
Computer Networks: A Systems
Approach

Release Version 6.1

Peterson and Davie

Nov 26, 2019

TABLE OF CONTENTS

1 Foundation 5
1.1 Applications . 6
1.2 Requirements . 9
1.3 Architecture . 21
1.4 Software . 31
1.5 Performance . 37

2 Direct Links 47
2.1 Technology Landscape . 48
2.2 Encoding . 51
2.3 Framing . 54
2.4 Error Detection . 59
2.5 Reliable Transmission . 65
2.6 Multi-Access Networks . 77
2.7 Wireless Networks . 83
2.8 Access Networks . 95

3 Internetworking 103
3.1 Switching Basics . 104
3.2 Switched Ethernet . 116
3.3 Internet (IP) . 125
3.4 Routing . 151
3.5 Implementation . 169

4 Advanced Internetworking 179
4.1 Global Internet . 180
4.2 IP Version 6 . 190
4.3 Multicast . 200
4.4 Multiprotocol Label Switching . 210
4.5 Routing Among Mobile Devices . 221

5 End-to-End Protocols 229
5.1 Simple Demultiplexor (UDP) . 230
5.2 Reliable Byte Stream (TCP) . 233
5.3 Remote Procedure Call . 260
5.4 Transport for Real-Time (RTP) . 276

i

6 Congestion Control 287
6.1 Issues in Resource Allocation . 288
6.2 Queuing Disciplines . 296
6.3 TCP Congestion Control . 301
6.4 Advanced Congestion Control . 311
6.5 Quality of Service . 323

7 End-to-End Data 341
7.1 Presentation Formatting . 342
7.2 Multimedia Data . 355

8 Network Security 373
8.1 Trust and Threats . 374
8.2 Cryptographic Building Blocks . 375
8.3 Key Predistribution . 383
8.4 Authentication Protocols . 389
8.5 Example Systems . 395

9 Applications 415
9.1 Traditional Applications . 416
9.2 Multimedia Applications . 437
9.3 Infrastructure Applications . 449
9.4 Overlay Networks . 461

ii

PREFACE

It has been nearly ten years since the 5th Edition of Computer Networks: A Systems Approach was published.
Much has changed in that time, most notably, the explosion of the cloud and smartphone apps onto the
scene. In many ways, this is reminiscent of the dramatic affect the Web was having on the Internet when we
published the 1st Edition of the book in 1996.

The 6th Edition adapts to the times, but keeps the Systems Approach as its north star. In broad strokes, we
update and improve this new edition in four main ways:

• We refresh the examples to reflect the current state of the world. This includes deleting anachronisms
(e.g., dial-up modem), using popular applications (e.g., Netflix, Spotify) to motivate the problems
being addressed, and updating the numbers to represent the state-of-the-art technology (e.g., 10-Gbps
Ethernet).

• We connect the dots between the original research that led to the development of technologies like
multicast, real-time video streaming, and quality-of-service, and the now-familar cloud applications
like GoToMeeting, Netflix, and Spotify. This is in keeping with our emphasis on the design process
and not just the end result, which is especially important today since so much the Internet is primarily
available in proprietary commercial services.

• We place the Internet in the broader context of the Cloud, and just as importantly, in the context of
the commerial forces that are shaping the Cloud. This has minimal impact on the technical details
presented throughout the book, but it is discussed in a new Perspective section at the end of each
chapter. We hope one side-effect of this discussion is to foster an appreciation for the Internet’s
continuous evolution, and the opportunity for innovation this represents.

• We distill the important principles of network design in a series of Key Takeaways throughout the
book. Each takeaway is a concise statement of either a general system design rule or a fundamental
networking concept, drawing on the examples presented in the surrounding text. Pedagogically, these
takeaways correspond to the high-level learning objectives for the book.

More specifically, the 6th Edition includes the following major changes:

• New Perspective Section in Chapter 1 introduces the recurring Cloudification theme.

• New Section 2.8 describes the Access Network, including Passive Optical Networks (PON) and 5G’s
Radio Access Networks (RAN).

• Refactored topics across Sections 3.1 (Switching Basics) and 3.2 (Switched Ethernet), including ex-
panded coverage of VLANs.

1

Computer Networks: A Systems Approach, Release Version 6.1

• Section 3.5 updated to include descriptions of White-Box Switches and Software-Defined Networks
(SDN).

• New Perspective Section in Chapter 3 describes VXLANs and the role of overlays in the Cloud.

• Refactored topics across Sections 4.1 (Global Internet) and 4.2 (IP Version 6).

• New Perspective Section in Chapter 4 describes how the Cloud impacts the Internet’s structure.

• Section 5.2 expanded to include a discussion of QUIC.

• Section 5.3 expanded to include a description of gRPC.

• Sections 6.3 and 6.4 updated to include descriptions of TCP CUBIC, DCTCP, and BBR.

• Section 6.4 expanded to include a description of Active Queue Management (AQM).

• Section 7.1 expanded to include a desciption of Protocol Buffers.

• Section 7.2 expanded to include a desciption of HTTP Adaptive Streaming.

• New Section 8.1 introduces the duality of Threats and Trust.

• Refactored topics across Sections 8.3 (Key Predistribution) and 8.2 (Authentication Protocols).

• New Perspective Section in Chapter 8 describes Decentralized Identity Management and the role of
Blockchains.

• Section 9.1 updated to include a description of HTTP/2, along with a discussion of REST, gRPC, and
Cloud Services.

• Section 9.3 expaned to include a description of modern Network Management Systems including the
use of OpenConfig and gNMI.

Organization

To construct a networking course around the material in this book, it can be helpful to understand the overall
organization, which can be characterized as having three major parts:

• Conceptual and foundational material, that is, the big ideas at the heart of networking.

• Core protocols and algorithms that illustrate how the foundational ideas are put to practice.

• Advanced material that might or might not fit in any single semester course.

This characterization can be applied at the Chapter level: Chapter 1 is foundational, Chapters 2, 3, 5, and 9
are core, and Chapters 4, 6, 7, and 8 cover more advanced topics.

This characterization can also be applied at the Section level, where roughly speaking, each Chapter ad-
vances from basic concepts to specific technology to advanced techniques. For example, Chapter 3 starts
by introducing the basics of switched networks (3.1), then covers the specifics of Switched Ethernet and the
IP Internet (3.2-3.4), and concludes with an optional discusion of SDN (3.5). Similarly, Chapter 6 starts
with foundational ideas (6.1-6.2), then explores TCP congestion control (6.3), and concludes with optional
advanced material (6.4-6.5).

2 TABLE OF CONTENTS

Computer Networks: A Systems Approach, Release Version 6.1

Acknowledgements

We would like to acknowledge the following people for their help with new content:

• Larry Brakmo: TCP Congestion Control

• Carmelo Cascone: White-Box Switches

• Charles Chan: White-Box Switches

• Jude Nelson: Decentralized Identity

• Oguz Sunay: Cellular Networks

• Thomas Vachuska: Network Management

Along with the following individuals (github users) for their various contributions and bug fixes:

• Mohammed Al-Ameen
• Andy Bavier
• Manuel Berfelde
• Chris Goldsworthy
• John Hartman
• Diego López León
• Matteo Scandolo
• Mike Wawrzoniak
• (spacewander)
• Arnaud (arvdrpoo)
• Desmond (kingdido999)
• Guo (ZJUGuoShuai)
• Hellman (eshellman)
• Xtao (vertextao)
• Mike Appelman
• Seth (springbov)

Finally, we would like to thank the following reviewers for their many helpful comments and suggestions.
Their impact was significant.

• Mark J. Indelicato, Rochester Institute of Technology

• Michael Yonshik Choi, Illinois Institute of Technology

• Sarvesh Kulkarni, Villanova University

• Alexander L. Wijesinha, Towson University

Larry & Bruce
November 2019

TABLE OF CONTENTS 3

Computer Networks: A Systems Approach, Release Version 6.1

4 TABLE OF CONTENTS

CHAPTER

ONE

FOUNDATION

I must create a System, or be enslav’d by another Man’s; I will not Reason and Compare: my
business is to Create.

—William Blake

Problem: Building a Network

Suppose you want to build a computer network, one that has the potential to grow to global proportions and
to support applications as diverse as teleconferencing, video on demand, electronic commerce, distributed
computing, and digital libraries. What available technologies would serve as the underlying building blocks,
and what kind of software architecture would you design to integrate these building blocks into an effec-
tive communication service? Answering this question is the overriding goal of this book—to describe the
available building materials and then to show how they can be used to construct a network from the ground
up.

Before we can understand how to design a computer network, we should first agree on exactly what a
computer network is. At one time, the term network meant the set of serial lines used to attach dumb
terminals to mainframe computers. Other important networks include the voice telephone network and the
cable TV network used to disseminate video signals. The main things these networks have in common are
that they are specialized to handle one particular kind of data (keystrokes, voice, or video) and they typically
connect to special-purpose devices (terminals, hand receivers, and television sets).

What distinguishes a computer network from these other types of networks? Probably the most important
characteristic of a computer network is its generality. Computer networks are built primarily from general-
purpose programmable hardware, and they are not optimized for a particular application like making phone
calls or delivering television signals. Instead, they are able to carry many different types of data, and they
support a wide, and ever growing, range of applications. Today’s computer networks have pretty much
taken over the functions previously performed by single-use networks. This chapter looks at some typical
applications of computer networks and discusses the requirements that a network designer who wishes to
support such applications must be aware of.

Once we understand the requirements, how do we proceed? Fortunately, we will not be building the first
network. Others, most notably the community of researchers responsible for the Internet, have gone before
us. We will use the wealth of experience generated from the Internet to guide our design. This experience
is embodied in a network architecture that identifies the available hardware and software components and
shows how they can be arranged to form a complete network system.

5

Computer Networks: A Systems Approach, Release Version 6.1

In addition to understanding how networks are built, it is increasingly important to understand how they are
operated or managed and how network applications are developed. Almost all of us now have computer
networks in our homes, offices, and in some cases in our cars, so operating networks is no longer a matter
only for a few specialists. And with the proliferation of smartphones, many more of this generation are
developing networked applications than in the past. So we need to consider networks from these multiple
perspectives: builders, operators, application developers.

To start us on the road toward understanding how to build, operate, and program a network, this chapter
does four things. First, it explores the requirements that different applications and different communities
of people place on the network. Second, it introduces the idea of a network architecture, which lays the
foundation for the rest of the book. Third, it introduces some of the key elements in the implementation
of computer networks. Finally, it identifies the key metrics that are used to evaluate the performance of
computer networks.

1.1 Applications

Most people know the Internet through its applications: the World Wide Web, email, social media, streaming
music or movies, videoconferencing, instant messaging, file-sharing, to name just a few examples. That is
to say, we interact with the Internet as users of the network. Internet users represent the largest class of
people who interact with the Internet in some way, but there are several other important constituencies.

There is the group of people who create the applications—a group that has greatly expanded in recent years
as powerful programming platforms and new devices such as smartphones have created new opportunities
to develop applications quickly and to bring them to a large market.

Then there are those who operate or manage networks—mostly a behind-the-scenes job, but a critical one
and often a very complex one. With the prevalence of home networks, more and more people are also
becoming, if only in a small way, network operators.

Finally, there are those who design and build the devices and protocols that collectively make up the Internet.
That final constituency is the traditional target of networking textbooks such as this one and will continue
to be our main focus. However, throughout this book we will also consider the perspectives of application
developers and network operators.

Considering these perspectives will enable us to better understand the diverse requirements that a network
must meet. Application developers will also be able to make applications that work better if they understand
how the underlying technology works and interacts with the applications. So, before we start figuring out
how to build a network, let’s look more closely at the types of applications that today’s networks support.

1.1.1 Classes of Applications

The World Wide Web is the Internet application that catapulted the Internet from a somewhat obscure tool
used mostly by scientists and engineers to the mainstream phenomenon that it is today. The Web itself has
become such a powerful platform that many people confuse it with the Internet, and it’s a bit of a stretch to
say that the Web is a single application.

In its basic form, the Web presents an intuitively simple interface. Users view pages full of textual and
graphical objects and click on objects that they want to learn more about, and a corresponding new page
appears. Most people are also aware that just under the covers each selectable object on a page is bound to

6 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

an identifier for the next page or object to be viewed. This identifier, called a Uniform Resource Locator
(URL), provides a way of identifying all the possible objects that can be viewed from your web browser.
For example,

http://www.cs.princeton.edu/llp/index.html

is the URL for a page providing information about one of this book’s authors: the string http indicates that
the Hypertext Transfer Protocol (HTTP) should be used to download the page, www.cs.princeton.
edu is the name of the machine that serves the page, and /llp/index.html uniquely identifies Larry’s
home page at this site.

What most web users are not aware of, however, is that by clicking on just one such URL over a dozen
messages may be exchanged over the Internet, and many more than that if the web page is complicated with
lots of embedded objects. This message exchange includes up to six messages to translate the server name
(www.cs.princeton.edu) into its Internet Protocol (IP) address (128.112.136.35), three mes-
sages to set up a Transmission Control Protocol (TCP) connection between your browser and this server,
four messages for your browser to send the HTTP “GET” request and the server to respond with the re-
quested page (and for each side to acknowledge receipt of that message), and four messages to tear down
the TCP connection. Of course, this does not include the millions of messages exchanged by Internet nodes
throughout the day, just to let each other know that they exist and are ready to serve web pages, translate
names to addresses, and forward messages toward their ultimate destination.

Another widespread application class of the Internet is the delivery of “streaming” audio and video. Services
such as video on demand and Internet radio use this technology. While we frequently start at a website to
initiate a streaming session, the delivery of audio and video has some important differences from fetching a
simple web page of text and images. For example, you often don’t want to download an entire video file—a
process that might take a few minutes—before watching the first scene. Streaming audio and video implies
a more timely transfer of messages from sender to receiver, and the receiver displays the video or plays the
audio pretty much as it arrives.

Note that the difference between streaming applications and the more traditional delivery of text, graphics,
and images is that humans consume audio and video streams in a continuous manner, and discontinuity—in
the form of skipped sounds or stalled video—is not acceptable. By contrast, a regular (non-streaming) page
can be delivered and read in bits and pieces. This difference affects how the network supports these different
classes of applications.

A subtly different application class is real-time audio and video. These applications have considerably
tighter timing constraints than streaming applications. When using a voice-over-IP application such as
Skype or a videoconferencing application, the interactions among the participants must be timely. When a
person at one end gestures, then that action must be displayed at the other end as quickly as possible.1

When one person tries to interrupt another, the interrupted person needs to hear that as soon as possible and
decide whether to allow the interruption or to keep talking over the interrupter. Too much delay in this sort
of environment makes the system unusable. Contrast this with video on demand where, if it takes several
seconds from the time the user starts the video until the first image is displayed, the service is still deemed
satisfactory. Also, interactive applications usually entail audio and/or video flows in both directions, while
a streaming application is most likely sending video or audio in only one direction.

Videoconferencing tools that run over the Internet have been around now since the early 1990s but have
1 Not quite “as soon as possible”. . . Human factors research indicates 300 ms is a reasonable upper bound for how much

round-trip delay can be tolerated in a telephone call before humans complain, and a 100-ms delay sounds very good.

1.1. Applications 7

Computer Networks: A Systems Approach, Release Version 6.1

Figure 1.1.: A multimedia application including videoconferencing.

8 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

achieved widespread use in the last few years, with several commercial products on the market. An example
of one such system is shown in Figure 1.1. Just as downloading a web page involves a bit more than meets
the eye, so too with video applications. Fitting the video content into a relatively low bandwidth network,
for example, or making sure that the video and audio remain in sync and arrive in time for a good user
experience are all problems that network and protocol designers have to worry about. We’ll look at these
and many other issues related to multimedia applications later in the book.

Although they are just two examples, downloading pages from the web and participating in a videoconfer-
ence demonstrate the diversity of applications that can be built on top of the Internet and hint at the com-
plexity of the Internet’s design. Later in the book we will develop a more complete taxonomy of application
types to help guide our discussion of key design decisions as we seek to build, operate, and use networks
that such a wide range of applications. The book concludes by revisiting these two specific applications, as
well as several others that illustrate the breadth of what is possible on today’s Internet.

For now, this quick look at a few typical applications will suffice to enable us to start looking at the problems
that must be addressed if we are to build a network that supports such application diversity.

1.2 Requirements

We have established an ambitious goal for ourselves: to understand how to build a computer network from
the ground up. Our approach to accomplishing this goal will be to start from first principles and then ask
the kinds of questions we would naturally ask if building an actual network. At each step, we will use
today’s protocols to illustrate various design choices available to us, but we will not accept these existing
artifacts as gospel. Instead, we will be asking (and answering) the question of why networks are designed
the way they are. While it is tempting to settle for just understanding the way it’s done today, it is important
to recognize the underlying concepts because networks are constantly changing as technology evolves and
new applications are invented. It is our experience that once you understand the fundamental ideas, any new
protocol that you are confronted with will be relatively easy to digest.

1.2.1 Stakeholders

As we noted above, a student of networks can take several perspectives. When we wrote the first edition of
this book, the majority of the population had no Internet access at all, and those who did obtained it while
at work, at a university, or by a dial-up modem at home. The set of popular applications could be counted
on one’s fingers. Thus, like most books at the time, ours focused on the perspective of someone who would
design networking equipment and protocols. We continue to focus on this perspective, and our hope is that
after reading this book you will know how to design the networking equipment and protocols of the future.

However, we also want to cover the perspectives of two additional stakeholders: those who develop net-
worked applications and those who manage or operate networks. Let’s consider how these three stakeholders
might list their requirements for a network:

• An application programmer would list the services that his or her application needs: for example,
a guarantee that each message the application sends will be delivered without error within a certain
amount of time or the ability to switch gracefully among different connections to the network as the
user moves around.

1.2. Requirements 9

Computer Networks: A Systems Approach, Release Version 6.1

• A network operator would list the characteristics of a system that is easy to administer and manage:
for example, in which faults can be easily isolated, new devices can be added to the network and
configured correctly, and it is easy to account for usage.

• A network designer would list the properties of a cost-effective design: for example, that network
resources are efficiently utilized and fairly allocated to different users. Issues of performance are also
likely to be important.

This section attempts to distill the requirements of different stakeholders into a high-level introduction to the
major considerations that drive network design and, in doing so, identify the challenges addressed through-
out the rest of this book.

1.2.2 Scalable Connectivity

Starting with the obvious, a network must provide connectivity among a set of computers. Sometimes it is
enough to build a limited network that connects only a few select machines. In fact, for reasons of privacy
and security, many private (corporate) networks have the explicit goal of limiting the set of machines that are
connected. In contrast, other networks (of which the Internet is the prime example) are designed to grow in
a way that allows them the potential to connect all the computers in the world. A system that is designed to
support growth to an arbitrarily large size is said to scale. Using the Internet as a model, this book addresses
the challenge of scalability.

To understand the requirements of connectivity more fully, we need to take a closer look at how computers
are connected in a network. Connectivity occurs at many different levels. At the lowest level, a network can
consist of two or more computers directly connected by some physical medium, such as a coaxial cable or
an optical fiber. We call such a physical medium a link, and we often refer to the computers it connects as
nodes. (Sometimes a node is a more specialized piece of hardware rather than a computer, but we overlook
that distinction for the purposes of this discussion.) As illustrated in Figure 1.2, physical links are sometimes
limited to a pair of nodes (such a link is said to be point-to-point), while in other cases more than two nodes
may share a single physical link (such a link is said to be multiple-access). Wireless links, such as those
provided by cellular networks and Wi-Fi networks, are an important class of multiple-access links. It is
always the case that multiple-access links are limited in size, in terms of both the geographical distance they
can cover and the number of nodes they can connect. For this reason, they often implement the so-called
last mile, connecting end users to the rest of the network.

If computer networks were limited to situations in which all nodes are directly connected to each other
over a common physical medium, then either networks would be very limited in the number of computers
they could connect, or the number of wires coming out of the back of each node would quickly become
both unmanageable and very expensive. Fortunately, connectivity between two nodes does not necessarily
imply a direct physical connection between them—indirect connectivity may be achieved among a set of
cooperating nodes. Consider the following two examples of how a collection of computers can be indirectly
connected.

Figure 1.3 shows a pair of shows a set of nodes, each of which is attached to one or more point-to-point
links. Those nodes that are attached to at least two links run software that forwards data received on one
link out on another. If organized in a systematic way, these forwarding nodes form a switched network.
There are numerous types of switched networks, of which the two most common are circuit switched and
packet switched. The former is most notably employed by the telephone system, while the latter is used for
the overwhelming majority of computer networks and will be the focus of this book. (Circuit switching is,

10 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

Figure 1.2.: Direct links: (a) point-to-point; (b) multiple-access.

however, making a bit of a comeback in the optical networking realm, which turns out to be important as
demand for network capacity constantly grows.) The important feature of packet-switched networks is that
the nodes in such a network send discrete blocks of data to each other. Think of these blocks of data as
corresponding to some piece of application data such as a file, a piece of email, or an image. We call each
block of data either a packet or a message, and for now we use these terms interchangeably.

Packet-switched networks typically use a strategy called store-and-forward. As the name suggests, each
node in a store-and-forward network first receives a complete packet over some link, stores the packet in
its internal memory, and then forwards the complete packet to the next node. In contrast, a circuit-switched
network first establishes a dedicated circuit across a sequence of links and then allows the source node to
send a stream of bits across this circuit to a destination node. The major reason for using packet switching
rather than circuit switching in a computer network is efficiency, discussed in the next subsection.

The cloud in Figure 1.3 distinguishes between the nodes on the inside that implement the network (they
are commonly called switches, and their primary function is to store and forward packets) and the nodes
on the outside of the cloud that use the network (they are traditionally called hosts, and they support users
and run application programs). Also note that the cloud is one of the most important icons of computer
networking. In general, we use a cloud to denote any type of network, whether it is a single point-to-point
link, a multiple-access link, or a switched network. Thus, whenever you see a cloud used in a figure, you
can think of it as a placeholder for any of the networking technologies covered in this book.1

A second way in which a set of computers can be indirectly connected is shown in Figure 1.4. In this
situation, a set of independent networks (clouds) are interconnected to form an internetwork, or internet for
short. We adopt the Internet’s convention of referring to a generic internetwork of networks as a lowercase
i internet, and the TCP/IP Internet we all use every day as the capital I Internet. A node that is connected
to two or more networks is commonly called a router or gateway, and it plays much the same role as a
switch—it forwards messages from one network to another. Note that an internet can itself be viewed as
another kind of network, which means that an internet can be built from a set of internets. Thus, we can
recursively build arbitrarily large networks by interconnecting clouds to form larger clouds. It can reasonably
be argued that this idea of interconnecting widely differing networks was the fundamental innovation of the

1 The use of clouds to represent networks predates the term cloud computing by at least a couple of decades, but there an
increasingly rich connection between these two usages, which we explore in the Perspective discussion at the end of each chapter.

1.2. Requirements 11

Computer Networks: A Systems Approach, Release Version 6.1

Figure 1.3.: Switched network.

12 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

Figure 1.4.: Interconnection of networks.

1.2. Requirements 13

Computer Networks: A Systems Approach, Release Version 6.1

Internet and that the successful growth of the Internet to global size and billions of nodes was the result of
some very good design decisions by the early Internet architects, which we will discuss later.

Just because a set of hosts are directly or indirectly connected to each other does not mean that we have
succeeded in providing host-to-host connectivity. The final requirement is that each node must be able to
say which of the other nodes on the network it wants to communicate with. This is done by assigning an
address to each node. An address is a byte string that identifies a node; that is, the network can use a node’s
address to distinguish it from the other nodes connected to the network. When a source node wants the
network to deliver a message to a certain destination node, it specifies the address of the destination node.
If the sending and receiving nodes are not directly connected, then the switches and routers of the network
use this address to decide how to forward the message toward the destination. The process of determining
systematically how to forward messages toward the destination node based on its address is called routing.

This brief introduction to addressing and routing has presumed that the source node wants to send a message
to a single destination node (unicast). While this is the most common scenario, it is also possible that the
source node might want to broadcast a message to all the nodes on the network. Or, a source node might
want to send a message to some subset of the other nodes but not all of them, a situation called multicast.
Thus, in addition to node-specific addresses, another requirement of a network is that it supports multicast
and broadcast addresses.

Key Takeaway

The main idea to take away from this discussion is that we can define a network recursively as consisting of
two or more nodes connected by a physical link, or as two or more networks connected by a node. In other
words, a network can be constructed from a nesting of networks, where at the bottom level, the network is
implemented by some physical medium. Among the key challenges in providing network connectivity are
the definition of an address for each node that is reachable on the network (be it logical or physical), and the
use of such addresses to forward messages toward the appropriate destination node(s). [Next]

1.2.3 Cost-Effective Resource Sharing

As stated above, this book focuses on packet-switched networks. This section explains the key requirement
of computer networks—efficiency—that leads us to packet switching as the strategy of choice.

Given a collection of nodes indirectly connected by a nesting of networks, it is possible for any pair of
hosts to send messages to each other across a sequence of links and nodes. Of course, we want to do more
than support just one pair of communicating hosts—we want to provide all pairs of hosts with the ability to
exchange messages. The question, then, is how do all the hosts that want to communicate share the network,
especially if they want to use it at the same time? And, as if that problem isn’t hard enough, how do several
hosts share the same link when they all want to use it at the same time?

To understand how hosts share a network, we need to introduce a fundamental concept, multiplexing, which
means that a system resource is shared among multiple users. At an intuitive level, multiplexing can be
explained by analogy to a timesharing computer system, where a single physical processor is shared (multi-
plexed) among multiple jobs, each of which believes it has its own private processor. Similarly, data being
sent by multiple users can be multiplexed over the physical links that make up a network.

To see how this might work, consider the simple network illustrated in Figure 1.5, where the three hosts on

14 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

the left side of the network (senders S1-S3) are sending data to the three hosts on the right (receivers R1-R3)
by sharing a switched network that contains only one physical link. (For simplicity, assume that host S1
is sending data to host R1, and so on.) In this situation, three flows of data—corresponding to the three
pairs of hosts—are multiplexed onto a single physical link by switch 1 and then demultiplexed back into
separate flows by switch 2. Note that we are being intentionally vague about exactly what a “flow of data”
corresponds to. For the purposes of this discussion, assume that each host on the left has a large supply of
data that it wants to send to its counterpart on the right.

Figure 1.5.: Multiplexing multiple logical flows over a single physical link.

There are several different methods for multiplexing multiple flows onto one physical link. One common
method is synchronous time-division multiplexing (STDM). The idea of STDM is to divide time into equal-
sized quanta and, in a round-robin fashion, give each flow a chance to send its data over the physical link. In
other words, during time quantum 1, data from S1 to R1 is transmitted; during time quantum 2, data from
S2 to R2 is transmitted; in quantum 3, S3 sends data to R3. At this point, the first flow (S1 to R1) gets to
go again, and the process repeats. Another method is frequency-division multiplexing (FDM). The idea of
FDM is to transmit each flow over the physical link at a different frequency, much the same way that the
signals for different TV stations are transmitted at a different frequency over the airwaves or on a coaxial
cable TV link.

Although simple to understand, both STDM and FDM are limited in two ways. First, if one of the flows
(host pairs) does not have any data to send, its share of the physical link—that is, its time quantum or its
frequency—remains idle, even if one of the other flows has data to transmit. For example, S3 had to wait
its turn behind S1 and S2 in the previous paragraph, even if S1 and S2 had nothing to send. For computer
communication, the amount of time that a link is idle can be very large—for example, consider the amount
of time you spend reading a web page (leaving the link idle) compared to the time you spend fetching the
page. Second, both STDM and FDM are limited to situations in which the maximum number of flows is
fixed and known ahead of time. It is not practical to resize the quantum or to add additional quanta in the
case of STDM or to add new frequencies in the case of FDM.

The form of multiplexing that addresses these shortcomings, and of which we make most use in this book,
is called statistical multiplexing. Although the name is not all that helpful for understanding the concept,
statistical multiplexing is really quite simple, with two key ideas. First, it is like STDM in that the physical

1.2. Requirements 15

Computer Networks: A Systems Approach, Release Version 6.1

link is shared over time—first data from one flow is transmitted over the physical link, then data from another
flow is transmitted, and so on. Unlike STDM, however, data is transmitted from each flow on demand rather
than during a predetermined time slot. Thus, if only one flow has data to send, it gets to transmit that data
without waiting for its quantum to come around and thus without having to watch the quanta assigned to the
other flows go by unused. It is this avoidance of idle time that gives packet switching its efficiency.

As defined so far, however, statistical multiplexing has no mechanism to ensure that all the flows eventually
get their turn to transmit over the physical link. That is, once a flow begins sending data, we need some
way to limit the transmission, so that the other flows can have a turn. To account for this need, statistical
multiplexing defines an upper bound on the size of the block of data that each flow is permitted to transmit
at a given time. This limited-size block of data is typically referred to as a packet, to distinguish it from the
arbitrarily large message that an application program might want to transmit. Because a packet-switched
network limits the maximum size of packets, a host may not be able to send a complete message in one
packet. The source may need to fragment the message into several packets, with the receiver reassembling
the packets back into the original message.

Figure 1.6.: A switch multiplexing packets from multiple sources onto one shared link.

In other words, each flow sends a sequence of packets over the physical link, with a decision made on a
packet-by-packet basis as to which flow’s packet to send next. Notice that, if only one flow has data to send,
then it can send a sequence of packets back-to-back; however, should more than one of the flows have data
to send, then their packets are interleaved on the link. Figure 1.6 depicts a switch multiplexing packets from
multiple sources onto a single shared link.

The decision as to which packet to send next on a shared link can be made in a number of different ways.
For example, in a network consisting of switches interconnected by links such as the one in Figure 1.5, the
decision would be made by the switch that transmits packets onto the shared link. (As we will see later, not
all packet-switched networks actually involve switches, and they may use other mechanisms to determine
whose packet goes onto the link next.) Each switch in a packet-switched network makes this decision
independently, on a packet-by-packet basis. One of the issues that faces a network designer is how to make

16 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

this decision in a fair manner. For example, a switch could be designed to service packets on a first-in,
first-out (FIFO) basis. Another approach would be to transmit the packets from each of the different flows
that are currently sending data through the switch in a round-robin manner. This might be done to ensure
that certain flows receive a particular share of the link’s bandwidth or that they never have their packets
delayed in the switch for more than a certain length of time. A network that attempts to allocate bandwidth
to particular flows is sometimes said to support quality of service (QoS).

Also, notice in Figure 1.6 that since the switch has to multiplex three incoming packet streams onto one
outgoing link, it is possible that the switch will receive packets faster than the shared link can accommodate.
In this case, the switch is forced to buffer these packets in its memory. Should a switch receive packets faster
than it can send them for an extended period of time, then the switch will eventually run out of buffer space,
and some packets will have to be dropped. When a switch is operating in this state, it is said to be congested.

Key Takeaway

The bottom line is that statistical multiplexing defines a cost-effective way for multiple users (e.g., host-
to-host flows of data) to share network resources (links and nodes) in a fine-grained manner. It defines the
packet as the granularity with which the links of the network are allocated to different flows, with each switch
able to schedule the use of the physical links it is connected to on a per-packet basis. Fairly allocating link
capacity to different flows and dealing with congestion when it occurs are the key challenges of statistical
multiplexing. [Next]

1.2.4 Support for Common Services

The previous discussion focused on the challenges involved in providing cost-effective connectivity among
a group of hosts, but it is overly simplistic to view a computer network as simply delivering packets among
a collection of computers. It is more accurate to think of a network as providing the means for a set of
application processes that are distributed over those computers to communicate. In other words, the next
requirement of a computer network is that the application programs running on the hosts connected to the
network must be able to communicate in a meaningful way. From the application developer’s perspective,
the network needs to make his or her life easier.

When two application programs need to communicate with each other, a lot of complicated things must
happen beyond simply sending a message from one host to another. One option would be for application
designers to build all that complicated functionality into each application program. However, since many
applications need common services, it is much more logical to implement those common services once and
then to let the application designer build the application using those services. The challenge for a network
designer is to identify the right set of common services. The goal is to hide the complexity of the network
from the application without overly constraining the application designer.

Intuitively, we view the network as providing logical channels over which application-level processes can
communicate with each other; each channel provides the set of services required by that application. In other
words, just as we use a cloud to abstractly represent connectivity among a set of computers, we now think
of a channel as connecting one process to another. Figure 1.7 shows a pair of application-level processes
communicating over a logical channel that is, in turn, implemented on top of a cloud that connects a set
of hosts. We can think of the channel as being like a pipe connecting two applications, so that a sending
application can put data in one end and expect that data to be delivered by the network to the application at

1.2. Requirements 17

Computer Networks: A Systems Approach, Release Version 6.1

Figure 1.7.: Processes communicating over an abstract channel.

the other end of the pipe.

Like any abstraction, logical process-to-process channels are implemented on top of a collection of physical
host-to-host channels. This is the essense of layering, the cornerstone of network architectures discussed in
the next section.

The challenge is to recognize what functionality the channels should provide to application programs. For
example, does the application require a guarantee that messages sent over the channel are delivered, or is it
acceptable if some messages fail to arrive? Is it necessary that messages arrive at the recipient process in the
same order in which they are sent, or does the recipient not care about the order in which messages arrive?
Does the network need to ensure that no third parties are able to eavesdrop on the channel, or is privacy not
a concern? In general, a network provides a variety of different types of channels, with each application
selecting the type that best meets its needs. The rest of this section illustrates the thinking involved in
defining useful channels.

Identify Common Communication Patterns

Designing abstract channels involves first understanding the communication needs of a representative collec-
tion of applications, then extracting their common communication requirements, and finally incorporating
the functionality that meets these requirements in the network.

One of the earliest applications supported on any network is a file access program like the File Transfer
Protocol (FTP) or Network File System (NFS). Although many details vary—for example, whether whole
files are transferred across the network or only single blocks of the file are read/written at a given time—the
communication component of remote file access is characterized by a pair of processes, one that requests

18 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

that a file be read or written and a second process that honors this request. The process that requests access
to the file is called the client, and the process that supports access to the file is called the server.

Reading a file involves the client sending a small request message to a server and the server responding with
a large message that contains the data in the file. Writing works in the opposite way—the client sends a
large message containing the data to be written to the server, and the server responds with a small message
confirming that the write to disk has taken place.

A digital library is a more sophisticated application than file transfer, but it requires similar communication
services. For example, the Association for Computing Machinery (ACM) operates a large digital library of
computer science literature at

http://portal.acm.org/dl.cfm

This library has a wide range of searching and browsing features to help users find the articles they want,
but ultimately much of what it does is respond to user requests for files, such as electronic copies of journal
articles.

Using file access, a digital library, and the two video applications described in the introduction (videocon-
ferencing and video on demand) as a representative sample, we might decide to provide the following two
types of channels: request/reply channels and message stream channels. The request/reply channel would
be used by the file transfer and digital library applications. It would guarantee that every message sent by
one side is received by the other side and that only one copy of each message is delivered. The request/reply
channel might also protect the privacy and integrity of the data that flows over it, so that unauthorized parties
cannot read or modify the data being exchanged between the client and server processes.

The message stream channel could be used by both the video on demand and videoconferencing applica-
tions, provided it is parameterized to support both one-way and two-way traffic and to support different delay
properties. The message stream channel might not need to guarantee that all messages are delivered, since
a video application can operate adequately even if some video frames are not received. It would, however,
need to ensure that those messages that are delivered arrive in the same order in which they were sent, to
avoid displaying frames out of sequence. Like the request/reply channel, the message stream channel might
want to ensure the privacy and integrity of the video data. Finally, the message stream channel might need
to support multicast, so that multiple parties can participate in the teleconference or view the video.

While it is common for a network designer to strive for the smallest number of abstract channel types that
can serve the largest number of applications, there is a danger in trying to get away with too few channel
abstractions. Simply stated, if you have a hammer, then everything looks like a nail. For example, if
all you have are message stream and request/reply channels, then it is tempting to use them for the next
application that comes along, even if neither type provides exactly the semantics needed by the application.
Thus, network designers will probably be inventing new types of channels—and adding options to existing
channels—for as long as application programmers are inventing new applications.

Also note that independent of exactly what functionality a given channel provides, there is the question of
where that functionality is implemented. In many cases, it is easiest to view the host-to-host connectivity
of the underlying network as simply providing a bit pipe, with any high-level communication semantics
provided at the end hosts. The advantage of this approach is that it keeps the switches in the middle of the
network as simple as possible—they simply forward packets—but it requires the end hosts to take on much
of the burden of supporting semantically rich process-to-process channels. The alternative is to push addi-
tional functionality onto the switches, thereby allowing the end hosts to be “dumb” devices (e.g., telephone
handsets). We will see this question of how various network services are partitioned between the packet

1.2. Requirements 19

Computer Networks: A Systems Approach, Release Version 6.1

switches and the end hosts (devices) as a recurring issue in network design.

Reliable Message Delivery

As suggested by the examples just considered, reliable message delivery is one of the most important func-
tions that a network can provide. It is difficult to determine how to provide this reliability, however, without
first understanding how networks can fail. The first thing to recognize is that computer networks do not exist
in a perfect world. Machines crash and later are rebooted, fibers are cut, electrical interference corrupts bits
in the data being transmitted, switches run out of buffer space, and, as if these sorts of physical problems
aren’t enough to worry about, the software that manages the hardware may contain bugs and sometimes
forwards packets into oblivion. Thus, a major requirement of a network is to recover from certain kinds of
failures, so that application programs don’t have to deal with them or even be aware of them.

There are three general classes of failure that network designers have to worry about. First, as a packet is
transmitted over a physical link, bit errors may be introduced into the data; that is, a 1 is turned into a 0
or vice versa. Sometimes single bits are corrupted, but more often than not a burst error occurs—several
consecutive bits are corrupted. Bit errors typically occur because outside forces, such as lightning strikes,
power surges, and microwave ovens, interfere with the transmission of data. The good news is that such bit
errors are fairly rare, affecting on average only one out of every 106 to 107 bits on a typical copper-based
cable and one out of every 1012 to 1014 bits on a typical optical fiber. As we will see, there are techniques
that detect these bit errors with high probability. Once detected, it is sometimes possible to correct for
such errors—if we know which bit or bits are corrupted, we can simply flip them—while in other cases the
damage is so bad that it is necessary to discard the entire packet. In such a case, the sender may be expected
to retransmit the packet.

The second class of failure is at the packet, rather than the bit, level; that is, a complete packet is lost by the
network. One reason this can happen is that the packet contains an uncorrectable bit error and therefore has
to be discarded. A more likely reason, however, is that one of the nodes that has to handle the packet—for
example, a switch that is forwarding it from one link to another—is so overloaded that it has no place
to store the packet and therefore is forced to drop it. This is the problem of congestion just discussed.
Less commonly, the software running on one of the nodes that handles the packet makes a mistake. For
example, it might incorrectly forward a packet out on the wrong link, so that the packet never finds its
way to the ultimate destination. As we will see, one of the main difficulties in dealing with lost packets is
distinguishing between a packet that is indeed lost and one that is merely late in arriving at the destination.

The third class of failure is at the node and link level; that is, a physical link is cut, or the computer it is
connected to crashes. This can be caused by software that crashes, a power failure, or a reckless backhoe
operator. Failures due to misconfiguration of a network device are also common. While any of these failures
can eventually be corrected, they can have a dramatic effect on the network for an extended period of
time. However, they need not totally disable the network. In a packet-switched network, for example, it is
sometimes possible to route around a failed node or link. One of the difficulties in dealing with this third
class of failure is distinguishing between a failed computer and one that is merely slow or, in the case of a
link, between one that has been cut and one that is very flaky and therefore introducing a high number of bit
errors.

Key Takeaway

The key idea to take away from this discussion is that defining useful channels involves both understanding

20 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

the applications’ requirements and recognizing the limitations of the underlying technology. The challenge
is to fill in the gap between what the application expects and what the underlying technology can provide.
This is sometimes called the semantic gap. [Next]

1.2.5 Manageability

A final requirement, which seems to be neglected or left till last all too often (as we do here), is that networks
need to be managed. Managing a network includes upgrading equipment as the network grows to carry
more traffic or reach more users, troubleshooting the network when things go wrong or performance isn’t as
desired, and adding new features in support of new applications. Network management has historically been
a human-intensive aspect of networking, and while it is ulikely we’ll get people entirely out of the loop, it is
increasingly being addressed by automation and self-healing designs.

This requirement is partly related to the issue of scalability discussed above—as the Internet has scaled up
to support billions of users and at least hundreds of millions of hosts, the challenges of keeping the whole
thing running correctly and correctly configuring new devices as they are added have become increasingly
problematic. Configuring a single router in a network is often a task for a trained expert; configuring
thousands of routers and figuring out why a network of such a size is not behaving as expected can become
a task beyond any single human. This is why automation is becoming so important.

One way to make a network easier to manage is to avoid change. Once the network is working, simply do
not touch it! This mindset exposes the fundamental tension between stability and feature velocity: the rate
at which new capabilities are introduced into the network. Favoring stability is the approach the telecommu-
nications industry (not to mention University system administrators and corporate IT departments) adopted
for many years, making it one of the most slow moving and risk averse industries you will find anywhere.
But the recent explosion of the cloud has changed that dynamic, making it necessary to bring stability and
feature velocity more into balance. The impact of the cloud on the network is a topic that comes up over
and over throughout the book, and one we pay particular attention to in the Perspectives section at the end
of each chapter. For now, suffice it to say that managing a rapidly evolving network is arguably the central
challenge in networking today.

1.3 Architecture

The previous section established a pretty substantial set of requirements for network design—a computer
network must provide general, cost-effective, fair, and robust connectivity among a large number of com-
puters. As if this weren’t enough, networks do not remain fixed at any single point in time but must evolve
to accommodate changes in both the underlying technologies upon which they are based as well as changes
in the demands placed on them by application programs. Furthermore, networks must be manageable by
humans of varying levels of skill. Designing a network to meet these requirements is no small task.

To help deal with this complexity, network designers have developed general blueprints—usually called
network architectures—that guide the design and implementation of networks. This section defines more
carefully what we mean by a network architecture by introducing the central ideas that are common to
all network architectures. It also introduces two of the most widely referenced architectures—the OSI (or
7-layer) architecture and the Internet architecture.

1.3. Architecture 21

Computer Networks: A Systems Approach, Release Version 6.1

1.3.1 Layering and Protocols

Abstraction—the hiding of implementation details behind a well-defined interface—is the fundamental tool
used by system designers to manage complexity. The idea of an abstraction is to define a model that can
capture some important aspect of the system, encapsulate this model in an object that provides an interface
that can be manipulated by other components of the system, and hide the details of how the object is imple-
mented from the users of the object. The challenge is to identify abstractions that simultaneously provide
a service that proves useful in a large number of situations and that can be efficiently implemented in the
underlying system. This is exactly what we were doing when we introduced the idea of a channel in the
previous section: we were providing an abstraction for applications that hides the complexity of the network
from application writers.

Figure 1.8.: Example of a layered network system.

Abstractions naturally lead to layering, especially in network systems. The general idea is that you start
with the services offered by the underlying hardware and then add a sequence of layers, each providing
a higher (more abstract) level of service. The services provided at the high layers are implemented in
terms of the services provided by the low layers. Drawing on the discussion of requirements given in the
previous section, for example, we might imagine a simple network as having two layers of abstraction
sandwiched between the application program and the underlying hardware, as illustrated in Figure 1.8. The
layer immediately above the hardware in this case might provide host-to-host connectivity, abstracting away
the fact that there may be an arbitrarily complex network topology between any two hosts. The next layer
up builds on the available host-to-host communication service and provides support for process-to-process
channels, abstracting away the fact that the network occasionally loses messages, for example.

Layering provides two useful features. First, it decomposes the problem of building a network into more
manageable components. Rather than implementing a monolithic piece of software that does everything you
will ever want, you can implement several layers, each of which solves one part of the problem. Second, it
provides a more modular design. If you decide that you want to add some new service, you may only need
to modify the functionality at one layer, reusing the functions provided at all the other layers.

Thinking of a system as a linear sequence of layers is an oversimplification, however. Many times there
are multiple abstractions provided at any given level of the system, each providing a different service to the
higher layers but building on the same low-level abstractions. To see this, consider the two types of channels
discussed in the previous section. One provides a request/reply service and one supports a message stream
service. These two channels might be alternative offerings at some level of a multilevel networking system,
as illustrated in Figure 1.9.

Using this discussion of layering as a foundation, we are now ready to discuss the architecture of a net-

22 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

Figure 1.9.: Layered system with alternative abstractions available at a given layer.

work more precisely. For starters, the abstract objects that make up the layers of a network system are
called protocols. That is, a protocol provides a communication service that higher-level objects (such as
application processes, or perhaps higher-level protocols) use to exchange messages. For example, we could
imagine a network that supports a request/reply protocol and a message stream protocol, corresponding to
the request/reply and message stream channels discussed above.

Each protocol defines two different interfaces. First, it defines a service interface to the other objects on the
same computer that want to use its communication services. This service interface defines the operations that
local objects can perform on the protocol. For example, a request/reply protocol would support operations
by which an application can send and receive messages. An implementation of the HTTP protocol could
support an operation to fetch a page of hypertext from a remote server. An application such as a web browser
would invoke such an operation whenever the browser needs to obtain a new page (e.g., when the user clicks
on a link in the currently displayed page).

Second, a protocol defines a peer interface to its counterpart (peer) on another machine. This second in-
terface defines the form and meaning of messages exchanged between protocol peers to implement the
communication service. This would determine the way in which a request/reply protocol on one machine
communicates with its peer on another machine. In the case of HTTP, for example, the protocol specification
defines in detail how a GET command is formatted, what arguments can be used with the command, and
how a web server should respond when it receives such a command.

To summarize, a protocol defines a communication service that it exports locally (the service interface),
along with a set of rules governing the messages that the protocol exchanges with its peer(s) to implement
this service (the peer interface). This situation is illustrated in Figure 1.10.

Except at the hardware level, where peers directly communicate with each other over a physical medium,
peer-to-peer communication is indirect—each protocol communicates with its peer by passing messages to
some lower-level protocol, which in turn delivers the message to its peer. In addition, there are potentially
more than one protocol at any given level, each providing a different communication service. We therefore
represent the suite of protocols that make up a network system with a protocol graph. The nodes of the
graph correspond to protocols, and the edges represent a depends on relation. For example, Figure 1.11
illustrates a protocol graph for the hypothetical layered system we have been discussing—protocols RRP
(Request/Reply Protocol) and MSP (Message Stream Protocol) implement two different types of process-
to-process channels, and both depend on the Host-to-Host Protocol (HHP) which provides a host-to-host
connectivity service.

In this example, suppose that the file access program on host 1 wants to send a message to its peer on
host 2 using the communication service offered by RRP. In this case, the file application asks RRP to send

1.3. Architecture 23

Computer Networks: A Systems Approach, Release Version 6.1

Figure 1.10.: Service interfaces and peer interfaces.

Figure 1.11.: Example of a protocol graph.

24 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

the message on its behalf. To communicate with its peer, RRP invokes the services of HHP, which in turn
transmits the message to its peer on the other machine. Once the message has arrived at the instance of HHP
on host 2, HHP passes the message up to RRP, which in turn delivers the message to the file application. In
this particular case, the application is said to employ the services of the protocol stack RRP/HHP.

Note that the term protocol is used in two different ways. Sometimes it refers to the abstract interfaces—that
is, the operations defined by the service interface and the form and meaning of messages exchanged between
peers, and sometimes it refers to the module that actually implements these two interfaces. To distinguish
between the interfaces and the module that implements these interfaces, we generally refer to the former as
a protocol specification. Specifications are generally expressed using a combination of prose, pseudocode,
state transition diagrams, pictures of packet formats, and other abstract notations. It should be the case that
a given protocol can be implemented in different ways by different programmers, as long as each adheres to
the specification. The challenge is ensuring that two different implementations of the same specification can
successfully exchange messages. Two or more protocol modules that do accurately implement a protocol
specification are said to interoperate with each other.

