
CS660 – DATABASE SYSTEMS

UNIT 3 - DATA DEFINITION AND DATA
MANIPULATION LANGUAGE

Dr. John Conklin

Agenda

• SQL Language

• Writing SQL Statements

• Formulating SQL Statements

• Data Manipulation

• Data Definition

• Subqueries

SQL LANGUAGE

SQL Language

◦ A relational database's structured query language (SQL) is a computer language used to store and

process data.

◦ In a relational database, data is stored in tabular form, with rows and columns representing various data

attributes and the connections between the values of those attributes.

◦ To save, update, remove, search for, and retrieve data from the database, utilize SQL statements. SQL

may also be used to enhance and maintain database performance.

WRITING SQL
STATEMENTS

Writing SQL Statements

◦ Best practices for writing SQL queries:

◦ Follow the order of correctness, readability, and optimization - here, the usual caution against premature optimization

is applicable. Till you are certain that your SQL query produces the data you need, avoid tweaking it. Even then, only

prioritize query optimization if it is used regularly.

◦ Reduce the size of your haystacks before looking for your needles - It may be argued that we are already engaging

in optimization at this point, but the objective should be to instruct the database to scan just the essential set of

variables to return your findings. Interpretive design is one of SQL's many appealing features. You simply need to tell

the database the records you need; the database will work out the most effective way to get those records without

further instruction.

◦ Get to know your data first - study the metadata to ensure that a column actually contains the data you anticipate

before writing a single line of code to become familiar with your data.

Writing SQL

Statements
Review how to write a

select SQL statement

using this instruction.

Image Source: https://blink.ucsd.edu/technology/help-desk/queries/SQL/index.html#4.-Review-your-select-statement

FORMULATING SQL
STATEMENTS

Formulating SQL Statements

◦ Structured Query Language, or SQL, is utilized by businesses when they have a lot of data they wish to

modify (commonly pronounced like "sequel"). Anyone working for a company that keeps data in a

relational database may use SQL.

◦ Transact-SQL (T-SQL) language is an extended implementation of the SQL for the Microsoft SQL Server.

◦ As the initial or origin of SQL queries, the SELECT statement may be thought of as their beginning point.

◦ Data from the data tables is retrieved using the SELECT command.

◦ The column names are initially specified in the SELECT query syntax, and a comma is used to separate them.

◦ The SELECT statements don't contain any commas if only one column is used.

◦ The FROM clause is written in the subsequent stage, and the table name is added as a final step.

◦ The SELECT statement syntax for the example below, which pulls data from the Name and Surname columns, is as

follows:

◦ SELECT Name, SurName FROM Student (next slides shows this example)

Formulating SQL

Statements

This is the example SELECT

statement from the

previous slide.

Image Source: https://www.sqlshack.com/learn-to-write-basic-sql-queries/

Formulating SQL Statements

◦ All of the table's columns are defined

by the asterisk (*) symbol. The SELECT

command returns every column from

the Student database in the example

on the left.

◦ SELECT * FROM Student

Advice: Our primary goal should be to receive responses from SQL queries as quickly as feasible, with the least amount of resource use and shortest
possible execution time. The asterisk (*) symbol must be avoided as much as possible when writing SELECT statements. This usage pattern results in
increased IO, CPU, and network costs. As a result, we may stop using the asterisk sign and instead utilize only the essential columns in our queries if we
don't need all of the table's columns.

Image Source: https://www.sqlshack.com/learn-to-write-basic-sql-queries/

Formulating SQL

Statements -

WHERE

Filtering the Data: WHERE

clause

• The WHERE clause is used

to filter the data based on

predefined criteria. The

filtering criteria must be

specified following the

WHERE clause. The pupils

whose ages are more than

or equal to 20 are found

using the example below.

SELECT *

FROM Student

WHERE Age >=20

Image Source: https://www.sqlshack.com/learn-to-write-basic-sql-queries/

Formulating SQL Statements - LIKE

Image Source: https://www.sqlshack.com/learn-to-write-basic-sql-queries/

◦ The logical operator LIKE

enables the application of

a unique filtering pattern to

the WHERE condition in SQL

queries. The primary

wildcard to utilize in

combination with the LIKE

operator is the percentage

symbol (%). The following

search will return all of the

students whose names

begin with the letter J.

