Slide 66: Best Practices
	Slide 67: Conclusion
	Slide 68: grouping
	Slide 69: What is Grouping in SQL?
	Slide 70: Why Use Grouping?
	Slide 71: Basic Syntax
	Slide 72: Example Query
	Slide 73: Using HAVING Clause
	Slide 74: Aggregate Functions
	Slide 75: Practical Example
	Slide 76: Benefits of Grouping
	Slide 77: Common Use Cases
	Slide 78: Conclusion
	Slide 79: Individual project
	Slide 80: Individual Project
	Slide 81: Individual Project
	Slide 82: Contact Information