We can imagine many different protocols and protocol graphs that satisfy the communication requirements
of a collection of applications. Fortunately, there exist standardization bodies, such as the Internet Engi-
neering Task Force (IETF) and the International Standards Organization (ISO), that establish policies for
a particular protocol graph. We call the set of rules governing the form and content of a protocol graph
a network architecture. Although beyond the scope of this book, standardization bodies have established
well-defined procedures for introducing, validating, and finally approving protocols in their respective ar-
chitectures. We briefly describe the architectures defined by the IETF and ISO shortly, but first there are two
additional things we need to explain about the mechanics of protocol layering.

1.3.2 Encapsulation

Consider what happens in when one of the application programs sends a message to its peer by passing
the message to RRP. From RRP’s perspective, the message it is given by the application is an uninterpreted
string of bytes. RRP does not care that these bytes represent an array of integers, an email message, a digital
image, or whatever; it is simply charged with sending them to its peer. However, RRP must communicate
control information to its peer, instructing it how to handle the message when it is received. RRP does
this by attaching a header to the message. Generally speaking, a header is a small data structure—from a
few bytes to a few dozen bytes—that is used among peers to communicate with each other. As the name
suggests, headers are usually attached to the front of a message. In some cases, however, this peer-to-peer
control information is sent at the end of the message, in which case it is called a trailer. The exact format
for the header attached by RRP is defined by its protocol specification. The rest of the message—that is, the
data being transmitted on behalf of the application—is called the message’s body or payload. We say that
the application’s data is encapsulated in the new message created by RRP.

This process of encapsulation is then repeated at each level of the protocol graph; for example, HHP encap-
sulates RRP’s message by attaching a header of its own. If we now assume that HHP sends the message
to its peer over some network, then when the message arrives at the destination host, it is processed in the
opposite order: HHP first interprets the HHP header at the front of the message (i.e., takes whatever action
is appropriate given the contents of the header) and passes the body of the message (but not the HHP header)
up to RRP, which takes whatever action is indicated by the RRP header that its peer attached and passes the
body of the message (but not the RRP header) up to the application program. The message passed up from
RRP to the application on host 2 is exactly the same message as the application passed down to RRP on

1.3. Architecture 25

Computer Networks: A Systems Approach, Release Version 6.1

Figure 1.12.: High-level messages are encapsulated inside of low-level messages.

26 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

host 1; the application does not see any of the headers that have been attached to it to implement the lower-
level communication services. This whole process is illustrated in Figure 1.12. Note that in this example,
nodes in the network (e.g., switches and routers) may inspect the HHP header at the front of the message.

Note that when we say a low-level protocol does not interpret the message it is given by some high-level
protocol, we mean that it does not know how to extract any meaning from the data contained in the message.
It is sometimes the case, however, that the low-level protocol applies some simple transformation to the
data it is given, such as to compress or encrypt it. In this case, the protocol is transforming the entire body
of the message, including both the original application’s data and all the headers attached to that data by
higher-level protocols.

1.3.3 Multiplexing and Demultiplexing

Recall that a fundamental idea of packet switching is to multiplex multiple flows of data over a single
physical link. This same idea applies up and down the protocol graph, not just to switching nodes. In Figure
1.11, for example, we can think of RRP as implementing a logical communication channel, with messages
from two different applications multiplexed over this channel at the source host and then demultiplexed back
to the appropriate application at the destination host.

Practically speaking, this simply means that the header that RRP attaches to its messages contains an identi-
fier that records the application to which the message belongs. We call this identifier RRP’s demultiplexing
key, or demux key for short. At the source host, RRP includes the appropriate demux key in its header. When
the message is delivered to RRP on the destination host, it strips its header, examines the demux key, and
demultiplexes the message to the correct application.

RRP is not unique in its support for multiplexing; nearly every protocol implements this mechanism. For
example, HHP has its own demux key to determine which messages to pass up to RRP and which to pass
up to MSP. However, there is no uniform agreement among protocols—even those within a single network
architecture—on exactly what constitutes a demux key. Some protocols use an 8-bit field (meaning they
can support only 256 high-level protocols), and others use 16- or 32-bit fields. Also, some protocols have a
single demultiplexing field in their header, while others have a pair of demultiplexing fields. In the former
case, the same demux key is used on both sides of the communication, while in the latter case each side
uses a different key to identify the high-level protocol (or application program) to which the message is to
be delivered.

1.3.4 7-Layer OSI Model

The ISO was one of the first organizations to formally define a common way to connect computers. Their
architecture, called the Open Systems Interconnection (OSI) architecture and illustrated in Figure 1.13, de-
fines a partitioning of network functionality into seven layers, where one or more protocols implement the
functionality assigned to a given layer. In this sense, the schematic given in is not a protocol graph, per se,
but rather a reference model for a protocol graph. It is often referred to as the 7-layer model. While there
is no OSI-based network running today, the terminology it defined is still widely used, so it is still worth a
cursory look.

Starting at the bottom and working up, the physical layer handles the transmission of raw bits over a com-
munications link. The data link layer then collects a stream of bits into a larger aggregate called a frame.
Network adaptors, along with device drivers running in the node’s operating system, typically implement

1.3. Architecture 27

Computer Networks: A Systems Approach, Release Version 6.1

Figure 1.13.: The OSI 7-layer model.

28 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

the data link level. This means that frames, not raw bits, are actually delivered to hosts. The network layer
handles routing among nodes within a packet-switched network. At this layer, the unit of data exchanged
among nodes is typically called a packet rather than a frame, although they are fundamentally the same
thing. The lower three layers are implemented on all network nodes, including switches within the network
and hosts connected to the exterior of the network. The transport layer then implements what we have up to
this point been calling a process-to-process channel. Here, the unit of data exchanged is commonly called a
message rather than a packet or a frame. The transport layer and higher layers typically run only on the end
hosts and not on the intermediate switches or routers.

Skipping ahead to the top (seventh) layer and working our way back down, we find the application layer.
Application layer protocols include things like the Hypertext Transfer Protocol (HTTP), which is the basis
of the World Wide Web and is what enables web browsers to request pages from web servers. Below that,
the presentation layer is concerned with the format of data exchanged between peers—for example, whether
an integer is 16, 32, or 64 bits long, whether the most significant byte is transmitted first or last, or how a
video stream is formatted. Finally, the session layer provides a name space that is used to tie together the
potentially different transport streams that are part of a single application. For example, it might manage an
audio stream and a video stream that are being combined in a teleconferencing application.

1.3.5 Internet Architecture

The Internet architecture, which is also sometimes called the TCP/IP architecture after its two main proto-
cols, is depicted in Figure 1.14. An alternative representation is given in Figure 1.15. The Internet archi-
tecture evolved out of experiences with an earlier packet-switched network called the ARPANET. Both the
Internet and the ARPANET were funded by the Advanced Research Projects Agency (ARPA), one of the re-
search and development funding agencies of the U.S. Department of Defense. The Internet and ARPANET
were around before the OSI architecture, and the experience gained from building them was a major influ-
ence on the OSI reference model.

Figure 1.14.: Internet protocol graph.

While the 7-layer OSI model can, with some imagination, be applied to the Internet, a simpler stack is
often used instead. At the lowest level is a wide variety of network protocols, denoted NET1, NET2, and
so on. In practice, these protocols are implemented by a combination of hardware (e.g., a network adaptor)
and software (e.g., a network device driver). For example, you might find Ethernet or wireless protocols
(such as the 802.11 Wi-Fi standards) at this layer. (These protocols in turn may actually involve several

1.3. Architecture 29

Computer Networks: A Systems Approach, Release Version 6.1

Figure 1.15.: Alternative view of the Internet architecture. The “subnetwork” layer was historically referred
to as the “network” layer and is now often referred to as “Layer 2” (influenced by the OSI model).

sublayers, but the Internet architecture does not presume anything about them.) The next layer consists
of a single protocol—the Internet Protocol (IP). This is the protocol that supports the interconnection of
multiple networking technologies into a single, logical internetwork. The layer on top of IP contains two
main protocols—the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). TCP
and UDP provide alternative logical channels to application programs: TCP provides a reliable byte-stream
channel, and UDP provides an unreliable datagram delivery channel (datagram may be thought of as a
synonym for message). In the language of the Internet, TCP and UDP are sometimes called end-to-end
protocols, although it is equally correct to refer to them as transport protocols.

Running above the transport layer is a range of application protocols, such as HTTP, FTP, Telnet (remote
login), and the Simple Mail Transfer Protocol (SMTP), that enable the interoperation of popular applications.
To understand the difference between an application layer protocol and an application, think of all the
different World Wide Web browsers that are or have been available (e.g., Firefox, Chrome, Safari, Netscape,
Mosaic, Internet Explorer). There is a similarly large number of different implementations of web servers.
The reason that you can use any one of these application programs to access a particular site on the Web is
that they all conform to the same application layer protocol: HTTP. Confusingly, the same term sometimes
applies to both an application and the application layer protocol that it uses (e.g., FTP is often used as the
name of an application that implements the FTP protocol).

Most people who work actively in the networking field are familiar with both the Internet architecture and the
7-layer OSI architecture, and there is general agreement on how the layers map between architectures. The
Internet’s application layer is considered to be at layer 7, its transport layer is layer 4, the IP (internetworking
or just network) layer is layer 3, and the link or subnet layer below IP is layer 2.

IETF and Standardization

Although we call it the “Internet architecture” rather than the “IETF architecture,” it’s fair to say that
the IETF is the primary standardization body responsible for its definition, as well as the specification of
many of its protocols, such as TCP, UDP, IP, DNS, and BGP. But the Internet architecture also embraces
many protocols defined by other organizations, including IEEE’s 802.11 ethernet and Wi-Fi standards,
W3C’s HTTP/HTML web specifications, 3GPP’s 4G and 5G cellular networks standards, and ITU-T’s
H.232 video encoding standards, to name a few.

In addition to defining architectures and specifying protocols, there are yet other organizations that sup-
port the larger goal of interoperability. One example is the IANA (Internet Assigned Numbers Authority),

30 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

which as its name impies, is responsible for handing out the unique identifiers needed to make the proto-
cols work. IANA, in turn, is a department within the ICANN (Internt Corporation for Assigned Names
and Numbers), a non-profit organization that’s responsible for the overall stewardship of the Internet.

The Internet architecture has three features that are worth highlighting. First, as best illustrated by Figure
1.15, the Internet architecture does not imply strict layering. The application is free to bypass the defined
transport layers and to directly use IP or one of the underlying networks. In fact, programmers are free to
define new channel abstractions or applications that run on top of any of the existing protocols.

Second, if you look closely at the protocol graph in Figure 1.14, you will notice an hourglass shape—wide
at the top, narrow in the middle, and wide at the bottom. This shape actually reflects the central philosophy
of the architecture. That is, IP serves as the focal point for the architecture—it defines a common method
for exchanging packets among a wide collection of networks. Above IP there can be arbitrarily many
transport protocols, each offering a different channel abstraction to application programs. Thus, the issue of
delivering messages from host to host is completely separated from the issue of providing a useful process-
to-process communication service. Below IP, the architecture allows for arbitrarily many different network
technologies, ranging from Ethernet to wireless to single point-to-point links.

A final attribute of the Internet architecture (or more accurately, of the IETF culture) is that in order for a
new protocol to be officially included in the architecture, there must be both a protocol specification and at
least one (and preferably two) representative implementations of the specification. The existence of working
implementations is required for standards to be adopted by the IETF. This cultural assumption of the design
community helps to ensure that the architecture’s protocols can be efficiently implemented. Perhaps the
value the Internet culture places on working software is best exemplified by a quote on T-shirts commonly
worn at IETF meetings:

We reject kings, presidents, and voting. We believe in rough consensus and running code.
(David Clark)

Key Takeaway

Of these three attributes of the Internet architecture, the hourglass design philosophy is important enough
to bear repeating. The hourglass’s narrow waist represents a minimal and carefully chosen set of global ca-
pabilities that allows both higher-level applications and lower-level communication technologies to coexist,
share capabilities, and evolve rapidly. The narrow-waisted model is critical to the Internet’s ability to adapt
to new user demands and changing technologies. [Next]

1.4 Software

Network architectures and protocol specifications are essential things, but a good blueprint is not enough
to explain the phenomenal success of the Internet: The number of computers connected to the Internet has
grown exponentially for over three decades (although precise numbers are hard to come by). The number of
users of the Internet was estimated to be around 4.1 billion by the end of 2018—roughly half of the world’s
population.

What explains the success of the Internet? There are certainly many contributing factors (including a good
architecture), but one thing that has made the Internet such a runaway success is the fact that so much of

1.4. Software 31

Computer Networks: A Systems Approach, Release Version 6.1

its functionality is provided by software running on general-purpose computers. The significance of this is
that new functionality can be added readily with “just a small matter of programming.” As a result, new
applications and services have been showing up at an incredible pace.

A related factor is the massive increase in computing power available in commodity machines. Although
computer networks have always been capable in principle of transporting any kind of information, such as
digital voice samples, digitized images, and so on, this potential was not particularly interesting if the com-
puters sending and receiving that data were too slow to do anything useful with the information. Virtually
all of today’s computers are capable of playing back digitized audio and video at a speed and resolution that
are quite usable.

In the years since the first edition of this book appeared, the writing of networked applications has become
a mainstream activity and not a job just for a few specialists. Many factors have played into this, including
better tools to make the job easier and the opening up of new markets such as applications for smartphones.

The point to note is that knowing how to implement network software is an essential part of understanding
computer networks, and while the odds are you will not be tasked to implement a low-level protocol like IP,
there is a good chance you will find reason to implement an application-level protocol—the elusive “killer
app” that will lead to unimaginable fame and fortune. To get you started, this section introduces some of the
issues involved in implementing a network application on top of the Internet. Typically, such programs are
simultaneously an application (i.e., designed to interact with users) and a protocol (i.e., communicates with
peers across the network).

1.4.1 Application Programming Interface (Sockets)

The place to start when implementing a network application is the interface exported by the network. Since
most network protocols are in software (especially those high in the protocol stack), and nearly all computer
systems implement their network protocols as part of the operating system, when we refer to the interface
“exported by the network,” we are generally referring to the interface that the OS provides to its networking
subsystem. This interface is often called the network application programming interface (API).

Although each operating system is free to define its own network API (and most have), over time certain of
these APIs have become widely supported; that is, they have been ported to operating systems other than
their native system. This is what has happened with the socket interface originally provided by the Berkeley
distribution of Unix, which is now supported in virtually all popular operating systems, and is the foundation
of language-specific interfaces, such as the Java or Python socket library. We use Linux and C for all code
examples in this book, Linux because it is open source and C because it remains the language of choice
for network internals. (C also has the advantage of exposing all the low-level details, which is helpful in
understanding the underlying ideas.)

Sockets Enabled Application Explosion

It is hard to overstate the importance of the Socket API. It defines the demarcation point between the
applications running on top of the Internet, and the details of how the Internet is implemented. As a con-
sequence of Sockets providing a well-defined and stable interface, writing Internet applications exploded
into a multi-billion dollar industry. Starting from the humble beginnings of the client/server paradigm
and a handful of simple application programs like email, file transfer, and remote login, everyone now has
access to an never-ending supply of cloud applications from their smartphones.

32 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

This section lays the foundation by revisiting the simplicity of a client program opening a socket so it can
exchange messages with a server program, but today a rich software ecosystem is layered on top of the
Socket API. This layer includes a plethora of cloud-based tools that lower the barrier for implementing
scalable applications. We return to the interplay between the cloud and the network in every chapter,
starting with the Perspective section at the end of Chapter 1.

Before describing the socket interface, it is important to keep two concerns separate in your mind. Each
protocol provides a certain set of services, and the API provides a syntax by which those services can be
invoked on a particular computer system. The implementation is then responsible for mapping the tangible
set of operations and objects defined by the API onto the abstract set of services defined by the protocol. If
you have done a good job of defining the interface, then it will be possible to use the syntax of the interface to
invoke the services of many different protocols. Such generality was certainly a goal of the socket interface,
although it’s far from perfect.

The main abstraction of the socket interface, not surprisingly, is the socket. A good way to think of a socket
is as the point where a local application process attaches to the network. The interface defines operations
for creating a socket, attaching the socket to the network, sending/receiving messages through the socket,
and closing the socket. To simplify the discussion, we will limit ourselves to showing how sockets are used
with TCP.

The first step is to create a socket, which is done with the following operation:

int socket(int domain, int type, int protocol);

The reason that this operation takes three arguments is that the socket interface was designed to be general
enough to support any underlying protocol suite. Specifically, the domain argument specifies the protocol
family that is going to be used: PF_INET denotes the Internet family, PF_UNIX denotes the Unix pipe
facility, and PF_PACKET denotes direct access to the network interface (i.e., it bypasses the TCP/IP protocol
stack). The type argument indicates the semantics of the communication. SOCK_STREAM is used to
denote a byte stream. SOCK_DGRAM is an alternative that denotes a message-oriented service, such as that
provided by UDP. The protocol argument identifies the specific protocol that is going to be used. In our
case, this argument is UNSPEC because the combination of PF_INET and SOCK_STREAM implies TCP.
Finally, the return value from socket is a handle for the newly created socket—that is, an identifier by
which we can refer to the socket in the future. It is given as an argument to subsequent operations on this
socket.

The next step depends on whether you are a client or a server. On a server machine, the application process
performs a passive open—the server says that it is prepared to accept connections, but it does not actually
establish a connection. The server does this by invoking the following three operations:

int bind(int socket, struct sockaddr *address, int addr_len);
int listen(int socket, int backlog);
int accept(int socket, struct sockaddr *address, int *addr_len);

The bind operation, as its name suggests, binds the newly created socket to the specified address.
This is the network address of the local participant—the server. Note that, when used with the Internet
protocols, address is a data structure that includes both the IP address of the server and a TCP port
number. Ports are used to indirectly identify processes. They are a form of demux keys. The port number is
usually some well-known number specific to the service being offered; for example, web servers commonly
accept connections on port 80.

1.4. Software 33

Computer Networks: A Systems Approach, Release Version 6.1

The listen operation then defines how many connections can be pending on the specified socket. Fi-
nally, the accept operation carries out the passive open. It is a blocking operation that does not return
until a remote participant has established a connection, and when it does complete it returns a new socket
that corresponds to this just-established connection, and the address argument contains the remote par-
ticipant’s address. Note that when accept returns, the original socket that was given as an argument still
exists and still corresponds to the passive open; it is used in future invocations of accept.

On the client machine, the application process performs an active open; that is, it says who it wants to
communicate with by invoking the following single operation:

int connect(int socket, struct sockaddr *address, int addr_len);

This operation does not return until TCP has successfully established a connection, at which time the ap-
plication is free to begin sending data. In this case, address contains the remote participant’s address. In
practice, the client usually specifies only the remote participant’s address and lets the system fill in the local
information. Whereas a server usually listens for messages on a well-known port, a client typically does not
care which port it uses for itself; the OS simply selects an unused one.

Once a connection is established, the application processes invoke the following two operations to send and
receive data:

int send(int socket, char *message, int msg_len, int flags);
int recv(int socket, char *buffer, int buf_len, int flags);

The first operation sends the given message over the specified socket, while the second operation re-
ceives a message from the specified socket into the given buffer. Both operations take a set of flags
that control certain details of the operation.

1.4.2 Example Application

We now show the implementation of a simple client/server program that uses the socket interface to send
messages over a TCP connection. The program also uses other Linux networking utilities, which we intro-
duce as we go. Our application allows a user on one machine to type in and send text to a user on another
machine. It is a simplified version of the Linux talk program, which is similar to the program at the core
of instant messaging applications.

Client

We start with the client side, which takes the name of the remote machine as an argument. It calls the Linux
utility to translate this name into the remote host’s IP address. The next step is to construct the address data
structure (sin) expected by the socket interface. Notice that this data structure specifies that we’ll be using
the socket to connect to the Internet (AF_INET). In our example, we use TCP port 5432 as the well-known
server port; this happens to be a port that has not been assigned to any other Internet service. The final step
in setting up the connection is to call socket and connect. Once the operation returns, the connection
is established and the client program enters its main loop, which reads text from standard input and sends it
over the socket.

34 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#define SERVER_PORT 5432
#define MAX_LINE 256

int
main(int argc, char * argv[])
{

FILE *fp;
struct hostent *hp;
struct sockaddr_in sin;
char *host;
char buf[MAX_LINE];
int s;
int len;

if (argc==2) {
host = argv[1];

}
else {

fprintf(stderr, "usage: simplex-talk host\n");
exit(1);

}

/* translate host name into peer's IP address */
hp = gethostbyname(host);
if (!hp) {

fprintf(stderr, "simplex-talk: unknown host: %s\n", host);
exit(1);

}

/* build address data structure */
bzero((char *)&sin, sizeof(sin));
sin.sin_family = AF_INET;
bcopy(hp->h_addr, (char *)&sin.sin_addr, hp->h_length);
sin.sin_port = htons(SERVER_PORT);

/* active open */
if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {

perror("simplex-talk: socket");
exit(1);

}
if (connect(s, (struct sockaddr *)&sin, sizeof(sin)) < 0)
{

perror("simplex-talk: connect");
close(s);
exit(1);

}

(continues on next page)

1.4. Software 35

Computer Networks: A Systems Approach, Release Version 6.1

(continued from previous page)

/* main loop: get and send lines of text */
while (fgets(buf, sizeof(buf), stdin)) {

buf[MAX_LINE-1] = '\0';
len = strlen(buf) + 1;
send(s, buf, len, 0);

}
}

Server

The server is equally simple. It first constructs the address data structure by filling in its own port number
(SERVER_PORT). By not specifying an IP address, the application program is willing to accept connections
on any of the local host’s IP addresses. Next, the server performs the preliminary steps involved in a
passive open; it creates the socket, binds it to the local address, and sets the maximum number of pending
connections to be allowed. Finally, the main loop waits for a remote host to try to connect, and when one
does, it receives and prints out the characters that arrive on the connection.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#define SERVER_PORT 5432
#define MAX_PENDING 5
#define MAX_LINE 256

int
main()
{

struct sockaddr_in sin;
char buf[MAX_LINE];
int buf_len, addr_len;
int s, new_s;

/* build address data structure */
bzero((char *)&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(SERVER_PORT);

/* setup passive open */
if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {

perror("simplex-talk: socket");
exit(1);

}
if ((bind(s, (struct sockaddr *)&sin, sizeof(sin))) < 0) {
perror("simplex-talk: bind");
exit(1);

(continues on next page)

36 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

(continued from previous page)

}
listen(s, MAX_PENDING);

/* wait for connection, then receive and print text */
while(1) {

if ((new_s = accept(s, (struct sockaddr *)&sin, &addr_len)) < 0) {
perror("simplex-talk: accept");
exit(1);

}
while (buf_len = recv(new_s, buf, sizeof(buf), 0))
fputs(buf, stdout);

close(new_s);
}

}

1.5 Performance

Up to this point, we have focused primarily on the functional aspects of networks. Like any computer
system, however, computer networks are also expected to perform well. This is because the effectiveness of
computations distributed over the network often depends directly on the efficiency with which the network
delivers the computation’s data. While the old programming adage “first get it right and then make it fast”
remains true, in networking it is often necessary to “design for performance.” It is therefore important to
understand the various factors that impact network performance.

1.5.1 Bandwidth and Latency

Network performance is measured in two fundamental ways: bandwidth (also called throughput) and latency
(also called delay). The bandwidth of a network is given by the number of bits that can be transmitted over
the network in a certain period of time. For example, a network might have a bandwidth of 10 million
bits/second (Mbps), meaning that it is able to deliver 10 million bits every second. It is sometimes useful to
think of bandwidth in terms of how long it takes to transmit each bit of data. On a 10-Mbps network, for
example, it takes 0.1 microsecond (𝜇s) to transmit each bit.

Bandwidth and throughput are subtly different terms. First of all, bandwidth is literally a measure of the
width of a frequency band. For example, legacy voice-grade telephone lines supported a frequency band
ranging from 300 to 3300 Hz; it was said to have a bandwidth of 3300 Hz - 300 Hz = 3000 Hz. If you see
the word bandwidth used in a situation in which it is being measured in hertz, then it probably refers to the
range of signals that can be accommodated.

When we talk about the bandwidth of a communication link, we normally refer to the number of bits per
second that can be transmitted on the link. This is also sometimes called the data rate. We might say that
the bandwidth of an Ethernet link is 10 Mbps. A useful distinction can also be made, however, between
the maximum data rate that is available on the link and the number of bits per second that we can actually
transmit over the link in practice. We tend to use the word throughput to refer to the measured performance
of a system. Thus, because of various inefficiencies of implementation, a pair of nodes connected by a
link with a bandwidth of 10 Mbps might achieve a throughput of only 2 Mbps. This would mean that an
application on one host could send data to the other host at 2 Mbps.

1.5. Performance 37

Computer Networks: A Systems Approach, Release Version 6.1

Finally, we often talk about the bandwidth requirements of an application. This is the number of bits per
second that it needs to transmit over the network to perform acceptably. For some applications, this might
be “whatever I can get”; for others, it might be some fixed number (preferably not more than the available
link bandwidth); and for others, it might be a number that varies with time. We will provide more on this
topic later in this section.

While you can talk about the bandwidth of the network as a whole, sometimes you want to be more precise,
focusing, for example, on the bandwidth of a single physical link or of a logical process-to-process channel.
At the physical level, bandwidth is constantly improving, with no end in sight. Intuitively, if you think
of a second of time as a distance you could measure with a ruler and bandwidth as how many bits fit in
that distance, then you can think of each bit as a pulse of some width. For example, each bit on a 1-
Mbps link is 1 𝜇s wide, while each bit on a 2-Mbps link is 0.5 𝜇s wide, as illustrated in Figure 1.16. The
more sophisticated the transmitting and receiving technology, the narrower each bit can become and, thus,
the higher the bandwidth. For logical process-to-process channels, bandwidth is also influenced by other
factors, including how many times the software that implements the channel has to handle, and possibly
transform, each bit of data.

Figure 1.16.: Bits transmitted at a particular bandwidth can be regarded as having some width: (a) bits
transmitted at 1 Mbps (each bit is 1 microsecond wide); (b) bits transmitted at 2 Mbps (each bit is 0.5
microseconds wide).

The second performance metric, latency, corresponds to how long it takes a message to travel from one end
of a network to the other. (As with bandwidth, we could be focused on the latency of a single link or an
end-to-end channel.) Latency is measured strictly in terms of time. For example, a transcontinental network
might have a latency of 24 milliseconds (ms); that is, it takes a message 24 ms to travel from one coast of
North America to the other. There are many situations in which it is more important to know how long it
takes to send a message from one end of a network to the other and back, rather than the one-way latency.
We call this the round-trip time (RTT) of the network.

We often think of latency as having three components. First, there is the speed-of-light propagation delay.
This delay occurs because nothing, including a bit on a wire, can travel faster than the speed of light. If
you know the distance between two points, you can calculate the speed-of-light latency, although you have
to be careful because light travels across different media at different speeds: It travels at 3.0 × 108 m/s in a
vacuum, 2.3 × 108 m/s in a copper cable, and 2.0 × 108 m/s in an optical fiber. Second, there is the amount
of time it takes to transmit a unit of data. This is a function of the network bandwidth and the size of the
packet in which the data is carried. Third, there may be queuing delays inside the network, since packet
switches generally need to store packets for some time before forwarding them on an outbound link. So, we
could define the total latency as

38 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

Latency = Propagation + Transmit + Queue
Propagation = Distance/SpeedOfLight
Transmit = Size/Bandwidth

where Distance is the length of the wire over which the data will travel, SpeedOfLight is the effective
speed of light over that wire, Size is the size of the packet, and Bandwidth is the bandwidth at which
the packet is transmitted. Note that if the message contains only one bit and we are talking about a single
link (as opposed to a whole network), then the Transmit and Queue terms are not relevant, and latency
corresponds to the propagation delay only.

Bandwidth and latency combine to define the performance characteristics of a given link or channel. Their
relative importance, however, depends on the application. For some applications, latency dominates band-
width. For example, a client that sends a 1-byte message to a server and receives a 1-byte message in
return is latency bound. Assuming that no serious computation is involved in preparing the response, the
application will perform much differently on a transcontinental channel with a 100-ms RTT than it will on
an across-the-room channel with a 1-ms RTT. Whether the channel is 1 Mbps or 100 Mbps is relatively
insignificant, however, since the former implies that the time to transmit a byte (Transimt) is 8 𝜇s and the
latter implies Transmit = 0.08 𝜇s.

In contrast, consider a digital library program that is being asked to fetch a 25-megabyte (MB) image—the
more bandwidth that is available, the faster it will be able to return the image to the user. Here, the bandwidth
of the channel dominates performance. To see this, suppose that the channel has a bandwidth of 10 Mbps.
It will take 20 seconds to transmit the image (25 × 106 × 8-bits / (10 × 106 Mbps = 20 seconds), making it
relatively unimportant if the image is on the other side of a 1-ms channel or a 100-ms channel; the difference
between a 20.001-second response time and a 20.1-second response time is negligible.

Figure 1.17 gives you a sense of how latency or bandwidth can dominate performance in different circum-
stances. The graph shows how long it takes to move objects of various sizes (1 byte, 2 KB, 1 MB) across
networks with RTTs ranging from 1 to 100 ms and link speeds of either 1.5 or 10 Mbps. We use logarithmic
scales to show relative performance. For a 1-byte object (say, a keystroke), latency remains almost exactly
equal to the RTT, so that you cannot distinguish between a 1.5-Mbps network and a 10-Mbps network. For
a 2-KB object (say, an email message), the link speed makes quite a difference on a 1-ms RTT network but
a negligible difference on a 100-ms RTT network. And for a 1-MB object (say, a digital image), the RTT
makes no difference—it is the link speed that dominates performance across the full range of RTT.

Note that throughout this book we use the terms latency and delay in a generic way to denote how long
it takes to perform a particular function, such as delivering a message or moving an object. When we are
referring to the specific amount of time it takes a signal to propagate from one end of a link to another, we
use the term propagation delay. Also, we make it clear in the context of the discussion whether we are
referring to the one-way latency or the round-trip time.

As an aside, computers are becoming so fast that when we connect them to networks, it is sometimes useful
to think, at least figuratively, in terms of instructions per mile. Consider what happens when a computer that
is able to execute 100 billion instructions per second sends a message out on a channel with a 100-ms RTT.
(To make the math easier, assume that the message covers a distance of 5000 miles.) If that computer sits idle
the full 100 ms waiting for a reply message, then it has forfeited the ability to execute 10 billion instructions,
or 2 million instructions per mile. It had better have been worth going over the network to justify this waste.

1.5. Performance 39

Computer Networks: A Systems Approach, Release Version 6.1

Figure 1.17.: Perceived latency (response time) versus round-trip time for various object sizes and link
speeds.

40 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

1.5.2 Delay × Bandwidth Product

It is also useful to talk about the product of these two metrics, often called the delay × bandwidth product.
Intuitively, if we think of a channel between a pair of processes as a hollow pipe (see Figure 1.18), where
the latency corresponds to the length of the pipe and the bandwidth gives the diameter of the pipe, then the
delay × bandwidth product gives the volume of the pipe—the maximum number of bits that could be in
transit through the pipe at any given instant. Said another way, if latency (measured in time) corresponds
to the length of the pipe, then given the width of each bit (also measured in time) you can calculate how
many bits fit in the pipe. For example, a transcontinental channel with a one-way latency of 50 ms and a
bandwidth of 45 Mbps is able to hold

50 × 10−3𝑠𝑒𝑐× 45 × 106 𝑏𝑖𝑡𝑠/𝑠𝑒𝑐 = 2.25 × 106 𝑏𝑖𝑡𝑠

or approximately 280 KB of data. In other words, this example channel (pipe) holds as many bytes as the
memory of a personal computer from the early 1980s could hold.

Figure 1.18.: Network as a pipe.

The delay × bandwidth product is important to know when constructing high-performance networks because
it corresponds to how many bits the sender must transmit before the first bit arrives at the receiver. If the
sender is expecting the receiver to somehow signal that bits are starting to arrive, and it takes another channel
latency for this signal to propagate back to the sender, then the sender can send up one RTT × bandwidth
worth of data before hearing from the receiver that all is well. The bits in the pipe are said to be “in
flight,” which means that if the receiver tells the sender to stop transmitting it might receive up to one RTT
× bandwidth’s worth of data before the sender manages to respond. In our example above, that amount
corresponds to 5.5 × 106 bits (671 KB) of data. On the other hand, if the sender does not fill the pipe—i.e.,
does not send a whole RTT × bandwidth product’s worth of data before it stops to wait for a signal—the
sender will not fully utilize the network.

Note that most of the time we are interested in the RTT scenario, which we simply refer to as the delay ×
bandwidth product, without explicitly saying that “delay” is the RTT (i.e., multiply the one-way delay by
two). Usually, whether the “delay” in delay × bandwidth means one-way latency or RTT is made clear by
the context. Table 1.1 shows some examples of RTT × bandwidth products for some typical network links.

Table 1.1.: Example delay × bandwidth products.
Link Type Bandwidth One-Way Distance RTT RTT x Bandwidth
Wireless LAN 54 Mbps 50 m 0.33 𝜇s 18 bits
Satellite 1 Gbps 35,000 km 230 ms 230 Mb
Cross-country fiber 10 Gbps 4,000 km 40 ms 400 Mb

1.5. Performance 41

Computer Networks: A Systems Approach, Release Version 6.1

1.5.3 High-Speed Networks

The seeming continual increase in bandwidth causes network designers to start thinking about what happens
in the limit or, stated another way, what is the impact on network design of having infinite bandwidth
available.

Although high-speed networks bring a dramatic change in the bandwidth available to applications, in many
respects their impact on how we think about networking comes in what does not change as bandwidth in-
creases: the speed of light. To quote Scotty from Star Trek, “Ye cannae change the laws of physics.” In other
words, “high speed” does not mean that latency improves at the same rate as bandwidth; the transcontinental
RTT of a 1-Gbps link is the same 100 ms as it is for a 1-Mbps link.

To appreciate the significance of ever-increasing bandwidth in the face of fixed latency, consider what is
required to transmit a 1-MB file over a 1-Mbps network versus over a 1-Gbps network, both of which have
an RTT of 100 ms. In the case of the 1-Mbps network, it takes 80 round-trip times to transmit the file;
during each RTT, 1.25% of the file is sent. In contrast, the same 1-MB file doesn’t even come close to filling
1 RTT’s worth of the 1-Gbps link, which has a delay × bandwidth product of 12.5 MB.

Figure 1.19 illustrates the difference between the two networks. In effect, the 1-MB file looks like a stream
of data that needs to be transmitted across a 1-Mbps network, while it looks like a single packet on a 1-Gbps
network. To help drive this point home, consider that a 1-MB file is to a 1-Gbps network what a 1-KB packet
is to a 1-Mbps network.

Figure 1.19.: Relationship between bandwidth and latency. A 1-MB file would fill the 1-Mbps link 80 times
but only fill 1/12th of a 1-Gbps link.

Another way to think about the situation is that more data can be transmitted during each RTT on a high-
speed network, so much so that a single RTT becomes a significant amount of time. Thus, while you
wouldn’t think twice about the difference between a file transfer taking 101 RTTs rather than 100 RTTs (a
relative difference of only 1%), suddenly the difference between 1 RTT and 2 RTTs is significant—a 100%
increase. In other words, latency, rather than throughput, starts to dominate our thinking about network
design.

Perhaps the best way to understand the relationship between throughput and latency is to return to basics.

42 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

The effective end-to-end throughput that can be achieved over a network is given by the simple relationship

Throughput = TransferSize / TransferTime

where TransferTime includes not only the elements of one-way identified earlier in this section, but also any
additional time spent requesting or setting up the transfer. Generally, we represent this relationship as

TransferTime = RTT + 1/Bandwidth x TransferSize

We use in this calculation to account for a request message being sent across the network and the data being
sent back. For example, consider a situation where a user wants to fetch a 1-MB file across a 1-Gbps with a
round-trip time of 100 ms. This includes both the transmit time for 1 MB (1 / 1 Gbps × 1 MB = 8 ms) and
the 100-ms RTT, for a total transfer time of 108 ms. This means that the effective throughput will be

1 MB / 108 ms = 74.1 Mbps

not 1 Gbps. Clearly, transferring a larger amount of data will help improve the effective throughput, where
in the limit an infinitely large transfer size will cause the effective throughput to approach the network
bandwidth. On the other hand, having to endure more than 1 RTT—for example, to retransmit missing
packets—will hurt the effective throughput for any transfer of finite size and will be most noticeable for
small transfers.

1.5.4 Application Performance Needs

The discussion in this section has taken a network-centric view of performance; that is, we have talked
in terms of what a given link or channel will support. The unstated assumption has been that application
programs have simple needs—they want as much bandwidth as the network can provide. This is certainly
true of the aforementioned digital library program that is retrieving a 250-MB image; the more bandwidth
that is available, the faster the program will be able to return the image to the user.

However, some applications are able to state an upper limit on how much bandwidth they need. Video
applications are a prime example. Suppose one wants to stream a video that is one quarter the size of a
standard TV screen; that is, it has a resolution of 352 by 240 pixels. If each pixel is represented by 24 bits of
information, as would be the case for 24-bit color, then the size of each frame would be (352 × 240 × 24) / 8
= 247.5 KB If the application needs to support a frame rate of 30 frames per second, then it might request a
throughput rate of 75 Mbps. The ability of the network to provide more bandwidth is of no interest to such
an application because it has only so much data to transmit in a given period of time.

Unfortunately, the situation is not as simple as this example suggests. Because the difference between any
two adjacent frames in a video stream is often small, it is possible to compress the video by transmitting
only the differences between adjacent frames. Each frame can also be compressed because not all the detail
in a picture is readily perceived by a human eye. The compressed video does not flow at a constant rate,
but varies with time according to factors such as the amount of action and detail in the picture and the
compression algorithm being used. Therefore, it is possible to say what the average bandwidth requirement
will be, but the instantaneous rate may be more or less.

The key issue is the time interval over which the average is computed. Suppose that this example video
application can be compressed down to the point that it needs only 2 Mbps, on average. If it transmits 1
megabit in a 1-second interval and 3 megabits in the following 1-second interval, then over the 2-second
interval it is transmitting at an average rate of 2 Mbps; however, this will be of little consolation to a channel

1.5. Performance 43

Computer Networks: A Systems Approach, Release Version 6.1

that was engineered to support no more than 2 megabits in any one second. Clearly, just knowing the average
bandwidth needs of an application will not always suffice.

Generally, however, it is possible to put an upper bound on how large a burst an application like this is
likely to transmit. A burst might be described by some peak rate that is maintained for some period of time.
Alternatively, it could be described as the number of bytes that can be sent at the peak rate before reverting
to the average rate or some lower rate. If this peak rate is higher than the available channel capacity, then the
excess data will have to be buffered somewhere, to be transmitted later. Knowing how big of a burst might
be sent allows the network designer to allocate sufficient buffer capacity to hold the burst.

Analogous to the way an application’s bandwidth needs can be something other than “all it can get,” an
application’s delay requirements may be more complex than simply “as little delay as possible.” In the case
of delay, it sometimes doesn’t matter so much whether the one-way latency of the network is 100 ms or
500 ms as how much the latency varies from packet to packet. The variation in latency is called jitter.

Consider the situation in which the source sends a packet once every 33 ms, as would be the case for a
video application transmitting frames 30 times a second. If the packets arrive at the destination spaced out
exactly 33 ms apart, then we can deduce that the delay experienced by each packet in the network was
exactly the same. If the spacing between when packets arrive at the destination—sometimes called the
inter-packet gap—is variable, however, then the delay experienced by the sequence of packets must have
also been variable, and the network is said to have introduced jitter into the packet stream, as shown in
Figure 1.20. Such variation is generally not introduced in a single physical link, but it can happen when
packets experience different queuing delays in a multihop packet-switched network. This queuing delay
corresponds to the component of latency defined earlier in this section, which varies with time.

Figure 1.20.: Network-induced jitter.

To understand the relevance of jitter, suppose that the packets being transmitted over the network contain
video frames, and in order to display these frames on the screen the receiver needs to receive a new one
every 33 ms. If a frame arrives early, then it can simply be saved by the receiver until it is time to display
it. Unfortunately, if a frame arrives late, then the receiver will not have the frame it needs in time to update
the screen, and the video quality will suffer; it will not be smooth. Note that it is not necessary to eliminate
jitter, only to know how bad it is. The reason for this is that if the receiver knows the upper and lower bounds
on the latency that a packet can experience, it can delay the time at which it starts playing back the video
(i.e., displays the first frame) long enough to ensure that in the future it will always have a frame to display
when it needs it. The receiver delays the frame, effectively smoothing out the jitter, by storing it in a buffer.

Perspective: Feature Velocity

This chapter introduces some of the stakeholders in computer networks—network designers, application
developers, end users, and network operators—to help motivate the technical requirements that shape how

44 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

networks are designed and built. This presumes all design decisions are purely technical, but of course, that’s
usually not the case. Many other factors, from market forces, to government policy, to ethical considerations,
also influence how networks are designed and built.

Of these, the marketplace is the most influential, and corresponds to the interplay between network oper-
ators (e.g., AT&T, Comcast, Verizon, DT, NTT, China Unicom), network equipment venders (e.g., Cisco,
Juniper, Ericsson, Nokia, Huawei, NEC), application and service providers (e.g., Facebook, Google, Ama-
zon, Microsoft, Apple, Netflix, Spotify), and of course, subscribers and customers (i.e., individuals, but also
enterprises and businesses). The lines between these players are not always crisp, with many companies
playing multiple roles. The most notable example of this are the large cloud providers, who (a) build their
own networking equipment using commodity components, (b) deploy and operate their own networks, and
(c) provide end-user services and applications on top of their networks.

When you account for these other factors in the technical design process, you realize there are a couple of
implicit assumptions in the textbook version of the story that need to be reevaluated. One is that designing
a network is a one-time activity. Build it once and use it forever (modulo hardware upgrades so users can
enjoy the benefits of the latest performance improvements). A second is that the job of building the network
is largely divorced from the job of operating the network. Neither of these assumptions is quite right.

The network’s design is clearly evolving, and we have documented these changes with each new edition of
the textbook over the years. Doing that on a timeline measured in years has historically been good enough,
but anyone that has downloaded and used the latest smartphone app knows how glacially slow anything
measured in years is by today’s standards. Designing for evolution has to be part of the decision making
process.

On the second point, the companies that build networks are almost always the same ones that operate them.
They are collectively known as network operators, and they include the companies listed above. But if we
again look to the cloud for inspiration, we see that develop-and-operate isn’t true just at the company level,
but it is also how the fastest moving cloud companies organize their engineering teams: around the DevOps
model. (If you are unfamiliar with DevOps, we recommend you read Site Reliability Engineering: How
Google Runs Production Systems to see how it is practiced.)

What this all means is that computer networks are now in the midst of a major transformation, with network
operators trying to simultaneously accelerate the pace of innovation (sometimes known as feature velocity)
and yet continue to offer a reliable service (preserve stability). And they are increasingly doing this by
adopting the best practices of cloud providers, which can be summarized as having two major themes:
(1) take advantage of commodity hardware and move all intelligence into software, and (2) adopt agile
engineering processes that break down barriers between development and operations.

This transformation is sometimes called the “cloudification” or “softwarization” of the network, and while
the Internet has always had a robust software ecosystem, it has historically been limited to the applications
running on top of the network (e.g., using the Socket API described in Section 1.4). What’s changed is
that today these same cloud-inspired engineering practices are being applied to the internals of the network.
This new approach, known as Software Defined Networks (SDN), is a game changer, not so much in terms
of how we address the fundamental technical challenges of framing, routing, fragmentation/reassembly,
packet scheduling, congestion control, security, and so on, but in terms of how rapidly the network evolves
to support new features.

This transformation is so important that we take it up again in the Perspective section at the end of each
chapter. As these discussions will explore, what happens in the networking industry is partly about tech-
nology, but also partly about many other non-technical factors, all of which is a testament to how deeply

1.5. Performance 45

Computer Networks: A Systems Approach, Release Version 6.1

embedded the Internet is in our lives.

Broader Perspective

To continue reading about the cloudification of the Internet, see Perspective: Race to the Edge.

To learn more about DevOps, we recommend: Site Reliability Engineering: How Google Runs Production
Systems, 2016.

46 Chapter 1. Foundation

https://www.amazon.com/Site-Reliability-Engineering-Production-Systems/dp/149192912X/ref=pd_bxgy_14_img_2/131-5109792-2268338?_encoding=UTF8&pd_rd_i=149192912X&pd_rd_r=4b77155f-234d-11e9-944e-278ce23a35b5&pd_rd_w=qIfxg&pd_rd_wg=12dE2&pf_rd_p=6725dbd6-9917-451d-beba-16af7874e407&pf_rd_r=5GN656H9VEG4WEVGB728&psc=1&refRID=5GN656H9VEG4WEVGB728
https://www.amazon.com/Site-Reliability-Engineering-Production-Systems/dp/149192912X/ref=pd_bxgy_14_img_2/131-5109792-2268338?_encoding=UTF8&pd_rd_i=149192912X&pd_rd_r=4b77155f-234d-11e9-944e-278ce23a35b5&pd_rd_w=qIfxg&pd_rd_wg=12dE2&pf_rd_p=6725dbd6-9917-451d-beba-16af7874e407&pf_rd_r=5GN656H9VEG4WEVGB728&psc=1&refRID=5GN656H9VEG4WEVGB728

CHAPTER

TWO

DIRECT LINKS

It is a mistake to look too far ahead. Only one link in the chain of destiny can be handled at a
time.

—Winston Churchill

Problem: Connecting to a Network

In Chapter 1 we saw that networks consist of links interconnecting nodes. One of the fundamental problems
we face is how to connect two nodes together. We also introduced the “cloud” abstraction to represent a
network without revealing all of its internal complexities. So we also need to address the similar problem
of connecting a host to a cloud. This, in effect, is the problem every Internet Service Provider (ISP) faces
when it wants to connect a new customer to its network.

Whether we want to construct a trivial two-node network with one link or connect the one-billionth host to an
existing network like the Internet, we need to address a common set of issues. First, we need some physical
medium over which to make the connection. The medium may be a length of wire, a piece of optical fiber,
or some less tangible medium (such as air) through which electromagnetic radiation (e.g., radio waves) can
be transmitted. It may cover a small area (e.g., an office building) or a wide area (e.g., transcontinental).

Connecting two nodes with a suitable medium is only the first step, however. Five additional problems
must be addressed before the nodes can successfully exchange packets, and once addressed, we will have
provided Layer 2 (L2) connectivity (using terminology from the OSI architecture).

The first is encoding bits onto the transmission medium so that they can be understood by a receiving node.
Second is the matter of delineating the sequence of bits transmitted over the link into complete messages
that can be delivered to the end node. This is the framing problem, and the messages delivered to the end
hosts are often called frames (or sometimes packets). Third, because frames are sometimes corrupted during
transmission, it is necessary to detect these errors and take the appropriate action; this is the error detection
problem. The fourth issue is making a link appear reliable in spite of the fact that it corrupts frames from
time to time. Finally, in those cases where the link is shared by multiple hosts—as is often the case with
wireless links, for example—it is necessary to mediate access to this link. This is the media access control
problem.

Although these five issues—encoding, framing, error detection, reliable delivery, and access mediation—can
be discussed in the abstract, they are very real problems that are addressed in different ways by different
networking technologies. This chapter considers these issues in the context of specific network technolo-
gies: point-to-point fiber links (for which SONET is the prevalent example); Carrier Sense Multiple Access

47

Computer Networks: A Systems Approach, Release Version 6.1

(CSMA) networks (of which classical Ethernet and Wi-Fi are the most famous examples); fiber-to-the home
(for which PON is the dominant standard); and mobile wireless (where 4G is rapidly morphing into 5G).

The goal of this chapter is simultaneously to survey the available link-level technology and to explore these
five fundamental issues. We will examine what it takes to make a wide variety of different physical media
and link technologies useful as building blocks for the construction of robust, scalable networks.