Formulating SQL Statements - IN

◦ We may apply several value filters to the
WHERE clause using the IN operator. The
following search retrieves information on
the students who have taken Roman
and European history classes.

SELECT *

FROM Student

WHERE Lesson IN ('Roman History','European History')
Image Source: https://www.sqlshack.com/learn-to-write-basic-sql-queries/

Formulating SQL Statements - BETWEEN

Image Source: https://www.sqlshack.com/learn-to-write-basic-sql-queries/

◦ The data that fits inside the

specified begin and finish

values is filtered using the

BETWEEN operator. The

following search finds

information for students with

marks greater than 40 and

equal to, but less than, 60.

SELECT *

FROM Student

WHERE PassMark BETWEEN 40 AND 60

Formulating SQL Statements – ORDER BY

◦ We may sort the data using the ORDER

BY command and the chosen

column. You can choose to order the

data's result set either ascendingly or

descendingly. The keywords ASC and

DESC are used to sort the data in

ascending and descending order,

respectively.

◦ The following query uses the PassMark

column expressions to sort the student

data in decreasing order.

SELECT *

FROM Student

ORDER BY PassMark DESC

Image Source: https://www.sqlshack.com/learn-to-write-basic-sql-queries/

**By default, ORDER BY statement sorts data in ascending order.

Formulating SQL Statements - DISTINCT

Image Source: https://www.sqlshack.com/learn-to-write-basic-sql-queries/

◦ To ensure that the result set

contains only unique

(different) values, duplicate

data is removed from the

given columns using the

distinctive clause.

◦ In the example that follows,

we will obtain data from the

Lesson column, but by using

the DISTINCT clause, we will

only return different values.

DATA MANIPULATION

Data Manipulation (DML)

◦ To query and alter database data, one uses the SQL data manipulation language (DML). The SELECT,

INSERT, UPDATE, and DELETE SQL DML command statements are described below, and we will go

through how to utilize them.

◦ SELECT – to query data in the database

◦ INSERT – to insert data into a table

◦ UPDATE – to update data in a table

◦ DELETE – to delete data from a table

Data Manipulation (DML)

◦ In the DML statement for SQL:

◦ A statement's clauses should each start on a separate line.

◦ Every clause's first word should match the first word of the preceding clause.

◦ If a clause contains many parts, they should all be indented under the beginning of the sentence to indicate the link

and appear on distinct lines.

◦ Reserved words are represented with upper case letters.

◦ User-defined terms are represented by lower case letters.

Data Manipulation (DML) - SELECT

The SELECT statement, or command, allows the user to extract data from tables, based on specific criteria.
It is processed according to the following sequence:

SELECT DISTINCT item(s)
FROM table(s)
WHERE predicate
GROUP BY field(s)
ORDER BY fields

◦ Example:

SELECT FirstName, LastName, phone
FROM Employees
ORDER BY LastName

Data Manipulation (DML) - INSERT

◦ The INSERT statement adds rows to a table. In addition,

◦ INSERT specifies the table or view that data will be inserted into.

◦ Column_list lists columns that will be affected by the INSERT.

◦ If a column is omitted, each value must be provided.

◦ If you are including columns, they can be listed in any order.

◦ VALUES specifies the data that you want to insert into the table. VALUES is required.

◦ Columns with the IDENTITY property should not be explicitly listed in the column_list or values_clause.

The syntax for the INSERT statement is:

INSERT [INTO] Table_name | view name [column_list]

DEFAULT VALUES | values_list | select statement

Data Manipulation (DML) - UPDATE

◦ The UPDATE statement changes data in existing rows either by adding new data or modifying existing

data.

◦ The syntax for the UPDATE statement is:

UPDATE [Table Name]

SET [Field] = [Value]

WHERE [clause]

Data Manipulation (DML) - DELETE

◦ A record set's rows are deleted using the DELETE command. Only one table or row may be shown at a

time when using the DELETE command to delete rows from a table or view. WHERE restricts the deletion to

particular entries using the standard WHERE clause.