2.1 Technology Landscape

Before diving into the challenges outlined in the problem statement at the beginning of this chapter, it is
helpful to first get a lay of the land, which includes a wide array of link technologies. This is due, in part, to
the diverse circumstances under which users are trying to connect their devices.

At one end of the spectrum, network operators that build global networks must deal with links that span
hundreds or thousands of kilometers connecting refrigerator-sized routers. At the other end of the spectrum,
a typical user encounters links mostly as a way to connect a computer to the existing Internet. Sometimes
this link will be a wireless (Wi-Fi) link in a coffee shop; sometimes it’s an Ethernet link in an office building
or university; sometimes it is a smartphone connected to a cellular network; for an increasingly large slice
of the population it is a fiber optic link provided by an ISP; and many others use some sort of copper wire
or cable to connect. Fortunately, there are many common strategies used on these seemingly disparate types
of links so that they can all be made reliable and useful to higher layers in the protocol stack. This chapter
examines those strategies.

Figure 2.1.: An end-user’s view of the Internet.

Figure 2.1 illustrates various types of links that might be found in today’s Internet. On the left, we see
a variety of end-user devices ranging from smartphones to tablets to full-fledged computers connected by
various means to an ISP. While those links might use different technologies, they all look the same in this
picture—a straight line connecting a device to a router. There are links that connect routers together inside

48 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

the ISP, as well as links that connect the ISP to the “rest of the Internet,” which consists of lots of other ISPs
and the hosts to which they connect.

These links all look alike not just because we’re not very good artists but because part of the role of a
network architecture is to provide a common abstraction of something as complex and diverse as a link. The
idea is that your laptop or smartphone doesn’t have to care what sort of link it is connected to—the only
thing that matters is that it has a link to the Internet. Similarly, a router doesn’t have to care what sort of link
connects it to other routers—it can send a packet on the link with a pretty good expectation that the packet
will reach the other end of the link.

How do we make all these different types of links look sufficiently alike to end users and routers? Essentially,
we have to deal with all the physical limitations and shortcomings of links that exist in the real world. We
sketched out some of these issues in the opening problem statement for this chapter, but before we can
discuss these, we need to first introduce some simple physics. All of these links are made of some physical
material that can propagate signals, such as radio waves or other sorts of electromagnetic radiation, but what
we really want to do is send bits. In the later sections of this chapter, we’ll look at how to encode bits
for transmission on a physical medium, followed by the other issues mentioned above. By the end of this
chapter, we’ll understand how to send complete packets over just about any sort of link, no matter what
physical medium is involved.

One way to characterize links, then, is by the medium they use—typically, copper wire in some form, such as
twisted pair (some Ethernets and landline phones) and coaxial (cable); optical fiber, which is used for both
fiber-to-the-home and many long-distance links in the Internet’s backbone; or air/free space for wireless
links.

Another important link characteristic is the frequency, measured in hertz, with which the electromagnetic
waves oscillate. The distance between a pair of adjacent maxima or minima of a wave, typically measured in
meters, is called the wave’s wavelength. Since all electromagnetic waves travel at the speed of light (which in
turn depends on the medium), that speed divided by the wave’s frequency is equal to its wavelength. We have
already seen the example of a voice-grade telephone line, which carries continuous electromagnetic signals
ranging between 300 Hz and 3300 Hz; a 300-Hz wave traveling through copper would have a wavelength of

SpeedOfLightInCopper / Frequency

= 2/3 × 3 × 108/300

= 667 × 103 𝑚𝑒𝑡𝑒𝑟𝑠

Generally, electromagnetic waves span a much wider range of frequencies, ranging from radio waves, to
infrared light, to visible light, to x-rays and gamma rays. Figure 2.2 depicts the electromagnetic spectrum
and shows which media are commonly used to carry which frequency bands.

What Figure 2.2 doesn’t show is where the cellular network fits in. This is a bit complicated because the
specific frequency bands that are licensed for cellular networks vary around the world, and even further com-
plicated by the fact that network operators often simultaneously support both old/legacy technologies and
new/next-generation technologies, each of which occupies a different frequency band. The high-level sum-
mary is that traditional cellular technologies range from 700-MHz to 2400-MHz, with new mid-spectrum
allocations now happening at 6-GHz, and millimeter-wave (mmWave) allocations opening above 24-GHz.
This mmWave band is likely to become an important part of the 5G mobile network.

So far we understand a link to be a physical medium carrying signals in the form of electromagnetic waves.
Such links provide the foundation for transmitting all sorts of information, including the kind of data we

2.1. Technology Landscape 49

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.2.: Electromagnetic spectrum.

are interested in transmitting—binary data (1s and 0s). We say that the binary data is encoded in the signal.
The problem of encoding binary data onto electromagnetic signals is a complex topic. To help make the
topic more manageable, we can think of it as being divided into two layers. The lower layer is concerned
with modulation—varying the frequency, amplitude, or phase of the signal to effect the transmission of
information. A simple example of modulation is to vary the power (amplitude) of a single wavelength.
Intuitively, this is equivalent to turning a light on and off. Because the issue of modulation is secondary
to our discussion of links as a building block for computer networks, we simply assume that it is possible
to transmit a pair of distinguishable signals—think of them as a “high” signal and a “low” signal—and we
consider only the upper layer, which is concerned with the much simpler problem of encoding binary data
onto these two signals. The next section discusses such encodings.

Another way to classify links is in terms of how they are used. Various economic and deployment issues tend
to influence where different link types are found. Most consumers interact with the Internet either through
wireless networks (which they encounter in coffee shops, airports, universities, etc.) or through so-called
last-mile links (or alternatively, access networks) provided by an ISP, as illustrated in Figure 2.1. These
link types are summarized in Table 2.1. They typically are chosen because they are cost-effective ways of
reaching millions of consumers. DSL (Digital Subscriber Line), for example, is an older technology that was
deployed over the existing twisted pair copper wires that already existed for plain old telephone services;
G.Fast is a copper-based technology typically used within multi-dwelling apartment buildings, and PON
(Passive Optical Network) is a newer technology that is commonly used to connect homes and businesses
over recently deployed fiber.

Table 2.1.: Common services available for the last-mile connection
to your home.

Service Bandwidth
DSL (copper) up to 100 Mbps
G.Fast (copper) up to 1 Gbps
PON (optical) up to 10 Gbps

And of course there is also the mobile or cellular network (also referred to as 4G, but which is rapidly
evolving into 5G) that connects our mobile devices to the Internet. This technology can also serve as the

50 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

sole Internet connection into our homes or offices, but comes with the added benefit of allowing us to
maintain Internet connectivity while moving from place to place.

These example technologies are common options for the last-mile connection to your home or business, but
they are not sufficient for building a complete network from scratch. To do that, you’ll also need some long-
distance backbone links to interconnect cities. Modern backbone links are almost exclusively fiber today,
and they typically use a technology called SONET (Synchronous Optical Network), which was originally
developed to meet the demanding management requirements of telephone carriers.

Finally, in addition to last-mile, backbone, and mobile links, there are the links that you find inside a building
or a campus—generally referred to as local area networks (LANs). Ethernet, and its wireless cousin Wi-Fi,
are the dominant technologies in this space.

This survey of link types is by no means exhaustive, but it should have given you a taste of the diversity
of link types that exist and some of the reasons for that diversity. In the coming sections, we will see how
networking protocols can take advantage of that diversity and present a consistent view of the network to
higher layers in spite of all the low-level complexity and economic factors.

2.2 Encoding

The first step in turning nodes and links into usable building blocks is to understand how to connect them in
such a way that bits can be transmitted from one node to the other. As mentioned in the preceding section,
signals propagate over physical links. The task, therefore, is to encode the binary data that the source node
wants to send into the signals that the links are able to carry and then to decode the signal back into the
corresponding binary data at the receiving node. We ignore the details of modulation and assume we are
working with two discrete signals: high and low. In practice, these signals might correspond to two different
voltages on a copper-based link, two different power levels on an optical link, or two different amplitudes
on a radio transmission.

Most of the functions discussed in this chapter are performed by a network adaptor—a piece of hardware
that connects a node to a link. The network adaptor contains a signalling component that actually encodes
bits into signals at the sending node and decodes signals into bits at the receiving node. Thus, as illustrated
in Figure 2.3, signals travel over a link between two signalling components, and bits flow between network
adaptors.

Figure 2.3.: Signals travel between signalling components; bits flow between adaptors.

Let’s return to the problem of encoding bits onto signals. The obvious thing to do is to map the data value 1
onto the high signal and the data value 0 onto the low signal. This is exactly the mapping used by an encoding
scheme called, cryptically enough, non-return to zero (NRZ). For example, Figure 2.4 schematically depicts
the NRZ-encoded signal (bottom) that corresponds to the transmission of a particular sequence of bits (top).

2.2. Encoding 51

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.4.: NRZ encoding of a bit stream.

The problem with NRZ is that a sequence of several consecutive 1s means that the signal stays high on the
link for an extended period of time; similarly, several consecutive 0s means that the signal stays low for a
long time. There are two fundamental problems caused by long strings of 1s or 0s. The first is that it leads
to a situation known as baseline wander. Specifically, the receiver keeps an average of the signal it has
seen so far and then uses this average to distinguish between low and high signals. Whenever the signal is
significantly lower than this average, the receiver concludes that it has just seen a 0; likewise, a signal that
is significantly higher than the average is interpreted to be a 1. The problem, of course, is that too many
consecutive 1s or 0s cause this average to change, making it more difficult to detect a significant change in
the signal.

The second problem is that frequent transitions from high to low and vice versa are necessary to enable
clock recovery. Intuitively, the clock recovery problem is that both the encoding and decoding processes are
driven by a clock—every clock cycle the sender transmits a bit and the receiver recovers a bit. The sender’s
and the receiver’s clocks have to be precisely synchronized in order for the receiver to recover the same bits
the sender transmits. If the receiver’s clock is even slightly faster or slower than the sender’s clock, then it
does not correctly decode the signal. You could imagine sending the clock to the receiver over a separate
wire, but this is typically avoided because it makes the cost of cabling twice as high. So, instead, the receiver
derives the clock from the received signal—the clock recovery process. Whenever the signal changes, such
as on a transition from 1 to 0 or from 0 to 1, then the receiver knows it is at a clock cycle boundary, and it
can resynchronize itself. However, a long period of time without such a transition leads to clock drift. Thus,
clock recovery depends on having lots of transitions in the signal, no matter what data is being sent.

One approach that addresses this problem, called non-return to zero inverted (NRZI), has the sender make
a transition from the current signal to encode a 1 and stay at the current signal to encode a 0. This solves
the problem of consecutive 1s, but obviously does nothing for consecutive 0s. NRZI is illustrated in Figure
2.5. An alternative, called Manchester encoding, does a more explicit job of merging the clock with the
signal by transmitting the exclusive OR of the NRZ-encoded data and the clock. (Think of the local clock
as an internal signal that alternates from low to high; a low/high pair is considered one clock cycle.) The
Manchester encoding is also illustrated in Figure 2.5. Observe that the Manchester encoding results in 0
being encoded as a low-to-high transition and 1 being encoded as a high-to-low transition. Because both 0s
and 1s result in a transition to the signal, the clock can be effectively recovered at the receiver. (There is also
a variant of the Manchester encoding, called Differential Manchester, in which a 1 is encoded with the first
half of the signal equal to the last half of the previous bit’s signal and a 0 is encoded with the first half of the
signal opposite to the last half of the previous bit’s signal.)

The problem with the Manchester encoding scheme is that it doubles the rate at which signal transitions are
made on the link, which means that the receiver has half the time to detect each pulse of the signal. The rate
at which the signal changes is called the link’s baud rate. In the case of the Manchester encoding, the bit
rate is half the baud rate, so the encoding is considered only 50% efficient. Keep in mind that if the receiver
had been able to keep up with the faster baud rate required by the Manchester encoding in Figure 2.5, then
both NRZ and NRZI could have been able to transmit twice as many bits in the same time period.

52 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.5.: Different encoding strategies.

Note that bit rate isn’t necessarily less than or equal to the baud rate, as the Manchester encoding suggests.
If the modulation scheme is able to utilize (and recognize) four different signals, as opposed to just two
(e.g., “high” and “low”), then it is possible to encode two bits into each clock interval, resulting in a bit
rate that is twice the baud rate. Similarly, being able to modulate among eight different signals means being
able to transmit three bits per clock interval. In general, it is important to keep in mind we have over-
simplified modulation, which is much more sophisticated than transmitting “high” and “low” signals. It is
not uncommon to vary a combination of a signal’s phase and amplitude, making it possible to encode 16 or
even 64 different patterns (often dalled symbols) during each clock interval. QAM (Quadrature Amplitude
Modulation) is widely used example of such a modulation scheme.

A final encoding that we consider, called 4B/5B, attempts to address the inefficiency of the Manchester
encoding without suffering from the problem of having extended durations of high or low signals. The idea
of 4B/5B is to insert extra bits into the bit stream so as to break up long sequences of 0s or 1s. Specifically,
every 4 bits of actual data are encoded in a 5-bit code that is then transmitted to the receiver; hence, the
name 4B/5B. The 5-bit codes are selected in such a way that each one has no more than one leading 0 and
no more than two trailing 0s. Thus, when sent back-to-back, no pair of 5-bit codes results in more than three
consecutive 0s being transmitted. The resulting 5-bit codes are then transmitted using the NRZI encoding,
which explains why the code is only concerned about consecutive 0s—NRZI already solves the problem of
consecutive 1s. Note that the 4B/5B encoding results in 80% efficiency.

2.2. Encoding 53

Computer Networks: A Systems Approach, Release Version 6.1

Table 2.2.: 4B/5B encoding.
4-bit Data Symbol 5-bit Code
0000 11110
0001 01001
0010 10100
0011 10101
0100 01010
0101 01011
0110 01110
0111 01111
1000 10010
1001 10011
1010 10110
1011 10111
1100 11010
1101 11011
1110 11100
1111 11101

Table 2.2 gives the 5-bit codes that correspond to each of the 16 possible 4-bit data symbols. Notice that
since 5 bits are enough to encode 32 different codes, and we are using only 16 of these for data, there are
16 codes left over that we can use for other purposes. Of these, code 11111 is used when the line is idle,
code 00000 corresponds to when the line is dead, and 00100 is interpreted to mean halt. Of the remaining
13 codes, 7 of them are not valid because they violate the “one leading 0, two trailing 0s,” rule, and the other
6 represent various control symbols. Some of the framing protocols described later in this chapter make use
of these control symbols.

2.3 Framing

Now that we have seen how to transmit a sequence of bits over a point-to-point link—from adaptor to adap-
tor—let’s consider the scenario in Figure 2.6. Recall from Chapter 1 that we are focusing on packet-switched
networks, which means that blocks of data (called frames at this level), not bit streams, are exchanged be-
tween nodes. It is the network adaptor that enables the nodes to exchange frames. When node A wishes to
transmit a frame to node B, it tells its adaptor to transmit a frame from the node’s memory. This results in
a sequence of bits being sent over the link. The adaptor on node B then collects together the sequence of
bits arriving on the link and deposits the corresponding frame in B’s memory. Recognizing exactly what set
of bits constitutes a frame—that is, determining where the frame begins and ends—is the central challenge
faced by the adaptor.

There are several ways to address the framing problem. This section uses three different protocols to illus-
trate the various points in the design space. Note that while we discuss framing in the context of point-to-
point links, the problem is a fundamental one that must also be addressed in multiple-access networks like
Ethernet and Wi-Fi.

54 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.6.: Bits flow between adaptors, frames between hosts.

2.3.1 Byte-Oriented Protocols (PPP)

One of the oldest approaches to framing—it has its roots in connecting terminals to mainframes—is to view
each frame as a collection of bytes (characters) rather than a collection of bits. Early examples of such byte-
oriented protocols are the Binary Synchronous Communication (BISYNC) protocol developed by IBM in
the late 1960s, and the Digital Data Communication Message Protocol (DDCMP) used in Digital Equipment
Corporation’s DECNET. (Once upon a time, large computer companies like IBM and DEC also built private
networks for their customers.) The widely used Point-to-Point Protocol (PPP) is a recent example of this
approach.

At a high level, there are two approaches to byte-oriented framing. The first is to use special characters
known as sentinel characters to indicate where frames start and end. The idea is to denote the beginning
of a frame by sending a special SYN (synchronization) character. The data portion of the frame is then
sometimes contained between two more special characters: STX (start of text) and ETX (end of text).
BISYNC used this approach. The problem with the sentinel approach, of course, is that one of the special
characters might appear in the data portion of the frame. The standard way to overcome this problem by
“escaping” the character by preceding it with a DLE (data-link-escape) character whenever it appears in the
body of a frame; the DLE character is also escaped (by preceding it with an extra DLE) in the frame body.
(C programmers may notice that this is analogous to the way a quotation mark is escaped by the backslash
when it occurs inside a string.) This approach is often called character stuffing because extra characters are
inserted in the data portion of the frame.

The alternative to detecting the end of a frame with a sentinel value is to include the number of bytes in the
frame at the beginning of the frame, in the frame header. DDCMP used this approach. One danger with
this approach is that a transmission error could corrupt the count field, in which case the end of the frame
would not be correctly detected. (A similar problem exists with the sentinel-based approach if the ETX field
becomes corrupted.) Should this happen, the receiver will accumulate as many bytes as the bad count field
indicates and then use the error detection field to determine that the frame is bad. This is sometimes called
a framing error. The receiver will then wait until it sees the next SYN character to start collecting the bytes
that make up the next frame. It is therefore possible that a framing error will cause back-to-back frames to
be incorrectly received.

The Point-to-Point Protocol (PPP), which is commonly used to carry Internet Protocol packets over various
sorts of point-to-point links, uses sentinels and character stuffing. The format for a PPP frame is given in
Figure 2.7.

This figure is the first of many that you will see in this book that are used to illustrate frame or packet

2.3. Framing 55

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.7.: PPP frame format.

formats, so a few words of explanation are in order. We show a packet as a sequence of labeled fields.
Above each field is a number indicating the length of that field in bits. Note that the packets are transmitted
beginning with the leftmost field.

The special start-of-text character, denoted as the Flag field is 01111110. The Address and Control
fields usually contain default values and so are uninteresting. The (Protocol) field is used for demultiplexing;
it identifies the high-level protocol, such as IP. The frame payload size can be negotiated, but it is 1500 bytes
by default. The Checksum field is either 2 (by default) or 4 bytes long. Note that despite its common name,
this field is actually a CRC and not a checksum (as described in the next section).

The PPP frame format is unusual in that several of the field sizes are negotiated rather than fixed. This
negotiation is conducted by a protocol called the Link Control Protocol (LCP). PPP and LCP work in
tandem: LCP sends control messages encapsulated in PPP frames—such messages are denoted by an LCP
identifier in the PPP (Protocol) field—and then turns around and changes PPP’s frame format based on the
information contained in those control messages. LCP is also involved in establishing a link between two
peers when both sides detect that communication over the link is possible (e.g., when each optical receiver
detects an incoming signal from the fiber to which it connects).

2.3.2 Bit-Oriented Protocols (HDLC)

Unlike byte-oriented protocols, a bit-oriented protocol is not concerned with byte boundaries—it simply
views the frame as a collection of bits. These bits might come from some character set, such as ASCII;
they might be pixel values in an image; or they could be instructions and operands from an executable file.
The Synchronous Data Link Control (SDLC) protocol developed by IBM is an example of a bit-oriented
protocol; SDLC was later standardized by the ISO as the High-Level Data Link Control (HDLC) protocol.
In the following discussion, we use HDLC as an example; its frame format is given in Figure 2.8.

HDLC denotes both the beginning and the end of a frame with the distinguished bit sequence 01111110.
This sequence is also transmitted during any times that the link is idle so that the sender and receiver can
keep their clocks synchronized. In this way, both protocols essentially use the sentinel approach. Because
this sequence might appear anywhere in the body of the frame—in fact, the bits 01111110might cross byte
boundaries—bit-oriented protocols use the analog of the DLE character, a technique known as bit stuffing.

Figure 2.8.: HDLC frame format.

Bit stuffing in the HDLC protocol works as follows. On the sending side, any time five consecutive 1s
have been transmitted from the body of the message (i.e., excluding when the sender is trying to transmit the
distinguished 01111110 sequence), the sender inserts a 0 before transmitting the next bit. On the receiving

56 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

side, should five consecutive 1s arrive, the receiver makes its decision based on the next bit it sees (i.e., the
bit following the five 1s). If the next bit is a 0, it must have been stuffed, and so the receiver removes it. If
the next bit is a 1, then one of two things is true: Either this is the end-of-frame marker or an error has been
introduced into the bit stream. By looking at the next bit, the receiver can distinguish between these two
cases. If it sees a 0 (i.e., the last 8 bits it has looked at are 01111110), then it is the end-of-frame marker;
if it sees a 1 (i.e., the last 8 bits it has looked at are 01111111), then there must have been an error and the
whole frame is discarded. In the latter case, the receiver has to wait for the next 01111110 before it can
start receiving again, and, as a consequence, there is the potential that the receiver will fail to receive two
consecutive frames. Obviously, there are still ways that framing errors can go undetected, such as when an
entire spurious end-of-frame pattern is generated by errors, but these failures are relatively unlikely. Robust
ways of detecting errors are discussed in a later section.

An interesting characteristic of bit stuffing, as well as character stuffing, is that the size of a frame is de-
pendent on the data that is being sent in the payload of the frame. It is in fact not possible to make all
frames exactly the same size, given that the data that might be carried in any frame is arbitrary. (To convince
yourself of this, consider what happens if the last byte of a frame’s body is the ETX character.) A form of
framing that ensures that all frames are the same size is described in the next subsection.

2.3.3 Clock-Based Framing (SONET)

A third approach to framing is exemplified by the Synchronous Optical Network (SONET) standard. For
lack of a widely accepted generic term, we refer to this approach simply as clock-based framing. SONET
was first proposed by Bell Communications Research (Bellcore), and then developed under the American
National Standards Institute (ANSI) for digital transmission over optical fiber; it has since been adopted by
the ITU-T. SONET has been for many years the dominant standard for long-distance transmission of data
over optical networks.

An important point to make about SONET before we go any further is that the full specification is substan-
tially larger than this book. Thus, the following discussion will necessarily cover only the high points of the
standard. Also, SONET addresses both the framing problem and the encoding problem. It also addresses
a problem that is very important for phone companies—the multiplexing of several low-speed links onto
one high-speed link. (In fact, much of SONET’s design reflects the fact that phone companies have to be
concerned with multiplexing large numbers of the 64-kbps channels that traditionally are used for telephone
calls.) We begin with SONET’s approach to framing and discuss the other issues following.

As with the previously discussed framing schemes, a SONET frame has some special information that tells
the receiver where the frame starts and ends; however, that is about as far as the similarities go. Notably,
no bit stuffing is used, so that a frame’s length does not depend on the data being sent. So the question to
ask is “How does the receiver know where each frame starts and ends?” We consider this question for the
lowest-speed SONET link, which is known as STS-1 and runs at 51.84 Mbps. An STS-1 frame is shown
in Figure 2.9. It is arranged as 9 rows of 90 bytes each, and the first 3 bytes of each row are overhead,
with the rest being available for data that is being transmitted over the link. The first 2 bytes of the frame
contain a special bit pattern, and it is these bytes that enable the receiver to determine where the frame starts.
However, since bit stuffing is not used, there is no reason why this pattern will not occasionally turn up in the
payload portion of the frame. To guard against this, the receiver looks for the special bit pattern consistently,
hoping to see it appearing once every 810 bytes, since each frame is 9 × 90 = 810 bytes long. When the
special pattern turns up in the right place enough times, the receiver concludes that it is in sync and can then
interpret the frame correctly.

2.3. Framing 57

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.9.: A SONET STS-1 frame.

One of the things we are not describing due to the complexity of SONET is the detailed use of all the other
overhead bytes. Part of this complexity can be attributed to the fact that SONET runs across the carrier’s
optical network, not just over a single link. (Recall that we are glossing over the fact that the carriers
implement a network, and we are instead focusing on the fact that we can lease a SONET link from them
and then use this link to build our own packet-switched network.) Additional complexity comes from the
fact that SONET provides a considerably richer set of services than just data transfer. For example, 64 kbps
of a SONET link’s capacity is set aside for a voice channel that is used for maintenance.

The overhead bytes of a SONET frame are encoded using NRZ, the simple encoding described in the pre-
vious section where 1s are high and 0s are low. However, to ensure that there are plenty of transitions to
allow the receiver to recover the sender’s clock, the payload bytes are scrambled. This is done by calculating
the exclusive OR (XOR) of the data to be transmitted and by the use of a well-known bit pattern. The bit
pattern, which is 127 bits long, has plenty of transitions from 1 to 0, so that XORing it with the transmitted
data is likely to yield a signal with enough transitions to enable clock recovery.

SONET supports the multiplexing of multiple low-speed links in the following way. A given SONET link
runs at one of a finite set of possible rates, ranging from 51.84 Mbps (STS-1) to 39,813,120 Mbps (STS-
768).1 Note that all of these rates are integer multiples of STS-1. The significance for framing is that a
single SONET frame can contain subframes for multiple lower-rate channels. A second related feature is
that each frame is 125 𝜇s long. This means that at STS-1 rates, a SONET frame is 810 bytes long, while
at STS-3 rates, each SONET frame is 2430 bytes long. Notice the synergy between these two features: 3 ×
810 = 2430, meaning that three STS-1 frames fit exactly in a single STS-3 frame.

Intuitively, the STS-N frame can be thought of as consisting of N STS-1 frames, where the bytes from these
frames are interleaved; that is, a byte from the first frame is transmitted, then a byte from the second frame
is transmitted, and so on. The reason for interleaving the bytes from each STS-N frame is to ensure that the
bytes in each STS-1 frame are evenly paced; that is, bytes show up at the receiver at a smooth 51 Mbps,
rather than all bunched up during one particular 1/𝑁 𝑡ℎ of the 125-𝜇s interval.

Although it is accurate to view an STS-N signal as being used to multiplex N STS-1 frames, the payload
1 STS stands for Synchronous Transport Signal, which is how SONET talks about frames. There is a parallel term—Optical

Carrier (OC)—that is used to talk about the underlying optical signal that carries SONET frames. We say these two terms are
parallel because STS-3 and OC-3, to use a concrete example, both imply a transmission rate of 155.52 Mbps. Since we’re focused
on framing here, we will stick with STS, but it is more likely that you will hear someone refer to an optical link by its “OC” name.

58 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.10.: Three STS-1 frames multiplexed onto one STS-3c frame.

from these STS-1 frames can be linked together to form a larger STS-N payload; such a link is denoted STS-
Nc (for concatenated). One of the fields in the overhead is used for this purpose. Figure 2.10 schematically
depicts concatenation in the case of three STS-1 frames being concatenated into a single STS-3c frame. The
significance of a SONET link being designated as STS-3c rather than STS-3 is that, in the former case, the
user of the link can view it as a single 155.25-Mbps pipe, whereas an STS-3 should really be viewed as three
51.84-Mbps links that happen to share a fiber.

Figure 2.11.: SONET frames out of phase.

Finally, the preceding description of SONET is overly simplistic in that it assumes that the payload for each
frame is completely contained within the frame. (Why wouldn’t it be?) In fact, we should view the STS-1
frame just described as simply a placeholder for the frame, where the actual payload may float across frame
boundaries. This situation is illustrated in Figure 2.11. Here we see both the STS-1 payload floating across
two STS-1 frames and the payload shifted some number of bytes to the right and, therefore, wrapped around.
One of the fields in the frame overhead points to the beginning of the payload. The value of this capability
is that it simplifies the task of synchronizing the clocks used throughout the carriers’ networks, which is
something that carriers spend a lot of their time worrying about.

2.4 Error Detection

As discussed in Chapter 1, bit errors are sometimes introduced into frames. This happens, for example,
because of electrical interference or thermal noise. Although errors are rare, especially on optical links,
some mechanism is needed to detect these errors so that corrective action can be taken. Otherwise, the end

2.4. Error Detection 59

Computer Networks: A Systems Approach, Release Version 6.1

user is left wondering why the C program that successfully compiled just a moment ago now suddenly has
a syntax error in it, when all that happened in the interim is that it was copied across a network file system.

There is a long history of techniques for dealing with bit errors in computer systems, dating back to at
least the 1940s. Hamming and Reed-Solomon codes are two notable examples that were developed for
use in punch card readers, when storing data on magnetic disks, and in early core memories. This section
describes some of the error detection techniques most commonly used in networking.

Detecting errors is only one part of the problem. The other part is correcting errors once detected. Two
basic approaches can be taken when the recipient of a message detects an error. One is to notify the sender
that the message was corrupted so that the sender can retransmit a copy of the message. If bit errors are
rare, then in all probability the retransmitted copy will be error free. Alternatively, some types of error
detection algorithms allow the recipient to reconstruct the correct message even after it has been corrupted;
such algorithms rely on error-correcting codes, discussed below.

One of the most common techniques for detecting transmission errors is a technique known as the cyclic
redundancy check (CRC). It is used in nearly all the link-level protocols discussed in this chapter. This
section outlines the basic CRC algorithm, but before discussing that approach, we first describe the simpler
checksum scheme used by several Internet protocols.

The basic idea behind any error detection scheme is to add redundant information to a frame that can be used
to determine if errors have been introduced. In the extreme, we could imagine transmitting two complete
copies of the data. If the two copies are identical at the receiver, then it is probably the case that both are
correct. If they differ, then an error was introduced into one (or both) of them, and they must be discarded.
This is a rather poor error detection scheme for two reasons. First, it sends 𝑛 redundant bits for an 𝑛-bit
message. Second, many errors will go undetected—any error that happens to corrupt the same bit positions
in the first and second copies of the message. In general, the goal of error detecting codes is to provide a
high probability of detecting errors combined with a relatively low number of redundant bits.

Fortunately, we can do a lot better than this simple scheme. In general, we can provide quite strong error
detection capability while sending only 𝑘 redundant bits for an 𝑛-bit message, where 𝑘 is much smaller than
𝑛. On an Ethernet, for example, a frame carrying up to 12,000 bits (1500 bytes) of data requires only a
32-bit CRC code, or as it is commonly expressed, uses CRC-32. Such a code will catch the overwhelming
majority of errors, as we will see below.

We say that the extra bits we send are redundant because they add no new information to the message.
Instead, they are derived directly from the original message using some well-defined algorithm. Both the
sender and the receiver know exactly what that algorithm is. The sender applies the algorithm to the message
to generate the redundant bits. It then transmits both the message and those few extra bits. When the receiver
applies the same algorithm to the received message, it should (in the absence of errors) come up with the
same result as the sender. It compares the result with the one sent to it by the sender. If they match, it can
conclude (with high likelihood) that no errors were introduced in the message during transmission. If they
do not match, it can be sure that either the message or the redundant bits were corrupted, and it must take
appropriate action—that is, discarding the message or correcting it if that is possible.

One note on the terminology for these extra bits. In general, they are referred to as error-detecting codes. In
specific cases, when the algorithm to create the code is based on addition, they may be called a checksum.
We will see that the Internet checksum is appropriately named: It is an error check that uses a summing
algorithm. Unfortunately, the word checksum is often used imprecisely to mean any form of error-detecting
code, including CRCs. This can be confusing, so we urge you to use the word checksum only to apply to
codes that actually do use addition and to use error-detecting code to refer to the general class of codes

60 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

described in this section.

2.4.1 Internet Checksum Algorithm

Our first approach to error detection is exemplified by the Internet checksum. Although it is not used at the
link level, it nevertheless provides the same sort of functionality as CRCs, so we discuss it here.

The idea behind the Internet checksum is very simple—you add up all the words that are transmitted and
then transmit the result of that sum. The result is the checksum. The receiver performs the same calculation
on the received data and compares the result with the received checksum. If any transmitted data, including
the checksum itself, is corrupted, then the results will not match, so the receiver knows that an error occurred.

You can imagine many different variations on the basic idea of a checksum. The exact scheme used by the
Internet protocols works as follows. Consider the data being checksummed as a sequence of 16-bit integers.
Add them together using 16-bit ones’ complement arithmetic (explained below) and then take the ones’
complement of the result. That 16-bit number is the checksum.

In ones’ complement arithmetic, a negative integer (-x) is represented as the complement of x; that is,
each bit of x is inverted. When adding numbers in ones’ complement arithmetic, a carryout from the most
significant bit needs to be added to the result. Consider, for example, the addition of -5 and -3 in ones’
complement arithmetic on 4-bit integers: +5 is 0101, so -5 is 1010; +3 is 0011, so -3 is 1100. If we add
1010 and 1100, ignoring the carry, we get 0110. In ones’ complement arithmetic, the fact that this operation
caused a carry from the most significant bit causes us to increment the result, giving 0111, which is the ones’
complement representation of -8 (obtained by inverting the bits in 1000), as we would expect.

The following routine gives a straightforward implementation of the Internet’s checksum algorithm. The
count argument gives the length of buf measured in 16-bit units. The routine assumes that buf has
already been padded with 0s to a 16-bit boundary.

u_short
cksum(u_short *buf, int count)
{

register u_long sum = 0;

while (count--)
{

sum += *buf++;
if (sum & 0xFFFF0000)
{

/* carry occurred, so wrap around */
sum &= 0xFFFF;
sum++;

}
}
return ~(sum & 0xFFFF);

}

This code ensures that the calculation uses ones’ complement arithmetic rather than the twos’ complement
that is used in most machines. Note the if statement inside the while loop. If there is a carry into the top
16 bits of sum, then we increment sum just as in the previous example.

2.4. Error Detection 61

Computer Networks: A Systems Approach, Release Version 6.1

Compared to our repetition code, this algorithm scores well for using a small number of redundant
bits—only 16 for a message of any length—but it does not score extremely well for strength of error detec-
tion. For example, a pair of single-bit errors, one of which increments a word and one of which decrements
another word by the same amount, will go undetected. The reason for using an algorithm like this in spite of
its relatively weak protection against errors (compared to a CRC, for example) is simple: This algorithm is
much easier to implement in software. Experience has suggested that a checksum of this form was adequate,
but one reason it is adequate is that this checksum is the last line of defense in an end-to-end protocol. The
majority of errors are picked up by stronger error detection algorithms, such as CRCs, at the link level.

2.4.2 Cyclic Redundancy Check

It should be clear by now that a major goal in designing error detection algorithms is to maximize the
probability of detecting errors using only a small number of redundant bits. Cyclic redundancy checks use
some fairly powerful mathematics to achieve this goal. For example, a 32-bit CRC gives strong protection
against common bit errors in messages that are thousands of bytes long. The theoretical foundation of the
cyclic redundancy check is rooted in a branch of mathematics called finite fields. While this may sound
daunting, the basic ideas can be easily understood.

To start, think of an (n+1)-bit message as being represented by an 𝑛 degree polynomial, that is, a polynomial
whose highest-order term is 𝑥𝑛. The message is represented by a polynomial by using the value of each bit
in the message as the coefficient for each term in the polynomial, starting with the most significant bit to
represent the highest-order term. For example, an 8-bit message consisting of the bits 10011010 corresponds
to the polynomial

𝑀(𝑥) = (1 × 𝑥7) + (0 × 𝑥6) + (0 × 𝑥5) + (1 × 𝑥4) + (1 × 𝑥3) + (0 × 𝑥2) + (1 × 𝑥1) + (0 × 𝑥0)

𝑀(𝑥) = 𝑥7 + 𝑥4 + 𝑥3 + 𝑥1

We can thus think of a sender and a receiver as exchanging polynomials with each other.

For the purposes of calculating a CRC, a sender and receiver have to agree on a divisor polynomial, 𝐶(𝑥).
𝐶(𝑥) is a polynomial of degree 𝑘. For example, suppose 𝐶(𝑥) = 𝑥3+𝑥2+1. In this case, 𝑘 = 3. The answer
to the question “Where did 𝐶(𝑥) come from?” is, in most practical cases, “You look it up in a book.” In fact,
the choice of 𝐶(𝑥) has a significant impact on what types of errors can be reliably detected, as we discuss
below. There are a handful of divisor polynomials that are very good choices for various environments, and
the exact choice is normally made as part of the protocol design. For example, the Ethernet standard uses a
well-known polynomial of degree 32.

When a sender wishes to transmit a message 𝑀(𝑥) that is n+1 bits long, what is actually sent is the (n+1)-bit
message plus 𝑘 bits. We call the complete transmitted message, including the redundant bits, 𝑃 (𝑥). What
we are going to do is contrive to make the polynomial representing 𝑃 (𝑥) exactly divisible by 𝐶(𝑥); we
explain how this is achieved below. If 𝑃 (𝑥) is transmitted over a link and there are no errors introduced
during transmission, then the receiver should be able to divide 𝑃 (𝑥) by 𝐶(𝑥) exactly, leaving a remainder of
zero. On the other hand, if some error is introduced into 𝑃 (𝑥) during transmission, then in all likelihood the
received polynomial will no longer be exactly divisible by 𝐶(𝑥), and thus the receiver will obtain a nonzero
remainder implying that an error has occurred.

It will help to understand the following if you know a little about polynomial arithmetic; it is just slightly
different from normal integer arithmetic. We are dealing with a special class of polynomial arithmetic here,
where coefficients may be only one or zero, and operations on the coefficients are performed using modulo 2

62 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

arithmetic. This is referred to as “polynomial arithmetic modulo 2.” Since this is a networking book, not a
mathematics text, let’s focus on the key properties of this type of arithmetic for our purposes (which we ask
you to accept on faith):

• Any polynomial 𝐵(𝑥) can be divided by a divisor polynomial 𝐶(𝑥) if 𝐵(𝑥) is of higher degree than
𝐶(𝑥).

• Any polynomial 𝐵(𝑥) can be divided once by a divisor polynomial 𝐶(𝑥) if 𝐵(𝑥) is of the same degree
as 𝐶(𝑥).

• The remainder obtained when 𝐵(𝑥) is divided by 𝐶(𝑥) is obtained by performing the exclusive OR
(XOR) operation on each pair of matching coefficients.

For example, the polynomial 𝑥3 + 1 can be divided by 𝑥3 + 𝑥2 + 1 (because they are both of degree 3) and
the remainder would be 0 × 𝑥3 + 1 × 𝑥2 + 0 × 𝑥1 + 0 × 𝑥0 = 𝑥2 (obtained by XORing the coefficients of
each term). In terms of messages, we could say that 1001 can be divided by 1101 and leaves a remainder of
0100. You should be able to see that the remainder is just the bitwise exclusive OR of the two messages.

Now that we know the basic rules for dividing polynomials, we are able to do long division, which is
necessary to deal with longer messages. An example appears below.

Recall that we wanted to create a polynomial for transmission that is derived from the original message
𝑀(𝑥), is 𝑘 bits longer than 𝑀(𝑥), and is exactly divisible by 𝐶(𝑥). We can do this in the following way:

1. Multiply 𝑀(𝑥) by 𝑥𝑘; that is, add 𝑘 zeros at the end of the message. Call this zero-extended message
𝑇 (𝑥).

2. Divide 𝑇 (𝑥) by 𝐶(𝑥) and find the remainder.

3. Subtract the remainder from 𝑇 (𝑥).

It should be obvious that what is left at this point is a message that is exactly divisible by 𝐶(𝑥). We may
also note that the resulting message consists of 𝑀(𝑥) followed by the remainder obtained in step 2, because
when we subtracted the remainder (which can be no more than 𝑘 bits long), we were just XORing it with
the 𝑘 zeros added in step 1. This part will become clearer with an example.

Consider the message 𝑥7 + 𝑥4 + 𝑥3 + 𝑥1, or 10011010. We begin by multiplying by 𝑥3, since our divisor
polynomial is of degree 3. This gives 10011010000. We divide this by 𝐶(𝑥), which corresponds to 1101
in this case. Figure 2.12 shows the polynomial long-division operation. Given the rules of polynomial
arithmetic described above, the long-division operation proceeds much as it would if we were dividing
integers. Thus, in the first step of our example, we see that the divisor 1101 divides once into the first four
bits of the message (1001), since they are of the same degree, and leaves a remainder of 100 (1101 XOR
1001). The next step is to bring down a digit from the message polynomial until we get another polynomial
with the same degree as 𝐶(𝑥), in this case 1001. We calculate the remainder again (100) and continue
until the calculation is complete. Note that the “result” of the long division, which appears at the top of the
calculation, is not really of much interest—it is the remainder at the end that matters.

You can see from the very bottom of Figure 2.12 that the remainder of the example calculation is 101. So
we know that 10011010000 minus 101 would be exactly divisible by 𝐶(𝑥), and this is what we send. The
minus operation in polynomial arithmetic is the logical XOR operation, so we actually send 10011010101.
As noted above, this turns out to be just the original message with the remainder from the long division
calculation appended to it. The recipient divides the received polynomial by 𝐶(𝑥) and, if the result is 0,
concludes that there were no errors. If the result is nonzero, it may be necessary to discard the corrupted

2.4. Error Detection 63

Computer Networks: A Systems Approach, Release Version 6.1

message; with some codes, it may be possible to correct a small error (e.g., if the error affected only one
bit). A code that enables error correction is called an error-correcting code (ECC).

Figure 2.12.: CRC calculation using polynomial long division.

Now we will consider the question of where the polynomial 𝐶(𝑥) comes from. Intuitively, the idea is to
select this polynomial so that it is very unlikely to divide evenly into a message that has errors introduced
into it. If the transmitted message is 𝑃 (𝑥), we may think of the introduction of errors as the addition of
another polynomial 𝐸(𝑥), so the recipient sees 𝑃 (𝑥) + 𝐸(𝑥). The only way that an error could slip by
undetected would be if the received message could be evenly divided by 𝐶(𝑥), and since we know that
𝑃 (𝑥) can be evenly divided by 𝐶(𝑥), this could only happen if 𝐸(𝑥) can be divided evenly by 𝐶(𝑥). The
trick is to pick 𝐶(𝑥) so that this is very unlikely for common types of errors.

One common type of error is a single-bit error, which can be expressed as 𝐸(𝑥) = 𝑥𝑖 when it affects bit
position i. If we select 𝐶(𝑥) such that thefirst and the last term (that is, the 𝑥𝑘 and 𝑥0 terms) are nonzero,
then we already have a two-term polynomial that cannot divide evenly into the one term 𝐸(𝑥). Such a 𝐶(𝑥)
can, therefore, detect all single-bit errors. In general, it is possible to prove that the following types of errors
can be detected by a 𝐶(𝑥) with the stated properties:

• All single-bit errors, as long as the 𝑥𝑘 and 𝑥0 terms have nonzero coefficients

• All double-bit errors, as long as 𝐶(𝑥) has a factor with at least three terms

• Any odd number of errors, as long as 𝐶(𝑥) contains the factor (𝑥 + 1)

We have mentioned that it is possible to use codes that not only detect the presence of errors but also enable
errors to be corrected. Since the details of such codes require yet more complex mathematics than that
required to understand CRCs, we will not dwell on them here. However, it is worth considering the merits
of correction versus detection.

At first glance, it would seem that correction is always better, since with detection we are forced to throw
away the message and, in general, ask for another copy to be transmitted. This uses up bandwidth and may
introduce latency while waiting for the retransmission. However, there is a downside to correction, as it
generally requires a greater number of redundant bits to send an error-correcting code that is as strong (that

64 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

is, able to cope with the same range of errors) as a code that only detects errors. Thus, while error detection
requires more bits to be sent when errors occur, error correction requires more bits to be sent all the time.
As a result, error correction tends to be most useful when (1) errors are quite probable, as they may be, for
example, in a wireless environment, or (2) the cost of retransmission is too high, for example, because of
the latency involved retransmitting a packet over a satellite link.

The use of error-correcting codes in networking is sometimes referred to as forward error correction (FEC)
because the correction of errors is handled “in advance” by sending extra information, rather than waiting
for errors to happen and dealing with them later by retransmission. FEC is commonly used in wireless
networks such as 802.11.

• Any “burst” error (i.e., sequence of consecutive errored bits) for which the length of the burst is less
than 𝑘 bits (Most burst errors of length greater than 𝑘 bits can also be detected.)

Six versions of 𝐶(𝑥) are widely used in link-level protocols. For example, Ethernet uses CRC-32, which is
defined as follows:

• CRC-32 = 𝑥32 + 𝑥26 + 𝑥23 + 𝑥22 + 𝑥16 + 𝑥12 + 𝑥11 + 𝑥10 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥4 + 𝑥2 + 𝑥 + 1

Finally, we note that the CRC algorithm, while seemingly complex, is easily implemented in hardware
using a 𝑘-bit shift register and XOR gates. The number of bits in the shift register equals the degree of the
generator polynomial (𝑘). Figure 2.13 shows the hardware that would be used for the generator 𝑥3 + 𝑥2 + 1
from our previous example. The message is shifted in from the left, beginning with the most significant bit
and ending with the string of 𝑘 zeros that is attached to the message, just as in the long division example.
When all the bits have been shifted in and appropriately XORed, the register contains the remainder—that
is, the CRC (most significant bit on the right). The position of the XOR gates is determined as follows: If
the bits in the shift register are labeled 0 through 𝑘 − 1, left to right, then put an XOR gate in front of bit 𝑛
if there is a term 𝑥𝑛 in the generator polynomial. Thus, we see an XOR gate in front of positions 0 and 2 for
the generator 𝑥3 + 𝑥2 + 𝑥0.

Figure 2.13.: CRC calculation using shift register.

2.5 Reliable Transmission

As we saw in the previous section, frames are sometimes corrupted while in transit, with an error code like
CRC used to detect such errors. While some error codes are strong enough also to correct errors, in practice
the overhead is typically too large to handle the range of bit and burst errors that can be introduced on a
network link. Even when error-correcting codes are used (e.g., on wireless links) some errors will be too
severe to be corrected. As a result, some corrupt frames must be discarded. A link-level protocol that wants
to deliver frames reliably must somehow recover from these discarded (lost) frames.

2.5. Reliable Transmission 65

Computer Networks: A Systems Approach, Release Version 6.1

It’s worth noting that reliability is a function that may be provided at the link level, but many modern
link technologies omit this function. Furthermore, reliable delivery is frequently provided at higher levels,
including both transport and sometimes, the application layer. Exactly where it should be provided is a
matter of some debate and depends on many factors. We describe the basics of reliable delivery here, since
the principles are common across layers, but you should be aware that we’re not just talking about a link-
layer function.

Reliable delivery is usually accomplished using a combination of two fundamental mecha-
nisms—acknowledgments and timeouts. An acknowledgment (ACK for short) is a small control frame
that a protocol sends back to its peer saying that it has received an earlier frame. By control frame we mean
a header without any data, although a protocol can piggyback an ACK on a data frame it just happens to be
sending in the opposite direction. The receipt of an acknowledgment indicates to the sender of the original
frame that its frame was successfully delivered. If the sender does not receive an acknowledgment after
a reasonable amount of time, then it retransmits the original frame. This action of waiting a reasonable
amount of time is called a timeout.

The general strategy of using acknowledgments and timeouts to implement reliable delivery is sometimes
called automatic repeat request (abbreviated ARQ). This section describes three different ARQ algorithms
using generic language; that is, we do not give detailed information about a particular protocol’s header
fields.

2.5.1 Stop-and-Wait

The simplest ARQ scheme is the stop-and-wait algorithm. The idea of stop-and-wait is straightforward:
After transmitting one frame, the sender waits for an acknowledgment before transmitting the next frame. If
the acknowledgment does not arrive after a certain period of time, the sender times out and retransmits the
original frame.

Figure 2.14 illustrates timelines for four different scenarios that result from this basic algorithm. The sending
side is represented on the left, the receiving side is depicted on the right, and time flows from top to bottom.
Figure 2.14(a) shows the situation in which the ACK is received before the timer expires; (b) and (c) show
the situation in which the original frame and the ACK, respectively, are lost; and (d) shows the situation
in which the timeout fires too soon. Recall that by “lost” we mean that the frame was corrupted while in
transit, that this corruption was detected by an error code on the receiver, and that the frame was subsequently
discarded.

The packet timelines shown in this section are examples of a frequently used tool in teaching, explaining, and
designing protocols. They are useful because they capture visually the behavior over time of a distributed
system—something that can be quite hard to analyze. When designing a protocol, you often have to be
prepared for the unexpected—a system crashes, a message gets lost, or something that you expected to
happen quickly turns out to take a long time. These sorts of diagrams can often help us understand what
might go wrong in such cases and thus help a protocol designer be prepared for every eventuality.

There is one important subtlety in the stop-and-wait algorithm. Suppose the sender sends a frame and the
receiver acknowledges it, but the acknowledgment is either lost or delayed in arriving. This situation is
illustrated in timelines (c) and (d) of Figure 2.14. In both cases, the sender times out and retransmits the
original frame, but the receiver will think that it is the next frame, since it correctly received and acknowl-
edged the first frame. This has the potential to cause duplicate copies of a frame to be delivered. To address
this problem, the header for a stop-and-wait protocol usually includes a 1-bit sequence number—that is, the

66 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.14.: Timeline showing four different scenarios for the stop-and-wait algorithm. (a) The ACK is
received before the timer expires; (b) the original frame is lost; (c) the ACK is lost; (d) the timeout fires too
soon.

2.5. Reliable Transmission 67

Computer Networks: A Systems Approach, Release Version 6.1

sequence number can take on the values 0 and 1—and the sequence numbers used for each frame alternate,
as illustrated in Figure 2.15. Thus, when the sender retransmits frame 0, the receiver can determine that it is
seeing a second copy of frame 0 rather than the first copy of frame 1 and therefore can ignore it (the receiver
still acknowledges it, in case the first ACK was lost).

Figure 2.15.: Timeline for stop-and-wait with 1-bit sequence number.

The main shortcoming of the stop-and-wait algorithm is that it allows the sender to have only one outstanding
frame on the link at a time, and this may be far below the link’s capacity. Consider, for example, a 1.5-Mbps
link with a 45-ms round-trip time. This link has a delay × bandwidth product of 67.5 Kb, or approximately
8 KB. Since the sender can send only one frame per RTT, and assuming a frame size of 1 KB, this implies a
maximum sending rate of

Bits-Per-Frame / Time-Per-Frame = 1024 x 8 / 0.045 = 182 kbps

or about one-eighth of the link’s capacity. To use the link fully, then, we’d like the sender to be able to
transmit up to eight frames before having to wait for an acknowledgment.

Key Takeaway

The significance of the delay × bandwidth product is that it represents the amount of data that could be in
transit. We would like to be able to send this much data without waiting for the first acknowledgment. The
principle at work here is often referred to as keeping the pipe full. The algorithms presented in the following
two subsections do exactly this. [Next]

2.5.2 Sliding Window

Consider again the scenario in which the link has a delay × bandwidth product of 8 KB and frames are 1 KB
in size. We would like the sender to be ready to transmit the ninth frame at pretty much the same moment

68 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

that the ACK for the first frame arrives. The algorithm that allows us to do this is called sliding window, and
an illustrative timeline is given in Figure 2.16.

Figure 2.16.: Timeline for the sliding window algorithm.

The Sliding Window Algorithm

The sliding window algorithm works as follows. First, the sender assigns a sequence number, denoted
SeqNum, to each frame. For now, let’s ignore the fact that SeqNum is implemented by a finite-size header
field and instead assume that it can grow infinitely large. The sender maintains three variables: The send
window size, denoted SWS, gives the upper bound on the number of outstanding (unacknowledged) frames
that the sender can transmit; LAR denotes the sequence number of the last acknowledgment received; and
LFS denotes the sequence number of the last frame sent. The sender also maintains the following invariant:

LFS - LAR <= SWS

This situation is illustrated in Figure 2.17.

Figure 2.17.: Sliding window on sender.

When an acknowledgment arrives, the sender moves LAR to the right, thereby allowing the sender to transmit
another frame. Also, the sender associates a timer with each frame it transmits, and it retransmits the frame
should the timer expire before an ACK is received. Notice that the sender has to be willing to buffer up to
SWS frames since it must be prepared to retransmit them until they are acknowledged.

The receiver maintains the following three variables: The receive window size, denoted RWS, gives the upper
bound on the number of out-of-order frames that the receiver is willing to accept; LAF denotes the sequence
number of the largest acceptable frame; and LFR denotes the sequence number of the last frame received.
The receiver also maintains the following invariant:

2.5. Reliable Transmission 69

Computer Networks: A Systems Approach, Release Version 6.1

LAF - LFR <= RWS

This situation is illustrated in Figure 2.18.

Figure 2.18.: Sliding window on receiver.

When a frame with sequence number SeqNum arrives, the receiver takes the following action. If SeqNum
<= LFR or SeqNum > LAF, then the frame is outside the receiver’s window and it is discarded. If LFR
< SeqNum <= LAF, then the frame is within the receiver’s window and it is accepted. Now the receiver
needs to decide whether or not to send an ACK. Let SeqNumToAck denote the largest sequence number not
yet acknowledged, such that all frames with sequence numbers less than or equal to SeqNumToAck have
been received. The receiver acknowledges the receipt of SeqNumToAck, even if higher numbered packets
have been received. This acknowledgment is said to be cumulative. It then sets LFR = SeqNumToAck
and adjusts LAF = LFR + RWS.

For example, suppose LFR = 5 (i.e., the last ACK the receiver sent was for sequence number 5), and RWS
= 4. This implies that LAF = 9. Should frames 7 and 8 arrive, they will be buffered because they are
within the receiver’s window. However, no ACK needs to be sent since frame 6 has yet to arrive. Frames 7
and 8 are said to have arrived out of order. (Technically, the receiver could resend an ACK for frame 5 when
frames 7 and 8 arrive.) Should frame 6 then arrive—perhaps it is late because it was lost the first time and
had to be retransmitted, or perhaps it was simply delayed—the receiver acknowledges frame 8, bumps LFR
to 8, and sets LAF to 12.1 If frame 6 was in fact lost, then a timeout will have occurred at the sender, causing
it to retransmit frame 6.

We observe that when a timeout occurs, the amount of data in transit decreases, since the sender is unable to
advance its window until frame 6 is acknowledged. This means that when packet losses occur, this scheme
is no longer keeping the pipe full. The longer it takes to notice that a packet loss has occurred, the more
severe this problem becomes.

Notice that, in this example, the receiver could have sent a negative acknowledgment (NAK) for frame 6 as
soon as frame 7 arrived. However, this is unnecessary since the sender’s timeout mechanism is sufficient to
catch this situation, and sending NAKs adds additional complexity to the receiver. Also, as we mentioned,
it would have been legitimate to send additional acknowledgments of frame 5 when frames 7 and 8 arrived;
in some cases, a sender can use duplicate ACKs as a clue that a frame was lost. Both approaches help to
improve performance by allowing early detection of packet losses.

Yet another variation on this scheme would be to use selective acknowledgments. That is, the receiver could
acknowledge exactly those frames it has received rather than just the highest numbered frame received in
order. So, in the above example, the receiver could acknowledge the receipt of frames 7 and 8. Giving more
information to the sender makes it potentially easier for the sender to keep the pipe full but adds complexity
to the implementation.

1 While it’s unlikely that a packet could be delayed or arrive out-of-order on a point-to-point link, this same algorithm is used
on multi-hop connections where such delays are possible.

70 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

The sending window size is selected according to how many frames we want to have outstanding on the
link at a given time; SWS is easy to compute for a given delay × bandwidth product. On the other hand,
the receiver can set RWS to whatever it wants. Two common settings are RWS = 1, which implies that the
receiver will not buffer any frames that arrive out of order, and RWS = SWS, which implies that the receiver
can buffer any of the frames the sender transmits. It makes no sense to set RWS > SWS since it’s impossible
for more than SWS frames to arrive out of order.

Finite Sequence Numbers and Sliding Window

We now return to the one simplification we introduced into the algorithm—our assumption that sequence
numbers can grow infinitely large. In practice, of course, a frame’s sequence number is specified in a header
field of some finite size. For example, a 3-bit field means that there are eight possible sequence numbers,
0..7. This makes it necessary to reuse sequence numbers or, stated another way, sequence numbers wrap
around. This introduces the problem of being able to distinguish between different incarnations of the same
sequence numbers, which implies that the number of possible sequence numbers must be larger than the
number of outstanding frames allowed. For example, stop-and-wait allowed one outstanding frame at a time
and had two distinct sequence numbers.

Suppose we have one more number in our space of sequence numbers than we have potentially outstanding
frames; that is, SWS <= MaxSeqNum - 1, where MaxSeqNum is the number of available sequence
numbers. Is this sufficient? The answer depends on RWS. If RWS = 1, then MaxSeqNum >= SWS + 1
is sufficient. If RWS is equal to SWS, then having a MaxSeqNum just one greater than the sending window
size is not good enough. To see this, consider the situation in which we have the eight sequence numbers 0
through 7, and SWS = RWS = 7. Suppose the sender transmits frames 0..6, they are successfully received,
but the ACKs are lost. The receiver is now expecting frames 7, 0..5, but the sender times out and sends
frames 0..6. Unfortunately, the receiver is expecting the second incarnation of frames 0..5 but gets the first
incarnation of these frames. This is exactly the situation we wanted to avoid.

It turns out that the sending window size can be no more than half as big as the number of available sequence
numbers when RWS = SWS, or stated more precisely,

SWS < (MaxSeqNum + 1)/ 2

Intuitively, what this is saying is that the sliding window protocol alternates between the two halves of
the sequence number space, just as stop-and-wait alternates between sequence numbers 0 and 1. The only
difference is that it continually slides between the two halves rather than discretely alternating between
them.

Note that this rule is specific to the situation where RWS = SWS. We leave it as an exercise to determine the
more general rule that works for arbitrary values of RWS and SWS. Also note that the relationship between
the window size and the sequence number space depends on an assumption that is so obvious that it is easy
to overlook, namely that frames are not reordered in transit. This cannot happen on a direct point-to-point
link since there is no way for one frame to overtake another during transmission. However, we will see the
sliding window algorithm used in a different environments, and we will need to devise another rule.

2.5. Reliable Transmission 71

Computer Networks: A Systems Approach, Release Version 6.1

Implementation of Sliding Window

The following routines illustrate how we might implement the sending and receiving sides of the sliding
window algorithm. The routines are taken from a working protocol named, appropriately enough, Sliding
Window Protocol (SWP). So as not to concern ourselves with the adjacent protocols in the protocol graph,
we denote the protocol sitting above SWP as the high-level protocol (HLP) and the protocol sitting below
SWP as the link-level protocol (LLP).

We start by defining a pair of data structures. First, the frame header is very simple: It contains a sequence
number (SeqNum) and an acknowledgment number (AckNum). It also contains a Flags field that indicates
whether the frame is an ACK or carries data.

typedef u_char SwpSeqno;

typedef struct {
SwpSeqno SeqNum; /* sequence number of this frame */
SwpSeqno AckNum; /* ack of received frame */
u_char Flags; /* up to 8 bits worth of flags */

} SwpHdr;

Next, the state of the sliding window algorithm has the following structure. For the sending side of the pro-
tocol, this state includes variables LAR and LFS, as described earlier in this section, as well as a queue that
holds frames that have been transmitted but not yet acknowledged (sendQ). The sending state also includes
a counting semaphore called sendWindowNotFull. We will see how this is used below, but generally
a semaphore is a synchronization primitive that supports semWait and semSignal operations. Every
invocation of semSignal increments the semaphore by 1, and every invocation of semWait decrements
s by 1, with the calling process blocked (suspended) should decrementing the semaphore cause its value to
become less than 0. A process that is blocked during its call to semWait will be allowed to resume as soon
as enough semSignal operations have been performed to raise the value of the semaphore above 0.

For the receiving side of the protocol, the state includes the variable NFE. This is the next frame expected,
the frame with a sequence number one more that the last frame received (LFR), described earlier in this
section. There is also a queue that holds frames that have been received out of order (recvQ). Finally,
although not shown, the sender and receiver sliding window sizes are defined by constants SWS and RWS,
respectively.

typedef struct {
/* sender side state: */
SwpSeqno LAR; /* seqno of last ACK received */
SwpSeqno LFS; /* last frame sent */
Semaphore sendWindowNotFull;
SwpHdr hdr; /* pre-initialized header */
struct sendQ_slot {

Event timeout; /* event associated with send-timeout */
Msg msg;

} sendQ[SWS];

/* receiver side state: */
SwpSeqno NFE; /* seqno of next frame expected */
struct recvQ_slot {

int received; /* is msg valid? */

(continues on next page)

72 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

(continued from previous page)

Msg msg;
} recvQ[RWS];

} SwpState;

The sending side of SWP is implemented by procedure sendSWP. This routine is rather simple. First,
semWait causes this process to block on a semaphore until it is OK to send another frame. Once allowed to
proceed, sendSWP sets the sequence number in the frame’s header, saves a copy of the frame in the transmit
queue (sendQ), schedules a timeout event to handle the case in which the frame is not acknowledged, and
sends the frame to the next-lower-level protocol, which we denote as LINK.

One detail worth noting is the call to store_swp_hdr just before the call to msgAddHdr. This routine
translates the C structure that holds the SWP header (state->hdr) into a byte string that can be safely
attached to the front of the message (hbuf). This routine (not shown) must translate each integer field in
the header into network byte order and remove any padding that the compiler has added to the C structure.
The issue of byte order is a non-trivial issue, but for now it is enough to assume that this routine places the
most significant bit of a multiword integer in the byte with the highest address.

Another piece of complexity in this routine is the use of semWait and the sendWindowNotFull
semaphore. sendWindowNotFull is initialized to the size of the sender’s sliding window, SWS (this
initialization is not shown). Each time the sender transmits a frame, the semWait operation decrements
this count and blocks the sender should the count go to 0. Each time an ACK is received, the semSignal
operation invoked in deliverSWP (see below) increments this count, thus unblocking any waiting sender.

static int
sendSWP(SwpState *state, Msg *frame)
{

struct sendQ_slot *slot;
hbuf[HLEN];

/* wait for send window to open */
semWait(&state->sendWindowNotFull);
state->hdr.SeqNum = ++state->LFS;
slot = &state->sendQ[state->hdr.SeqNum % SWS];
store_swp_hdr(state->hdr, hbuf);
msgAddHdr(frame, hbuf, HLEN);
msgSaveCopy(&slot->msg, frame);
slot->timeout = evSchedule(swpTimeout, slot, SWP_SEND_TIMEOUT);
return send(LINK, frame);

}

Before continuing to the receive side of SWP, we need to reconcile a seeming inconsistency. On the one
hand, we have been saying that a high-level protocol invokes the services of a low-level protocol by calling
the send operation, so we would expect that a protocol that wants to send a message via SWP would call
send(SWP, packet). On the other hand, the procedure that implements SWP’s send operation is called
sendSWP, and its first argument is a state variable (SwpState). What gives? The answer is that the
operating system provides glue code that translates the generic call to send into a protocol-specific call to
sendSWP. This glue code maps the first argument to send (the magic protocol variable SWP) into both a
function pointer to sendSWP and a pointer to the protocol state that SWP needs to do its job. The reason
we have the high-level protocol indirectly invoke the protocol-specific function through the generic function
call is that we want to limit how much information the high-level protocol has coded in it about the low-level

2.5. Reliable Transmission 73

Computer Networks: A Systems Approach, Release Version 6.1

protocol. This makes it easier to change the protocol graph configuration at some time in the future.

Now we move on to SWP’s protocol-specific implementation of the deliver operation, which is given in
procedure deliverSWP. This routine actually handles two different kinds of incoming messages: ACKs
for frames sent earlier from this node and data frames arriving at this node. In a sense, the ACK half of this
routine is the counterpart to the sender side of the algorithm given in sendSWP. A decision as to whether
the incoming message is an ACK or a data frame is made by checking the Flags field in the header. Note
that this particular implementation does not support piggybacking ACKs on data frames.

When the incoming frame is an ACK, deliverSWP simply finds the slot in the transmit queue (sendQ)
that corresponds to the ACK, cancels the timeout event, and frees the frame saved in that slot. This work
is actually done in a loop since the ACK may be cumulative. The only other thing to notice about this case
is the call to subroutine swpInWindow. This subroutine, which is given below, ensures that the sequence
number for the frame being acknowledged is within the range of ACKs that the sender currently expects to
receive.

When the incoming frame contains data, deliverSWP first calls msgStripHdr and load_swp_hdr to
extract the header from the frame. Routine load_swp_hdr is the counterpart to store_swp_hdr dis-
cussed earlier; it translates a byte string into the C data structure that holds the SWP header. deliverSWP
then calls swpInWindow to make sure the sequence number of the frame is within the range of sequence
numbers that it expects. If it is, the routine loops over the set of consecutive frames it has received and passes
them up to the higher-level protocol by invoking the deliverHLP routine. It also sends a cumulative ACK
back to the sender, but does so by looping over the receive queue (it does not use the SeqNumToAck
variable used in the prose description given earlier in this section).

static int
deliverSWP(SwpState state, Msg *frame)
{

SwpHdr hdr;
char *hbuf;

hbuf = msgStripHdr(frame, HLEN);
load_swp_hdr(&hdr, hbuf)
if (hdr->Flags & FLAG_ACK_VALID)
{

/* received an acknowledgment--do SENDER side */
if (swpInWindow(hdr.AckNum, state->LAR + 1, state->LFS))
{

do
{

struct sendQ_slot *slot;

slot = &state->sendQ[++state->LAR % SWS];
evCancel(slot->timeout);
msgDestroy(&slot->msg);
semSignal(&state->sendWindowNotFull);

} while (state->LAR != hdr.AckNum);
}

}

if (hdr.Flags & FLAG_HAS_DATA)
{

(continues on next page)

74 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

(continued from previous page)

struct recvQ_slot *slot;

/* received data packet--do RECEIVER side */
slot = &state->recvQ[hdr.SeqNum % RWS];
if (!swpInWindow(hdr.SeqNum, state->NFE, state->NFE + RWS - 1))
{

/* drop the message */
return SUCCESS;

}
msgSaveCopy(&slot->msg, frame);
slot->received = TRUE;
if (hdr.SeqNum == state->NFE)
{

Msg m;

while (slot->received)
{

deliver(HLP, &slot->msg);
msgDestroy(&slot->msg);
slot->received = FALSE;
slot = &state->recvQ[++state->NFE % RWS];

}
/* send ACK: */
prepare_ack(&m, state->NFE - 1);
send(LINK, &m);
msgDestroy(&m);

}
}
return SUCCESS;

}

Finally,swpInWindow is a simple subroutine that checks to see if a given sequence number falls between
some minimum and maximum sequence number.

static bool
swpInWindow(SwpSeqno seqno, SwpSeqno min, SwpSeqno max)
{

SwpSeqno pos, maxpos;

pos = seqno - min; /* pos *should* be in range [0..MAX) */
maxpos = max - min + 1; /* maxpos is in range [0..MAX] */
return pos < maxpos;

}

Frame Order and Flow Control

The sliding window protocol is perhaps the best known algorithm in computer networking. What is easily
confused about the algorithm, however, is that it can be used to serve three different roles. The first role is
the one we have been concentrating on in this section—to reliably deliver frames across an unreliable link.
(In general, the algorithm can be used to reliably deliver messages across an unreliable network.) This is the

2.5. Reliable Transmission 75

Computer Networks: A Systems Approach, Release Version 6.1

core function of the algorithm.

The second role that the sliding window algorithm can serve is to preserve the order in which frames are
transmitted. This is easy to do at the receiver—since each frame has a sequence number, the receiver just
makes sure that it does not pass a frame up to the next-higher-level protocol until it has already passed up all
frames with a smaller sequence number. That is, the receiver buffers (i.e., does not pass along) out-of-order
frames. The version of the sliding window algorithm described in this section does preserve frame order,
although we could imagine a variation in which the receiver passes frames to the next protocol without
waiting for all earlier frames to be delivered. A question we should ask ourselves is whether we really
need the sliding window protocol to keep the frames in order at the link level, or whether, instead, this
functionality should be implemented by a protocol higher in the stack.

The third role that the sliding window algorithm sometimes plays is to support flow control—a feedback
mechanism by which the receiver is able to throttle the sender. Such a mechanism is used to keep the
sender from over-running the receiver—that is, from transmitting more data than the receiver is able to
process. This is usually accomplished by augmenting the sliding window protocol so that the receiver not
only acknowledges frames it has received but also informs the sender of how many frames it has room to
receive. The number of frames that the receiver is capable of receiving corresponds to how much free buffer
space it has. As in the case of ordered delivery, we need to make sure that flow control is necessary at the
link level before incorporating it into the sliding window protocol.

Key Takeaway

One important concept to take away from this discussion is the system design principle we call separation of
concerns. That is, you must be careful to distinguish between different functions that are sometimes rolled
together in one mechanism, and you must make sure that each function is necessary and being supported
in the most effective way. In this particular case, reliable delivery, ordered delivery, and flow control are
sometimes combined in a single sliding window protocol, and we should ask ourselves if this is the right
thing to do at the link level. [Next]

2.5.3 Concurrent Logical Channels

The data link protocol used in the original ARPANET provides an interesting alternative to the sliding
window protocol, in that it is able to keep the pipe full while still using the simple stop-and-wait algorithm.
One important consequence of this approach is that the frames sent over a given link are not kept in any
particular order. The protocol also implies nothing about flow control.

The idea underlying the ARPANET protocol, which we refer to as concurrent logical channels, is to multi-
plex several logical channels onto a single point-to-point link and to run the stop-and-wait algorithm on each
of these logical channels. There is no relationship maintained among the frames sent on any of the logical
channels, yet because a different frame can be outstanding on each of the several logical channels the sender
can keep the link full.

More precisely, the sender keeps 3 bits of state for each channel: a boolean, saying whether the channel is
currently busy; the 1-bit sequence number to use the next time a frame is sent on this logical channel; and
the next sequence number to expect on a frame that arrives on this channel. When the node has a frame to
send, it uses the lowest idle channel, and otherwise it behaves just like stop-and-wait.

76 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

In practice, the ARPANET supported 8 logical channels over each ground link and 16 over each satellite
link. In the ground-link case, the header for each frame included a 3-bit channel number and a 1-bit sequence
number, for a total of 4 bits. This is exactly the number of bits the sliding window protocol requires to
support up to 8 outstanding frames on the link when RWS = SWS.

2.6 Multi-Access Networks

Developed in the mid-1970s by researchers at the Xerox Palo Alto Research Center (PARC), the Ethernet
eventually became the dominant local area networking technology, emerging from a pack of competing
technologies. Today, it competes mainly with 802.11 wireless networks but remains extremely popular in
campus networks and data centers. The more general name for the technology behind the Ethernet is Carrier
Sense, Multiple Access with Collision Detect (CSMA/CD).

As indicated by the CSMA name, the Ethernet is a multiple-access network, meaning that a set of nodes
sends and receives frames over a shared link. You can, therefore, think of an Ethernet as being like a bus
that has multiple stations plugged into it. The “carrier sense” in CSMA/CD means that all the nodes can
distinguish between an idle and a busy link, and “collision detect” means that a node listens as it transmits
and can therefore detect when a frame it is transmitting has interfered (collided) with a frame transmitted by
another node.

The Ethernet has its roots in an early packet radio network, called Aloha, developed at the University of
Hawaii to support computer communication across the Hawaiian Islands. Like the Aloha network, the fun-
damental problem faced by the Ethernet is how to mediate access to a shared medium fairly and efficiently
(in Aloha, the medium was the atmosphere, while in the Ethernet the medium was originally a coax cable).
The core idea in both Aloha and the Ethernet is an algorithm that controls when each node can transmit.

Modern Ethernet links are now largely point to point; that is, they connect one host to an Ethernet switch, or
they interconnect switches. As a consequence, the “multiple access” algorithm is not used much in today’s
wired Ethernets, but a variant is now used in wireless networks, such as 802.11 networks (also known as
Wi-Fi). Due to the enormous influence of Ethernet, we chose to describe its classic algorithm here, and
then explain how it has been adapted to Wi-Fi in the next section. We will also discuss Ethernet switches
elsewhere. For now, we’ll focus on how a single Ethernet link works.

Digital Equipment Corporation and Intel Corporation joined Xerox to define a 10-Mbps Ethernet standard in
1978. This standard then formed the basis for IEEE standard 802.3, which additionally defines a much wider
collection of physical media over which an Ethernet can operate, including 100-Mbps, 1-Gbps, 10-Gbps,
40-Gbps, and 100-Gbps versions.

2.6.1 Physical Properties

Ethernet segments were originally implemented using coaxial cable of length up to 500 m. (Modern Ether-
nets use twisted copper pairs, usually a particular type known as “Category 5,” or optical fibers, and in some
cases can be quite a lot longer than 500 m.) This cable was similar to the type used for cable TV. Hosts
connected to an Ethernet segment by tapping into it. A transceiver, a small device directly attached to the
tap, detected when the line was idle and drove the signal when the host was transmitting. It also received
incoming signals. The transceiver, in turn, connected to an Ethernet adaptor, which was plugged into the
host. This configuration is shown in Figure 2.19.

2.6. Multi-Access Networks 77

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.19.: Ethernet transceiver and adaptor.

Multiple Ethernet segments can be joined together by repeaters (or a multi-port variant of a repeater, called
a hub). A repeater is a device that forwards digital signals, much like an amplifier forwards analog signals;
repeaters do not understand bits or frames. No more than four repeaters could be positioned between any
pair of hosts, meaning that a classical Ethernet had a total reach of only 2500 m. For example, using just
two repeaters between any pair of hosts supports a configuration similar to the one illustrated in Figure 2.20;
that is, a segment running down the spine of a building with a segment on each floor.

Figure 2.20.: Ethernet repeater, interconnecting segments to form a larger collision domain.

Any signal placed on the Ethernet by a host is broadcast over the entire network; that is, the signal is prop-
agated in both directions, and repeaters and hubs forward the signal on all outgoing segments. Terminators
attached to the end of each segment absorb the signal and keep it from bouncing back and interfering with

78 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

trailing signals. The original Ethernet specifications used the Manchester encoding scheme described in
an earlier section, while 4B/5B encoding (or the similar 8B/10B) scheme is used today on higher speed
Ethernets.

It is important to understand that whether a given Ethernet spans a single segment, a linear sequence of
segments connected by repeaters, or multiple segments connected in a star configuration, data transmitted
by any one host on that Ethernet reaches all the other hosts. This is the good news. The bad news is that all
these hosts are competing for access to the same link, and, as a consequence, they are said to be in the same
collision domain. The multi-access part of the Ethernet is all about dealing with the competition for the link
that arises in a collision domain.

2.6.2 Access Protocol

We now turn our attention to the algorithm that controls access to a shared Ethernet link. This algorithm is
commonly called the Ethernet’s media access control (MAC). It is typically implemented in hardware on the
network adaptor. We will not describe the hardware per se, but instead focus on the algorithm it implements.
First, however, we describe the Ethernet’s frame format and addresses.

Frame Format

Each Ethernet frame is defined by the format given in Figure 2.21. The 64-bit preamble allows the receiver
to synchronize with the signal; it is a sequence of alternating 0s and 1s. Both the source and destination
hosts are identified with a 48-bit address. The packet type field serves as the demultiplexing key; it identifies
to which of possibly many higher-level protocols this frame should be delivered. Each frame contains up to
1500 bytes of data. Minimally, a frame must contain at least 46 bytes of data, even if this means the host has
to pad the frame before transmitting it. The reason for this minimum frame size is that the frame must be
long enough to detect a collision; we discuss this more below. Finally, each frame includes a 32-bit CRC.
Like the HDLC protocol described in an earlier section, the Ethernet is a bit-oriented framing protocol.
Note that from the host’s perspective, an Ethernet frame has a 14-byte header: two 6-byte addresses and a
2-byte type field. The sending adaptor attaches the preamble and CRC before transmitting, and the receiving
adaptor removes them.

Figure 2.21.: Ethernet frame format.

Addresses

Each host on an Ethernet—in fact, every Ethernet host in the world—has a unique Ethernet address. Techni-
cally, the address belongs to the adaptor, not the host; it is usually burned into ROM. Ethernet addresses are
typically printed in a form humans can read as a sequence of six numbers separated by colons. Each number
corresponds to 1 byte of the 6-byte address and is given by a pair of hexadecimal digits, one for each of the
4-bit nibbles in the byte; leading 0s are dropped. For example, 8:0:2b:e4:b1:2 is the human-readable
representation of Ethernet address

2.6. Multi-Access Networks 79

Computer Networks: A Systems Approach, Release Version 6.1

00001000 00000000 00101011 11100100 10110001 00000010

To ensure that every adaptor gets a unique address, each manufacturer of Ethernet devices is allocated a
different prefix that must be prepended to the address on every adaptor they build. For example, Advanced
Micro Devices has been assigned the 24-bit prefix 080020 (or 8:0:20). A given manufacturer then makes
sure the address suffixes it produces are unique.

Each frame transmitted on an Ethernet is received by every adaptor connected to that Ethernet. Each adaptor
recognizes those frames addressed to its address and passes only those frames on to the host. (An adaptor
can also be programmed to run in promiscuous mode, in which case it delivers all received frames to the
host, but this is not the normal mode.) In addition to these unicast addresses, an Ethernet address consisting
of all 1s is treated as a broadcast address; all adaptors pass frames addressed to the broadcast address up
to the host. Similarly, an address that has the first bit set to 1 but is not the broadcast address is called a
multicast address. A given host can program its adaptor to accept some set of multicast addresses. Multicast
addresses are used to send messages to some subset of the hosts on an Ethernet (e.g., all file servers). To
summarize, an Ethernet adaptor receives all frames and accepts

• Frames addressed to its own address

• Frames addressed to the broadcast address

• Frames addressed to a multicast address, if it has been instructed to listen to that address

• All frames, if it has been placed in promiscuous mode

It passes to the host only the frames that it accepts.

Transmitter Algorithm

As we have just seen, the receiver side of the Ethernet protocol is simple; the real smarts are implemented
at the sender’s side. The transmitter algorithm is defined as follows.

When the adaptor has a frame to send and the line is idle, it transmits the frame immediately; there is no
negotiation with the other adaptors. The upper bound of 1500 bytes in the message means that the adaptor
can occupy the line for only a fixed length of time.

When an adaptor has a frame to send and the line is busy, it waits for the line to go idle and then transmits
immediately. (To be more precise, all adaptors wait 9.6 𝜇s after the end of one frame before beginning to
transmit the next frame. This is true for both the sender of the first frame as well as those nodes listening
for the line to become idle.) The Ethernet is said to be a 1-persistent protocol because an adaptor with
a frame to send transmits with probability 1 whenever a busy line goes idle. In general, a p-persistent
algorithm transmits with probability 0 ≤ 𝑝 ≤ 1 after a line becomes idle and defers with probability q =
1 - p. The reasoning behind choosing a p<1 is that there might be multiple adaptors waiting for the busy
line to become idle, and we don’t want all of them to begin transmitting at the same time. If each adaptor
transmits immediately with a probability of, say, 33%, then up to three adaptors can be waiting to transmit
and the odds are that only one will begin transmitting when the line becomes idle. Despite this reasoning,
an Ethernet adaptor always transmits immediately after noticing that the network has become idle and has
been very effective in doing so.

To complete the story about p-persistent protocols for the case when p<1, you might wonder how long a
sender that loses the coin flip (i.e., decides to defer) has to wait before it can transmit. The answer for

80 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

the Aloha network, which originally developed this style of protocol, was to divide time into discrete slots,
with each slot corresponding to the length of time it takes to transmit a full frame. Whenever a node has a
frame to send and it senses an empty (idle) slot, it transmits with probability p and defers until the next slot
with probability q = 1 - p. If that next slot is also empty, the node again decides to transmit or defer, with
probabilities p and q, respectively. If that next slot is not empty—that is, some other station has decided to
transmit—then the node simply waits for the next idle slot and the algorithm repeats.

Returning to our discussion of the Ethernet, because there is no centralized control it is possible for two
(or more) adaptors to begin transmitting at the same time, either because both found the line to be idle or
because both had been waiting for a busy line to become idle. When this happens, the two (or more) frames
are said to collide on the network. Each sender, because the Ethernet supports collision detection, is able to
determine that a collision is in progress. At the moment an adaptor detects that its frame is colliding with
another, it first makes sure to transmit a 32-bit jamming sequence and then stops the transmission. Thus,
a transmitter will minimally send 96 bits in the case of a collision: 64-bit preamble plus 32-bit jamming
sequence.

One way that an adaptor will send only 96 bits—which is sometimes called a runt frame—is if the two hosts
are close to each other. Had the two hosts been farther apart, they would have had to transmit longer, and
thus send more bits, before detecting the collision. In fact, the worst-case scenario happens when the two
hosts are at opposite ends of the Ethernet. To know for sure that the frame it just sent did not collide with
another frame, the transmitter may need to send as many as 512 bits. Not coincidentally, every Ethernet
frame must be at least 512 bits (64 bytes) long: 14 bytes of header plus 46 bytes of data plus 4 bytes of
CRC.

Why 512 bits? The answer is related to another question you might ask about an Ethernet: Why is its length
limited to only 2500 m? Why not 10 or 1000 km? The answer to both questions has to do with the fact that
the farther apart two nodes are, the longer it takes for a frame sent by one to reach the other, and the network
is vulnerable to a collision during this time.

Figure 2.22 illustrates the worst-case scenario, where hosts A and B are at opposite ends of the network.
Suppose host A begins transmitting a frame at time t, as shown in (a). It takes it one link latency (let’s
denote the latency as d) for the frame to reach host B. Thus, the first bit of A’s frame arrives at B at time
t+d, as shown in (b). Suppose an instant before host A’s frame arrives (i.e., B still sees an idle line), host B
begins to transmit its own frame. B’s frame will immediately collide with A’s frame, and this collision will
be detected by host B (c). Host B will send the 32-bit jamming sequence, as described above. (B’s frame
will be a runt.) Unfortunately, host A will not know that the collision occurred until B’s frame reaches it,
which will happen one link latency later, at time t+2×d, as shown in (d). Host A must continue to transmit
until this time in order to detect the collision. In other words, host A must transmit for 2×d to be sure that
it detects all possible collisions. Considering that a maximally configured Ethernet is 2500 m long, and that
there may be up to four repeaters between any two hosts, the round-trip delay has been determined to be
51.2 𝜇s, which on a 10-Mbps Ethernet corresponds to 512 bits. The other way to look at this situation is
that we need to limit the Ethernet’s maximum latency to a fairly small value (e.g., 51.2 𝜇s) for the access
algorithm to work; hence, an Ethernet’s maximum length must be something on the order of 2500 m.

Once an adaptor has detected a collision and stopped its transmission, it waits a certain amount of time
and tries again. Each time it tries to transmit but fails, the adaptor doubles the amount of time it waits
before trying again. This strategy of doubling the delay interval between each retransmission attempt is a
general technique known as exponential backoff. More precisely, the adaptor first delays either 0 or 51.2 𝜇s,
selected at random. If this effort fails, it then waits 0, 51.2, 102.4, or 153.6 𝜇s (selected randomly) before
trying again; this is k × 51.2 for k=0..3. After the third collision, it waits k × 51.2 for k = 0.23 - 1, again

2.6. Multi-Access Networks 81

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.22.: Worst-case scenario: (a) A sends a frame at time t; (b) A’s frame arrives at B at time t+d; (c) B
begins transmitting at time t+d and collides with A’s frame; (d) B’s runt (32-bit) frame arrives at A at time
t+2×d.

82 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

selected at random. In general, the algorithm randomly selects a k between 0 and 2n - 1 and waits k × 51.2
𝜇s, where n is the number of collisions experienced so far. The adaptor gives up after a given number of
tries and reports a transmit error to the host. Adaptors typically retry up to 16 times, although the backoff
algorithm caps n in the above formula at 10.

2.6.3 Longevity of Ethernet

Ethernet has been the dominant local area network technology for over 30 years. Today it is typically
deployed point-to-point rather than tapping into a coax cable, it often runs at speeds of 1 or 10 Gbps rather
than 10 Mbps, and it allows jumbo packets with up to 9000 bytes of data rather than 1500 bytes. But, it
remains backwards compatible with the original standard. This makes it worth saying a few words about
why Ethernets have been so successful, so that we can understand the properties we should emulate with
any technology that tries to replace it.

First, an Ethernet is extremely easy to administer and maintain: There is no routing or configuration tables
to be kept up-to-date, and it is easy to add a new host to the network. It is hard to imagine a simpler
network to administer. Second, it is inexpensive: cable/fiber is relatively cheap, and the only other cost is
the network adaptor on each host. Ethernet became deeply entrenched for these reasons, and any switch-
based approach that aspired to displace it required additional investment in infrastructure (the switches), on
top of the cost of each adaptor. The switch-based variant of Ethernet did eventually succeed in replacing
multi-access Ethernet, but this is primarily because it could be deployed incrementally—with some hosts
connected by point-to-point links to switches while others remained tapped into coax and connected to
repeaters or hubs—all the while retaining the simplicity of network administration.

2.7 Wireless Networks

Wireless technologies differ from wired links in some important ways, while at the same time sharing many
common properties. Like wired links, issues of bit errors are of great concern—typically even more so
due to the unpredictable noise environment of most wireless links. Framing and reliability also have to be
addressed. Unlike wired links, power is a big issue for wireless, especially because wireless links are often
used by small mobile devices (like phones and sensors) that have limited access to power (e.g., a small
battery). Furthermore, you can’t go blasting away at arbitrarily high power with a radio transmitter—there
are concerns about interference with other devices and usually regulations about how much power a device
may emit at any given frequency.

Wireless media are also inherently multi-access; it’s difficult to direct your radio transmission to just a single
receiver or to avoid receiving radio signals from any transmitter with enough power in your neighborhood.
Hence, media access control is a central issue for wireless links. And, because it’s hard to control who
receives your signal when you transmit over the air, issues of eavesdropping may also have to be addressed.

There is a baffling assortment of different wireless technologies, each of which makes different tradeoffs
in various dimensions. One simple way to categorize the different technologies is by the data rates they
provide and how far apart communicating nodes can be. Other important differences include which part of
the electromagnetic spectrum they use (including whether it requires a license) and how much power they
consume. In this section, we discuss two prominent wireless technologies: Wi-Fi (more formally known as
802.11), and Bluetooth. The next section discusses cellular networks in the context of ISP access services.
Table 2.3 gives an overview of these technologies and how they compare to each other.

2.7. Wireless Networks 83

Computer Networks: A Systems Approach, Release Version 6.1

Table 2.3.: Overview of Leading Wireless Technologies.
Bluetooth (802.15.1) Wi-Fi (802.11) 4G Cellular

Typical link length 10 m 100 m Tens of kilometers
Typical data rate 2 Mbps (shared) 150-450 Mbps 1-5 Mbps
Typical use Link a peripheral to a

computer
Link a computer to a
wired base

Link mobile phone to a
wired tower

Wired technology
analogy

USB Ethernet PON

You may recall that bandwidth sometimes means the width of a frequency band in hertz and sometimes the
data rate of a link. Because both these concepts come up in discussions of wireless networks, we’re going to
use bandwidth here in its stricter sense—width of a frequency band—and use the term data rate to describe
the number of bits per second that can be sent over the link, as in Table 2.3.

2.7.1 Basic Issues

Because wireless links all share the same medium, the challenge is to share that medium efficiently, with-
out unduly interfering with each other. Most of this sharing is accomplished by dividing it up along the
dimensions of frequency and space. Exclusive use of a particular frequency in a particular geographic area
may be allocated to an individual entity such as a corporation. It is feasible to limit the area covered by an
electromagnetic signal because such signals weaken, or attenuate, with the distance from their origin. To
reduce the area covered by your signal, reduce the power of your transmitter.

These allocations are typically determined by government agencies, such as the Federal Communications
Commission (FCC) in the United States. Specific bands (frequency ranges) are allocated to certain uses.
Some bands are reserved for government use. Other bands are reserved for uses such as AM radio, FM
radio, television, satellite communication, and cellular phones. Specific frequencies within these bands are
then licensed to individual organizations for use within certain geographical areas. Finally, several frequency
bands are set aside for license-exempt usage—bands in which a license is not needed.

Devices that use license-exempt frequencies are still subject to certain restrictions to make that otherwise
unconstrained sharing work. Most important of these is a limit on transmission power. This limits the range
of a signal, making it less likely to interfere with another signal. For example, a cordless phone (a common
unlicensed device) might have a range of about 100 feet.

One idea that shows up a lot when spectrum is shared among many devices and applications is spread
spectrum. The idea behind spread spectrum is to spread the signal over a wider frequency band, so as
to minimize the impact of interference from other devices. (Spread spectrum was originally designed for
military use, so these “other devices” were often attempting to jam the signal.) For example, frequency
hopping is a spread spectrum technique that involves transmitting the signal over a random sequence of
frequencies; that is, first transmitting at one frequency, then a second, then a third, and so on. The sequence
of frequencies is not truly random but is instead computed algorithmically by a pseudorandom number
generator. The receiver uses the same algorithm as the sender and initializes it with the same seed; hence, it
is able to hop frequencies in sync with the transmitter to correctly receive the frame. This scheme reduces
interference by making it unlikely that two signals would be using the same frequency for more than the
infrequent isolated bit.

84 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

A second spread spectrum technique, called direct sequence, adds redundancy for greater tolerance of in-
terference. Each bit of data is represented by multiple bits in the transmitted signal so that, if some of the
transmitted bits are damaged by interference, there is usually enough redundancy to recover the original bit.
For each bit the sender wants to transmit, it actually sends the exclusive-OR of that bit and n random bits.
As with frequency hopping, the sequence of random bits is generated by a pseudorandom number generator
known to both the sender and the receiver. The transmitted values, known as an n-bit chipping code, spread
the signal across a frequency band that is n times wider than the frame would have otherwise required.
Figure 2.23 gives an example of a 4-bit chipping sequence.

Figure 2.23.: Example 4-bit chipping sequence.

Different parts of the electromagnetic spectrum have different properties, making some better suited to com-
munication, and some less so. For example, some can penetrate buildings and some cannot. Governments
regulate only the prime communication portion: the radio and microwave ranges. As demand for prime
spectrum increases, there is great interest in the spectrum that is becoming available as analog television is
phased out in favor of digital.

In many wireless networks today we observe that there are two different classes of endpoints. One endpoint,
sometimes described as the base station, usually has no mobility but has a wired (or at least high-bandwidth)
connection to the Internet or other networks, as shown in Figure 2.24. The node at the other end of the
link—shown here as a client node—is often mobile and relies on its link to the base station for all of its
communication with other nodes.

Observe that in Figure 2.24 we have used a wavy pair of lines to represent the wireless “link” abstraction
provided between two devices (e.g., between a base station and one of its client nodes). One of the interesting
aspects of wireless communication is that it naturally supports point-to-multipoint communication, because
radio waves sent by one device can be simultaneously received by many devices. However, it is often useful
to create a point-to-point link abstraction for higher layer protocols, and we will see examples of how this
works later in this section.

Note that in Figure 2.24 communication between non-base (client) nodes is routed via the base station. This
is in spite of the fact that radio waves emitted by one client node may well be received by other client
nodes—the common base station model does not permit direct communication between the client nodes.

This topology implies three qualitatively different levels of mobility. The first level is no mobility, such as
when a receiver must be in a fixed location to receive a directional transmission from the base station. The
second level is mobility within the range of a base, as is the case with Bluetooth. The third level is mobility
between bases, as is the case with cell phones and Wi-Fi.

An alternative topology that is seeing increasing interest is the mesh or ad hoc network. In a wireless mesh,
nodes are peers; that is, there is no special base station node. Messages may be forwarded via a chain of peer
nodes as long as each node is within range of the preceding node. This is illustrated in Figure 2.25. This
allows the wireless portion of a network to extend beyond the limited range of a single radio. From the point

2.7. Wireless Networks 85

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.24.: A wireless network using a base station.

of view of competition between technologies, this allows a shorter-range technology to extend its range and
potentially compete with a longer-range technology. Meshes also offer fault tolerance by providing multiple
routes for a message to get from point A to point B. A mesh network can be extended incrementally, with
incremental costs. On the other hand, a mesh network requires non-base nodes to have a certain level of
sophistication in their hardware and software, potentially increasing per-unit costs and power consumption,
a critical consideration for battery-powered devices. Wireless mesh networks are of considerable research
interest, but they are still in their relative infancy compared to networks with base stations. Wireless sensor
networks, another hot emerging technology, often form wireless meshes.

Now that we have covered some of the common wireless issues, let’s take a look at the details of two
common wireless technologies.

2.7.2 802.11/Wi-Fi

Most readers will have used a wireless network based on the IEEE 802.11 standards, often referred to as
Wi-Fi. Wi-Fi is technically a trademark, owned by a trade group called the Wi-Fi Alliance, which certifies
product compliance with 802.11. Like Ethernet, 802.11 is designed for use in a limited geographical area
(homes, office buildings, campuses), and its primary challenge is to mediate access to a shared communica-
tion medium—in this case, signals propagating through space.

86 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.25.: A wireless ad hoc or mesh network.

2.7. Wireless Networks 87

Computer Networks: A Systems Approach, Release Version 6.1

Physical Properties

802.11 defines a number of different physical layers that operate in various frequency bands and provide a
range of different data rates.

The original 802.11 standard defined two radio-based physical layers standards, one using frequency hop-
ping (over 79 1-MHz-wide frequency bandwidths) and the other using direct sequence spread spectrum
(with an 11-bit chipping sequence). Both provided data rates in the 2 Mbps range. Subsequently, the phys-
ical layer standard 802.11b was added, and using a variant of direct sequence, supported up to 11 Mbps.
These three standards all operated in the license-exempt 2.4-GHz frequency band of the electromagnetic
spectrum. Then came 802.11a, which delivered up to 54 Mbps using a variant of frequency division mul-
tiplexing called orthogonal frequency division multiplexing (OFDM). 802.11a runs in the license-exempt
5-GHz band. 802.11g followed, and also using OFDM, delivered up to 54 Mbps. 802.11g is backward
compatible with 802.11b (and returns to the 2.4-GHz band).

At the time of writing, many devices support 802.11n or 802.11ac, which typically achieve per-device data
rates of 150 Mbps to 450 Mbps, respectively. This improvement is partly due to the use of multiple antennas
and allowing greater wireless channel bandwidths. The use of multiple antennas is often called MIMO
for multiple-input, multiple-output. The latest emerging standard, 802.11ax, promises another substantial
improvement in throughput, in part by adopting many of the coding and modulation techniques used in the
4G/5G cellular network, which we describe in the next section.

It is common for commercial products to support more than one flavor of 802.11; many base stations support
all five variants (a,b, g, n, and ac). This not only ensures compatibility with any device that supports any one
of the standards but also makes it possible for two such products to choose the highest bandwidth option for
a particular environment.

It is worth noting that while all the 802.11 standards define a maximum bit rate that can be supported, they
mostly support lower bit rates as well (e.g., 802.11a allows for bit rates of 6, 9, 12, 18, 24, 36, 48, and 54
Mbps). At lower bit rates, it is easier to decode transmitted signals in the presence of noise. Different mod-
ulation schemes are used to achieve the various bit rates. In addition, the amount of redundant information
in the form of error-correcting codes is varied. More redundant information means higher resilience to bit
errors at the cost of lowering the effective data rate (since more of the transmitted bits are redundant).

The systems try to pick an optimal bit rate based on the noise environment in which they find themselves;
the algorithms for bit rate selection can be quite complex. Interestingly, the 802.11 standards do not specify
a particular approach but leave the algorithms to the various vendors. The basic approach to picking a
bit rate is to estimate the bit error rate either by directly measuring the signal-to-noise ratio (SNR) at the
physical layer or by estimating the SNR by measuring how often packets are successfully transmitted and
acknowledged. In some approaches, a sender will occasionally probe a higher bit rate by sending one or
more packets at that rate to see if it succeeds.