◦ The DELETE syntax looks like this.

DELETE [FROM] {table_name | view_name }

[WHERE clause]

Data Manipulation (DML) - Aggregate functions

◦ Aggregate functions

perform a calculation on a

set of values and return a

single, or summary, value.

Image Source: https://opentextbc.ca/dbdesign01/chapter/chapter-sql-dml/

DATA DEFINITION

Data Definition (DDL)

◦ The section of SQL that creates, modifies, and deletes database objects is known as the data definition

language (DDL).

◦ Schemas, tables, views, sequences, catalogs, indexes, variables, masks, permissions, and aliases are

some examples of these database objects.

◦ To define the database structures, such as to specify the relations or tables for a database along with

their properties, data definition language commands are employed.

◦ CREATE: To create a new relation in a database, use the CREATE command.

◦ DROP: To delete or get rid of an existing relation in the database, use the DROP command.

◦ ALTER: To change an existing relation in a database, use the ALTER command.

◦ TRUNCATE: The TRUNCATE command is used to remove every instance of the table, which keeps the table's or

relation's outer structure intact.

◦ RENAME: The ALTER command is used in conjunction with the RENAME command to change a relation's name or one

of its attributes.

Data Definition (DDL) – CREATE TABLE

◦ To create a table, you use a CREATE TABLE command.

◦ A CREATE TABLE command has the following syntax:

CREATE TABLE table_name

 (field1 data type [(size)] [NOT NULL] [index1]

 [, field2 data type [(size)] [NOT NULL] [index2]

 [, ...][, CONSTRAINT constraint1 [, ...]])

Data Definition (DDL)

◦ Character strings, also referred to as VARCHAR or CHAR for variable or fixed length strings.

◦ Numeric types like NUMBER or INTEGER, which will typically define a precision, and

◦ DATE or related kinds, are the data types that you will use the most frequently.

◦ Data type syntax varies from system to system; the only way to be certain is to look in the manual for the

software you are using.

SUBQUREIES

Subqueries

◦ A subquery is a SQL query nested inside a larger query.

◦ A subquery may occur in :

◦ - A SELECT clause

◦ - A FROM clause

◦ - A WHERE clause

◦ The subquery can be nested inside a SELECT, INSERT, UPDATE, or DELETE statement or inside another subquery.

◦ A subquery is usually added within the WHERE Clause of another SQL SELECT statement.

◦ You can use the comparison operators, such as >, <, or =. The comparison operator can also be a multiple-row

operator, such as IN, ANY, or ALL.

◦ A subquery is also called an inner query or inner select, while the statement containing a subquery is also called an

outer query or outer select.

◦ The inner query executes first before its parent query so that the results of an inner query can be passed to the outer

query.

Subqueries

You can use a subquery in a

SELECT, INSERT, DELETE, or

UPDATE statement to

perform the following tasks:

• Compare an expression to

the result of the query.

• Determine if an expression

is included in the results of

the query.

• Check whether the query

selects any rows.

Image Source: https://www.w3resource.com/sql/subqueries/understanding-sql-subqueries.php

Subqueries

◦ There are some guidelines to consider when using subqueries :

• A subquery must be enclosed in parentheses.

• A subquery must be placed on the right side of the comparison operator.

• Subqueries cannot manipulate their results internally, therefore ORDER BY clause cannot be added into a subquery.

You can use an ORDER BY clause in the main SELECT statement (outer query) which will be the last clause.

• Use single-row operators with single-row subqueries.

• If a subquery (inner query) returns a null value to the outer query, the outer query will not return any rows when using

certain comparison operators in a WHERE clause.

INDIVIDUAL PROJECT

Individual Project

Description

◦ The case study retail store has provided a list of reports and data manipulation tasks that are needed in

the processing of orders for their customers. Answer the following:

◦ What structured query language (SQL) statement scripts are needed to create the database schema for

the relational database system and manipulate the data in the solution that you are proposing to the

company?