Collision Avoidance

At first glance, it might seem that a wireless protocol would follow the same algorithm as the Ethernet—wait
until the link becomes idle before transmitting and back off should a collision occur—and, to a first approx-
imation, this is what 802.11 does. The additional complication for wireless is that, while a node on an
Ethernet receives every other node’s transmissions and can transmit and receive at the same time, neither
of these conditions holds for wireless nodes. This makes detection of collisions rather more complex. The

88 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

reason why wireless nodes cannot usually transmit and receive at the same time (on the same frequency) is
that the power generated by the transmitter is much higher than any received is likely to be and so swamps
the receiving circuitry. The reason why a node may not receive transmissions from another node is because
that node may be too far away or blocked by an obstacle. This situation is a bit more complex than it first
appears, as the following discussion will illustrate.

Figure 2.26.: The hidden node problem. Although A and C are hidden from each other, their signals can
collide at B. (B’s reach is not shown.)

Consider the situation depicted in Figure 2.26, where A and C are both within range of B but not each other.
Suppose both A and C want to communicate with B and so they each send it a frame. A and C are unaware
of each other since their signals do not carry that far. These two frames collide with each other at B, but
unlike an Ethernet, neither A nor C is aware of this collision. A and C are said to be hidden nodes with
respect to each other.

Figure 2.27.: The exposed node problem. Although B and C are exposed to each other’s signals, there is no
interference if B transmits to A while C transmits to D. (A and D’s reaches are not shown.)

A related problem, called the exposed node problem, occurs under the circumstances illustrated in Figure
2.27, where each of the four nodes is able to send and receive signals that reach just the nodes to its imme-

2.7. Wireless Networks 89

Computer Networks: A Systems Approach, Release Version 6.1

diate left and right. For example, B can exchange frames with A and C but it cannot reach D, while C can
reach B and D but not A. Suppose B is sending to A. Node C is aware of this communication because it
hears B’s transmission. It would be a mistake, however, for C to conclude that it cannot transmit to anyone
just because it can hear B’s transmission. For example, suppose C wants to transmit to node D. This is not a
problem since C’s transmission to D will not interfere with A’s ability to receive from B. (It would interfere
with A sending to B, but B is transmitting in our example.)

802.11 addresses these problems by using CSMA/CA, where the CA stands for collision avoidance, in
contrast to the collision detection of CSMA/CD used on Ethernets. There are a few pieces to make this
work.

The Carrier Sense part seems simple enough: Before sending a packet, the transmitter checks if it can hear
any other transmissions; if not, it sends. However, because of the hidden node problem, just waiting for
the absence of signals from other transmitters does not guarantee that a collision will not occur from the
perspective of the receiver. For this reason, one part of CSMA/CA is an explicit ACK from the receiver to
the sender. If the packet was successfully decoded and passed its CRC at the receiver, the receiver sends an
ACK back to the sender.

Note that if a collision does occur, it will render the entire packet useless. For this reason, 802.11 adds an
optional mechanism called RTS-CTS (Ready to Send-Clear to Send). This goes some way toward addressing
the hidden node problem. The sender sends an RTS—a short packet—to the intended receiver, and if that
packet is received successfully the receiver responds with another short packet, the CTS. Even though the
RTS may not have been heard by a hidden node, the CTS probably will be. This effectively tells the nodes
within range of the receiver that they should not send anything for a while—the amount of time of the
intended transmission is included in the RTS and CTS packets. After that time plus a small interval has
passed, the carrier can be assumed to be available again, and another node is free to try to send.

Of course, two nodes might detect an idle link and try to transmit an RTS frame at the same time, causing
their RTS frames to collide with each other. The senders realize the collision has happened when they do
not receive the CTS frame after a period of time, in which case they each wait a random amount of time
before trying again. The amount of time a given node delays is defined by an exponential backoff algorithm
very much like that used on the Ethernet.

After a successful RTS-CTS exchange, the sender sends its data packet and, if all goes well, receives an
ACK for that packet. In the absence of a timely ACK, the sender will try again to request usage of the
channel again, using the same process described above. By this time, of course, other nodes may again be
trying to get access to the channel as well.

Distribution System

As described so far, 802.11 would be suitable for a network with a mesh (ad hoc) topology, and development
of an 802.11s standard for mesh networks is nearing completion. At the current time, however, nearly all
802.11 networks use a base-station-oriented topology.

Instead of all nodes being created equal, some nodes are allowed to roam (e.g., your laptop) and some are
connected to a wired network infrastructure. 802.11 calls these base stations access points (APs), and they
are connected to each other by a so-called distribution system. Figure 2.28 illustrates a distribution system
that connects three access points, each of which services the nodes in some region. Each access point
operates on some channel in the appropriate frequency range, and each AP will typically be on a different
channel than its neighbors.

90 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.28.: Access points connected to a distribution system.

The details of the distribution system are not important to this discussion—it could be an Ethernet, for
example. The only important point is that the distribution network operates at the link layer, the same
protocol layer as the wireless links. In other words, it does not depend on any higher-level protocols (such
as the network layer).

Although two nodes can communicate directly with each other if they are within reach of each other, the
idea behind this configuration is that each node associates itself with one access point. For node A to
communicate with node E, for example, A first sends a frame to its access point (AP-1), which forwards
the frame across the distribution system to AP-3, which finally transmits the frame to E. How AP-1 knew
to forward the message to AP-3 is beyond the scope of 802.11; it may have used a bridging protocol. What
802.11 does specify is how nodes select their access points and, more interestingly, how this algorithm
works in light of nodes moving from one cell to another.

The technique for selecting an AP is called scanning and involves the following four steps:

1. The node sends a Probe frame.

2. All APs within reach reply with a Probe Response frame.

3. The node selects one of the access points and sends that AP an Association Request frame.

4. The AP replies with an Association Response frame.

A node engages this protocol whenever it joins the network, as well as when it becomes unhappy with its
current AP. This might happen, for example, because the signal from its current AP has weakened due to
the node moving away from it. Whenever a node acquires a new AP, the new AP notifies the old AP of the
change (this happens in step 4) via the distribution system.

Consider the situation shown in Figure 2.29, where node C moves from the cell serviced by AP-1 to the
cell serviced by AP-2. As it moves, it sends Probe frames, which eventually result in Probe Response
frames from AP-2. At some point, C prefers AP-2 over AP-1, and so it associates itself with that access
point.

2.7. Wireless Networks 91

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.29.: Node mobility.

The mechanism just described is called active scanning since the node is actively searching for an access
point. APs also periodically send a Beacon frame that advertises the capabilities of the access point; these
include the transmission rates supported by the AP. This is called passive scanning, and a node can change
to this AP based on the Beacon frame simply by sending an Association Request frame back to the
access point.

Frame Format

Most of the 802.11 frame format, which is depicted in Figure 2.30, is exactly what we would expect. The
frame contains the source and destination node addresses, each of which is 48 bits long; up to 2312 bytes of
data; and a 32-bit CRC. The Control field contains three subfields of interest (not shown): a 6-bit Type
field that indicates whether the frame carries data, is an RTS or CTS frame, or is being used by the scanning
algorithm, and a pair of 1-bit fields—called ToDS and FromDS—that are described below.

Figure 2.30.: 802.11 frame format.

The peculiar thing about the 802.11 frame format is that it contains four, rather than two, addresses. How
these addresses are interpreted depends on the settings of the ToDS and FromDS bits in the frame’s
Control field. This is to account for the possibility that the frame had to be forwarded across the dis-
tribution system, which would mean that the original sender is not necessarily the same as the most recent
transmitting node. Similar reasoning applies to the destination address. In the simplest case, when one node
is sending directly to another, both the DS bits are 0, Addr1 identifies the target node, and Addr2 identifies
the source node. In the most complex case, both DS bits are set to 1, indicating that the message went from
a wireless node onto the distribution system, and then from the distribution system to another wireless node.

92 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

With both bits set, Addr1 identifies the ultimate destination, Addr2 identifies the immediate sender (the
one that forwarded the frame from the distribution system to the ultimate destination), Addr3 identifies the
intermediate destination (the one that accepted the frame from a wireless node and forwarded it across the
distribution system), and Addr4 identifies the original source. In terms of the example given in Figure 2.28,
Addr1 corresponds to E, Addr2 identifies AP-3, Addr3 corresponds to AP-1, and Addr4 identifies A.

Security of Wireless Links

One of the fairly obvious problems of wireless links compared to wires or fibers is that you can’t be too
sure where your data has gone. You can probably figure out if it was received by the intended receiver, but
there is no telling how many other receivers might have also picked up your transmission. So, if you are
concerned about the privacy of your data, wireless networks present a challenge.

Even if you are not concerned about data privacy—or perhaps have taken care of it in some other way—you
may be concerned about an unauthorized user injecting data into your network. If nothing else, such a user
might be able to consume resources that you would prefer to consume yourself, such as the finite bandwidth
between your house and your ISP.

For these reasons, wireless networks typically come with some sort of mechanism to control access to both
the link itself and the transmitted data. These mechanisms are often categorized as wireless security. The
widely adopted WPA2 is described in Chapter 8.

2.7.3 Bluetooth (802.15.1)

Bluetooth fills the niche of very short range communication between mobile phones, PDAs, notebook com-
puters, and other personal or peripheral devices. For example, Bluetooth can be used to connect a mobile
phone to a headset or a notebook computer to a keyboard. Roughly speaking, Bluetooth is a more convenient
alternative to connecting two devices with a wire. In such applications, it is not necessary to provide much
range or bandwidth. This means that Bluetooth radios can use quite low power transmission, since trans-
mission power is one of the main factors affecting bandwidth and range of wireless links. This matches the
target applications for Bluetooth-enabled devices—most of them are battery powered (such as the ubiquitous
phone headset) and hence it is important that they not consume much power.

Bluetooth operates in the license-exempt band at 2.45 GHz. Bluetooth links have typical bandwidths around
1 to 3 Mbps and a range of about 10 m. For this reason, and because the communicating devices typically
belong to one individual or group, Bluetooth is sometimes categorized as a Personal Area Network (PAN).

Bluetooth is specified by an industry consortium called the Bluetooth Special Interest Group. It specifies an
entire suite of protocols, going beyond the link layer to define application protocols, which it calls profiles,
for a range of applications. For example, there is a profile for synchronizing a PDA with a personal computer.
Another profile gives a mobile computer access to a wired LAN in the manner of 802.11, although this was
not Bluetooth’s original goal. The IEEE 802.15.1 standard is based on Bluetooth but excludes the application
protocols.

The basic Bluetooth network configuration, called a piconet, consists of a master device and up to seven
slave devices, as shown in Figure 2.31. Any communication is between the master and a slave; the slaves
do not communicate directly with each other. Because slaves have a simpler role, their Bluetooth hardware
and software can be simpler and cheaper.

2.7. Wireless Networks 93

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.31.: A Bluetooth piconet.

Since Bluetooth operates in an license-exempt band, it is required to use a spread spectrum technique to deal
with possible interference in the band. It uses frequency-hopping with 79 channels (frequencies), using each
for 625 𝜇s at a time. This provides a natural time slot for Bluetooth to use for synchronous time division
multiplexing. A frame takes up 1, 3, or 5 consecutive time slots. Only the master can start to transmit in odd-
numbered slots. A slave can start to transmit in an even-numbered slot—but only in response to a request
from the master during the previous slot, thereby preventing any contention between the slave devices.

A slave device can be parked; that is, it is set to an inactive, low-power state. A parked device cannot
communicate on the piconet; it can only be reactivated by the master. A piconet can have up to 255 parked
devices in addition to its active slave devices.

In the realm of very low-power, short-range communication there are a few other technologies besides
Bluetooth. One of these is ZigBee, devised by the ZigBee alliance and standardized as IEEE 802.15.4. It is
designed for situations where the bandwidth requirements are low and power consumption must be very low
to give very long battery life. It is also intended to be simpler and cheaper than Bluetooth, making it feasible
to incorporate in cheaper devices such as sensors. Sensors are becoming an increasingly important class of
networked device, as technology advances to the point where very cheap small devices can be deployed in
large quantities to monitor things like temperature, humidity, and energy consumption in a building.

94 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

2.8 Access Networks

In addition to the Ethernet and Wi-Fi connections we typically use to connect to the Internet at home, at
work, at school, and in many public spaces, most of us connect to the Internet over an access or broadband
service that we buy from an ISP. This section describes two such technologies: Passive Optical Networks
(PON), commonly referred to as fiber-to-the-home, and Cellular Networks that connect our mobile devices.
In both cases, the networks are multi-access (like Ethernet and Wi-Fi), but as we will see, their approach to
mediating access is quite different.

To set a little more context, ISPs (e.g., Telco or Cable companies) often operate a national backbone, and
connected to the periphery of that backbone are hundreds or thousands of edge sites, each of which serves
a city or neighborhood. These edge sites are commonly called Central Offices in the Telco world and
Head Ends in the cable world, but despite their names implying “centralized” and “root of the hierarchy”
these sites are at the very edge of the ISP’s network; the ISP-side of the last-mile that directly connects to
customers. PON and Cellular access networks are anchored in these facilities.1

2.8.1 Passive Optical Network

PON is the technology most commonly used to deliver fiber-based broadband to homes and businesses.
PON adopts a point-to-multipoint design, which means the network is structured as a tree, with a single
point starting in the ISP’s network and then fanning out to reach up to 1024 homes. PON gets its name
from the fact that the splitters are passive: they forward optical signals downstream and upstream without
actively storing-and-forwarding frames. In this way, they are the optical variant of repeaters used in the
classic Ethernet. Framing then happens at the source in the ISP’s premises, in a device called an Optical
Line Terminal (OLT), and at the end-points in individual homes, in a device called an Optical Network Unit
(ONU).

Figure 2.32 shows an example PON, simplified to depict just one ONU and one OLT. In practice, a Central
Office would include multiple OLTs connecting to thousands of customer homes. For completeness, Figure
2.32 also includes two other details about how the PON is connected to the ISP’s backbone (and hence, to
the rest of the Internet). The Agg Switch aggregates traffic from a set of OLTs, and the BNG (Broadband
Network Gateway) is a piece of Telco equipment that, among many other things, meters Internet traffic for
the sake of billing. As its name implies, the BNG is effectively the gateway between the access network
(everything to the left of the BNG) and the Internet (everything to the right of the BNG).

Because the splitters are passive, PON has to implement some form of multi-access protocol. The approach
it adopts can be summarized as follows. First, upstream and downstream traffic are transmitted on two
different optical wavelengths, so they are completely independent of each other. Downstream traffic starts
at the OLT and the signal is propagated down every link in the PON. As a consequence, every frame reaches
every ONU. This device then looks at a unique identifier in the individual frames sent over the wavelength,
and either keeps the frame (if the identifier is for it) or drops it (if not). Encryption is used to keep ONUs
from eavesdropping on their neighbors’ traffic.

Upstream traffic is then time-division multiplexed on the upstream wavelength, with each ONU periodically
getting a turn to transmit. Because the ONUs are distributed over a fairly wide area (measured in kilometers)
and at different distances from the OLT, it is not practical for them to transmit based on synchronized clocks,

1 DSL is the legacy, copper-based counterpart to PON. DSL links are also terminated in Telco Central Offices, but we do not
describe this technology since it is being phased out.

2.8. Access Networks 95

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.32.: An example PON that connects OLTs in the Central Office to ONUs in homes and businesses.

as in SONET. Instead, the ONT transmits grants to the individual ONUs, giving them a time interval during
which they can transmit. In other words, the single OLT is responsible for centrally implementing the round-
robin sharing of the shared PON. This includes the possibility that the OLT can grant each ONU a different
share of time, effectively implementing different levels of service.

PON is similar to Ethernet in the sense that it defines a sharing algorithm that has evolved over time to
accommodate higher and higher bandwidths. G-PON (Gigabit-PON) is the most widely deployed today,
supporting a bandwidth of 2.25-Gbps. XGS-PON (10 Gigabit-PON) is just now starting to be deployed.

2.8.2 Cellular Network

While cellular telephone technology had its roots in analog voice communication, data services based on
cellular standards are now the norm. Like Wi-Fi, cellular networks transmit data at certain bandwidths in
the radio spectrum. Unlike Wi-Fi, which permits anyone to use a channel at either 2.4 or 5 GHz (all you
have to do is set up a base station, as many of us do in our homes), exclusive use of various frequency bands
have been auctioned off and licensed to service providers, who in turn sell mobile access service to their
subscribers.

The frequency bands that are used for cellular networks vary around the world, and are complicated by the
fact that ISPs often simultaneously support both old/legacy technologies and new/next-generation technolo-
gies, each of which occupies a different frequency band. The high-level summary is that traditional cellular
technologies range from 700-MHz to 2400-MHz, with new mid-spectrum allocations now happening at
6-GHz and millimeter-wave (mmWave) allocations opening above 24-GHz.

Citizens Broadband Radio Service (CBRS)

In addition to the licensed bands, there is also an unlicensed band at 3.5-GHz set aside in North America,
called Citizens Broadband Radio Service (CBRS), that anyone with a cellular radio can use. Similar

96 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

unlicensed bands are being set up in other countries, as well. This opens the door for setting up private
cellular networks, for example, within a University campus, an enterprise, or a manufacturing plant.

To be more precise, the CBRS band allows three tiers of users to share the spectrum: first right of use goes
to the original owners of this spectrum, naval radars and satellite ground stations; followed by priority
users who receive this right over 10MHz bands for three years via regional auctions; and finally the rest of
the population, who can access and utilize a portion of this band as long as they first check with a central
database of registered users.

Like 802.11, cellular technology relies on the use of base stations that are connected to a wired network.
In the case of the cellular network, the base stations are often called Broadband Base Units (BBU), the
mobile devices that connect to them are usually referred to as User Equipment (UE), and the set of BBUs
are anchored at an Evolved Packet Core (EPC) hosted in a Central Office. The wireless network served by
the EPC is often called a Radio Access Network (RAN).

BBUs officially go by another name—Evolved NodeB, often abbreviated eNodeB or eNB—where NodeB
is what the radio unit was called in an early incarnation of cellular networks (and has since evolved). Given
that the cellular world continues to evolve at a rapid pace and eNB’s are soon to be upgraded to gNB’s, we
have decided to use the more generic and less cryptic BBU.

Figure 2.33 depicts one possible configuration of the end-to-end scenario, with a few additional bits of detail.
The EPC has multiple subcomponents, including an MME (Mobility Management Entity), an HSS (Home
Subscriber Server), and an S/PGW (Session/Packet Gateway) pair; the first tracks and manages the move-
ment of UEs throughout the RAN, the second is a database that contains subscriber-related information, and
the Gateway pair processes and forwards packets between the RAN and the Internet (it forms the EPC’s user
plane). We say “one possible configuration” because the cellular standards allow wide variability in how
many S/PGWs a given MME is responsible for, making is possible for a single MME to manage mobility
across a wide geographic area that is served by multiple Central Offices. Finally, while not explicitly spelled
out in Figure 2.33, it is sometimes the case that the ISP’s PON network is used to connect the remote BBUs
back to the Central Office.

The geographic area served by a BBU’s antenna is called a cell. A BBU could serve a single cell or use
multiple directional antennas to serve multiple cells. Cells don’t have crisp boundaries, and they overlap.
Where they overlap, an UE could potentially communicate with multiple BBUs. At any time, however, the
UE is in communication with, and under the control of, just one BBU. As the device begins to leave a cell,
it moves into an area of overlap with one or more other cells. The current BBU senses the weakening signal
from the phone and gives control of the device to whichever base station is receiving the strongest signal
from it. If the device is involved in a call or other network session at the time, the session must be transferred
to the new base station in what is called a handoff. The decision making process for handoffs is under the
purview of the MME, which has historically been a proprietary aspect of the cellular equipment vendors
(although open source MME implementations are now starting to be available).

There have been multiple generations of protocols implementing the cellular network, colloquially known
as 1G, 2G, 3G, and so on. The first two generations supported only voice, with 3G defining the transition to
broadband access, supporting data rates measured in hundreds of kilobits-per-second. Today, the industry
is at 4G (supporting data rates typically measured in the few megabits-per-second) and is in the process of
transitioning to 5G (with the promise of a tenfold increase in data rates).

As of 3G, the generational designation actually corresponds to a standard defined by the 3GPP (3rd Genera-
tion Partnership Project). Even though its name has “3G” in it, the 3GPP continues to define the standard for

2.8. Access Networks 97

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.33.: A Radio Access Network (RAN) connecting a set of cellular devices (UEs) to an Evolved
Packet Core (EPC) hosted in a Central Office.

4G and 5G, each of which corresponds to a release of the standard. Release 15, which is now published, is
considered the demarcation point between 4G and 5G. By another name, this sequence of releases and gen-
erations is called LTE, which stands for Long-Term Evolution. The main takeaway is that while standards
are published as a sequence of discrete releases, the industry as a whole has been on a fairly well-defined
evolutionary path known as LTE. This section uses LTE terminology, but highlights the changes coming
with 5G when appropriate.

The main innovation of LTE’s air interface is how it allocates the available radio spectrum to UEs. Unlike
Wi-Fi, which is contention-based, LTE uses a reservation-based strategy. This difference is rooted in each
system’s fundamental assumption about utilization: Wi-Fi assumes a lightly loaded network (and hence
optimistically transmits when the wireless link is idle and backs off if contention is detected), while cellular
networks assume (and strive for) high utilization (and hence explicitly assign different users to different
“shares” of the available radio spectrum).

The state-of-the-art media access mechanism for LTE is called Orthogonal Frequency-Division Multiple
Access (OFDMA). The idea is to multiplex data over a set of 12 orthogonal subcarrier frequencies, each of
which is modulated independently. The “Multiple Access” in OFDMA implies that data can simultaneously
be sent on behalf of multiple users, each on a different subcarrier frequency and for a different duration of
time. The subbands are narrow (e.g., 15kHz), but the coding of user data into OFDMA symbols is designed
to minimize the risk of data loss due to interference between adjacent bands.

The use of OFDMA naturally leads to conceptualizing the radio spectrum as a two-dimensional resource,
as shown in Figure 2.34. The minimal schedulable unit, called a Resource Element (RE), corresponds to a
15kHz-wide band around one subcarrier frequency and the time it takes to transmit one OFDMA symbol.
The number of bits that can be encoded in each symbol depends on the modulation rate, so for example
using Quadrature Amplitude Modulation (QAM), 16-QAM yields 4 bits per symbol and 64-QAM yields 6
bits per symbol.

98 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

Figure 2.34.: The available radio spectrum abstractly represented by a 2-D grid of schedulable Resource
Elements.

2.8. Access Networks 99

Computer Networks: A Systems Approach, Release Version 6.1

A scheduler makes allocation decisions at the granularity of blocks of 7x12=84 resource elements, called
a Physical Resource Block (PRB). Figure 2.34 shows two back-to-back PRBs, where UEs are depicted by
different colored blocks. Of course time continues to flow along one axis, and depending on the size of the
licensed frequency band, there may be many more subcarrier slots (and hence PRBs) available along the
other axis, so the scheduler is essentially scheduling a sequence of PRBs for transmission.

The 1ms Transmission Time Interval (TTI) shown in Figure 2.34 corresponds to the time frame in which the
BBU receives feedback from UEs about the quality of the signal they are experiencing. This feedback, called
a Channel Quality Indicator (CQI), essentially reports the observed signal-to-noise ratio, which impacts the
UE’s ability to recover the data bits. The base station then uses this information to adapt how it allocates the
available radio spectrum to the UEs it is serving.

Up to this point, the description of how we schedule the radio spectrum is specific to 4G. The transition
from 4G to 5G introduces additional degrees-of-freedom in how the radio spectrum is scheduled, making it
possible to adapt the cellular network to a more diverse set of devices and applications domains.

Fundamentally, 5G defines a family of waveforms—unlike 4G, which specified only one waveform—each
optimized for a different band in the radio spectrum.2 The bands with carrier frequencies below 1GHz are
designed to deliver mobile broadband and massive IoT services with a primary focus on range. Carrier
frequencies between 1GHz-6GHz are designed to offer wider bandwidths, focusing on mobile broadband
and mission-critical applications. Carrier frequencies above 24GHz (mmWaves) are designed to provide
super wide bandwidths over short, line-of-sight coverage.

These different waveforms affect the scheduling and subcarrier intervals (i.e., the “size” of the Resource
Elements just described).

• For sub-1GHz bands, 5G allows maximum 50MHz bandwidths. In this case, there are two waveforms:
one with subcarrier spacing of 15kHz and another of 30kHz. (We used 15kHz in the example shown
in Figure 2.34. The corresponding scheduling intervals are 0.5ms and 0.25ms, respectively. (We used
0.5ms in the example shown in Figure 2.34.)

• For 1GHz-6GHz bands, maximum bandwidths go up to 100MHz. Correspondingly, there are three
waveforms with subcarrier spacings of 15kHz, 30kHz and 60kHz, corresponding to scheduling inter-
vals of 0.5ms, 0.25ms and 0.125ms, respectively.

• For millimeter bands, bandwidths may go up to 400MHz. There are two waveforms, with subcarrier
spacings of 60kHz and 120kHz. Both have scheduling intervals of 0.125ms.

This range of options is important because it adds another degree of freedom to the scheduler. In addition
to allocating resource blocks to users, it has the ability to dynamically adjust the size of the resource blocks
by changing the wave form being used in the band it is responsible for scheduling.

Whether 4G or 5G, the scheduling algorithm is a challenging optimization problem, with the objective of
simultaneously (a) maximizing utilization of the available frequency band, and (b) ensuring that every UE
receives the level of service it requires. This algorithm is not specified by 3GPP, but rather, is the proprietary
intellectual property of the BBU vendors.

2 A waveform is the frequency, amplitude, and phase-shift independent property (shape) of a signal. A sine wave is an example
waveform.

100 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

Perspective: Race to the Edge

As we start to explore how softwarization is transforming the network, we should recognize that it is the
access network that connects homes, businesses, and mobile users to the Internet that is undergoing the
most radical change. The fiber-to-the-home and cellular networks described in Section 2.8 are currently
constructed from complex hardware appliances (e.g., OLTs, BNGs, BBUs, EPCs). Not only have these
devices historically been closed and proprietary, but the vendors that sell them have typically bundled a
broad and diverse collection of functionality in each. As a consequence, they have become expensive to
build, complicated to operate, and slow to change.

In response, network operators are actively transitioning from these purpose-built appliances to open soft-
ware running on commodity servers, switches, and access devices. This initiative is often called CORD,
which is an acronym for Central Office Re-architected as a Datacenter, and as the name suggests, the idea
is to build the Telco Central Office (or the Cable Head End, resulting in the acronym HERD) using exactly
the same technologies as in the large datacenters that make up the cloud.

The motivation for operators to do this is in part to benefit from the cost savings that come from replacing
purpose-built appliances with commodity hardware, but it is mostly driven by the need to accelerate the
pace of innovation. Their goal is to enable new classes of edge services—e.g., Public Safety, Autonomous
Vehicles, Automated Factories, Internet-of-Things (IoT), Immersive User Interfaces—that benefit from low
latency connectivity to end users, and more importantly, to the increasing number of devices those users
surround themselves with. This results in a multi-tier cloud similar to the one shown in Figure 2.35.

Figure 2.35.: Emerging multi-tier cloud includes datacenter-based public clouds, IXP-hosted distributed
clouds, and access-based edge clouds, such as CORD. While there are on the order of 150 IXP-hosted
clouds worldwide, we can expect there to be thousands or even tens of thousands of edge clouds.

This is all part of the growing trend to move functionality out of the datacenter and closer to the network
edge, a trend that puts cloud providers and network operators on a collision course. Cloud providers, in
pursuit of low-latency/high-bandwidth applications, are moving out of the datacenter and towards the edge
at the same time network operators are adopting the best practices and technologies of the cloud to the edge
that already exists and implements the access network. It’s impossible to say how this will all play out over

2.8. Access Networks 101

Computer Networks: A Systems Approach, Release Version 6.1

time; both industries have their particular advantages.

On the one hand, cloud providers believe that by saturating metro areas with edge clusters and abstracting
away the access network, they can build an edge presence with low enough latency and high enough band-
width to serve the next generation of edge applications. In this scenario, the access network remains a dumb
bit-pipe, allowing cloud providers to excel at what they do best: run scalable cloud services on commodity
hardware.

On the other hand, network operators believe that by building the next generation access network using cloud
technology, they will be able to co-locate edge applications in the access network. This scenario comes with
built-in advantages: an existing and widely distributed physical footprint, existing operational support, and
native support for both mobility and guaranteed service.

While acknowledging both of these possibilities, there is a third outcome that is not only worth considering,
but also worth working towards: the democratization of the network edge. The idea is to make the access-
edge cloud accessible to anyone, and not strictly the domain of incumbent cloud providers or network
operators. There are three reasons to be optimistic about this possibility:

1. Hardware and software for the access network is becoming commoditized and open. This is a key
enabler that we were just talking about. If it helps Telcos and CableCos be agile, then it can provide
the same value to anyone.

2. There is demand. Enterprises in the automotive, factory, and warehouse space increasingly want to
deploy private 5G networks for a variety of physical automation use cases (e.g., a garage where a
remote valet parks your car or a factory floor making use of automation robots).

3. Spectrum is becoming available. 5G is opening up for use in an unlicensed or lightly licensed model
in the US and Germany as two prime examples, with other countries soon to follow. This means 5G
should have around 100-200 MHz of spectrum available for private use.

In short, the access network has historically been the purview of the Telcos, CableCos, and the vendors that
sell them proprietary boxes, but the softwarization and virtualization of the access network opens the door
for anyone (from smart cities to underserved rural areas to apartment complexes to manufacturing plants)
to establish an access-edge cloud and connect it to the public Internet. We expect it to become as easy to
do this as it is today to deploy a WiFi router. Doing so not only brings the access-edge into new (edgier)
environments, but also has the potential to open the access network to developers that instinctively go where
there are opportunities to innovate.

Broader Perspective

To continue reading about the cloudification of the Internet, see Perspective: Virtual Networks All the Way
Down.

To learn more about the transformation taking place in access networks, we recommend: CORD: Central Of-
fice Re-architected as a Datacenter, IEEE Communications, October 2016 and Democratizing the Network
Edge SIGCOMM CCR, April 2019.

102 Chapter 2. Direct Links

https://wiki.opencord.org/display/CORD/Documentation?preview=/1278027/1966399/PETERSON_CORD.pdf
https://wiki.opencord.org/display/CORD/Documentation?preview=/1278027/1966399/PETERSON_CORD.pdf
https://ccronline.sigcomm.org/2019/democratizing-the-network-edge/
https://ccronline.sigcomm.org/2019/democratizing-the-network-edge/

CHAPTER

THREE

INTERNETWORKING

Nature seems . . . to reach many of her ends by long circuitous routes.

—Rudolph Lotze

Problem: Not All Networks are Directly Connected

As we have seen, there are many technologies that can be used to build last-mile links or to connect a modest
number of nodes together, but how do we build networks of global scale? A single Ethernet can interconnect
no more than 1024 hosts; a point-to-point link connects only two. Wireless networks are limited by the range
of their radios. To build a global network, we need a way to interconnect these different types of links and
multi-access networks. The concept of interconnecting different types of networks to build a large, global
network is the core idea of the Internet and is often referred to as internetworking.

We can divide the internetworking problem up into a few subproblems. First of all, we need a way to
interconnect links. Devices that interconnect links of the same type are often called switches, or sometimes
Layer 2 (L2) switches. These devices are the first topic of this chapter. A particularly important class of L2
switches in use today are those used to interconnect Ethernet segments. These switches are also sometimes
called bridges.

The core job of a switch is to take packets that arrive on an input and forward (or switch) them to the right
output so that they will reach their appropriate destination. There are a variety of ways that the switch
can determine the “right” output for a packet, which can be broadly categorized as connectionless and
connection-oriented approaches. These two approaches have both found important application areas over
the years.

Given the enormous diversity of network types, we also need a way to interconnect disparate networks and
links (i.e., deal with heterogeneity). Devices that perform this task, once called gateways, are now mostly
known as routers, or alternatively, Layer 3 (L3) switches. The protocol that was invented to deal with
interconnection of disparate network types, the Internet Protocol (IP), is the topic of our second section.

Once we interconnect a whole lot of links and networks with switches and routers, there are likely to be
many different possible ways to get from one point to another. Finding a suitable path or route through a
network is one of the fundamental problems of networking. Such paths should be efficient (e.g., no longer
than necessary), loop free, and able to respond to the fact that networks are not static—nodes may fail or
reboot, links may break, and new nodes or links may be added. Our third section looks at some of the
algorithms and protocols that have been developed to address these issues.

103

Computer Networks: A Systems Approach, Release Version 6.1

Once we understand the problems of switching and routing, we need some devices to perform those func-
tions. This chapter concludes with some discussion of the ways switches and routers are implemented.
While many packet switches and routers are quite similar to a general-purpose computer, there are many
situations where more specialized designs are used. This is particularly the case at the high end, where there
seems to be a never-ending need for more switching capacity that can handle the ever-increasing traffic load
in the Internet’s core.

3.1 Switching Basics

In the simplest terms, a switch is a mechanism that allows us to interconnect links to form a larger network.
A switch is a multi-input, multi-output device that transfers packets from an input to one or more outputs.
Thus, a switch adds the star topology (see Figure 3.1) to the set of possible network structures. A star
topology has several attractive properties:

• Even though a switch has a fixed number of inputs and outputs, which limits the number of hosts
that can be connected to a single switch, large networks can be built by interconnecting a number of
switches.

• We can connect switches to each other and to hosts using point-to-point links, which typically means
that we can build networks of large geographic scope.

• Adding a new host to the network by connecting it to a switch does not necessarily reduce the perfor-
mance of the network for other hosts already connected.

Figure 3.1.: A switch provides a star topology.

104 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

This last claim cannot be made for the shared-media networks discussed in the last chapter. For example,
it is impossible for two hosts on the same 10-Mbps Ethernet segment to transmit continuously at 10 Mbps
because they share the same transmission medium. Every host on a switched network has its own link to the
switch, so it may be entirely possible for many hosts to transmit at the full link speed (bandwidth), provided
that the switch is designed with enough aggregate capacity. Providing high aggregate throughput is one of
the design goals for a switch; we return to this topic later. In general, switched networks are considered more
scalable (i.e., more capable of growing to large numbers of nodes) than shared-media networks because of
this ability to support many hosts at full speed.

Dense Wavelength Division Multiplexing

Our focus on packet-switched networks obsures the fact that, especially in wide-area networks, the un-
derlying physical transport is all-optical: there are no packets. At this layer, commercially available
DWDM (Dense Wavelength Division Multiplexing) equipment is able to transmit a large numbers of op-
tical wavelengths (colors) down a single fiber. For example, one might send data on 100 or more different
wavelengths, and each wavelength might carry as much as 100 Gbps of data.

Connecting these fibers is an optical device called a ROADM (Reconfigurable Optical Add/Drop Multi-
plexers). A collection of ROADMs (nodes) and fibers (links) form an optical transport network, where
each ROADM is able to forward individual wavelengths along a multi-hop path, creating a logical end-
to-end circuit. From the perspective of a packet-switched network that might be constructed on top of
this optical transport, one wavelength, even it it crosses multiple ROADMs, appears to be a single point-
to-point link between two switches, over which one might elect to run SONET or 100-Gbps Ethernet as
the framing protocol. The reconfigurability feature of ROADMs means that it is possible to change these
underlying end-to-end wavelengths, effectively creating a new topology at the packet-switching layer.

A switch is connected to a set of links and, for each of these links, runs the appropriate data link protocol
to communicate with the node at the other end of the link. A switch’s primary job is to receive incoming
packets on one of its links and to transmit them on some other link. This function is sometimes referred to
as either switching or forwarding, and in terms of the Open Systems Interconnection (OSI) architecture, it
is the main function of the network layer, otherwise known as Layer 2.

The question, then, is how does the switch decide which output link to place each packet on? The general
answer is that it looks at the header of the packet for an identifier that it uses to make the decision. The
details of how it uses this identifier vary, but there are two common approaches. The first is the datagram
or connectionless approach. The second is the virtual circuit or connection-oriented approach. A third
approach, source routing, is less common than these other two, but it does have some useful applications.

One thing that is common to all networks is that we need to have a way to identify the end nodes. Such
identifiers are usually called addresses. We have already seen examples of addresses, such as the 48-bit
address used for Ethernet. The only requirement for Ethernet addresses is that no two nodes on a network
have the same address. This is accomplished by making sure that all Ethernet cards are assigned a globally
unique identifier. For the following discussion, we assume that each host has a globally unique address.
Later on, we consider other useful properties that an address might have, but global uniqueness is adequate
to get us started.

Another assumption that we need to make is that there is some way to identify the input and output ports of
each switch. There are at least two sensible ways to identify ports: One is to number each port, and the other
is to identify the port by the name of the node (switch or host) to which it leads. For now, we use numbering

3.1. Switching Basics 105

Computer Networks: A Systems Approach, Release Version 6.1

of the ports.

3.1.1 Datagrams

The idea behind datagrams is incredibly simple: You just include in every packet enough information to
enable any switch to decide how to get it to its destination. That is, every packet contains the complete desti-
nation address. Consider the example network illustrated in Figure 3.2, in which the hosts have addresses A,
B, C, and so on. To decide how to forward a packet, a switch consults a forwarding table (sometimes called
a routing table), an example of which is depicted in Table 3.1. This particular table shows the forwarding
information that switch 2 needs to forward datagrams in the example network. It is pretty easy to figure out
such a table when you have a complete map of a simple network like that depicted here; we could imagine
a network operator configuring the tables statically. It is a lot harder to create the forwarding tables in large,
complex networks with dynamically changing topologies and multiple paths between destinations. That
harder problem is known as routing and is the topic of a later section. We can think of routing as a process
that takes place in the background so that, when a data packet turns up, we will have the right information
in the forwarding table to be able to forward, or switch, the packet.

Figure 3.2.: Datagram forwarding: an example network.

106 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Table 3.1.: Forwarding Table for Switch 2.
Destination Port
A 3
B 0
C 3
D 3
E 2
F 1
G 0
H 0

Datagram networks have the following characteristics:

• A host can send a packet anywhere at any time, since any packet that turns up at a switch can be
immediately forwarded (assuming a correctly populated forwarding table). For this reason, datagram
networks are often called connectionless; this contrasts with the connection-oriented networks de-
scribed below, in which some connection state needs to be established before the first data packet is
sent.

• When a host sends a packet, it has no way of knowing if the network is capable of delivering it or if
the destination host is even up and running.

• Each packet is forwarded independently of previous packets that might have been sent to the same
destination. Thus, two successive packets from host A to host B may follow completely different
paths (perhaps because of a change in the forwarding table at some switch in the network).

• A switch or link failure might not have any serious effect on communication if it is possible to find an
alternate route around the failure and to update the forwarding table accordingly.

This last fact is particularly important to the history of datagram networks. One of the important design
goals of the Internet is robustness to failures, and history has shown it to be quite effective at meeting this
goal. Since datagram-based networks are the dominant technology discussed in this book, we postpone
illustrative examples for the following sections, and move on to the two main alternatives.

3.1.2 Virtual Circuit Switching

A second technique for packet switching uses the concept of a virtual circuit (VC). This approach, which is
also referred to as a connection-oriented model, requires setting up a virtual connection from the source host
to the destination host before any data is sent. To understand how this works, consider Figure 3.3, where
host A again wants to send packets to host B. We can think of this as a two-stage process. The first stage is
“connection setup.” The second is data transfer. We consider each in turn.

In the connection setup phase, it is necessary to establish a “connection state” in each of the switches
between the source and destination hosts. The connection state for a single connection consists of an entry
in a “VC table” in each switch through which the connection passes. One entry in the VC table on a single
switch contains:

• A virtual circuit identifier (VCI) that uniquely identifies the connection at this switch and which will
be carried inside the header of the packets that belong to this connection

3.1. Switching Basics 107

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.3.: An example of a virtual circuit network.

• An incoming interface on which packets for this VC arrive at the switch

• An outgoing interface in which packets for this VC leave the switch

• A potentially different VCI that will be used for outgoing packets

The semantics of one such entry is as follows: If a packet arrives on the designated incoming interface and
that packet contains the designated VCI value in its header, then that packet should be sent out the specified
outgoing interface with the specified outgoing VCI value having been first placed in its header.

Note that the combination of the VCI of packets as they are received at the switch and the interface on
which they are received uniquely identifies the virtual connection. There may of course be many virtual
connections established in the switch at one time. Also, we observe that the incoming and outgoing VCI
values are generally not the same. Thus, the VCI is not a globally significant identifier for the connection;
rather, it has significance only on a given link (i.e., it has link-local scope).

Whenever a new connection is created, we need to assign a new VCI for that connection on each link that
the connection will traverse. We also need to ensure that the chosen VCI on a given link is not currently in
use on that link by some existing connection.

There are two broad approaches to establishing connection state. One is to have a network administrator
configure the state, in which case the virtual circuit is “permanent.” Of course, it can also be deleted by
the administrator, so a permanent virtual circuit (PVC) might best be thought of as a long-lived or admin-
istratively configured VC. Alternatively, a host can send messages into the network to cause the state to
be established. This is referred to as signalling, and the resulting virtual circuits are said to be switched.
The salient characteristic of a switched virtual circuit (SVC) is that a host may set up and delete such a VC
dynamically without the involvement of a network administrator. Note that an SVC should more accurately
be called a signalled VC, since it is the use of signalling (not switching) that distinguishes an SVC from
a PVC.

Let’s assume that a network administrator wants to manually create a new virtual connection from host A
to host B. First, the administrator needs to identify a path through the network from A to B. In the example
network of Figure 3.3, there is only one such path, but in general, this may not be the case. The administrator
then picks a VCI value that is currently unused on each link for the connection. For the purposes of our
example, let’s suppose that the VCI value 5 is chosen for the link from host A to switch 1, and that 11 is

108 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

chosen for the link from switch 1 to switch 2. In that case, switch 1 needs to have an entry in its VC table
configured as shown in Table 3.2.

Table 3.2.: Example Virtual Circuit Table Entry for Switch 1.
Incoming Interface Incoming VCI Outgoing Interface Outgoing VCI
2 5 1 11

Similarly, suppose that the VCI of 7 is chosen to identify this connection on the link from switch 2 to
switch 3 and that a VCI of 4 is chosen for the link from switch 3 to host B. In that case, switches 2 and 3
need to be configured with VC table entries as shown in Table 3.3 and Table 3.4, respectively. Note that the
“outgoing” VCI value at one switch is the “incoming” VCI value at the next switch.

Table 3.3.: Virtual Circuit Table Entry at Switch 2.
Incoming Interface Incoming VCI Outgoing Interface Outgoing VCI
3 11 2 7

Table 3.4.: Virtual Circuit Table Entry at Switch 3.
Incoming Interface Incoming VCI Outgoing Interface Outgoing VCI
0 7 1 4

Figure 3.4.: A packet is sent into a virtual circuit network.

Once the VC tables have been set up, the data transfer phase can proceed, as illustrated in Figure 3.4. For
any packet that it wants to send to host B, A puts the VCI value of 5 in the header of the packet and sends
it to switch 1. Switch 1 receives any such packet on interface 2, and it uses the combination of the interface
and the VCI in the packet header to find the appropriate VC table entry. As shown in Table 3.2, the table
entry in this case tells switch 1 to forward the packet out of interface 1 and to put the VCI value 11 in the
header when the packet is sent. Thus, the packet will arrive at switch 2 on interface 3 bearing VCI 11.
Switch 2 looks up interface 3 and VCI 11 in its VC table (as shown in Table 3.3) and sends the packet on
to switch 3 after updating the VCI value in the packet header appropriately, as shown in Figure 3.5. This
process continues until it arrives at host B with the VCI value of 4 in the packet. To host B, this identifies
the packet as having come from host A.

In real networks of reasonable size, the burden of configuring VC tables correctly in a large number of
switches would quickly become excessive using the above procedures. Thus, either a network management

3.1. Switching Basics 109

Computer Networks: A Systems Approach, Release Version 6.1

tool or some sort of signalling (or both) is almost always used, even when setting up “permanent” VCs.
In the case of PVCs, signalling is initiated by the network administrator, while SVCs are usually set up
using signalling by one of the hosts. We consider now how the same VC just described could be set up by
signalling from the host.

Figure 3.5.: A packet makes its way through a virtual circuit network.

To start the signalling process, host A sends a setup message into the network—that is, to switch 1. The
setup message contains, among other things, the complete destination address of host B. The setup message
needs to get all the way to B to create the necessary connection state in every switch along the way. We can
see that getting the setup message to B is a lot like getting a datagram to B, in that the switches have to know
which output to send the setup message to so that it eventually reaches B. For now, let’s just assume that the
switches know enough about the network topology to figure out how to do that, so that the setup message
flows on to switches 2 and 3 before finally reaching host B.

When switch 1 receives the connection request, in addition to sending it on to switch 2, it creates a new
entry in its virtual circuit table for this new connection. This entry is exactly the same as shown previously
in Table 3.2. The main difference is that now the task of assigning an unused VCI value on the interface
is performed by the switch for that port. In this example, the switch picks the value 5. The virtual circuit
table now has the following information: “When packets arrive on port 2 with identifier 5, send them out on
port 1.” Another issue is that, somehow, host A will need to learn that it should put the VCI value of 5 in
packets that it wants to send to B; we will see how that happens below.

When switch 2 receives the setup message, it performs a similar process; in this example, it picks the value
11 as the incoming VCI value. Similarly, switch 3 picks 7 as the value for its incoming VCI. Each switch
can pick any number it likes, as long as that number is not currently in use for some other connection on that
port of that switch. As noted above, VCIs have link-local scope; that is, they have no global significance.

Finally, the setup message arrives as host B. Assuming that B is healthy and willing to accept a connection
from host A, it too allocates an incoming VCI value, in this case 4. This VCI value can be used by B to
identify all packets coming from host A.

Now, to complete the connection, everyone needs to be told what their downstream neighbor is using as the
VCI for this connection. Host B sends an acknowledgment of the connection setup to switch 3 and includes
in that message the VCI that it chose (4). Now switch 3 can complete the virtual circuit table entry for this
connection, since it knows the outgoing value must be 4. Switch 3 sends the acknowledgment on to switch 2,
specifying a VCI of 7. Switch 2 sends the message on to switch 1, specifying a VCI of 11. Finally, switch 1
passes the acknowledgment on to host A, telling it to use the VCI of 5 for this connection.

110 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

At this point, everyone knows all that is necessary to allow traffic to flow from host A to host B. Each switch
has a complete virtual circuit table entry for the connection. Furthermore, host A has a firm acknowledgment
that everything is in place all the way to host B. At this point, the connection table entries are in place in
all three switches just as in the administratively configured example above, but the whole process happened
automatically in response to the signalling message sent from A. The data transfer phase can now begin and
is identical to that used in the PVC case.

When host A no longer wants to send data to host B, it tears down the connection by sending a teardown
message to switch 1. The switch removes the relevant entry from its table and forwards the message on to
the other switches in the path, which similarly delete the appropriate table entries. At this point, if host A
were to send a packet with a VCI of 5 to switch 1, it would be dropped as if the connection had never existed.

There are several things to note about virtual circuit switching:

• Since host A has to wait for the connection request to reach the far side of the network and return
before it can send its first data packet, there is at least one round-trip time (RTT) of delay before data
is sent.

• While the connection request contains the full address for host B (which might be quite large, being
a global identifier on the network), each data packet contains only a small identifier, which is only
unique on one link. Thus, the per-packet overhead caused by the header is reduced relative to the
datagram model. More importantly, the lookup is fast because the virtual circuit number can be
treated as an index into a table rather than as a key that has to be looked up.

• If a switch or a link in a connection fails, the connection is broken and a new one will need to be
established. Also, the old one needs to be torn down to free up table storage space in the switches.

• The issue of how a switch decides which link to forward the connection request on has been glossed
over. In essence, this is the same problem as building up the forwarding table for datagram forward-
ing, which requires some sort of routing algorithm. Routing is described in a later section, and the
algorithms described there are generally applicable to routing setup requests as well as datagrams.

One of the nice aspects of virtual circuits is that by the time the host gets the go-ahead to send data, it knows
quite a lot about the network—for example, that there really is a route to the receiver and that the receiver
is willing and able to receive data. It is also possible to allocate resources to the virtual circuit at the time
it is established. For example, X.25 (an early and now largely obsolete virtual-circuit-based networking
technology) employed the following three-part strategy:

1. Buffers are allocated to each virtual circuit when the circuit is initialized.

2. The sliding window protocol is run between each pair of nodes along the virtual circuit, and this
protocol is augmented with flow control to keep the sending node from over-running the buffers
allocated at the receiving node.

3. The circuit is rejected by a given node if not enough buffers are available at that node when the
connection request message is processed.

In doing these three things, each node is ensured of having the buffers it needs to queue the packets that
arrive on that circuit. This basic strategy is usually called hop-by-hop flow control.

By comparison, a datagram network has no connection establishment phase, and each switch processes
each packet independently, making it less obvious how a datagram network would allocate resources in a
meaningful way. Instead, each arriving packet competes with all other packets for buffer space. If there are
no free buffers, the incoming packet must be discarded. We observe, however, that even in a datagram-based

3.1. Switching Basics 111

Computer Networks: A Systems Approach, Release Version 6.1

network a source host often sends a sequence of packets to the same destination host. It is possible for each
switch to distinguish among the set of packets it currently has queued, based on the source/destination pair,
and thus for the switch to ensure that the packets belonging to each source/destination pair are receiving a
fair share of the switch’s buffers.

In the virtual circuit model, we could imagine providing each circuit with a different quality of service
(QoS). In this setting, the term quality of service is usually taken to mean that the network gives the user
some kind of performance-related guarantee, which in turn implies that switches set aside the resources
they need to meet this guarantee. For example, the switches along a given virtual circuit might allocate a
percentage of each outgoing link’s bandwidth to that circuit. As another example, a sequence of switches
might ensure that packets belonging to a particular circuit not be delayed (queued) for more than a certain
amount of time.

There have been a number of successful examples of virtual circuit technologies over the years, notably
X.25, Frame Relay, and Asynchronous Transfer Mode (ATM). With the success of the Internet’s connec-
tionless model, however, none of them enjoys great popularity today. One of the most common applications
of virtual circuits for many years was the construction of virtual private networks (VPNs), a subject dis-
cussed in a later section. Even that application is now mostly supported using Internet-based technologies
today.

Asynchronous Transfer Mode (ATM)

Asynchronous Transfer Mode (ATM) is probably the most well-known virtual circuit-based networking
technology, although it is now well past its peak in terms of deployment. ATM became an important tech-
nology in the 1980s and early 1990s for a variety of reasons, not the least of which is that it was embraced
by the telephone industry, which at that point in time was less active in computer networks (other than as
a supplier of links from which other people built networks). ATM also happened to be in the right place at
the right time, as a high-speed switching technology that appeared on the scene just when shared media like
Ethernet and token rings were starting to look a bit too slow for many users of computer networks. In some
ways ATM was a competing technology with Ethernet switching, and it was seen by many as a competitor
to IP as well.

Figure 3.6.: ATM cell format at the UNI.

The approach ATM takes has some interesting properties, which makes it worth examining a bit further.
The picture of the ATM packet format—more commonly called an ATM cell—in Figure 3.6 will illustrate
the main points. We’ll skip the generic flow control (GFC) bits, which never saw much use, and start with
the 24 bits that are labelled VPI (virtual path identifier—8 bits) and VCI (virtual circuit identifier—16 bits).
If you consider these bits together as a single 24-bit field, they correspond to the virtual circuit identifier
introduced above. The reason for breaking the field into two parts was to allow for a level of hierarchy: All
the circuits with the same VPI could, in some cases, be treated as a group (a virtual path) and could all be
switched together looking only at the VPI, simplifying the work of a switch that could ignore all the VCI
bits and reducing the size of the VC table considerably.

Skipping to the last header byte we find an 8-bit cyclic redundancy check (CRC), known as the header error

112 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

check (HEC). It uses CRC-8 and provides error detection and single-bit error correction capability on the
cell header only. Protecting the cell header is particularly important because an error in the VCI will cause
the cell to be misdelivered.

Probably the most significant thing to notice about the ATM cell, and the reason it is called a cell and
not a packet, is that it comes in only one size: 53 bytes. What was the reason for this? One big reason
was to facilitate the implementation of hardware switches. When ATM was being created in the mid- and
late 1980s, 10-Mbps Ethernet was the cutting-edge technology in terms of speed. To go much faster, most
people thought in terms of hardware. Also, in the telephone world, people think big when they think of
switches—telephone switches often serve tens of thousands of customers. Fixed-length packets turn out to
be a very helpful thing if you want to build fast, highly scalable switches. There are two main reasons for
this:

1. It is easier to build hardware to do simple jobs, and the job of processing packets is simpler when you
already know how long each one will be.

2. If all packets are the same length, then you can have lots of switching elements all doing much the
same thing in parallel, each of them taking the same time to do its job.

This second reason, the enabling of parallelism, greatly improves the scalability of switch designs. It would
be overstating the case to say that fast parallel hardware switches can only be built using fixed-length cells.
However, it is certainly true that cells ease the task of building such hardware and that there was a lot of
knowledge available about how to build cell switches in hardware at the time the ATM standards were being
defined. As it turns out, this same principle is still applied in many switches and routers today, even if they
deal in variable length packets—they cut those packets into some sort of cell in order to forward them from
input port to output port, but this is all internal to the switch.

There is another good argument in favor of small ATM cells, having to do with end-to-end latency. ATM
was designed to carry both voice phone calls (the dominant use case at the time) and data. Because voice is
low-bandwidth but has strict delay requirements, the last thing you want is for a small voice packet queued
behind a large data packet at a switch. If you force all packets to be small (i.e., cell-sized), then large data
packets can still be supported by reassembling a set of cells into a packet, and you get the benefit of being
able to interleave the forwarding of voice cells and data cells at every switch along the path from source to
destination. This idea of using small cells to improve end-to-end latency is alive and well today in cellular
access networks.

Having decided to use small, fixed-length packets, the next question was what is the right length to fix them
at? If you make them too short, then the amount of header information that needs to be carried around
relative to the amount of data that fits in one cell gets larger, so the percentage of link bandwidth that is
actually used to carry data goes down. Even more seriously, if you build a device that processes cells at
some maximum number of cells per second, then as cells get shorter the total data rate drops in direct
proportion to cell size. An example of such a device might be a network adaptor that reassembles cells into
larger units before handing them up to the host. The performance of such a device depends directly on cell
size. On the other hand, if you make the cells too big, then there is a problem of wasted bandwidth caused
by the need to pad transmitted data to fill a complete cell. If the cell payload size is 48 bytes and you want
to send 1 byte, you’ll need to send 47 bytes of padding. If this happens a lot, then the utilization of the link
will be very low. The combination of relatively high header-to-payload ratio plus the frequency of sending
partially filled cells did actually lead to some noticeable inefficiency in ATM networks that some detractors
called the cell tax.

As it turns out, 48 bytes was picked for the ATM cell payload as a compromise. There were good arguments

3.1. Switching Basics 113

Computer Networks: A Systems Approach, Release Version 6.1

for both larger and smaller cells, and 48 made almost no one happy—a power of two would certainly have
been better for computers to process.

3.1.3 Source Routing

A third approach to switching that uses neither virtual circuits nor conventional datagrams is known as
source routing. The name derives from the fact that all the information about network topology that is
required to switch a packet across the network is provided by the source host.

There are various ways to implement source routing. One would be to assign a number to each output of
each switch and to place that number in the header of the packet. The switching function is then very simple:
For each packet that arrives on an input, the switch would read the port number in the header and transmit
the packet on that output. However, since there will in general be more than one switch in the path between
the sending and the receiving host, the header for the packet needs to contain enough information to allow
every switch in the path to determine which output the packet needs to be placed on. One way to do this
would be to put an ordered list of switch ports in the header and to rotate the list so that the next switch in
the path is always at the front of the list. Figure 3.7 illustrates this idea.

Figure 3.7.: Source routing in a switched network (where the switch reads the rightmost number).

In this example, the packet needs to traverse three switches to get from host A to host B. At switch 1, it
needs to exit on port 1, at the next switch it needs to exit at port 0, and at the third switch it needs to exit at
port 3. Thus, the original header when the packet leaves host A contains the list of ports (3, 0, 1), where we
assume that each switch reads the rightmost element of the list. To make sure that the next switch gets the
appropriate information, each switch rotates the list after it has read its own entry. Thus, the packet header
as it leaves switch 1 enroute to switch 2 is now (1, 3, 0); switch 2 performs another rotation and sends out
a packet with (0, 1, 3) in the header. Although not shown, switch 3 performs yet another rotation, restoring
the header to what it was when host A sent it.

There are several things to note about this approach. First, it assumes that host A knows enough about
the topology of the network to form a header that has all the right directions in it for every switch in the

114 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

path. This is somewhat analogous to the problem of building the forwarding tables in a datagram network
or figuring out where to send a setup packet in a virtual circuit network. In practice, however, it is the first
switch at the ingress to the network (as opposed to the end host connected to that switch) that appends the
source route.

Second, observe that we cannot predict how big the header needs to be, since it must be able to hold one word
of information for every switch on the path. This implies that headers are probably of variable length with
no upper bound, unless we can predict with absolute certainty the maximum number of switches through
which a packet will ever need to pass.

Third, there are some variations on this approach. For example, rather than rotate the header, each switch
could just strip the first element as it uses it. Rotation has an advantage over stripping, however: Host B
gets a copy of the complete header, which may help it figure out how to get back to host A. Yet another
alternative is to have the header carry a pointer to the current “next port” entry, so that each switch just
updates the pointer rather than rotating the header; this may be more efficient to implement. We show these
three approaches in Figure 3.8. In each case, the entry that this switch needs to read is A, and the entry that
the next switch needs to read is B.

Figure 3.8.: Three ways to handle headers for source routing: (a) rotation; (b) stripping; (c) pointer. The
labels are read right to left.

Source routing can be used in both datagram networks and virtual circuit networks. For example, the Internet
Protocol, which is a datagram protocol, includes a source route option that allows selected packets to be
source routed, while the majority are switched as conventional datagrams. Source routing is also used in
some virtual circuit networks as the means to get the initial setup request along the path from source to
destination.

Source routes are sometimes categorized as strict or loose. In a strict source route, every node along the
path must be specified, whereas a loose source route only specifies a set of nodes to be traversed, without
saying exactly how to get from one node to the next. A loose source route can be thought of as a set of
waypoints rather than a completely specified route. The loose option can be helpful to limit the amount of
information that a source must obtain to create a source route. In any reasonably large network, it is likely
to be hard for a host to get the complete path information it needs to construct correct a strict source route
to any destination. But both types of source routes do find application in certain scenarios, as we will see in
later chapters.

3.1. Switching Basics 115

Computer Networks: A Systems Approach, Release Version 6.1

3.2 Switched Ethernet

Having discussed some of the basic ideas behind switching, we now focus more closely on a specific switch-
ing technology: Switched Ethernet. The switches used to build such networks, which are often referred to
as L2 switches, are widely used in campus and enterprise networks. Historically, they were more commonly
referred to as bridges because they were used to “bridge” ethernet segments to build an extended LAN. But
today most networks deploy Ethernet in a point-to-point configuration, with these links interconneted by L2
switches to form a switched Ethernet.

The following starts with the historical perspective (using bridges to connect a set of Ethernet segments), and
then shifts to the perspective in wide-spread use today (using L2 switches to connect a set of point-to-point
links). But whether we call the device a bridge or a switch—and the network you build an extended LAN or
a switched Ethernet—the two behave in exactly the same way.

To begin, suppose you have a pair of Ethernets that you want to interconnect. One approach you might try
is to put a repeater between them. This would not be a workable solution, however, if doing so exceeded
the physical limitations of the Ethernet. (Recall that no more than two repeaters between any pair of hosts
and no more than a total of 2500 m in length are allowed.) An alternative would be to put a node with a pair
of Ethernet adaptors between the two Ethernets and have the node forward frames from one Ethernet to the
other. This node would differ from a repeater, which operates on bits, not frames, and just blindly copies the
bits received on one interface to another. Instead, this node would fully implement the Ethernet’s collision
detection and media access protocols on each interface. Hence, the length and number-of-host restrictions
of the Ethernet, which are all about managing collisions, would not apply to the combined pair of Ethernets
connected in this way. This device operates in promiscuous mode, accepting all frames transmitted on either
of the Ethernets, and forwarding them to the other.

In their simplest variants, bridges simply accept LAN frames on their inputs and forward them out on all
other outputs. This simple strategy was used by early bridges but has some pretty serious limitations as we’ll
see below. A number of refinements were added over the years to make bridges an effective mechanism for
interconnecting a set of LANs. The rest of this section fills in the more interesting details.

3.2.1 Learning Bridges

The first optimization we can make to a bridge is to observe that it need not forward all frames that it
receives. Consider the bridge in Figure 3.9. Whenever a frame from host A that is addressed to host B
arrives on port 1, there is no need for the bridge to forward the frame out over port 2. The question, then, is
how does a bridge come to learn on which port the various hosts reside?

One option would be to have a human download a table into the bridge similar to the one given in Table 3.5.
Then, whenever the bridge receives a frame on port 1 that is addressed to host A, it would not forward the
frame out on port 2; there would be no need because host A would have already directly received the frame
on the LAN connected to port 1. Anytime a frame addressed to host A was received on port 2, the bridge
would forward the frame out on port 1.

116 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.9.: Illustration of a learning bridge.

Table 3.5.: Forwarding Table Maintained by a Bridge.
Host Port
A 1
B 1
C 1
X 2
Y 2
Z 2

Having a human maintain this table is too burdensome, and there is a simple trick by which a bridge can
learn this information for itself. The idea is for each bridge to inspect the source address in all the frames
it receives. Thus, when host A sends a frame to a host on either side of the bridge, the bridge receives this
frame and records the fact that a frame from host A was just received on port 1. In this way, the bridge can
build a table just like Table 3.5.

Note that a bridge using such a table implements a version of the datagram (or connectionless) model of
forwarding described earlier. Each packet carries a global address, and the bridge decides which output to
send a packet on by looking up that address in a table.

When a bridge first boots, this table is empty; entries are added over time. Also, a timeout is associated with
each entry, and the bridge discards the entry after a specified period of time. This is to protect against the
situation in which a host—and, as a consequence, its LAN address—is moved from one network to another.
Thus, this table is not necessarily complete. Should the bridge receive a frame that is addressed to a host not
currently in the table, it goes ahead and forwards the frame out on all the other ports. In other words, this
table is simply an optimization that filters out some frames; it is not required for correctness.

3.2. Switched Ethernet 117

Computer Networks: A Systems Approach, Release Version 6.1

3.2.2 Implementation

The code that implements the learning bridge algorithm is quite simple, and we sketch it here. Structure
BridgeEntry defines a single entry in the bridge’s forwarding table; these are stored in a Map structure
(which supports mapCreate, mapBind, and mapResolve operations) to enable entries to be efficiently
located when packets arrive from sources already in the table. The constant MAX_TTL specifies how long
an entry is kept in the table before it is discarded.

#define BRIDGE_TAB_SIZE 1024 /* max size of bridging table */
#define MAX_TTL 120 /* time (in seconds) before an entry is
→˓flushed */

typedef struct {
MacAddr destination; /* MAC address of a node */
int ifnumber; /* interface to reach it */
u_short TTL; /* time to live */
Binding binding; /* binding in the Map */

} BridgeEntry;

int numEntries = 0;
Map bridgeMap = mapCreate(BRIDGE_TAB_SIZE, sizeof(BridgeEntry));

The routine that updates the forwarding table when a new packet arrives is given by updateTable. The
arguments passed are the source media access control (MAC) address contained in the packet and the inter-
face number on which it was received. Another routine, not shown here, is invoked at regular intervals, scans
the entries in the forwarding table, and decrements the TTL (time to live) field of each entry, discarding any
entries whose TTL has reached 0. Note that the TTL is reset to MAX_TTL every time a packet arrives to
refresh an existing table entry and that the interface on which the destination can be reached is updated to
reflect the most recently received packet.

void
updateTable (MacAddr src, int inif)
{

BridgeEntry *b;

if (mapResolve(bridgeMap, &src, (void **)&b) == FALSE)
{

/* this address is not in the table, so try to add it */
if (numEntries < BRIDGE_TAB_SIZE)
{

b = NEW(BridgeEntry);
b->binding = mapBind(bridgeMap, &src, b);
/* use source address of packet as dest. address in table */
b->destination = src;
numEntries++;

}
else
{

/* can't fit this address in the table now, so give up */
return;

}

(continues on next page)

118 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

(continued from previous page)

}
/* reset TTL and use most recent input interface */
b->TTL = MAX_TTL;
b->ifnumber = inif;

}

Note that this implementation adopts a simple strategy in the case where the bridge table has become full
to capacity—it simply fails to add the new address. Recall that completeness of the bridge table is not
necessary for correct forwarding; it just optimizes performance. If there is some entry in the table that is
not currently being used, it will eventually time out and be removed, creating space for a new entry. An
alternative approach would be to invoke some sort of cache replacement algorithm on finding the table full;
for example, we might locate and remove the entry with the smallest TTL to accommodate the new entry.

3.2.3 Spanning Tree Algorithm

The preceding strategy works just fine until the network has a loop in it, in which case it fails in a horrible
way—frames potentially get forwarded forever. This is easy to see in the example depicted in Figure 3.10,
where switches S1, S4, and S6 form a loop.

Figure 3.10.: Switched Ethernet with loops.

Note that we are now making the shift from calling the each forwarding device a bridge (connecting seg-
ments that might reach multiple other devices) to instead calling them L2 switches (connecting point-to-
point links that reach just one other device). To keep the example managable, we include just three hosts.
In practice, switches typically have 16, 24, or 48 ports, meaning they are able to connect to that many hosts
(and other swiches).

3.2. Switched Ethernet 119

Computer Networks: A Systems Approach, Release Version 6.1

In our example switched network, suppose that a packet enters switch S4 from Host C and that the desti-
nation address is one not yet in any switches’s forwarding table: S4 sends a copy of the packet out its two
other ports: to switches S1 and S6. Switch S6 forwards the packet onto S1 (and meanwhile, S1 forwards the
packet onto S6), both of which in turn forward their packets back to S4. Switch S4 still doesn’t have this
destination in its table, so it forwards the packet out its two other ports. There is nothing to stop this cycle
from repeating endlessly, with packets looping in both directions among S1, S4, and S6.

Why would a switched Ethernet (or extended LAN) come to have a loop in it? One possibility is that the
network is managed by more than one administrator, for example, because it spans multiple departments in
an organization. In such a setting, it is possible that no single person knows the entire configuration of the
network, meaning that a switch that closes a loop might be added without anyone knowing. A second, more
likely scenario is that loops are built into the network on purpose—to provide redundancy in case of failure.
After all, a network with no loops needs only one link failure to become split into two separate partitions.

Whatever the cause, switches must be able to correctly handle loops. This problem is addressed by having
the switches run a distributed spanning tree algorithm. If you think of the network as being represented by a
graph that possibly has loops (cycles), then a spanning tree is a subgraph of this graph that covers (spans) all
the vertices but contains no cycles. That is, a spanning tree keeps all of the vertices of the original graph but
throws out some of the edges. For example, Figure 3.11 shows a cyclic graph on the left and one of possibly
many spanning trees on the right.

Figure 3.11.: Example of (a) a cyclic graph; (b) a corresponding spanning tree.

The idea of a spanning tree is simple enough: It’s a subset of the actual network topology that has no loops
and that reaches all the devices in the network. The hard part is how all of the switches coordinate their
decisions to arrive at a single view of the spanning tree. After all, one topology is typically able to be
covered by multiple spanning trees. The answer lies in the spanning tree protocol, which we’ll describe
now.

The spanning tree algorithm, which was developed by Radia Perlman, then at the Digital Equipment Cor-
poration, is a protocol used by a set of switches to agree upon a spanning tree for a particular network. (The
IEEE 802.1 specification is based on this algorithm.) In practice, this means that each switch decides the
ports over which it is and is not willing to forward frames. In a sense, it is by removing ports from the
topology that the network is reduced to an acyclic tree. It is even possible that an entire switch will not
participate in forwarding frames, which seems kind of strange at first glance. The algorithm is dynamic,
however, meaning that the switches are always prepared to reconfigure themselves into a new spanning tree
should some switch fail, and so those unused ports and switches provide the redundant capacity needed to
recover from failures.

120 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

The main idea of the spanning tree is for the switches to select the ports over which they will forward frames.
The algorithm selects ports as follows. Each switch has a unique identifier; for our purposes, we use the
labels S1, S2, S3, and so on. The algorithm first elects the switch with the smallest ID as the root of the
spanning tree; exactly how this election takes place is described below. The root switch always forwards
frames out over all of its ports. Next, each switch computes the shortest path to the root and notes which
of its ports is on this path. This port is also selected as the switch’s preferred path to the root. Finally, to
account for the possibility there could be another switch connected to its ports, the switch elect a single
designated switch that will be responsible for forwarding frames toward the root. Each designated switch is
the one that is closest to the root. If two or more switches are equally close to the root, then the switches’
identifiers are used to break ties, and the smallest ID wins. Of course, each switch might be connected to
more than one other switch, so it participates in the election of a designated switch for each such port. In
effect, this means that each switch decides if it is the designated switch relative to each of its ports. The
switch forwards frames over those ports for which it is the designated switch.

Figure 3.12.: Spanning tree with some ports not selected.

Figure 3.12 shows the spanning tree that corresponds to the network shown in Figure 3.10. In this example,
S1 is the root, since it has the smallest ID. Notice that S3 and S5 are connected to each other, but S5 is the
designated switch since it is closer to the root. Similarly, S5 and S7 are connected to each other, but in this
case S5 is the designated switch since it has the smaller ID; both are an equal distance from S1.

While it is possible for a human to look at the network given in Figure 3.10 and to compute the spanning
tree given in the Figure 3.12 according to the rules given above, the switches do not have the luxury of being
able to see the topology of the entire network, let alone peek inside other switches to see their ID. Instead,
they have to exchange configuration messages with each other and then decide whether or not they are the
root or a designated switch based on these messages.

Specifically, the configuration messages contain three pieces of information:

1. The ID for the switch that is sending the message.

3.2. Switched Ethernet 121

Computer Networks: A Systems Approach, Release Version 6.1

2. The ID for what the sending switch believes to be the root switch.

3. The distance, measured in hops, from the sending switch to the root switch.

Each switch records the current best configuration message it has seen on each of its ports (“best” is de-
fined below), including both messages it has received from other switches and messages that it has itself
transmitted.

Initially, each switch thinks it is the root, and so it sends a configuration message out on each of its ports
identifying itself as the root and giving a distance to the root of 0. Upon receiving a configuration message
over a particular port, the switch checks to see if that new message is better than the current best configura-
tion message recorded for that port. The new configuration message is considered better than the currently
recorded information if any of the following is true:

• It identifies a root with a smaller ID.

• It identifies a root with an equal ID but with a shorter distance.

• The root ID and distance are equal, but the sending switch has a smaller ID

If the new message is better than the currently recorded information, the switch discards the old information
and saves the new information. However, it first adds 1 to the distance-to-root field since the switch is one
hop farther away from the root than the switch that sent the message.

When a switch receives a configuration message indicating that it is not the root—that is, a message from
a switch with a smaller ID—the switch stops generating configuration messages on its own and instead
only forwards configuration messages from other switches, after first adding 1 to the distance field. Like-
wise, when a switch receives a configuration message that indicates it is not the designated switch for that
port—that is, a message from a switch that is closer to the root or equally far from the root but with a smaller
ID—the switch stops sending configuration messages over that port. Thus, when the system stabilizes, only
the root switch is still generating configuration messages, and the other switches are forwarding these mes-
sages only over ports for which they are the designated switch. At this point, a spanning tree has been built,
and all the switches are in agreement on which ports are in use for the spanning tree. Only those ports may
be used for forwarding data packets.

Let’s see how this works with an example. Consider what would happen in Figure 3.12 if the power had
just been restored to a campus, so that all the switches boot at about the same time. All the switches would
start off by claiming to be the root. We denote a configuration message from node X in which it claims to be
distance d from root node Y as (Y,d,X). Focusing on the activity at S3, a sequence of events would unfold
as follows:

1. S3 receives (S2, 0, S2).

2. Since 2 < 3, S3 accepts S2 as root.

3. S3 adds one to the distance advertised by S2 (0) and thus sends (S2, 1, S3) toward S5.

4. Meanwhile, S2 accepts S1 as root because it has the lower ID, and it sends (S1, 1, S2) toward S3.

5. S5 accepts S1 as root and sends (S1, 1, S5) toward S3.

6. S3 accepts S1 as root, and it notes that both S2 and S5 are closer to the root than it is, but S2 has the
smaller id, so it remains on S3’s path to the root.

122 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

This leaves S3 with active ports as shown in Figure 3.12. Note that Hosts A an B are not able to commu-
nication over the shortest path (via S5) because frames have to “flow up the tree and back down,” but that’s
the price you pay to avoid loops.

Even after the system has stabilized, the root switch continues to send configuration messages periodically,
and the other switches continue to forward these messages as just described. Should a particular switch fail,
the downstream switches will not receive these configuration messages, and after waiting a specified period
of time they will once again claim to be the root, and the algorithm will kick in again to elect a new root and
new designated switches.

One important thing to notice is that although the algorithm is able to reconfigure the spanning tree whenever
a switch fails, it is not able to forward frames over alternative paths for the sake of routing around a congested
switch.

3.2.4 Broadcast and Multicast

The preceding discussion focuses on how switches forward unicast frames from one port to another. Since
the goal of a switch is to transparently extend a LAN across multiple networks, and since most LANs support
both broadcast and multicast, then switches must also support these two features. Broadcast is simple—each
switch forwards a frame with a destination broadcast address out on each active (selected) port other than
the one on which the frame was received.

Multicast can be implemented in exactly the same way, with each host deciding for itself whether or not
to accept the message. This is exactly what is done in practice. Notice, however, that since not all hosts
are a member of any particular multicast group, it is possible to do better. Specifically, the spanning tree
algorithm can be extended to prune networks over which multicast frames need not be forwarded. Consider
a frame sent to group M by a host A in Figure 3.12. If host C does not belong to group M, then there is no
need for switch S4 to forward the frames over that network.

How would a given switch learn whether it should forward a multicast frame over a given port? It learns ex-
actly the same way that a switch learns whether it should forward a unicast frame over a particular port—by
observing the source addresses that it receives over that port. Of course, groups are not typically the source
of frames, so we have to cheat a little. In particular, each host that is a member of group M must periodically
send a frame with the address for group M in the source field of the frame header. This frame would have
as its destination address the multicast address for the switches.

Although the multicast extension just described was once proposed, it was not widely adopted. Instead,
multicast is implemented in exactly the same way as broadcast.

3.2.5 Virtual LANs (VLANs)

One limitation of switches is that they do not scale. It is not realistic to connect more than a few switches,
where in practice few typically means “tens of.” One reason for this is that the spanning tree algorithm scales
linearly; that is, there is no provision for imposing a hierarchy on the set of switches. A second reason is
that switches forward all broadcast frames. While it is reasonable for all hosts within a limited setting (say,
a department) to see each other’s broadcast messages, it is unlikely that all the hosts in a larger environment
(say, a large company or university) would want to have to be bothered by each other’s broadcast messages.
Said another way, broadcast does not scale, and as a consequence L2-based networks do not scale.

3.2. Switched Ethernet 123

Computer Networks: A Systems Approach, Release Version 6.1

One approach to increasing the scalability is the virtual LAN (VLAN). VLANs allow a single extended
LAN to be partitioned into several seemingly separate LANs. Each virtual LAN is assigned an identifier
(sometimes called a color), and packets can only travel from one segment to another if both segments have
the same identifier. This has the effect of limiting the number of segments in an extended LAN that will
receive any given broadcast packet.

Figure 3.13.: Two virtual LANs share a common backbone.

We can see how VLANs work with an example. Figure 3.13 shows four hosts and two switches. In the
absence of VLANs, any broadcast packet from any host will reach all the other hosts. Now let’s suppose
that we define the segments connected to hosts W and X as being in one VLAN, which we’ll call VLAN
100. We also define the segments that connect to hosts Y and Z as being in VLAN 200. To do this, we need
to configure a VLAN ID on each port of switches S1 and S2. The link between S1 and S2 is considered to
be in both VLANs.

When a packet sent by host X arrives at switch S2, the switch observes that it came in a port that was
configured as being in VLAN 100. It inserts a VLAN header between the Ethernet header and its payload.
The interesting part of the VLAN header is the VLAN ID; in this case, that ID is set to 100. The switch
now applies its normal rules for forwarding to the packet, with the extra restriction that the packet may not
be sent out an interface that is not part of VLAN 100. Thus, under no circumstances will the packet—even
a broadcast packet—be sent out the interface to host Z, which is in VLAN 200. The packet, however, is
forwarded on to switch S1, which follows the same rules and thus may forward the packet to host W but not
to host Y.

An attractive feature of VLANs is that it is possible to change the logical topology without moving any
wires or changing any addresses. For example, if we wanted to make the link that connects to host Z be
part of VLAN 100 and thus enable X, W, and Z to be on the same virtual LAN, then we would just need to
change one piece of configuration on switch S2.

Supporting VLANs requires a fairly simple extension to the original 802.1 header specification, inserting
a 12-bit VLAN ID (VID) field between the SrcAddr and Type fields, as shown in Figure 3.14. (This
VID is typically referred to as a VLAN Tag.) There are actually 32-bits inserted in the middle of the header,
but the first 16-bits are used to preserve backwards compatibility with the original specification (they use

124 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Type = 0x8100 to indicate that this frame includes the VLAN extension); the other four bits hold control
information used to prioritize frames. This means it is possible to map 212 = 4096 virtual networks onto a
single physical LAN.

Figure 3.14.: 802.1Q VLAN tag embedded within an Ethernet (802.1) header.

We conclude this discussion by observing there is another limitation of networks built by interconnecting
L2 switches: lack of support for heterogeneity. That is, switches are limited in the kinds of networks they
can interconnect. In particular, switches make use of the network’s frame header and so can support only
networks that have exactly the same format for addresses. For example, switches can be used to connect
Ethernet and 802.11 based networks to another, since they share a common header format, but switches do
not readily generalize to other kinds of networks with different addressing formats, such as ATM, SONET,
PON, or the cellular network. The next section explains how to address this limitation, as well as to scale
switched networks to even larger sizes.

3.3 Internet (IP)

In the previous section, we saw that it was possible to build reasonably large LANs using bridges and
LAN switches, but that such approaches were limited in their ability to scale and to handle heterogeneity.
In this section, we explore some ways to go beyond the limitations of bridged networks, enabling us to
build large, highly heterogeneous networks with reasonably efficient routing. We refer to such networks as
internetworks. We’ll continue the discussion of how to build a truly global internetwork in the next chapter,
but for now we’ll explore the basics. We start by considering more carefully what the word internetwork
means.

3.3.1 What Is an Internetwork?

We use the term internetwork, or sometimes just internet with a lowercase i, to refer to an arbitrary collection
of networks interconnected to provide some sort of host-to-host packet delivery service. For example, a
corporation with many sites might construct a private internetwork by interconnecting the LANs at their
different sites with point-to-point links leased from the phone company. When we are talking about the
widely used global internetwork to which a large percentage of networks are now connected, we call it the
Internet with a capital I. In keeping with the first-principles approach of this book, we mainly want you
to learn about the principles of “lowercase i” internetworking, but we illustrate these ideas with real-world
examples from the “big I” Internet.

3.3. Internet (IP) 125

Computer Networks: A Systems Approach, Release Version 6.1

Another piece of terminology that can be confusing is the difference between networks, subnetworks, and
internetworks. We are going to avoid subnetworks (or subnets) altogether until a later section. For now,
we use network to mean either a directly connected or a switched network of the kind described in the
previous section and the previous chapter. Such a network uses one technology, such as 802.11 or Ethernet.
An internetwork is an interconnected collection of such networks. Sometimes, to avoid ambiguity, we refer
to the underlying networks that we are interconnecting as physical networks. An internet is a logical network
built out of a collection of physical networks. In this context, a collection of Ethernet segments connected
by bridges or switches would still be viewed as a single network.

Figure 3.15.: A simple internetwork. H denotes a host and R denotes a router.

Figure 3.15 shows an example internetwork. An internetwork is often referred to as a “network of networks”
because it is made up of lots of smaller networks. In this figure, we see Ethernets, a wireless network,
and a point-to-point link. Each of these is a single-technology network. The nodes that interconnect the
networks are called routers. They are also sometimes called gateways, but since this term has several other
connotations, we restrict our usage to router.

The Internet Protocol is the key tool used today to build scalable, heterogeneous internetworks. It was
originally known as the Kahn-Cerf protocol after its inventors. One way to think of IP is that it runs on
all the nodes (both hosts and routers) in a collection of networks and defines the infrastructure that allows
these nodes and networks to function as a single logical internetwork. For example, Figure 3.16 shows how
hosts H5 and H8 are logically connected by the internet in Figure 3.15, including the protocol graph running
on each node. Note that higher-level protocols, such as TCP and UDP, typically run on top of IP on the
hosts.

126 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.16.: A simple internetwork, showing the protocol layers used to connect H5 to H8 in the above
figure. ETH is the protocol that runs over the Ethernet.

The rest of this and the next chapter are about various aspects of IP. While it is certainly possible to build
an internetwork that does not use IP—and in fact, in the early days of the Internet there were alternative
solutions—IP is the most interesting case to study simply because of the size of the Internet. Said another
way, it is only the IP Internet that has really faced the issue of scale. Thus, it provides the best case study of
a scalable internetworking protocol.

L2 vs L3 Networks

As seen in the previous section, an Ethernet can be treated as a point-to-point link interconnecting a pair
of switches, with a mesh of interconnected switches forming a Switched Ethernet. This configuration is
also known as an L2 Network.

But as we’ll discover in this section, an Ethernet (even when arranged in a point-to-point configuration
rather than a shared CSMA/CD network) can be treated as a network interconnecting a pair of routers,
with a mesh of such routers forming an Internet. This configuration is also known as an L3 Network.

Confusingly, this is because a point-to-point Ethernet is both a link and a network (albeit a trivial two-
node network in the second case), depending on whether it’s connected to a pair of L2 switches running
the spanning tree algorithm, or to a pair of L3 routers running IP (plus the routing protocols described
later in this chapter). Why pick one configuration over the other? It partly depends on whether you want
the network to be a single broadcast domain (if yes, pick L2), and whether you want the hosts connected
to the network to be on different networks (if yes, select L3).

The good news is that when you fully understand the implications of this duality, you will have cleared a
major hurdle in mastering modern packet-switched networks.

3.3.2 Service Model

A good place to start when you build an internetwork is to define its service model, that is, the host-to-
host services you want to provide. The main concern in defining a service model for an internetwork is

3.3. Internet (IP) 127

Computer Networks: A Systems Approach, Release Version 6.1

that we can provide a host-to-host service only if this service can somehow be provided over each of the
underlying physical networks. For example, it would be no good deciding that our internetwork service
model was going to provide guaranteed delivery of every packet in 1 ms or less if there were underlying
network technologies that could arbitrarily delay packets. The philosophy used in defining the IP service
model, therefore, was to make it undemanding enough that just about any network technology that might
turn up in an internetwork would be able to provide the necessary service.

The IP service model can be thought of as having two parts: an addressing scheme, which provides a way to
identify all hosts in the internetwork, and a datagram (connectionless) model of data delivery. This service
model is sometimes called best effort because, although IP makes every effort to deliver datagrams, it makes
no guarantees. We postpone a discussion of the addressing scheme for now and look first at the data delivery
model.

Datagram Delivery

The IP datagram is fundamental to the Internet Protocol. Recall an earlier section that a datagram is a type
of packet that happens to be sent in a connectionless manner over a network. Every datagram carries enough
information to let the network forward the packet to its correct destination; there is no need for any advance
setup mechanism to tell the network what to do when the packet arrives. You just send it, and the network
makes its best effort to get it to the desired destination. The “best-effort” part means that if something goes
wrong and the packet gets lost, corrupted, misdelivered, or in any way fails to reach its intended destination,
the network does nothing—it made its best effort, and that is all it has to do. It does not make any attempt
to recover from the failure. This is sometimes called an unreliable service.

Best-effort, connectionless service is about the simplest service you could ask for from an internetwork,
and this is a great strength. For example, if you provide best-effort service over a network that provides a
reliable service, then that’s fine—you end up with a best-effort service that just happens to always deliver the
packets. If, on the other hand, you had a reliable service model over an unreliable network, you would have
to put lots of extra functionality into the routers to make up for the deficiencies of the underlying network.
Keeping the routers as simple as possible was one of the original design goals of IP.

The ability of IP to “run over anything” is frequently cited as one of its most important characteristics. It is
noteworthy that many of the technologies over which IP runs today did not exist when IP was invented. So
far, no networking technology has been invented that has proven too bizarre for IP; in principle, IP can run
over a network that transports messages using carrier pigeons.

Best-effort delivery does not just mean that packets can get lost. Sometimes they can get delivered out
of order, and sometimes the same packet can get delivered more than once. The higher-level protocols or
applications that run above IP need to be aware of all these possible failure modes.

Packet Format

Clearly, a key part of the IP service model is the type of packets that can be carried. The IP datagram, like
most packets, consists of a header followed by a number of bytes of data. The format of the header is shown
in Figure 3.17. Note that we have adopted a different style of representing packets than the one we used in
previous chapters. This is because packet formats at the internetworking layer and above, where we will be
focusing our attention for the next few chapters, are almost invariably designed to align on 32-bit boundaries
to simplify the task of processing them in software. Thus, the common way of representing them (used in

128 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Internet Requests for Comments, for example) is to draw them as a succession of 32-bit words. The top
word is the one transmitted first, and the leftmost byte of each word is the one transmitted first. In this
representation, you can easily recognize fields that are a multiple of 8 bits long. On the odd occasion when
fields are not an even multiple of 8 bits, you can determine the field lengths by looking at the bit positions
marked at the top of the packet.

Figure 3.17.: IPv4 packet header.

Looking at each field in the IP header, we see that the “simple” model of best-effort datagram delivery still
has some subtle features. The Version field specifies the version of IP. The still-assumed version of IP is
4, which is typically called IPv4. Observe that putting this field right at the start of the datagram makes it
easy for everything else in the packet format to be redefined in subsequent versions; the header processing
software starts off by looking at the version and then branches off to process the rest of the packet according
to the appropriate format. The next field, HLen, specifies the length of the header in 32-bit words. When
there are no options, which is most of the time, the header is 5 words (20 bytes) long. The 8-bit TOS (type
of service) field has had a number of different definitions over the years, but its basic function is to allow
packets to be treated differently based on application needs. For example, the TOS value might determine
whether or not a packet should be placed in a special queue that receives low delay.

The next 16 bits of the header contain the Length of the datagram, including the header. Unlike the
HLen field, the Length field counts bytes rather than words. Thus, the maximum size of an IP datagram
is 65,535 bytes. The physical network over which IP is running, however, may not support such long
packets. For this reason, IP supports a fragmentation and reassembly process. The second word of the
header contains information about fragmentation, and the details of its use are presented in the following
section entitled “Fragmentation and Reassembly.”

Moving on to the third word of the header, the next byte is the TTL (time to live) field. Its name reflects its
historical meaning rather than the way it is commonly used today. The intent of the field is to catch packets
that have been going around in routing loops and discard them, rather than let them consume resources

3.3. Internet (IP) 129

Computer Networks: A Systems Approach, Release Version 6.1

indefinitely. Originally, TTL was set to a specific number of seconds that the packet would be allowed to
live, and routers along the path would decrement this field until it reached 0. However, since it was rare for
a packet to sit for as long as 1 second in a router, and routers did not all have access to a common clock,
most routers just decremented the TTL by 1 as they forwarded the packet. Thus, it became more of a hop
count than a timer, which is still a perfectly good way to catch packets that are stuck in routing loops. One
subtlety is in the initial setting of this field by the sending host: Set it too high and packets could circulate
rather a lot before getting dropped; set it too low and they may not reach their destination. The value 64 is
the current default.

The Protocol field is simply a demultiplexing key that identifies the higher-level protocol to which this
IP packet should be passed. There are values defined for the TCP (Transmission Control Protocol—6), UDP
(User Datagram Protocol—17), and many other protocols that may sit above IP in the protocol graph.

The Checksum is calculated by considering the entire IP header as a sequence of 16-bit words, adding
them up using ones’ complement arithmetic, and taking the ones’ complement of the result. Thus, if any
bit in the header is corrupted in transit, the checksum will not contain the correct value upon receipt of the
packet. Since a corrupted header may contain an error in the destination address—and, as a result, may have
been misdelivered—it makes sense to discard any packet that fails the checksum. It should be noted that this
type of checksum does not have the same strong error detection properties as a CRC, but it is much easier
to calculate in software.

The last two required fields in the header are the SourceAddr and the DestinationAddr for the
packet. The latter is the key to datagram delivery: Every packet contains a full address for its intended
destination so that forwarding decisions can be made at each router. The source address is required to allow
recipients to decide if they want to accept the packet and to enable them to reply. IP addresses are discussed
in a later section—for now, the important thing to know is that IP defines its own global address space,
independent of whatever physical networks it runs over. As we will see, this is one of the keys to supporting
heterogeneity.

Finally, there may be a number of options at the end of the header. The presence or absence of options may
be determined by examining the header length (HLen) field. While options are used fairly rarely, a complete
IP implementation must handle them all.

Fragmentation and Reassembly

One of the problems of providing a uniform host-to-host service model over a heterogeneous collection of
networks is that each network technology tends to have its own idea of how large a packet can be. For
example, classic Ethernet can accept packets up to 1500 bytes long, but modern-day variants can deliver
larger (jumbo) packets that carry up to 9000 bytes of payload. This leaves two choices for the IP service
model: Make sure that all IP datagrams are small enough to fit inside one packet on any network technology,
or provide a means by which packets can be fragmented and reassembled when they are too big to go over
a given network technology. The latter turns out to be a good choice, especially when you consider the fact
that new network technologies are always turning up, and IP needs to run over all of them; this would make
it hard to pick a suitably small bound on datagram size. This also means that a host will not send needlessly
small packets, which wastes bandwidth and consumes processing resources by requiring more headers per
byte of data sent.

The central idea here is that every network type has a maximum transmission unit (MTU), which is the

130 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

largest IP datagram that it can carry in a frame.1 Note that this value is smaller than the largest packet size
on that network because the IP datagram needs to fit in the payload of the link-layer frame.

When a host sends an IP datagram, therefore, it can choose any size that it wants. A reasonable choice is
the MTU of the network to which the host is directly attached. Then, fragmentation will only be necessary
if the path to the destination includes a network with a smaller MTU. Should the transport protocol that sits
on top of IP give IP a packet larger than the local MTU, however, then the source host must fragment it.

Fragmentation typically occurs in a router when it receives a datagram that it wants to forward over a network
that has an MTU that is smaller than the received datagram. To enable these fragments to be reassembled
at the receiving host, they all carry the same identifier in the Ident field. This identifier is chosen by
the sending host and is intended to be unique among all the datagrams that might arrive at the destination
from this source over some reasonable time period. Since all fragments of the original datagram contain
this identifier, the reassembling host will be able to recognize those fragments that go together. Should all
the fragments not arrive at the receiving host, the host gives up on the reassembly process and discards the
fragments that did arrive. IP does not attempt to recover from missing fragments.

Figure 3.18.: IP datagrams traversing the sequence of physical networks graphed in the earlier figure.

To see what this all means, consider what happens when host H5 sends a datagram to host H8 in the example
internet shown in Figure 3.15. Assuming that the MTU is 1500 bytes for the two Ethernets and the 802.11
network, and 532 bytes for the point-to-point network, then a 1420-byte datagram (20-byte IP header plus
1400 bytes of data) sent from H5 makes it across the 802.11 network and the first Ethernet without fragmen-
tation but must be fragmented into three datagrams at router R2. These three fragments are then forwarded
by router R3 across the second Ethernet to the destination host. This situation is illustrated in Figure 3.18.
This figure also serves to reinforce two important points:

1. Each fragment is itself a self-contained IP datagram that is transmitted over a sequence of physical
networks, independent of the other fragments.

2. Each IP datagram is re-encapsulated for each physical network over which it travels.

The fragmentation process can be understood in detail by looking at the header fields of each datagram, as
1 In ATM networks, the MTU is, fortunately, much larger than a single cell, as ATM has its own fragmentation and reassembly

mechanism. The link-layer frame in ATM is called a convergence-sublayer protocol data unit (CS-PDU).

3.3. Internet (IP) 131

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.19.: Header fields used in IP fragmentation: (a) unfragmented packet; (b) fragmented packets.

132 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

is done in Figure 3.19. The unfragmented packet, shown at the top, has 1400 bytes of data and a 20-byte IP
header. When the packet arrives at router R2, which has an MTU of 532 bytes, it has to be fragmented. A
532-byte MTU leaves 512 bytes for data after the 20-byte IP header, so the first fragment contains 512 bytes
of data. The router sets the M bit in the Flags field (see Figure 3.17), meaning that there are more fragments
to follow, and it sets the Offset to 0, since this fragment contains the first part of the original datagram.
The data carried in the second fragment starts with the 513th byte of the original data, so the Offset field
in this header is set to 64, which is 512/8. Why the division by 8? Because the designers of IP decided
that fragmentation should always happen on 8-byte boundaries, which means that the Offset field counts
8-byte chunks, not bytes. (We leave it as an exercise for you to figure out why this design decision was
made.) The third fragment contains the last 376 bytes of data, and the offset is now 2 × 512/8 = 128. Since
this is the last fragment, the M bit is not set.

Observe that the fragmentation process is done in such a way that it could be repeated if a fragment arrived
at another network with an even smaller MTU. Fragmentation produces smaller, valid IP datagrams that can
be readily reassembled into the original datagram upon receipt, independent of the order of their arrival.
Reassembly is done at the receiving host and not at each router.

IP reassembly is far from a simple process. For example, if a single fragment is lost, the receiver will still
attempt to reassemble the datagram, and it will eventually give up and have to garbage-collect the resources
that were used to perform the failed reassembly. Getting a host to tie up resources needlessly can be the
basis of a denial-of-service attack.

For this reason, among others, IP fragmentation is generally considered a good thing to avoid. Hosts are
now strongly encouraged to perform “path MTU discovery,” a process by which fragmentation is avoided
by sending packets that are small enough to traverse the link with the smallest MTU in the path from sender
to receiver.

3.3.3 Global Addresses

In the above discussion of the IP service model, we mentioned that one of the things that it provides is an
addressing scheme. After all, if you want to be able to send data to any host on any network, there needs
to be a way of identifying all the hosts. Thus, we need a global addressing scheme—one in which no two
hosts have the same address. Global uniqueness is the first property that should be provided in an addressing
scheme.

Ethernet addresses are globally unique, but that alone does not suffice for an addressing scheme in a large
internetwork. Ethernet addresses are also flat, which means that they have no structure and provide very
few clues to routing protocols. (In fact, Ethernet addresses do have a structure for the purposes of as-
signment—the first 24 bits identify the manufacturer—but this provides no useful information to routing
protocols since this structure has nothing to do with network topology.) In contrast, IP addresses are hierar-
chical, by which we mean that they are made up of several parts that correspond to some sort of hierarchy
in the internetwork. Specifically, IP addresses consist of two parts, usually referred to as a network part and
a host part. This is a fairly logical structure for an internetwork, which is made up of many interconnected
networks. The network part of an IP address identifies the network to which the host is attached; all hosts
attached to the same network have the same network part in their IP address. The host part then identifies
each host uniquely on that particular network. Thus, in the simple internetwork of Figure 3.15, the addresses
of the hosts on network 1, for example, would all have the same network part and different host parts.