◦ How does each of these scripts specifically support the goals and objectives of the company?

Individual Project

◦ The project deliverables are as follows:

◦ Data Manipulation Tasks

◦ Insert 20 records into each table for testing purposes.

◦ Delete an entire order by using the unique identifier for that order.

◦ Update the price of a product by using the unique identifier for that product.

◦ Add a minimum of 3 of your own data manipulation language (DML) scripts based on the needs and specifications of your

retail store.

◦ Report List

◦ Total revenue (sales) per month, grouped by customer

◦ Total revenue (sales) per month, grouped by product

◦ Total count of products, grouped by category

◦ Add minimum of 3 of your own report scripts based on the needs and specifications of your retail store (one must be a

CROSSTAB)

Individual Project

SQL (4–5 pages)

◦ Include the database definition language (DDL) scripts to CREATE to database schema as described in the entity–relationship (E–R)
diagram (Unit 2).

◦ Include the database manipulation scripts (DML) that will be used to INSERT, DELETE, and UPDATE data in the proposed database
system.

◦ Include the SELECT, CROSSTAB, and AGGREGATE FUNCTION statements that will be used to read data from the proposed database
system.

◦ Provide your analysis as to how this part of the project fulfills the mission and 1 or more goals of the case study organization.

◦ Provide the following attachments (in addition to embedding in document):

◦ DDL.sql (including CREATE and INSERT statements so that they execute in the correct order [top-down])

◦ DML.sql (including DELETE and UPDATE statements so that they can be executed in any order as selected)

◦ REPORT.sql (including SELECT, CROSSTAB, AGGREGATE FUNCTION statements so that they can be executed in any order as selected)

◦ Note: You will embed each script in the Word document and also provide it as an attachment.

◦ All sources should be cited both in-text and in References using APA format.

◦ Name the document "yourname_CS660_IP3.doc."

Contact Information

Email: Jconklin@coloradotech.edu

Phone: 602.796.5972

Website: http://drjconklin.com

Office Hours: Wednesdays: 6:00 PM – 7:00 PM (CST)

Saturdays: 11:00 AM – 12:00 PM (CST)

Live Chats: Wednesdays: 7:00 PM – 8:00 PM (CST)

mailto:Jconklin@coloradotech.edu
http://drjconklin.com/

	Slide 1: CS660 – Database systems Unit 3 - Data Definition and Data Manipulation Language
	Slide 2: Agenda
	Slide 3: SQL Language
	Slide 4: SQL Language
	Slide 5: Writing sql statements
	Slide 6: Writing SQL Statements
	Slide 7: Writing SQL Statements
	Slide 8: Formulating SQL Statements
	Slide 9: Formulating SQL Statements
	Slide 10: Formulating SQL Statements
	Slide 11: Formulating SQL Statements
	Slide 12: Formulating SQL Statements - WHERE
	Slide 13: Formulating SQL Statements - LIKE
	Slide 14: Formulating SQL Statements - IN
	Slide 15: Formulating SQL Statements - BETWEEN
	Slide 16: Formulating SQL Statements – ORDER BY
	Slide 17: Formulating SQL Statements - DISTINCT
	Slide 18: Data Manipulation
	Slide 19: Data Manipulation (DML)
	Slide 20: Data Manipulation (DML)
	Slide 21: Data Manipulation (DML) - SELECT
	Slide 22: Data Manipulation (DML) - INSERT
	Slide 23: Data Manipulation (DML) - UPDATE
	Slide 24: Data Manipulation (DML) - DELETE
	Slide 25: Data Manipulation (DML) - Aggregate functions
	Slide 26: Data Definition
	Slide 27: Data Definition (DDL)
	Slide 28: Data Definition (DDL) – CREATE TABLE
	Slide 29: Data Definition (DDL)
	Slide 30: Subqureies
	Slide 31: Subqueries
	Slide 32: Subqueries
	Slide 33: Subqueries
	Slide 34: Individual project
	Slide 35: Individual Project
	Slide 36: Individual Project
	Slide 37: Individual Project
	Slide 38: Contact Information