Note that the routers in Figure 3.15 are attached to two networks. They need to have an address on each

3.3. Internet (IP) 133

Computer Networks: A Systems Approach, Release Version 6.1

network, one for each interface. For example, router R1, which sits between the wireless network and an
Ethernet, has an IP address on the interface to the wireless network whose network part is the same as all the
hosts on that network. It also has an IP address on the interface to the Ethernet that has the same network
part as the hosts on that Ethernet. Thus, bearing in mind that a router might be implemented as a host with
two network interfaces, it is more precise to think of IP addresses as belonging to interfaces than to hosts.

Now, what do these hierarchical addresses look like? Unlike some other forms of hierarchical address, the
sizes of the two parts are not the same for all addresses. Originally, IP addresses were divided into three
different classes, as shown in Figure 3.20, each of which defines different-sized network and host parts.
(There are also class D addresses that specify a multicast group and class E addresses that are currently
unused.) In all cases, the address is 32 bits long.

The class of an IP address is identified in the most significant few bits. If the first bit is 0, it is a class A
address. If the first bit is 1 and the second is 0, it is a class B address. If the first two bits are 1 and the
third is 0, it is a class C address. Thus, of the approximately 4 billion possible IP addresses, half are class A,
one-quarter are class B, and one-eighth are class C. Each class allocates a certain number of bits for the
network part of the address and the rest for the host part. Class A networks have 7 bits for the network part
and 24 bits for the host part, meaning that there can be only 126 class A networks (the values 0 and 127
are reserved), but each of them can accommodate up to 224 − 2 (about 16 million) hosts (again, there are
two reserved values). Class B addresses allocate 14 bits for the network and 16 bits for the host, meaning
that each class B network has room for 65,534 hosts. Finally, class C addresses have only 8 bits for the host
and 21 for the network part. Therefore, a class C network can have only 256 unique host identifiers, which
means only 254 attached hosts (one host identifier, 255, is reserved for broadcast, and 0 is not a valid host
number). However, the addressing scheme supports 221 class C networks.

Figure 3.20.: IP addresses: (a) class A; (b) class B; (c) class C.

On the face of it, this addressing scheme has a lot of flexibility, allowing networks of vastly different sizes
to be accommodated fairly efficiently. The original idea was that the Internet would consist of a small
number of wide area networks (these would be class A networks), a modest number of site- (campus-
) sized networks (these would be class B networks), and a large number of LANs (these would be class C
networks). However, it turned out not to be flexible enough, as we will see in a moment. Today, IP addresses
are normally “classless”; the details of this are explained below.

Before we look at how IP addresses get used, it is helpful to look at some practical matters, such as how you
write them down. By convention, IP addresses are written as four decimal integers separated by dots. Each

134 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

integer represents the decimal value contained in 1 byte of the address, starting at the most significant. For
example, the address of the computer on which this sentence was typed is 171.69.210.245.

It is important not to confuse IP addresses with Internet domain names, which are also hierarchical. Domain
names tend to be ASCII strings separated by dots, such as cs.princeton.edu. The important thing
about IP addresses is that they are what is carried in the headers of IP packets, and it is those addresses that
are used in IP routers to make forwarding decisions.

3.3.4 Datagram Forwarding in IP

We are now ready to look at the basic mechanism by which IP routers forward datagrams in an internetwork.
Recall from an earlier section that forwarding is the process of taking a packet from an input and sending
it out on the appropriate output, while routing is the process of building up the tables that allow the correct
output for a packet to be determined. The discussion here focuses on forwarding; we take up routing in a
later section.

The main points to bear in mind as we discuss the forwarding of IP datagrams are the following:

• Every IP datagram contains the IP address of the destination host.

• The network part of an IP address uniquely identifies a single physical network that is part of the
larger Internet.

• All hosts and routers that share the same network part of their address are connected to the same
physical network and can thus communicate with each other by sending frames over that network.

• Every physical network that is part of the Internet has at least one router that, by definition, is also
connected to at least one other physical network; this router can exchange packets with hosts or routers
on either network.

Forwarding IP datagrams can therefore be handled in the following way. A datagram is sent from a source
host to a destination host, possibly passing through several routers along the way. Any node, whether it is a
host or a router, first tries to establish whether it is connected to the same physical network as the destination.
To do this, it compares the network part of the destination address with the network part of the address of
each of its network interfaces. (Hosts normally have only one interface, while routers normally have two or
more, since they are typically connected to two or more networks.) If a match occurs, then that means that
the destination lies on the same physical network as the interface, and the packet can be directly delivered
over that network. A later section explains some of the details of this process.

If the node is not connected to the same physical network as the destination node, then it needs to send the
datagram to a router. In general, each node will have a choice of several routers, and so it needs to pick the
best one, or at least one that has a reasonable chance of getting the datagram closer to its destination. The
router that it chooses is known as the next hop router. The router finds the correct next hop by consulting
its forwarding table. The forwarding table is conceptually just a list of (NetworkNum, NextHop)pairs.
(As we will see below, forwarding tables in practice often contain some additional information related to the
next hop.) Normally, there is also a default router that is used if none of the entries in the table matches the
destination’s network number. For a host, it may be quite acceptable to have a default router and nothing
else—this means that all datagrams destined for hosts not on the physical network to which the sending host
is attached will be sent out through the default router.

We can describe the datagram forwarding algorithm in the following way:

3.3. Internet (IP) 135

Computer Networks: A Systems Approach, Release Version 6.1

if (NetworkNum of destination = NetworkNum of one of my interfaces) then
deliver packet to destination over that interface

else
if (NetworkNum of destination is in my forwarding table) then

deliver packet to NextHop router
else

deliver packet to default router

For a host with only one interface and only a default router in its forwarding table, this simplifies to

if (NetworkNum of destination = my NetworkNum) then
deliver packet to destination directly

else
deliver packet to default router

Let’s see how this works in the example internetwork of Figure 3.15. First, suppose that H1 wants to send
a datagram to H2. Since they are on the same physical network, H1 and H2 have the same network number
in their IP address. Thus, H1 deduces that it can deliver the datagram directly to H2 over the Ethernet. The
one issue that needs to be resolved is how H1 finds out the correct Ethernet address for H2—the resolution
mechanism described in a later section addresses this issue.

Now suppose H5 wants to send a datagram to H8. Since these hosts are on different physical networks, they
have different network numbers, so H5 deduces that it needs to send the datagram to a router. R1 is the only
choice—the default router—so H1 sends the datagram over the wireless network to R1. Similarly, R1 knows
that it cannot deliver a datagram directly to H8 because neither of R1’s interfaces are on the same network as
H8. Suppose R1’s default router is R2; R1 then sends the datagram to R2 over the Ethernet. Assuming R2
has the forwarding table shown in Table 3.6, it looks up H8’s network number (network 4) and forwards the
datagram over the point-to-point network to R3. Finally, R3, since it is on the same network as H8, forwards
the datagram directly to H8.

Table 3.6.: Forwarding table for Router R2.
NetworkNum NextHop
1 R1
4 R3

Note that it is possible to include the information about directly connected networks in the forwarding table.
For example, we could label the network interfaces of router R2 as interface 0 for the point-to-point link
(network 3) and interface 1 for the Ethernet (network 2). Then R2 would have the forwarding table shown
in Table 3.7.

Table 3.7.: Complete Forwarding table for Router R2.
NetworkNum NextHop
1 R1
2 Interface 1
3 Interface 0
4 R3

Thus, for any network number that R2 encounters in a packet, it knows pwhat to do. Either that network is

136 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

directly connected to R2, in which case the packet can be delivered to its destination over that network, or
the network is reachable via some next hop router that R2 can reach over a network to which it is connected.
In either case, R2 will use ARP, described below, to find the MAC address of the node to which the packet
is to be sent next.

The forwarding table used by R2 is simple enough that it could be manually configured. Usually, however,
these tables are more complex and would be built up by running a routing protocol such as one of those
described in a later section. Also note that, in practice, the network numbers are usually longer (e.g., 128.96).

We can now see how hierarchical addressing—splitting the address into network and host parts—has im-
proved the scalability of a large network. Routers now contain forwarding tables that list only a set of
network numbers rather than all the nodes in the network. In our simple example, that meant that R2 could
store the information needed to reach all the hosts in the network (of which there were eight) in a four-entry
table. Even if there were 100 hosts on each physical network, R2 would still only need those same four
entries. This is a good first step (although by no means the last) in achieving scalability.

Key Takeaway

This illustrates one of the most important principles of building scalable networks: To achieve scalability,
you need to reduce the amount of information that is stored in each node and that is exchanged between
nodes. The most common way to do that is hierarchical aggregation. IP introduces a two-level hierarchy,
with networks at the top level and nodes at the bottom level. We have aggregated information by letting
routers deal only with reaching the right network; the information that a router needs to deliver a datagram
to any node on a given network is represented by a single aggregated piece of information. [Next]

3.3.5 Subnetting and Classless Addressing

The original intent of IP addresses was that the network part would uniquely identify exactly one physical
network. It turns out that this approach has a couple of drawbacks. Imagine a large campus that has lots
of internal networks and decides to connect to the Internet. For every network, no matter how small, the
site needs at least a class C network address. Even worse, for any network with more than 255 hosts, they
need a class B address. This may not seem like a big deal, and indeed it wasn’t when the Internet was first
envisioned, but there are only a finite number of network numbers, and there are far fewer class B addresses
than class Cs. Class B addresses tend to be in particularly high demand because you never know if your
network might expand beyond 255 nodes, so it is easier to use a class B address from the start than to have
to renumber every host when you run out of room on a class C network. The problem we observe here is
address assignment inefficiency: A network with two nodes uses an entire class C network address, thereby
wasting 253 perfectly useful addresses; a class B network with slightly more than 255 hosts wastes over
64,000 addresses.

Assigning one network number per physical network, therefore, uses up the IP address space potentially
much faster than we would like. While we would need to connect over 4 billion hosts to use up all the valid
addresses, we only need to connect 214 (about 16,000) class B networks before that part of the address space
runs out. Therefore, we would like to find some way to use the network numbers more efficiently.

Assigning many network numbers has another drawback that becomes apparent when you think about rout-
ing. Recall that the amount of state that is stored in a node participating in a routing protocol is proportional
to the number of other nodes, and that routing in an internet consists of building up forwarding tables that

3.3. Internet (IP) 137

Computer Networks: A Systems Approach, Release Version 6.1

tell a router how to reach different networks. Thus, the more network numbers there are in use, the big-
ger the forwarding tables get. Big forwarding tables add costs to routers, and they are potentially slower to
search than smaller tables for a given technology, so they degrade router performance. This provides another
motivation for assigning network numbers carefully.

Subnetting provides a first step to reducing total number of network numbers that are assigned. The idea
is to take a single IP network number and allocate the IP addresses with that network number to several
physical networks, which are now referred to as subnets. Several things need to be done to make this work.
First, the subnets should be close to each other. This is because from a distant point in the Internet, they
will all look like a single network, having only one network number between them. This means that a router
will only be able to select one route to reach any of the subnets, so they had better all be in the same general
direction. A perfect situation in which to use subnetting is a large campus or corporation that has many
physical networks. From outside the campus, all you need to know to reach any subnet inside the campus
is where the campus connects to the rest of the Internet. This is often at a single point, so one entry in your
forwarding table will suffice. Even if there are multiple points at which the campus is connected to the rest
of the Internet, knowing how to get to one point in the campus network is still a good start.

The mechanism by which a single network number can be shared among multiple networks involves con-
figuring all the nodes on each subnet with a subnet mask. With simple IP addresses, all hosts on the same
network must have the same network number. The subnet mask enables us to introduce a subnet number;
all hosts on the same physical network will have the same subnet number, which means that hosts may be
on different physical networks but share a single network number. This concept is illustrated in Figure 3.21.

Figure 3.21.: Subnet addressing.

What subnetting means to a host is that it is now configured with both an IP address and a subnet mask for
the subnet to which it is attached. For example, host H1 in Figure 3.22 is configured with an address of
128.96.34.15 and a subnet mask of 255.255.255.128. (All hosts on a given subnet are configured with the
same mask; that is, there is exactly one subnet mask per subnet.) The bitwise AND of these two numbers
defines the subnet number of the host and of all other hosts on the same subnet. In this case, 128.96.34.15
AND 255.255.255.128 equals 128.96.34.0, so this is the subnet number for the topmost subnet in the figure.

When the host wants to send a packet to a certain IP address, the first thing it does is to perform a bitwise
AND between its own subnet mask and the destination IP address. If the result equals the subnet number of
the sending host, then it knows that the destination host is on the same subnet and the packet can be delivered

138 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.22.: An example of subnetting.

directly over the subnet. If the results are not equal, the packet needs to be sent to a router to be forwarded
to another subnet. For example, if H1 is sending to H2, then H1 ANDs its subnet mask (255.255.255.128)
with the address for H2 (128.96.34.139) to obtain 128.96.34.128. This does not match the subnet number
for H1 (128.96.34.0) so H1 knows that H2 is on a different subnet. Since H1 cannot deliver the packet to
H2 directly over the subnet, it sends the packet to its default router R1.

The forwarding table of a router also changes slightly when we introduce subnetting. Recall that we pre-
viously had a forwarding table that consisted of entries of the form (NetworkNum, NextHop). To
support subnetting, the table must now hold entries of the form (SubnetNumber, SubnetMask,
NextHop). To find the right entry in the table, the router ANDs the packet’s destination address with
the SubnetMaskfor each entry in turn; if the result matches the SubnetNumber of the entry, then this is
the right entry to use, and it forwards the packet to the next hop router indicated. In the example network of
Figure 3.22, router R1 would have the entries shown in Table 3.8.

Table 3.8.: Example Forwarding Table with Subnetting.
SubnetNumber SubnetMask NextHop
128.96.34.0 255.255.255.128 Interface 0
128.96.34.128 255.255.255.128 Interface 1
128.96.33.0 255.255.255.0 R2

Continuing with the example of a datagram from H1 being sent to H2, R1 would AND H2’s ad-
dress (128.96.34.139) with the subnet mask of the first entry (255.255.255.128) and compare the result

3.3. Internet (IP) 139

Computer Networks: A Systems Approach, Release Version 6.1

(128.96.34.128) with the network number for that entry (128.96.34.0). Since this is not a match, it proceeds
to the next entry. This time a match does occur, so R1 delivers the datagram to H2 using interface 1, which
is the interface connected to the same network as H2.

We can now describe the datagram forwarding algorithm in the following way:

D = destination IP address
for each forwarding table entry (SubnetNumber, SubnetMask, NextHop)

D1 = SubnetMask & D
if D1 = SubnetNumber

if NextHop is an interface
deliver datagram directly to destination

else
deliver datagram to NextHop (a router)

Although not shown in this example, a default route would usually be included in the table and would be
used if no explicit matches were found. Note that a naive implementation of this algorithm—one involving
repeated ANDing of the destination address with a subnet mask that may not be different every time, and a
linear table search—would be very inefficient.

An important consequence of subnetting is that different parts of the internet see the world differently. From
outside our hypothetical campus, routers see a single network. In the example above, routers outside the
campus see the collection of networks in Figure 3.22 as just the network 128.96, and they keep one entry in
their forwarding tables to tell them how to reach it. Routers within the campus, however, need to be able to
route packets to the right subnet. Thus, not all parts of the internet see exactly the same routing information.
This is an example of an aggregation of routing information, which is fundamental to scaling of the routing
system. The next section shows how aggregation can be taken to another level.

Classless Addressing

Subnetting has a counterpart, sometimes called supernetting, but more often called Classless Interdomain
Routing or CIDR, pronounced “cider.” CIDR takes the subnetting idea to its logical conclusion by essentially
doing away with address classes altogether. Why isn’t subnetting alone sufficient? In essence, subnetting
only allows us to split a classful address among multiple subnets, while CIDR allows us to coalesce several
classful addresses into a single “supernet.” This further tackles the address space inefficiency noted above,
and does so in a way that keeps the routing system from being overloaded.

To see how the issues of address space efficiency and scalability of the routing system are coupled, consider
the hypothetical case of a company whose network has 256 hosts on it. That is slightly too many for a
Class C address, so you would be tempted to assign a class B. However, using up a chunk of address space
that could address 65535 to address 256 hosts has an efficiency of only 256/65,535 = 0.39%. Even though
subnetting can help us to assign addresses carefully, it does not get around the fact that any organization
with more than 255 hosts, or an expectation of eventually having that many, wants a class B address.

The first way you might deal with this issue would be to refuse to give a class B address to any organization
that requests one unless they can show a need for something close to 64K addresses, and instead giving them
an appropriate number of class C addresses to cover the expected number of hosts. Since we would now be
handing out address space in chunks of 256 addresses at a time, we could more accurately match the amount
of address space consumed to the size of the organization. For any organization with at least 256 hosts, we

140 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

can guarantee an address utilization of at least 50%, and typically much more. (Sadly, even if you can justify
a request of a class B network number, don’t bother, because they were all spoken for long ago.)

This solution, however, raises a problem that is at least as serious: excessive storage requirements at the
routers. If a single site has, say, 16 class C network numbers assigned to it, that means every Internet
backbone router needs 16 entries in its routing tables to direct packets to that site. This is true even if the
path to every one of those networks is the same. If we had assigned a class B address to the site, the same
routing information could be stored in one table entry. However, our address assignment efficiency would
then be only 6 x 255 / 65,536 = 6.2%.

CIDR, therefore, tries to balance the desire to minimize the number of routes that a router needs to know
against the need to hand out addresses efficiently. To do this, CIDR helps us to aggregate routes. That is,
it lets us use a single entry in a forwarding table to tell us how to reach a lot of different networks. As
noted above it does this by breaking the rigid boundaries between address classes. To understand how this
works, consider our hypothetical organization with 16 class C network numbers. Instead of handing out
16 addresses at random, we can hand out a block of contiguous class C addresses. Suppose we assign the
class C network numbers from 192.4.16 through 192.4.31. Observe that the top 20 bits of all the addresses
in this range are the same (11000000 00000100 0001). Thus, what we have effectively created is
a 20-bit network number—something that is between a class B network number and a class C number in
terms of the number of hosts that it can support. In other words, we get both the high address efficiency of
handing out addresses in chunks smaller than a class B network, and a single network prefix that can be used
in forwarding tables. Observe that, for this scheme to work, we need to hand out blocks of class C addresses
that share a common prefix, which means that each block must contain a number of class C networks that is
a power of two.

CIDR requires a new type of notation to represent network numbers, or prefixes as they are known, because
the prefixes can be of any length. The convention is to place a /X after the prefix, where X is the prefix
length in bits. So, for the example above, the 20-bit prefix for all the networks 192.4.16 through 192.4.31 is
represented as 192.4.16/20. By contrast, if we wanted to represent a single class C network number, which
is 24 bits long, we would write it 192.4.16/24. Today, with CIDR being the norm, it is more common to
hear people talk about “slash 24” prefixes than class C networks. Note that representing a network address
in this way is similar to the(mask, value) approach used in subnetting, as long as masks consist of
contiguous bits starting from the most significant bit (which in practice is almost always the case).

The ability to aggregate routes at the edge of the network as we have just seen is only the first step. Imagine
an Internet service provider network, whose primary job is to provide Internet connectivity to a large number
of corporations and campuses (customers). If we assign prefixes to the customers in such a way that many
different customer networks connected to the provider network share a common, shorter address prefix,
then we can get even greater aggregation of routes. Consider the example in Figure 3.23. Assume that eight
customers served by the provider network have each been assigned adjacent 24-bit network prefixes. Those
prefixes all start with the same 21 bits. Since all of the customers are reachable through the same provider
network, it can advertise a single route to all of them by just advertising the common 21-bit prefix they
share. And it can do this even if not all the 24-bit prefixes have been handed out, as long as the provider
ultimately will have the right to hand out those prefixes to a customer. One way to accomplish that is to
assign a portion of address space to the provider in advance and then to let the network provider assign
addresses from that space to its customers as needed. Note that, in contrast to this simple example, there is
no need for all customer prefixes to be the same length.

3.3. Internet (IP) 141

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.23.: Route aggregation with CIDR.

IP Forwarding Revisited

In all our discussion of IP forwarding so far, we have assumed that we could find the network number in a
packet and then look up that number in a forwarding table. However, now that we have introduced CIDR,
we need to reexamine this assumption. CIDR means that prefixes may be of any length, from 2 to 32 bits.
Furthermore, it is sometimes possible to have prefixes in the forwarding table that “overlap,” in the sense that
some addresses may match more than one prefix. For example, we might find both 171.69 (a 16-bit prefix)
and 171.69.10 (a 24-bit prefix) in the forwarding table of a single router. In this case, a packet destined to,
say, 171.69.10.5 clearly matches both prefixes. The rule in this case is based on the principle of “longest
match”; that is, the packet matches the longest prefix, which would be 171.69.10 in this example. On the
other hand, a packet destined to 171.69.20.5 would match 171.69 and not 171.69.10, and in the absence of
any other matching entry in the routing table 171.69 would be the longest match.

The task of efficiently finding the longest match between an IP address and the variable-length prefixes in a
forwarding table has been a fruitful field of research for many years. The most well-known algorithm uses
an approach known as a PATRICIA tree, which was actually developed well in advance of CIDR.

3.3.6 Address Translation (ARP)

In the previous section we talked about how to get IP datagrams to the right physical network but glossed
over the issue of how to get a datagram to a particular host or router on that network. The main issue is
that IP datagrams contain IP addresses, but the physical interface hardware on the host or router to which
you want to send the datagram only understands the addressing scheme of that particular network. Thus,
we need to translate the IP address to a link-level address that makes sense on this network (e.g., a 48-bit
Ethernet address). We can then encapsulate the IP datagram inside a frame that contains that link-level
address and send it either to the ultimate destination or to a router that promises to forward the datagram
toward the ultimate destination.

One simple way to map an IP address into a physical network address is to encode a host’s physical address

142 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

in the host part of its IP address. For example, a host with physical address 00100001 01001001 (which
has the decimal value 33 in the upper byte and 81 in the lower byte) might be given the IP address 128.
96.33.81. While this solution has been used on some networks, it is limited in that the network’s physical
addresses can be no more than 16 bits long in this example; they can be only 8 bits long on a class C network.
This clearly will not work for 48-bit Ethernet addresses.

A more general solution would be for each host to maintain a table of address pairs; that is, the table
would map IP addresses into physical addresses. While this table could be centrally managed by a system
administrator and then copied to each host on the network, a better approach would be for each host to
dynamically learn the contents of the table using the network. This can be accomplished using the Address
Resolution Protocol (ARP). The goal of ARP is to enable each host on a network to build up a table of
mappings between IP addresses and link-level addresses. Since these mappings may change over time (e.g.,
because an Ethernet card in a host breaks and is replaced by a new one with a new address), the entries are
timed out periodically and removed. This happens on the order of every 15 minutes. The set of mappings
currently stored in a host is known as the ARP cache or ARP table.

ARP takes advantage of the fact that many link-level network technologies, such as Ethernet, support broad-
cast. If a host wants to send an IP datagram to a host (or router) that it knows to be on the same network
(i.e., the sending and receiving nodes have the same IP network number), it first checks for a mapping in
the cache. If no mapping is found, it needs to invoke the Address Resolution Protocol over the network. It
does this by broadcasting an ARP query onto the network. This query contains the IP address in question
(the target IP address). Each host receives the query and checks to see if it matches its IP address. If it does
match, the host sends a response message that contains its link-layer address back to the originator of the
query. The originator adds the information contained in this response to its ARP table.

The query message also includes the IP address and link-layer address of the sending host. Thus, when a
host broadcasts a query message, each host on the network can learn the sender’s link-level and IP addresses
and place that information in its ARP table. However, not every host adds this information to its ARP table.
If the host already has an entry for that host in its table, it “refreshes” this entry; that is, it resets the length
of time until it discards the entry. If that host is the target of the query, then it adds the information about
the sender to its table, even if it did not already have an entry for that host. This is because there is a good
chance that the source host is about to send it an application-level message, and it may eventually have to
send a response or ACK back to the source; it will need the source’s physical address to do this. If a host
is not the target and does not already have an entry for the source in its ARP table, then it does not add an
entry for the source. This is because there is no reason to believe that this host will ever need the source’s
link-level address; there is no need to clutter its ARP table with this information.

Figure 3.24 shows the ARP packet format for IP-to-Ethernet address mappings. In fact, ARP can be used
for lots of other kinds of mappings—the major differences are in the address sizes. In addition to the IP and
link-layer addresses of both sender and target, the packet contains

• A HardwareType field, which specifies the type of physical network (e.g., Ethernet)

• A ProtocolType field, which specifies the higher-layer protocol (e.g., IP)

• HLen (“hardware” address length) and PLen (“protocol” address length) fields, which specify the
length of the link-layer address and higher-layer protocol address, respectively

• An Operation field, which specifies whether this is a request or a response

• The source and target hardware (Ethernet) and protocol (IP) addresses

3.3. Internet (IP) 143

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.24.: ARP packet format for mapping IP addresses into Ethernet addresses.

Note that the results of the ARP process can be added as an extra column in a forwarding table like the one
in Table 3.6. Thus, for example, when R2 needs to forward a packet to network 2, it not only finds that the
next hop is R1, but also finds the MAC address to place on the packet to send it to R1.

Key Takeaway

We have now seen the basic mechanisms that IP provides for dealing with both heterogeneity and scale. On
the issue of heterogeneity, IP begins by defining a best-effort service model that makes minimal assumptions
about the underlying networks; most notably, this service model is based on unreliable datagrams. IP then
makes two important additions to this starting point: (1) a common packet format (fragmentation/reassembly
is the mechanism that makes this format work over networks with different MTUs) and (2) a global address
space for identifying all hosts (ARP is the mechanism that makes this global address space work over net-
works with different physical addressing schemes). On the issue of scale, IP uses hierarchical aggregation to
reduce the amount of information needed to forward packets. Specifically, IP addresses are partitioned into
network and host components, with packets first routed toward the destination network and then delivered
to the correct host on that network. [Next]

3.3.7 Host Configuration (DHCP)

Ethernet addresses are configured into the network adaptor by the manufacturer, and this process is managed
in such a way to ensure that these addresses are globally unique. This is clearly a sufficient condition to
ensure that any collection of hosts connected to a single Ethernet (including an extended LAN) will have
unique addresses. Furthermore, uniqueness is all we ask of Ethernet addresses.

IP addresses, by contrast, not only must be unique on a given internetwork but also must reflect the structure
of the internetwork. As noted above, they contain a network part and a host part, and the network part must
be the same for all hosts on the same network. Thus, it is not possible for the IP address to be configured
once into a host when it is manufactured, since that would imply that the manufacturer knew which hosts
were going to end up on which networks, and it would mean that a host, once connected to one network,
could never move to another. For this reason, IP addresses need to be reconfigurable.

144 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

In addition to an IP address, there are some other pieces of information a host needs to have before it can
start sending packets. The most notable of these is the address of a default router—the place to which it can
send packets whose destination address is not on the same network as the sending host.

Most host operating systems provide a way for a system administrator, or even a user, to manually configure
the IP information needed by a host; however, there are some obvious drawbacks to such manual configu-
ration. One is that it is simply a lot of work to configure all the hosts in a large network directly, especially
when you consider that such hosts are not reachable over a network until they are configured. Even more
importantly, the configuration process is very error prone, since it is necessary to ensure that every host gets
the correct network number and that no two hosts receive the same IP address. For these reasons, auto-
mated configuration methods are required. The primary method uses a protocol known as the Dynamic Host
Configuration Protocol (DHCP).

DHCP relies on the existence of a DHCP server that is responsible for providing configuration information
to hosts. There is at least one DHCP server for an administrative domain. At the simplest level, the DHCP
server can function just as a centralized repository for host configuration information. Consider, for example,
the problem of administering addresses in the internetwork of a large company. DHCP saves the network
administrators from having to walk around to every host in the company with a list of addresses and network
map in hand and configuring each host manually. Instead, the configuration information for each host could
be stored in the DHCP server and automatically retrieved by each host when it is booted or connected to the
network. However, the administrator would still pick the address that each host is to receive; he would just
store that in the server. In this model, the configuration information for each host is stored in a table that is
indexed by some form of unique client identifier, typically the hardware address (e.g., the Ethernet address
of its network adaptor).

A more sophisticated use of DHCP saves the network administrator from even having to assign addresses
to individual hosts. In this model, the DHCP server maintains a pool of available addresses that it hands
out to hosts on demand. This considerably reduces the amount of configuration an administrator must do,
since now it is only necessary to allocate a range of IP addresses (all with the same network number) to each
network.

Since the goal of DHCP is to minimize the amount of manual configuration required for a host to function, it
would rather defeat the purpose if each host had to be configured with the address of a DHCP server. Thus,
the first problem faced by DHCP is that of server discovery.

To contact a DHCP server, a newly booted or attached host sends a DHCPDISCOVER message to a special
IP address (255.255.255.255) that is an IP broadcast address. This means it will be received by all hosts and
routers on that network. (Routers do not forward such packets onto other networks, preventing broadcast to
the entire Internet.) In the simplest case, one of these nodes is the DHCP server for the network. The server
would then reply to the host that generated the discovery message (all the other nodes would ignore it).
However, it is not really desirable to require one DHCP server on every network, because this still creates
a potentially large number of servers that need to be correctly and consistently configured. Thus, DHCP
uses the concept of a relay agent. There is at least one relay agent on each network, and it is configured
with just one piece of information: the IP address of the DHCP server. When a relay agent receives a
DHCPDISCOVER message, it unicasts it to the DHCP server and awaits the response, which it will then
send back to the requesting client. The process of relaying a message from a host to a remote DHCP server
is shown in Figure 3.25.

Figure 3.26 below shows the format of a DHCP message. The message is actually sent using a protocol
called the User Datagram Protocol (UDP) that runs over IP. UDP is discussed in detail in the next chapter,
but the only interesting thing it does in this context is to provide a demultiplexing key that says, “This is a

3.3. Internet (IP) 145

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.25.: A DHCP relay agent receives a broadcast DHCPDISCOVER message from a host and sends
a unicast DHCPDISCOVER to the DHCP server.

DHCP packet.”

DHCP is derived from an earlier protocol called BOOTP, and some of the packet fields are thus not strictly
relevant to host configuration. When trying to obtain configuration information, the client puts its hardware
address (e.g., its Ethernet address) in the chaddr field. The DHCP server replies by filling in the yiaddr
(“your” IP address) field and sending it to the client. Other information such as the default router to be used
by this client can be included in the options field.

In the case where DHCP dynamically assigns IP addresses to hosts, it is clear that hosts cannot keep ad-
dresses indefinitely, as this would eventually cause the server to exhaust its address pool. At the same time,
a host cannot be depended upon to give back its address, since it might have crashed, been unplugged from
the network, or been turned off. Thus, DHCP allows addresses to be leased for some period of time. Once
the lease expires, the server is free to return that address to its pool. A host with a leased address clearly
needs to renew the lease periodically if in fact it is still connected to the network and functioning correctly.

Key Takeaway

DHCP illustrates an important aspect of scaling: the scaling of network management. While discussions
of scaling often focus on keeping the state in network devices from growing too fast, it is important to pay
attention to the growth of network management complexity. By allowing network managers to configure a
range of IP addresses per network rather than one IP address per host, DHCP improves the manageability of
a network. [Next]

Note that DHCP may also introduce some more complexity into network management, since it makes the
binding between physical hosts and IP addresses much more dynamic. This may make the network man-
ager’s job more difficult if, for example, it becomes necessary to locate a malfunctioning host.

146 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.26.: DHCP packet format.

3.3.8 Error Reporting (ICMP)

The next issue is how the Internet treats errors. While IP is perfectly willing to drop datagrams when
the going gets tough—for example, when a router does not know how to forward the datagram or when
one fragment of a datagram fails to arrive at the destination—it does not necessarily fail silently. IP is
always configured with a companion protocol, known as the Internet Control Message Protocol (ICMP),
that defines a collection of error messages that are sent back to the source host whenever a router or host is
unable to process an IP datagram successfully. For example, ICMP defines error messages indicating that
the destination host is unreachable (perhaps due to a link failure), that the reassembly process failed, that
the TTL had reached 0, that the IP header checksum failed, and so on.

ICMP also defines a handful of control messages that a router can send back to a source host. One of the
most useful control messages, called an ICMP-Redirect, tells the source host that there is a better route to the
destination. ICMP-Redirects are used in the following situation. Suppose a host is connected to a network
that has two routers attached to it, called R1 and R2, where the host uses R1 as its default router. Should R1
ever receive a datagram from the host, where based on its forwarding table it knows that R2 would have been
a better choice for a particular destination address, it sends an ICMP-Redirect back to the host, instructing
it to use R2 for all future datagrams addressed to that destination. The host then adds this new route to its
forwarding table.

ICMP also provides the basis for two widely used debugging tools, ping and traceroute. ping uses
ICMP echo messages to determine if a node is reachable and alive. traceroute uses a slightly non-
intuitive technique to determine the set of routers along the path to a destination, which is the topic for one
of the exercises at the end of this chapter.

3.3. Internet (IP) 147

Computer Networks: A Systems Approach, Release Version 6.1

3.3.9 Virtual Networks and Tunnels

We conclude our introduction to IP by considering an issue you might not have anticipated, but one that
is increasingly important. Our discussion up to this point has focused on making it possible for nodes on
different networks to communicate with each other in an unrestricted way. This is usually the goal in the
Internet—everybody wants to be able to send email to everybody, and the creator of a new website wants to
reach the widest possible audience. However, there are many situations where more controlled connectivity
is required. An important example of such a situation is the virtual private network (VPN).

The term VPN is heavily overused and definitions vary, but intuitively we can define a VPN by considering
first the idea of a private network. Corporations with many sites often build private networks by leasing
circuits from the phone companies and using those lines to interconnect sites. In such a network, com-
munication is restricted to take place only among the sites of that corporation, which is often desirable for
security reasons. To make a private network virtual, the leased transmission lines—which are not shared
with any other corporations—would be replaced by some sort of shared network. A virtual circuit (VC) is
a very reasonable replacement for a leased line because it still provides a logical point-to-point connection
between the corporation’s sites. For example, if corporation X has a VC from site A to site B, then clearly
it can send packets between sites A and B. But there is no way that corporation Y can get its packets de-
livered to site B without first establishing its own virtual circuit to site B, and the establishment of such a
VC can be administratively prevented, thus preventing unwanted connectivity between corporation X and
corporation Y.

Figure 3.27(a) shows two private networks for two separate corporations. In Figure 3.27(b) they are both
migrated to a virtual circuit network. The limited connectivity of a real private network is maintained, but
since the private networks now share the same transmission facilities and switches we say that two virtual
private networks have been created.

In Figure 3.27, a virtual circuit network (using ATM, for example) is used to provide the controlled con-
nectivity among sites. It is also possible to provide a similar function using an IP network to provide the
connectivity. However, we cannot just connect the various corporations’ sites to a single internetwork be-
cause that would provide connectivity between corporation X and corporation Y, which we wish to avoid.
To solve this problem, we need to introduce a new concept, the IP tunnel.

We can think of an IP tunnel as a virtual point-to-point link between a pair of nodes that are actually separated
by an arbitrary number of networks. The virtual link is created within the router at the entrance to the tunnel
by providing it with the IP address of the router at the far end of the tunnel. Whenever the router at the
entrance of the tunnel wants to send a packet over this virtual link, it encapsulates the packet inside an IP
datagram. The destination address in the IP header is the address of the router at the far end of the tunnel,
while the source address is that of the encapsulating router.

In the forwarding table of the router at the entrance to the tunnel, this virtual link looks much like a normal
link. Consider, for example, the network in Figure 3.28. A tunnel has been configured from R1 to R2 and
assigned a virtual interface number of 0. The forwarding table in R1 might therefore look like Table 3.9.

Table 3.9.: Forwarding Table for Router R1.
NetworkNum NextHop
1 Interface 0
2 Virtual interface 0
Default Interface 1

148 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.27.: An example of virtual private networks: (a) two separate private networks; (b) two virtual
private networks sharing common switches.

3.3. Internet (IP) 149

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.28.: A tunnel through an internetwork. 18.5.0.1 is the address of R2 that can be reached from R1
across the internetwork.

R1 has two physical interfaces. Interface 0 connects to network 1; interface 1 connects to a large internet-
work and is thus the default for all traffic that does not match something more specific in the forwarding
table. In addition, R1 has a virtual interface, which is the interface to the tunnel. Suppose R1 receives a
packet from network 1 that contains an address in network 2. The forwarding table says this packet should
be sent out virtual interface 0. In order to send a packet out this interface, the router takes the packet, adds
an IP header addressed to R2, and then proceeds to forward the packet as if it had just been received. R2’s
address is 18.5.0.1; since the network number of this address is 18, not 1 or 2, a packet destined for R2 will
be forwarded out the default interface into the internetwork.

Once the packet leaves R1, it looks to the rest of the world like a normal IP packet destined to R2, and it
is forwarded accordingly. All the routers in the internetwork forward it using normal means, until it arrives
at R2. When R2 receives the packet, it finds that it carries its own address, so it removes the IP header
and looks at the payload of the packet. What it finds is an inner IP packet whose destination address is in
network 2. R2 now processes this packet like any other IP packet it receives. Since R2 is directly connected
to network 2, it forwards the packet on to that network. Figur 3.28 shows the change in encapsulation of the
packet as it moves across the network.

While R2 is acting as the endpoint of the tunnel, there is nothing to prevent it from performing the normal
functions of a router. For example, it might receive some packets that are not tunneled, but that are addressed
to networks that it knows how to reach, and it would forward them in the normal way.

You might wonder why anyone would want to go to all the trouble of creating a tunnel and changing the
encapsulation of a packet as it goes across an internetwork. One reason is security. Supplemented with
encryption, a tunnel can become a very private sort of link across a public network. Another reason may
be that R1 and R2 have some capabilities that are not widely available in the intervening networks, such as
multicast routing. By connecting these routers with a tunnel, we can build a virtual network in which all
the routers with this capability appear to be directly connected. A third reason to build tunnels is to carry
packets from protocols other than IP across an IP network. As long as the routers at either end of the tunnel
know how to handle these other protocols, the IP tunnel looks to them like a point-to-point link over which
they can send non-IP packets. Tunnels also provide a mechanism by which we can force a packet to be

150 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

delivered to a particular place even if its original header—the one that gets encapsulated inside the tunnel
header—might suggest that it should go somewhere else. Thus, we see that tunneling is a powerful and
quite general technique for building virtual links across internetworks. So general, in fact, that the technique
recurses, with the most common use case being to tunnel IP over IP.

Tunneling does have its downsides. One is that it increases the length of packets; this might represent a
significant waste of bandwidth for short packets. Longer packets might be subject to fragmentation, which
has its own set of drawbacks. There may also be performance implications for the routers at either end of the
tunnel, since they need to do more work than normal forwarding as they add and remove the tunnel header.
Finally, there is a management cost for the administrative entity that is responsible for setting up the tunnels
and making sure they are correctly handled by the routing protocols.

3.4 Routing

So far in this chapter we have assumed that the switches and routers have enough knowledge of the network
topology so they can choose the right port onto which each packet should be output. In the case of virtual
circuits, routing is an issue only for the connection request packet; all subsequent packets follow the same
path as the request. In datagram networks, including IP networks, routing is an issue for every packet. In
either case, a switch or router needs to be able to look at a destination address and then to determine which
of the output ports is the best choice to get a packet to that address. As we saw in an earlier section, the
switch makes this decision by consulting a forwarding table. The fundamental problem of routing is how
switches and routers acquire the information in their forwarding tables.

Key Takeaway

We restate an important distinction, which is often neglected, between forwarding and routing. Forwarding
consists of receiving a packet, looking up its destination address in a table, and sending the packet in a
direction determined by that table. We saw several examples of forwarding in the preceding section. It is
a simple and well-defined process performed locally at each node, and is often referred to as the network’s
data plane. Routing is the process by which forwarding tables are built. It depends on complex distributed
algorithms, and is often referred to as the network’s control plane. [Next]

While the terms forwarding table and routing table are sometimes used interchangeably, we will make a
distinction between them here. The forwarding table is used when a packet is being forwarded and so must
contain enough information to accomplish the forwarding function. This means that a row in the forwarding
table contains the mapping from a network prefix to an outgoing interface and some MAC information, such
as the Ethernet address of the next hop. The routing table, on the other hand, is the table that is built up by
the routing algorithms as a precursor to building the forwarding table. It generally contains mappings from
network prefixes to next hops. It may also contain information about how this information was learned, so
that the router will be able to decide when it should discard some information.

Whether the routing table and forwarding table are actually separate data structures is something of an
implementation choice, but there are numerous reasons to keep them separate. For example, the forwarding
table needs to be structured to optimize the process of looking up an address when forwarding a packet,
while the routing table needs to be optimized for the purpose of calculating changes in topology. In many
cases, the forwarding table may even be implemented in specialized hardware, whereas this is rarely if ever
done for the routing table.

3.4. Routing 151

Computer Networks: A Systems Approach, Release Version 6.1

Table 3.10 gives an example of a row from a routing table, which tells us that network prefix 18/8 is to be
reached by a next hop router with the IP address 171.69.245.10

Table 3.10.: Example row from a routing table.
Prefix/Length Next Hop
18/8 171.69.245.10

In contrast, Table 3.11 gives an example of a row from a forwarding table, which contains the information
about exactly how to forward a packet to that next hop: Send it out interface number 0 with a MAC address
of 8:0:2b:e4:b:1:2. Note that the last piece of information is provided by the Address Resolution Protocol.

Table 3.11.: Example row from a forwarding table.
Prefix/Length Interface MAC Address
18/8 if0 8:0:2b:e4:b:1:2

Before getting into the details of routing, we need to remind ourselves of the key question we should be
asking anytime we try to build a mechanism for the Internet: “Does this solution scale?” The answer for
the algorithms and protocols described in this section is “not so much.” They are designed for networks of
fairly modest size—up to a few hundred nodes, in practice. However, the solutions we describe do serve
as a building block for a hierarchical routing infrastructure that is used in the Internet today. Specifically,
the protocols described in this section are collectively known as intradomain routing protocols, or interior
gateway protocols (IGPs). To understand these terms, we need to define a routing domain. A good working
definition is an internetwork in which all the routers are under the same administrative control (e.g., a single
university campus, or the network of a single Internet Service Provider). The relevance of this definition will
become apparent in the next chapter when we look at interdomain routing protocols. For now, the important
thing to keep in mind is that we are considering the problem of routing in the context of small to midsized
networks, not for a network the size of the Internet.

3.4.1 Network as a Graph

Routing is, in essence, a problem of graph theory. Figure 3.29 shows a graph representing a network.
The nodes of the graph, labeled A through F, may be hosts, switches, routers, or networks. For our initial
discussion, we will focus on the case where the nodes are routers. The edges of the graph correspond to the
network links. Each edge has an associated cost, which gives some indication of the desirability of sending
traffic over that link. A discussion of how edge costs are assigned is given in a later section.

Note that the example networks (graphs) used throughout this chapter have undirected edges that are as-
signed a single cost. This is actually a slight simplification. It is more accurate to make the edges directed,
which typically means that there would be a pair of edges between each node—one flowing in each direction,
and each with its own edge cost.

The basic problem of routing is to find the lowest-cost path between any two nodes, where the cost of a
path equals the sum of the costs of all the edges that make up the path. For a simple network like the one in
Figure 3.29, you could imagine just calculating all the shortest paths and loading them into some nonvolatile
storage on each node. Such a static approach has several shortcomings:

• It does not deal with node or link failures.

152 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.29.: Network represented as a graph.

• It does not consider the addition of new nodes or links.

• It implies that edge costs cannot change, even though we might reasonably wish to have link costs
change over time (e.g., assigning high cost to a link that is heavily loaded).

For these reasons, routing is achieved in most practical networks by running routing protocols among the
nodes. These protocols provide a distributed, dynamic way to solve the problem of finding the lowest-
cost path in the presence of link and node failures and changing edge costs. Note the word distributed in
the previous sentence; it is difficult to make centralized solutions scalable, so all the widely used routing
protocols use distributed algorithms.

The distributed nature of routing algorithms is one of the main reasons why this has been such a rich field
of research and development—there are a lot of challenges in making distributed algorithms work well. For
example, distributed algorithms raise the possibility that two routers will at one instant have different ideas
about the shortest path to some destination. In fact, each one may think that the other one is closer to the
destination and decide to send packets to the other one. Clearly, such packets will be stuck in a loop until
the discrepancy between the two routers is resolved, and it would be good to resolve it as soon as possible.
This is just one example of the type of problem routing protocols must address.

To begin our analysis, we assume that the edge costs in the network are known. We will examine the two
main classes of routing protocols: distance vector and link state. In a later section, we return to the problem
of calculating edge costs in a meaningful way.

3.4.2 Distance-Vector (RIP)

The idea behind the distance-vector algorithm is suggested by its name. (The other common name for
this class of algorithm is Bellman-Ford, after its inventors.) Each node constructs a one-dimensional array
(a vector) containing the “distances” (costs) to all other nodes and distributes that vector to its immediate
neighbors. The starting assumption for distance-vector routing is that each node knows the cost of the link
to each of its directly connected neighbors. These costs may be provided when the router is configured by a
network manager. A link that is down is assigned an infinite cost.

3.4. Routing 153

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.30.: Distance-vector routing: an example network.

Table 3.12.: Initial Distances Stored at Each Node (Global View).
A B C D E F G

A 0 1 1 ∞ 1 1 ∞
B 1 0 1 ∞ ∞ ∞ ∞
C 1 1 0 1 ∞ ∞ ∞
D ∞ ∞ 1 0 ∞ ∞ 1
E 1 ∞ ∞ ∞ 0 ∞ ∞
F 1 ∞ ∞ ∞ ∞ 0 1
G ∞ ∞ ∞ 1 ∞ 1 0

To see how a distance-vector routing algorithm works, it is easiest to consider an example like the one
depicted in Figure 3.30. In this example, the cost of each link is set to 1, so that a least-cost path is simply
the one with the fewest hops. (Since all edges have the same cost, we do not show the costs in the graph.)
We can represent each node’s knowledge about the distances to all other nodes as a table like Table 3.12.
Note that each node knows only the information in one row of the table (the one that bears its name in the
left column). The global view that is presented here is not available at any single point in the network.

We may consider each row in Table 3.12 as a list of distances from one node to all other nodes, representing
the current beliefs of that node. Initially, each node sets a cost of 1 to its directly connected neighbors and
∞ to all other nodes. Thus, A initially believes that it can reach B in one hop and that D is unreachable. The
routing table stored at A reflects this set of beliefs and includes the name of the next hop that A would use
to reach any reachable node. Initially, then, A’s routing table would look like Table 3.13.

Table 3.13.: Initial Routing Table at Node A.
Destination Cost NextHop
B 1 B
C 1 C
D ∞ —
E 1 E
F 1 F
G ∞ —

154 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

The next step in distance-vector routing is that every node sends a message to its directly connected neigh-
bors containing its personal list of distances. For example, node F tells node A that it can reach node G at a
cost of 1; A also knows it can reach F at a cost of 1, so it adds these costs to get the cost of reaching G by
means of F. This total cost of 2 is less than the current cost of infinity, so A records that it can reach G at a
cost of 2 by going through F. Similarly, A learns from C that D can be reached from C at a cost of 1; it adds
this to the cost of reaching C (1) and decides that D can be reached via C at a cost of 2, which is better than
the old cost of infinity. At the same time, A learns from C that B can be reached from C at a cost of 1, so it
concludes that the cost of reaching B via C is 2. Since this is worse than the current cost of reaching B (1),
this new information is ignored. At this point, A can update its routing table with costs and next hops for all
nodes in the network. The result is shown in Table 3.14.

Table 3.14.: Final Routing Table at Node A.
Destination Cost NextHop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 F

In the absence of any topology changes, it takes only a few exchanges of information between neighbors
before each node has a complete routing table. The process of getting consistent routing information to
all the nodes is called convergence. Table 3.15 shows the final set of costs from each node to all other
nodes when routing has converged. We must stress that there is no one node in the network that has all the
information in this table—each node only knows about the contents of its own routing table. The beauty of
a distributed algorithm like this is that it enables all nodes to achieve a consistent view of the network in the
absence of any centralized authority.

Table 3.15.: Final Distances Stored at Each Node (Global View).
A B C D E F G

A 0 1 1 2 1 1 2
B 1 0 1 2 2 2 3
C 1 1 0 1 2 2 2
D 2 2 1 0 3 2 1
E 1 2 2 3 0 2 3
F 1 2 2 2 2 0 1
G 2 3 2 1 3 1 0

There are a few details to fill in before our discussion of distance-vector routing is complete. First we note
that there are two different circumstances under which a given node decides to send a routing update to its
neighbors. One of these circumstances is the periodic update. In this case, each node automatically sends
an update message every so often, even if nothing has changed. This serves to let the other nodes know that
this node is still running. It also makes sure that they keep getting information that they may need if their
current routes become unviable. The frequency of these periodic updates varies from protocol to protocol,
but it is typically on the order of several seconds to several minutes. The second mechanism, sometimes
called a triggered update, happens whenever a node notices a link failure or receives an update from one of

3.4. Routing 155

Computer Networks: A Systems Approach, Release Version 6.1

its neighbors that causes it to change one of the routes in its routing table. Whenever a node’s routing table
changes, it sends an update to its neighbors, which may lead to a change in their tables, causing them to
send an update to their neighbors.

Now consider what happens when a link or node fails. The nodes that notice first send new lists of distances
to their neighbors, and normally the system settles down fairly quickly to a new state. As to the question of
how a node detects a failure, there are a couple of different answers. In one approach, a node continually
tests the link to another node by sending a control packet and seeing if it receives an acknowledgment. In
another approach, a node determines that the link (or the node at the other end of the link) is down if it does
not receive the expected periodic routing update for the last few update cycles.

To understand what happens when a node detects a link failure, consider what happens when F detects that
its link to G has failed. First, F sets its new distance to G to infinity and passes that information along to A.
Since A knows that its 2-hop path to G is through F, A would also set its distance to G to infinity. However,
with the next update from C, A would learn that C has a 2-hop path to G. Thus, A would know that it could
reach G in 3 hops through C, which is less than infinity, and so A would update its table accordingly. When
it advertises this to F, node F would learn that it can reach G at a cost of 4 through A, which is less than
infinity, and the system would again become stable.

Unfortunately, slightly different circumstances can prevent the network from stabilizing. Suppose, for ex-
ample, that the link from A to E goes down. In the next round of updates, A advertises a distance of infinity
to E, but B and C advertise a distance of 2 to E. Depending on the exact timing of events, the following
might happen: Node B, upon hearing that E can be reached in 2 hops from C, concludes that it can reach E
in 3 hops and advertises this to A; node A concludes that it can reach E in 4 hops and advertises this to C;
node C concludes that it can reach E in 5 hops; and so on. This cycle stops only when the distances reach
some number that is large enough to be considered infinite. In the meantime, none of the nodes actually
knows that E is unreachable, and the routing tables for the network do not stabilize. This situation is known
as the count to infinity problem.

There are several partial solutions to this problem. The first one is to use some relatively small number as
an approximation of infinity. For example, we might decide that the maximum number of hops to get across
a certain network is never going to be more than 16, and so we could pick 16 as the value that represents
infinity. This at least bounds the amount of time that it takes to count to infinity. Of course, it could also
present a problem if our network grew to a point where some nodes were separated by more than 16 hops.

One technique to improve the time to stabilize routing is called split horizon. The idea is that when a node
sends a routing update to its neighbors, it does not send those routes it learned from each neighbor back to
that neighbor. For example, if B has the route (E, 2, A) in its table, then it knows it must have learned this
route from A, and so whenever B sends a routing update to A, it does not include the route (E, 2) in that
update. In a stronger variation of split horizon, called split horizon with poison reverse, B actually sends
that route back to A, but it puts negative information in the route to ensure that A will not eventually use B
to get to E. For example, B sends the route (E, ∞) to A. The problem with both of these techniques is that
they only work for routing loops that involve two nodes. For larger routing loops, more drastic measures are
called for. Continuing the above example, if B and C had waited for a while after hearing of the link failure
from A before advertising routes to E, they would have found that neither of them really had a route to E.
Unfortunately, this approach delays the convergence of the protocol; speed of convergence is one of the key
advantages of its competitor, link-state routing, the subject of a later section.

156 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Implementation

The code that implements this algorithm is very straightforward; we give only some of the basics here.
Structure Route defines each entry in the routing table, and constant MAX_TTL specifies how long an entry
is kept in the table before it is discarded.

#define MAX_ROUTES 128 /* maximum size of routing table */
#define MAX_TTL 120 /* time (in seconds) until route expires */

typedef struct {
NodeAddr Destination; /* address of destination */
NodeAddr NextHop; /* address of next hop */
int Cost; /* distance metric */
u_short TTL; /* time to live */

} Route;

int numRoutes = 0;
Route routingTable[MAX_ROUTES];

The routine that updates the local node’s routing table based on a new route is given by mergeRoute.
Although not shown, a timer function periodically scans the list of routes in the node’s routing table, decre-
ments the TTL (time to live) field of each route, and discards any routes that have a time to live of 0. Notice,
however, that the TTL field is reset to MAX_TTL any time the route is reconfirmed by an update message
from a neighboring node.

void
mergeRoute (Route *new)
{

int i;

for (i = 0; i < numRoutes; ++i)
{

if (new->Destination == routingTable[i].Destination)
{

if (new->Cost + 1 < routingTable[i].Cost)
{

/* found a better route: */
break;

} else if (new->NextHop == routingTable[i].NextHop) {
/* metric for current next-hop may have changed: */
break;

} else {
/* route is uninteresting---just ignore it */
return;

}
}

}
if (i == numRoutes)
{

/* this is a completely new route; is there room for it? */
if (numRoutes < MAXROUTES)
{

(continues on next page)

3.4. Routing 157

Computer Networks: A Systems Approach, Release Version 6.1

(continued from previous page)

++numRoutes;
} else {

/* can`t fit this route in table so give up */
return;

}
}
routingTable[i] = *new;
/* reset TTL */
routingTable[i].TTL = MAX_TTL;
/* account for hop to get to next node */
++routingTable[i].Cost;

}

Finally, the procedure updateRoutingTable is the main routine that calls mergeRoute to incorporate
all the routes contained in a routing update that is received from a neighboring node.

void
updateRoutingTable (Route *newRoute, int numNewRoutes)
{

int i;

for (i=0; i < numNewRoutes; ++i)
{

mergeRoute(&newRoute[i]);
}

}

Routing Information Protocol (RIP)

One of the more widely used routing protocols in IP networks is the Routing Information Protocol (RIP). Its
widespread use in the early days of IP was due in no small part to the fact that it was distributed along with
the popular Berkeley Software Distribution (BSD) version of Unix, from which many commercial versions
of Unix were derived. It is also extremely simple. RIP is the canonical example of a routing protocol built
on the distance-vector algorithm just described.

Routing protocols in internetworks differ very slightly from the idealized graph model described above. In
an internetwork, the goal of the routers is to learn how to forward packets to various networks. Thus, rather
than advertising the cost of reaching other routers, the routers advertise the cost of reaching networks. For
example, in Figure 3.31, router C would advertise to router A the fact that it can reach networks 2 and 3 (to
which it is directly connected) at a cost of 0, networks 5 and 6 at cost 1, and network 4 at cost 2.

We can see evidence of this in the RIP (version 2) packet format in Figure 3.32. The majority of the packet is
taken up with (address, mask, distance) triples. However, the principles of the routing algorithm
are just the same. For example, if router A learns from router B that network X can be reached at a lower
cost via B than via the existing next hop in the routing table, A updates the cost and next hop information
for the network number accordingly.

RIP is in fact a fairly straightforward implementation of distance-vector routing. Routers running RIP send
their advertisements every 30 seconds; a router also sends an update message whenever an update from
another router causes it to change its routing table. One point of interest is that it supports multiple address

158 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.31.: Example network running RIP.

Figure 3.32.: RIPv2 packet format.

3.4. Routing 159

Computer Networks: A Systems Approach, Release Version 6.1

families, not just IP—that is the reason for the Family part of the advertisements. RIP version 2 (RIPv2)
also introduced the subnet masks described in an earlier section, whereas RIP version 1 worked with the old
classful addresses of IP.

As we will see below, it is possible to use a range of different metrics or costs for the links in a routing
protocol. RIP takes the simplest approach, with all link costs being equal to 1, just as in our example above.
Thus, it always tries to find the minimum hop route. Valid distances are 1 through 15, with 16 representing
infinity. This also limits RIP to running on fairly small networks—those with no paths longer than 15 hops.

3.4.3 Link State (OSPF)

Link-state routing is the second major class of intradomain routing protocol. The starting assumptions for
link-state routing are rather similar to those for distance-vector routing. Each node is assumed to be capable
of finding out the state of the link to its neighbors (up or down) and the cost of each link. Again, we want
to provide each node with enough information to enable it to find the least-cost path to any destination. The
basic idea behind link-state protocols is very simple: Every node knows how to reach its directly connected
neighbors, and if we make sure that the totality of this knowledge is disseminated to every node, then every
node will have enough knowledge of the network to build a complete map of the network. This is clearly a
sufficient condition (although not a necessary one) for finding the shortest path to any point in the network.
Thus, link-state routing protocols rely on two mechanisms: reliable dissemination of link-state information,
and the calculation of routes from the sum of all the accumulated link-state knowledge.

Reliable Flooding

Reliable flooding is the process of making sure that all the nodes participating in the routing protocol get a
copy of the link-state information from all the other nodes. As the term flooding suggests, the basic idea is
for a node to send its link-state information out on all of its directly connected links; each node that receives
this information then forwards it out on all of its links. This process continues until the information has
reached all the nodes in the network.

More precisely, each node creates an update packet, also called a link-state packet (LSP), which contains
the following information:

• The ID of the node that created the LSP

• A list of directly connected neighbors of that node, with the cost of the link to each one

• A sequence number

• A time to live for this packet

The first two items are needed to enable route calculation; the last two are used to make the process of
flooding the packet to all nodes reliable. Reliability includes making sure that you have the most recent
copy of the information, since there may be multiple, contradictory LSPs from one node traversing the
network. Making the flooding reliable has proven to be quite difficult. (For example, an early version of
link-state routing used in the ARPANET caused that network to fail in 1981.)

Flooding works in the following way. First, the transmission of LSPs between adjacent routers is made
reliable using acknowledgments and retransmissions just as in the reliable link-layer protocol. However,
several more steps are necessary to reliably flood an LSP to all nodes in a network.

160 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Consider a node X that receives a copy of an LSP that originated at some other node Y. Note that Y may be
any other router in the same routing domain as X. X checks to see if it has already stored a copy of an LSP
from Y. If not, it stores the LSP. If it already has a copy, it compares the sequence numbers; if the new LSP
has a larger sequence number, it is assumed to be the more recent, and that LSP is stored, replacing the old
one. A smaller (or equal) sequence number would imply an LSP older (or not newer) than the one stored, so
it would be discarded and no further action would be needed. If the received LSP was the newer one, X then
sends a copy of that LSP to all of its neighbors except the neighbor from which the LSP was just received.
The fact that the LSP is not sent back to the node from which it was received helps to bring an end to the
flooding of an LSP. Since X passes the LSP on to all its neighbors, who then turn around and do the same
thing, the most recent copy of the LSP eventually reaches all nodes.

Figure 3.33.: Flooding of link-state packets: (a) LSP arrives at node X; (b) X floods LSP to A and C;
(c) A and C flood LSP to B (but not X); (d) flooding is complete.

Figure 3.33 shows an LSP being flooded in a small network. Each node becomes shaded as it stores the new
LSP. In Figure 3.33(a) the LSP arrives at node X, which sends it to neighbors A and C in Figure 3.33(b). A
and C do not send it back to X, but send it on to B. Since B receives two identical copies of the LSP, it will
accept whichever arrived first and ignore the second as a duplicate. It then passes the LSP onto D, which
has no neighbors to flood it to, and the process is complete.

Just as in RIP, each node generates LSPs under two circumstances. Either the expiry of a periodic timer or
a change in topology can cause a node to generate a new LSP. However, the only topology-based reason for
a node to generate an LSP is if one of its directly connected links or immediate neighbors has gone down.
The failure of a link can be detected in some cases by the link-layer protocol. The demise of a neighbor or
loss of connectivity to that neighbor can be detected using periodic “hello” packets. Each node sends these
to its immediate neighbors at defined intervals. If a sufficiently long time passes without receipt of a “hello”
from a neighbor, the link to that neighbor will be declared down, and a new LSP will be generated to reflect
this fact.

One of the important design goals of a link-state protocol’s flooding mechanism is that the newest infor-
mation must be flooded to all nodes as quickly as possible, while old information must be removed from
the network and not allowed to circulate. In addition, it is clearly desirable to minimize the total amount of
routing traffic that is sent around the network; after all, this is just overhead from the perspective of those

3.4. Routing 161

Computer Networks: A Systems Approach, Release Version 6.1

who actually use the network for their applications. The next few paragraphs describe some of the ways that
these goals are accomplished.

One easy way to reduce overhead is to avoid generating LSPs unless absolutely necessary. This can be done
by using very long timers—often on the order of hours—for the periodic generation of LSPs. Given that the
flooding protocol is truly reliable when topology changes, it is safe to assume that messages saying “nothing
has changed” do not need to be sent very often.

To make sure that old information is replaced by newer information, LSPs carry sequence numbers. Each
time a node generates a new LSP, it increments the sequence number by 1. Unlike most sequence numbers
used in protocols, these sequence numbers are not expected to wrap, so the field needs to be quite large (say,
64 bits). If a node goes down and then comes back up, it starts with a sequence number of 0. If the node was
down for a long time, all the old LSPs for that node will have timed out (as described below); otherwise,
this node will eventually receive a copy of its own LSP with a higher sequence number, which it can then
increment and use as its own sequence number. This will ensure that its new LSP replaces any of its old
LSPs left over from before the node went down.

LSPs also carry a time to live. This is used to ensure that old link-state information is eventually removed
from the network. A node always decrements the TTL of a newly received LSP before flooding it to its
neighbors. It also “ages” the LSP while it is stored in the node. When the TTL reaches 0, the node refloods
the LSP with a TTL of 0, which is interpreted by all the nodes in the network as a signal to delete that LSP.

Route Calculation

Once a given node has a copy of the LSP from every other node, it is able to compute a complete map
for the topology of the network, and from this map it is able to decide the best route to each destination.
The question, then, is exactly how it calculates routes from this information. The solution is based on a
well-known algorithm from graph theory—Dijkstra’s shortest-path algorithm.

We first define Dijkstra’s algorithm in graph-theoretic terms. Imagine that a node takes all the LSPs it has
received and constructs a graphical representation of the network, in which N denotes the set of nodes in
the graph, l(i,j) denotes the nonnegative cost (weight) associated with the edge between nodes i, j in N and
l(i, j) = ∞ if no edge connects i and j. In the following description, we let s in N denote this node, that is,
the node executing the algorithm to find the shortest path to all the other nodes in N. Also, the algorithm
maintains the following two variables: M denotes the set of nodes incorporated so far by the algorithm, and
C(n) denotes the cost of the path from s to each node n. Given these definitions, the algorithm is defined as
follows:

M = {s}
for each n in N - {s}

C(n) = l(s,n)
while (N != M)

M = M + {w} such that C(w) is the minimum for all w in (N-M)
for each n in (N-M)
C(n) = MIN(C(n), C(w)+l(w,n))

Basically, the algorithm works as follows. We start with M containing this node s and then initialize the
table of costs (the array C(n)) to other nodes using the known costs to directly connected nodes. We then
look for the node that is reachable at the lowest cost (w) and add it to M. Finally, we update the table of
costs by considering the cost of reaching nodes through w. In the last line of the algorithm, we choose a new

162 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

route to node n that goes through node w if the total cost of going from the source to w and then following
the link from w to n is less than the old route we had to n. This procedure is repeated until all nodes are
incorporated in M.

In practice, each switch computes its routing table directly from the LSPs it has collected using a realiza-
tion of Dijkstra’s algorithm called the forward search algorithm. Specifically, each switch maintains two
lists, known as Tentative and Confirmed. Each of these lists contains a set of entries of the form
(Destination, Cost, NextHop). The algorithm works as follows:

1. Initialize the Confirmed list with an entry for myself; this entry has a cost of 0.

2. For the node just added to the Confirmed list in the previous step, call it node Next and select its
LSP.

3. For each neighbor (Neighbor) of Next, calculate the cost (Cost) to reach this Neighbor as the
sum of the cost from myself to Next and from Next to Neighbor.

1. If Neighbor is currently on neither the Confirmed nor the Tentative list, then add
(Neighbor, Cost, NextHop) to the Tentative list, where NextHop is the direction
I go to reach Next.

2. If Neighbor is currently on the Tentative list, and the Cost is less than the currently listed
cost for Neighbor, then replace the current entry with (Neighbor, Cost, NextHop),
where NextHop is the direction I go to reach Next.

4. If the Tentative list is empty, stop. Otherwise, pick the entry from the Tentative list with the
lowest cost, move it to the Confirmed list, and return to step 2.

Figure 3.34.: Link-state routing: an example network.

This will become a lot easier to understand when we look at an example. Consider the network depicted in
Figure 3.34. Note that, unlike our previous example, this network has a range of different edge costs. Table
3.16 traces the steps for building the routing table for node D. We denote the two outputs of D by using the
names of the nodes to which they connect, B and C. Note the way the algorithm seems to head off on false
leads (like the 11-unit cost path to B that was the first addition to the Tentative list) but ends up with the
least-cost paths to all nodes.

3.4. Routing 163

Computer Networks: A Systems Approach, Release Version 6.1

Table 3.16.: Steps for Building Routing Table for Node D. :align:
center :widths: auto

Step Confirmed Tenta-
tive

Comments

1 (D,0,–) Since D is the only new member of the confirmed list, look at its
LSP.

2 (D,0,–) (B,11,B)
(C,2,C)

D’s LSP says we can reach B through B at cost 11, which is better
than anything else on either list, so put it on Tentative list; same
for C.

3 (D,0,–) (C,2,C) (B,11,B) Put lowest-cost member of Tentative (C) onto Confirmed list.
Next, examine LSP of newly confirmed member (C).

4 (D,0,–) (C,2,C) (B,5,C)
(A,12,C)

Cost to reach B through C is 5, so replace (B,11,B). C’s LSP tells us
that we can reach A at cost 12.

5 (D,0,–) (C,2,C)
(B,5,C)

(A,12,C) Move lowest-cost member of Tentative (B) to Confirmed,
then look at its LSP.

6 (D,0,–) (C,2,C)
(B,5,C)

(A,10,C) Since we can reach A at cost 5 through B, replace the Tentative
entry.

7 (D,0,–) (C,2,C)
(B,5,C)
(A,10,C)

Move lowest-cost member of Tentative (A) to Confirmed, and
we are all done.

The link-state routing algorithm has many nice properties: It has been proven to stabilize quickly, it does
not generate much traffic, and it responds rapidly to topology changes or node failures. On the downside,
the amount of information stored at each node (one LSP for every other node in the network) can be quite
large. This is one of the fundamental problems of routing and is an instance of the more general problem of
scalability. Some solutions to both the specific problem (the amount of storage potentially required at each
node) and the general problem (scalability) will be discussed in the next section.

Key Takeaway

Distance-vector and link-state are both distributed routing algorithms, but they adopt different strategies. In
distance-vector, each node talks only to its directly connected neighbors, but it tells them everything it has
learned (i.e., distance to all nodes). In link-state, each node talks to all other nodes, but it tells them only what
it knows for sure (i.e., only the state of its directly connected links). In contrast to both of these algorithms,
we will consider a more centralized approach to routing in Section 3.5 when we introduce Software Defined
Networking (SDN). [Next]

The Open Shortest Path First Protocol (OSPF)

One of the most widely used link-state routing protocols is OSPF. The first word, “Open,” refers to the fact
that it is an open, nonproprietary standard, created under the auspices of the Internet Engineering Task Force
(IETF). The “SPF” part comes from an alternative name for link-state routing. OSPF adds quite a number
of features to the basic link-state algorithm described above, including the following:

• Authentication of routing messages—One feature of distributed routing algorithms is that they dis-

164 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

perse information from one node to many other nodes, and the entire network can thus be impacted
by bad information from one node. For this reason, it’s a good idea to be sure that all the nodes
taking part in the protocol can be trusted. Authenticating routing messages helps achieve this. Early
versions of OSPF used a simple 8-byte password for authentication. This is not a strong enough form
of authentication to prevent dedicated malicious users, but it alleviates some problems caused by mis-
configuration or casual attacks. (A similar form of authentication was added to RIP in version 2.)
Strong cryptographic authentication was later added.

• Additional hierarchy—Hierarchy is one of the fundamental tools used to make systems more scalable.
OSPF introduces another layer of hierarchy into routing by allowing a domain to be partitioned into
areas. This means that a router within a domain does not necessarily need to know how to reach every
network within that domain—it may be able to get by knowing only how to get to the right area. Thus,
there is a reduction in the amount of information that must be transmitted to and stored in each node.

• Load balancing—OSPF allows multiple routes to the same place to be assigned the same cost and
will cause traffic to be distributed evenly over those routes, thus making better use of the available
network capacity.

Figure 3.35.: OSPF header format.

There are several different types of OSPF messages, but all begin with the same header, as shown in Fig-
ure 3.35. The Version field is currently set to 2, and the Type field may take the values 1 through 5.
The SourceAddr identifies the sender of the message, and the AreaId is a 32-bit identifier of the area
in which the node is located. The entire packet, except the authentication data, is protected by a 16-bit
checksum using the same algorithm as the IP header. The Authentication type is 0 if no authenti-
cation is used; otherwise, it may be 1, implying that a simple password is used, or 2, which indicates that a
cryptographic authentication checksum is used. In the latter cases, the Authentication field carries the
password or cryptographic checksum.

Of the five OSPF message types, type 1 is the “hello” message, which a router sends to its peers to notify
them that it is still alive and connected as described above. The remaining types are used to request, send,
and acknowledge the receipt of link-state messages. The basic building block of link-state messages in
OSPF is the link-state advertisement (LSA). One message may contain many LSAs. We provide a few
details of the LSA here.

Like any internetwork routing protocol, OSPF must provide information about how to reach networks. Thus,

3.4. Routing 165

Computer Networks: A Systems Approach, Release Version 6.1

OSPF must provide a little more information than the simple graph-based protocol described above. Specif-
ically, a router running OSPF may generate link-state packets that advertise one or more of the networks
that are directly connected to that router. In addition, a router that is connected to another router by some
link must advertise the cost of reaching that router over the link. These two types of advertisements are
necessary to enable all the routers in a domain to determine the cost of reaching all networks in that domain
and the appropriate next hop for each network.

Figure 3.36.: OSPF link-state advertisement.

Figure 3.36 shows the packet format for a type 1 link-state advertisement. Type 1 LSAs advertise the cost
of links between routers. Type 2 LSAs are used to advertise networks to which the advertising router is
connected, while other types are used to support additional hierarchy as described in the next section. Many
fields in the LSA should be familiar from the preceding discussion. The LS Age is the equivalent of a time
to live, except that it counts up and the LSA expires when the age reaches a defined maximum value. The
Type field tells us that this is a type 1 LSA.

In a type 1 LSA, the Link state ID and the Advertising router field are identical. Each carries
a 32-bit identifier for the router that created this LSA. While a number of assignment strategies may be used
to assign this ID, it is essential that it be unique in the routing domain and that a given router consistently uses
the same router ID. One way to pick a router ID that meets these requirements would be to pick the lowest
IP address among all the IP addresses assigned to that router. (Recall that a router may have a different IP
address on each of its interfaces.)

The LS sequence number is used exactly as described above to detect old or duplicate LSAs. The
LS checksum is similar to others we have seen in other protocols; it is, of course, used to verify that data
has not been corrupted. It covers all fields in the packet except LS Age, so it is not necessary to recompute
a checksum every time LS Age is incremented. Length is the length in bytes of the complete LSA.

Now we get to the actual link-state information. This is made a little complicated by the presence of
TOS (type of service) information. Ignoring that for a moment, each link in the LSA is represented by
a Link ID, some Link Data, and a metric. The first two of these fields identify the link; a common

166 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

way to do this would be to use the router ID of the router at the far end of the link as the Link ID and then
use the Link Data to disambiguate among multiple parallel links if necessary. The metric is of course
the cost of the link. Type tells us something about the link—for example, if it is a point-to-point link.

The TOS information is present to allow OSPF to choose different routes for IP packets based on the value
in their TOS field. Instead of assigning a single metric to a link, it is possible to assign different metrics
depending on the TOS value of the data. For example, if we had a link in our network that was very good
for delay-sensitive traffic, we could give it a low metric for the TOS value representing low delay and a high
metric for everything else. OSPF would then pick a different shortest path for those packets that had their
TOS field set to that value. It is worth noting that, at the time of writing, this capability has not been widely
deployed.

3.4.4 Metrics

The preceding discussion assumes that link costs, or metrics, are known when we execute the routing algo-
rithm. In this section, we look at some ways to calculate link costs that have proven effective in practice.
One example that we have seen already, which is quite reasonable and very simple, is to assign a cost of 1
to all links—the least-cost route will then be the one with the fewest hops. Such an approach has several
drawbacks, however. First, it does not distinguish between links on a latency basis. Thus, a satellite link
with 250-ms latency looks just as attractive to the routing protocol as a terrestrial link with 1-ms latency.
Second, it does not distinguish between routes on a capacity basis, making a 1-Mbps link look just as good
as a 10-Gbps link. Finally, it does not distinguish between links based on their current load, making it im-
possible to route around overloaded links. It turns out that this last problem is the hardest because you are
trying to capture the complex and dynamic characteristics of a link in a single scalar cost.

The ARPANET was the testing ground for a number of different approaches to link-cost calculation. (It was
also the place where the superior stability of link-state over distance-vector routing was demonstrated; the
original mechanism used distance vector while the later version used link state.) The following discussion
traces the evolution of the ARPANET routing metric and, in so doing, explores the subtle aspects of the
problem.

The original ARPANET routing metric measured the number of packets that were queued waiting to be
transmitted on each link, meaning that a link with 10 packets queued waiting to be transmitted was assigned
a larger cost weight than a link with 5 packets queued for transmission. Using queue length as a routing
metric did not work well, however, since queue length is an artificial measure of load—it moves packets
toward the shortest queue rather than toward the destination, a situation all too familiar to those of us who
hop from line to line at the grocery store. Stated more precisely, the original ARPANET routing mechanism
suffered from the fact that it did not take either the bandwidth or the latency of the link into consideration.

A second version of the ARPANET routing algorithm took both link bandwidth and latency into consider-
ation and used delay, rather than just queue length, as a measure of load. This was done as follows. First,
each incoming packet was timestamped with its time of arrival at the router (ArrivalTime); its departure
time from the router (DepartTime) was also recorded. Second, when the link-level ACK was received
from the other side, the node computed the delay for that packet as

Delay = (DepartTime - ArrivalTime) + TransmissionTime + Latency

where TransmissionTime and Latency were statically defined for the link and captured the link’s
bandwidth and latency, respectively. Notice that in this case, DepartTime - ArrivalTime represents

3.4. Routing 167

Computer Networks: A Systems Approach, Release Version 6.1

the amount of time the packet was delayed (queued) in the node due to load. If the ACK did not arrive,
but instead the packet timed out, then DepartTime was reset to the time the packet was retransmitted.
In this case, DepartTime - ArrivalTime captures the reliability of the link—the more frequent the
retransmission of packets, the less reliable the link, and the more we want to avoid it. Finally, the weight
assigned to each link was derived from the average delay experienced by the packets recently sent over that
link.

Although an improvement over the original mechanism, this approach also had a lot of problems. Under
light load, it worked reasonably well, since the two static factors of delay dominated the cost. Under heavy
load, however, a congested link would start to advertise a very high cost. This caused all the traffic to move
off that link, leaving it idle, so then it would advertise a low cost, thereby attracting back all the traffic, and
so on. The effect of this instability was that, under heavy load, many links would in fact spend a great deal
of time being idle, which is the last thing you want under heavy load.

Another problem was that the range of link values was much too large. For example, a heavily loaded
9.6-kbps link could look 127 times more costly than a lightly loaded 56-kbps link. (Keep in mind, we’re
talking about the ARPANET circa 1975.) This means that the routing algorithm would choose a path with
126 hops of lightly loaded 56-kbps links in preference to a 1-hop 9.6-kbps path. While shedding some traffic
from an overloaded line is a good idea, making it look so unattractive that it loses all its traffic is excessive.
Using 126 hops when 1 hop will do is in general a bad use of network resources. Also, satellite links were
unduly penalized, so that an idle 56-kbps satellite link looked considerably more costly than an idle 9.6-kbps
terrestrial link, even though the former would give better performance for high-bandwidth applications.

A third approach addressed these problems. The major changes were to compress the dynamic range of the
metric considerably, to account for the link type, and to smooth the variation of the metric with time.

The smoothing was achieved by several mechanisms. First, the delay measurement was transformed to a
link utilization, and this number was averaged with the last reported utilization to suppress sudden changes.
Second, there was a hard limit on how much the metric could change from one measurement cycle to the
next. By smoothing the changes in the cost, the likelihood that all nodes would abandon a route at once is
greatly reduced.

The compression of the dynamic range was achieved by feeding the measured utilization, the link type, and
the link speed into a function that is shown graphically in Figure 3.37. below. Observe the following:

• A highly loaded link never shows a cost of more than three times its cost when idle.

• The most expensive link is only seven times the cost of the least expensive.

• A high-speed satellite link is more attractive than a low-speed terrestrial link.

• Cost is a function of link utilization only at moderate to high loads.

All of these factors mean that a link is much less likely to be universally abandoned, since a threefold
increase in cost is likely to make the link unattractive for some paths while letting it remain the best choice
for others. The slopes, offsets, and breakpoints for the curves in Figure 3.37 were arrived at by a great deal
of trial and error, and they were carefully tuned to provide good performance.

Despite all these improvements, it turns out that in the majority of real-world network deployments, metrics
change rarely if at all and only under the control of a network administrator, not automatically as described
above. The reason for this is partly that conventional wisdom now holds that dynamically changing metrics
are too unstable, even though this probably need not be true. Perhaps more significantly, many networks to-
day lack the great disparity of link speeds and latencies that prevailed in the ARPANET. Thus, static metrics

168 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.37.: Revised ARPANET routing metric versus link utilization.

are the norm. One common approach to setting metrics is to use a constant multiplied by (1/link_bandwidth).

Key Takeaway

Why do we still tell the story about a decades old algorithm that’s no longer in use? Because it perfectly
illustrates two valuable lessons. The first is that computer systems are often designed iteratively based on
experience. We seldom get it right the first time, so it’s important to deploy a simple solution sooner rather
than later, and expect to improve it over time. Staying stuck in the design phase indefinitely is usually
not a good plan. The second is the well-know KISS principle: Keep it Simple, Stupid. When building a
complex system, less is often more. Opportunities to invent sophisticated optimizations are plentiful, and
it’s a tempting opportunity to pursue. While such optimizations sometimes have short-term value, it is
shocking how often a simple approach proves best over time. This is because when a system has many
moving parts, as the Internet most certainly does, keeping each part as simple as possible is usually the best
approach. [Next]

3.5 Implementation

So far, we have talked about what switches and routers must do without describing how they do it. There is a
straightforward way to build a switch or router: Buy a general-purpose processor and equip it with multiple
network interfaces. Such a device, running suitable software, can receive packets on one of its interfaces,
perform any of the switching or forwarding functions described in this chapter, and send packets out another

3.5. Implementation 169

Computer Networks: A Systems Approach, Release Version 6.1

of its interfaces. This so called software switch is not too far removed from the architecture of many com-
mercial mid- to low-end network devices.1 Implementations that deliver high-end performance typically
take advantage of additional hardware acceleration. We refer to these as hardware switches, although both
approaches obviously include a combination of hardware and software.

This section gives an overview of both software-centric and hardware-centric designs, but it is worth noting
that on the question of switches versus routers, the distinction isn’t such a big deal. It turns out that the
implementation of switches and routers have so much in common that a network administrator typically
buys a single forwarding box and then configures it to be an L2 switch, an L3 router, or some combination
of the two. Since their internal designs are so similar, we’ll use the word switch to cover both variants
throughout this section, avoiding the tedium of saying “switch or router” all the time. We’ll call out the
differences between the two when appropriate.

3.5.1 Software Switch

Figure 3.38 shows a software switch built using a general-purpose processor with four network interface
cards (NICs). The path for a typical packet that arrives on, say, NIC 1 and is forwarded out on NIC 2 is
straightforward: as NIC 1 receives the packet it copies its bytes directly into the main memory over the
I/O bus (PCIe in this example) using a technique called direct memory access (DMA). Once the packet is
in memory, the CPU examines its header to determine which interface the packet should be sent out on,
and instructs NIC 2 to transmit the packet, again directly out of main memory using DMA. The important
take-away is that the packet is buffered in main memory (this is the “store” half of store-and-forward), with
the CPU reading only the necessary header fields into its internal registers for processing.

Figure 3.38.: A general-purpose processor used as a software switch.

There are two potential bottlenecks with this approach, one or both of which limits the aggregate packet
forwarding capacity of the software switch.

The first problem is that performance is limited by the fact that all packets must pass into and out of main
1 This is also how the very first Internet routers, often called gateways at the time, were implemented in the early days of the

Internet.

170 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

memory. Your mileage will vary based on how much you are willing to pay for hardware, but as an example,
a machine limited by a 1333-MHz, 64-bit-wide memory bus can transmit data at a peak rate of a little over
100 Gbps—enough to build a switch with a handful of 10-Gbps Ethernet ports, but hardly enough for a
high-end router in the core of the Internet.

Moreover, this upper bound assumes that moving data is the only problem. This is a fair approximation for
long packets but a bad one when packets are short, which is the worst-case situation switch designers have to
plan for. With minimum-sized packets, the cost of processing each packet—parsing its header and deciding
which output link to transmit it on—is likely to dominate, and potentially become a bottleneck. Suppose,
for example, that a processor can perform all the necessary processing to switch 40 million packets each
second. This is sometimes called the packet per second (pps) rate. If the average packet is 64 bytes, this
would imply

Throughput = pps x BitsPerPacket

= 40 × 106 × 64 × 8

= 2048 × 107

that is, a throughput of about 20 Gbps—fast, but substantially below the range users are demanding from
their switches today. Bear in mind that this 20 Gbps would be shared by all users connected to the switch,
just as the bandwidth of a single (unswitched) Ethernet segment is shared among all users connected to the
shared medium. Thus, for example, a 16-port switch with this aggregate throughput would only be able to
cope with an average data rate of about 1 Gbps on each port.2

One final consideration is important to understand when evaluating switch implementations. The non-trivial
algorithms discussed in this chapter—the spanning tree algorithm used by learning bridges, the distance-
vector algorithm used by RIP, and the link-state algorithm used by OSPF—are not directly part of the per-
packet forwarding decision. They run periodically in the background, but switches do not have to execute,
say, OSPF code for every packet it forwards. The most costly routine the CPU is likely to execute on a
per-packet basis is a table lookup, for example, looking up a VCI number in a VC table, an IP address in an
L3 forwarding table, or an Ethernet address in an L2 forwarding table.

Key Takeaway

The distinction between these two kinds of processing is important enough to give it a name: the control
plane corresponds to the background processing required to “control” the network (e.g., running OSPF,
RIP, or the BGP protocol described in the next chapter) and the data plane corresponds to the per-packet
processing required to move packets from input port to output port. For historical reasons, this distinction
is called control plane and user plane in cellular access networks, but the idea is the same, and in fact, the
3GPP standard defines CUPS (Control/User Plane Separation) as an architectural principle.

These two kinds of processing are easy to conflate when both run on the same CPU, as is the case in software
switch depicted in Figure 3.38, but performance can be dramatically improved by optimizing how the data
plane is implemented, and correspondingly, specifying a well-defined interface between the control and data
planes. [Next]

2 These example performance numbers do not represent the absolute maximum throughput rate that highly tuned software
running on a high-end server could achieve, but they are indicative of limits one ultimately faces in pursuing this approach.

3.5. Implementation 171

Computer Networks: A Systems Approach, Release Version 6.1

3.5.2 Hardware Switch

Throughout much of the Internet’s history, high-performance switches and routers have been specialized
devices, built with Application-Specific Integrated Circuits (ASICs). While it was possible to build low-end
routers and switches using commodity servers running C programs, ASICs were required to achieve the
required throughput rates.

The problem with ASICs is that hardware takes a long time to design and fabricate, meaning the delay for
adding new features to a switch is usually measured in years, not the days or weeks today’s software industry
is accustomed to. Ideally, we’d like to benefit from the performance of ASICs and the agility of software.

Fortunately, recent advances in domain specific processors (and other commodity components) have made
this possible. Just as importantly, the full architectural specification for switches that take advantage of these
new processors is now available on-line—the hardware equivalent of open source software. This means
anyone can build a high-performance switch by pulling the blueprint off the web (see the Open Compute
Project, OCP, for examples) in the same way it is possible to build your own PC. In both cases you still need
software to run on the hardware, but just as Linux is available to run on your home-built PC, there are now
open source L2 and L3 stacks available on GitHub to run on your home-built switch. Alternatively, you
can simply buy a pre-built switch from a commodity switch manufacturer and then load your own software
onto it. The following describes these open white-box switches, so called to contrast them with closed
“black-box” devices that have historically dominated the industry.

Figure 3.39.: White-box switch using a Network Processing Unit.

Figure 3.39 is a simplified depiction of a white-box switch. The key difference from the earlier implemen-
tation on a general-purpose processor is the addition of a Network Processor Unit (NPU), a domain-specific
processor with an architecture and instruction set that has been optimized for processing packet headers (i.e.,
for implementing the data plane). NPUs are similar in spirit to GPUs that have an architecture optimized for
rendering computer graphics, but in this case, the NPU is optimized for parsing packet headers and making
a forwarding decision. NPUs are able to process packets (input, make a forwarding decision, and output) at

172 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

rates measured in Terabits-per-second (Tbps), easily fast enough to keep up with 32x100-Gbps ports, or the
48x40-Gbps ports shown in the diagram.

Network Processing Units

Our use of the term NPU is a bit non-standard. Historically, NPU was the name given more narrowly-
defined network processing chips used, for example, to implement intelligent firewalls or deep packet
inspection. They were not as general-purpose as the NPUs we’re discussing here; nor were they as
high-performance. It seems likely that the current approach will make purpose-built network processors
obsolete, but in any case, we prefer the NPU nomenclator because it is consistent with the trend to build
programmable domain-specific processors, including GPUs for graphics and TPUs (Tensor Processing
Units) for AI.

The beauty of this new switch design is that a given white-box can now be programmed to be an L2 switch,
and L3 router, or a combination of both, just by a matter of programming. The exact same control plane
software stack used in a software switch still runs on the control CPU, but in addition, data plane “programs”
are loaded onto the NPU to reflect the forwarding decisions made by the control plane software. Exactly
how one “programs” the NPU depends on the chip vendor, of which there are currently several. In some
cases, the forwarding pipeline is fixed and the control processor merely loads the forwarding table into the
NPU (by fixed we mean the NPU only knows how to process certain headers, like Ethernet and IP), but in
other cases, the forwarding pipeline is itself programmable. P4 is a new programming language that can be
used to program such NPU-based forwarding pipelines. Among other things, P4 tries to hide many of the
differences in the underlying NPU instruction sets.

Internally, an NPU takes advantage of three technologies. First, a fast SRAM-based memory buffers packets
while they are being processed. SRAM (Static Random Access Memory), is roughly an order of magnitude
faster than the DRAM (Dynamic Random Access Memory) that is used by main memory. Second, a TCAM-
based memory stores bit patterns to be matched in the packets being processed. The “CAM” in TCAM stands
for “Content Addressable Memory,” which means that the key you want to look up in a table can effectively
be used as the address into the memory that implements the table. The “T” stands for “Ternary” which is a
fancy way to say the key you want to look up can have wildcards in it (e.g, key 10*1matches both 1001 and
1011). Finally, the processing involved to forward each packet is implemented by a forwarding pipeline.
This pipeline is implemented by an ASIC, but when well-designed, the pipeline’s forwarding behavior can
be modified by changing the program it runs. At a high level, this program is expressed as a collection of
(Match, Action) pairs: if you match such-and-such field in the header, then execute this-or-that action.

The relevance of packet processing being implemented by a multi-stage pipeline rather than a single-stage
processor is that forwarding a single packet likely involves looking at multiple header fields. Each stage can
be programmed to look at a different combination of fields. A multi-stage pipeline adds a little end-to-end
latency to each packet (measured in nanoseconds), but also means that multiple packets can be processed at
the same time. For example, Stage 2 can be making a second lookup on packet A while Stage 1 is doing an
initial lookup on packet B, and so on. This means the NPU as a whole is able to keep up with line speeds.
As of this writing, the state-of-the-art is 12.8 Tbps.

Finally, Figure 3.39 includes other commodity components that make this all practical. In particular, it is
now possible to buy pluggable transceiver modules that take care of all the media access details—be it
Gigabit Ethernet, 10-Gigabit Ethernet, or SONET—as well as the optics. These transceivers all conform
to standardized form factors, such as SFP+, that can in turn be connected to other components over a

3.5. Implementation 173

Computer Networks: A Systems Approach, Release Version 6.1

standardized bus (e.g., SFI). Again, the key takeaway is that the networking industry is just now entering
into the same commoditized world that the computing industry has enjoyed for the last two decades.

3.5.3 Software Defined Networks

With switches becoming increasingly commoditized, attention is rightfully shifting to the software that
controls them. This puts us squarely in the middle of a trend to build Software Defined Networks (SDN), an
idea that started to germinate about ten years ago. In fact, it was the early stages of SDN that triggered the
networking industry to move towards white-box switches.

The fundamental idea of SDN is one we’ve already discussed: to decouple the network control plane (i.e.,
where routing algorithms like RIP, OSPF, and BGP run) from the network data plane (i.e., where packet
forwarding decisions get made), with the former moved into software running on commodity servers and the
latter implemented by white-box switches. The key enabling idea behind SDN was to take this decoupling a
step further, and to define a standard interface between the control plane and the data plane. Doing so allows
any implementation of the control plane to talk to any implementation of the data plane; this breaks the
dependency on any one vendor’s bundled solution. The original interface is called OpenFlow, and this idea
of decoupling the control and data planes came to be known as disaggregation. (The P4 language mentioned
in the previous subsection is a second-generation attempt to define this interface by generalizing OpenFlow.)

Another important aspect of disaggregation is that a logically centralized control plane can be used to control
a distributed network data plane. We say logically centralized because while the state collected by the
control plane is maintained in a global data structure, such as a Network Map, the implementation of this
data structure could still be distributed over multiple servers. For example, it could run in a cloud. This
is important for both scalability and availability, where the key is that the two planes are configured and
scaled independent of each other. This idea took off quickly in the cloud, where today’s cloud providers run
SDN-based solutions both within their datacenters and across the backbone networks that interconnect their
datacenters.

One consequence of this design that isn’t immediately obvious is that a logically centralized control plane
doesn’t just manage a network of physical (hardware) switches that interconnects physical servers, but it also
manages a network of virtual (software) switches that interconnect virtual servers (e.g., Virtual Machines
and containers). If you’re counting “switch ports” (a good measure of all the devices connected to your
network) then the number of virtual ports in the Internet rocketed past the number of physical ports in 2012.

One of other key enablers for SDN’s success, as depicted in Figure 3.40, is the Network Operating System
(NOS). Like a server operating system (e.g., Linux, iOS, Android, Windows) that provides a set of high-
level abstractions that make it easier to implement applications (e.g., you can read and write files instead of
directly accessing disk drives), a NOS makes it easier to implement network control functionality, otherwise
known as Control Apps. A good NOS abstracts the details of the network switches and provides a Network
Map abstraction to the application developer. The NOS detects changes in the underlying network (e.g.,
switches, ports, and links going up-and-down) and the control application simply implements the behavior
it wants on this abstract graph. This means the NOS takes on the burden of collecting network state (the
hard part of distributed algorithms like Link-State and Distance-Vector algorithms) and the app is free to
simply implement the shortest path algorithm and load the forwarding rules into the underlying switches.
By centralizing this logic, the goal is to come up with a globally optimized solution. The published evidence
from cloud providers that have embraced this approach confirms this advantage.

174 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.40.: Network Operating System (NOS) hosting a set of control applications and providing a logi-
cally centralized point of control for an underlying network data plane.

Key Takeaway

It is important to understand that SDN is an implementation strategy. It does not magically make fundamen-
tal problems like needing to compute a forwarding table go away. But instead of burdening the switches with
having to exchange messages with each other as part of a distributed routing algorithm, the logically central-
ized SDN controller is charged with collecting link and port status information from the individual switches,
constructing a global view of the network graph, and making that graph available to the control apps. From
the control application’s perspective, all the information it needs to compute the forwarding table is locally
available. Keeping in mind that the SDN Controller is logically centralized but physically replicated on
multple servers—for both scalable performance and high availability—it is still a hotly contested question
whether the centralized or distributed approach is best. [Next]

As much of an advantage as the cloud providers have been able to get out of SDN, its adoption in enterprises
and Telcos has been much slower. This is partly about the ability of different markets to manage their
networks. The Googles, Microsofts, and Amazons of the world have the engineers and DevOps skills needed
to take advantage of this technology, whereas others still prefer pre-packaged and integrated solutions that
support the management and command line interfaces they are familiar with.

Perspective: Virtual Networks All the Way Down

For almost as long as there have been packet-switched networks, there have been ideas about how to virtu-
alize them, starting with virtual circuits. But what exactly does it mean to virtualize a network?

Virtual memory is a helpful example. Virtual memory creates an abstraction of a large and private pool of
memory, even though the underlying physical memory may be shared by many applications and consid-

3.5. Implementation 175

Computer Networks: A Systems Approach, Release Version 6.1

erably smaller that the apparent pool of virtual memory. This abstraction enables programmers to operate
under the illusion that there is plenty of memory and that no-one else is using it, while under the covers the
memory management system takes care of things like mapping the virtual memory to physical resources
and avoiding conflict between users.

Similarly, server virtualization presents the abstraction of a virtual machine (VM), which has all the features
of a physical machine. Again, there may be many VMs supported on a single physical server, and the
operating system and users on the virtual machine are happily unaware that the VM is being mapped onto
physical resources.

A key point is the virtualization of computing resources preserves the abstractions and interfaces that existed
before they were virtualized. This is important because it means that users of those abstractions don’t need
to change—they see a faithful reproduction of the resource being virtualized. Virtualization also means that
the different users (sometimes called tenants) cannot interfere with each other. So what happens when we
try to virtualize a network?

VPNs, as described in Section 3.3, were one early success for virtual networking. They allowed carriers to
present corporate customers with the illusion that they had their own private network, even though in reality
they were sharing underlying links and switches with many other users. VPNs, however, only virtualize a
few resources, notably addressing and routing tables. Network virtualization as commonly understood today
goes further, virtualizing every aspect of networking. That means that a virtual network should support all
the basic abstractions of a physical network. In this sense, they are analogous to the virtual machine, with
its support of all the resources of a server: CPU, storage, I/O, and so on.

To this end, VLANS, as described in Section 3.2, are how we typically virtualize an L2 network. VLANs
proved to be quite useful to enterprises that wanted to isolate different internal groups (e.g., departments,
labs), giving each of them the appearance of having their own private LAN. VLANs were also seen as a
promising way to virtualize L2 networks in cloud datacenters, making it possible to give each tenant their
own L2 network so as to isolate their traffic from the traffic of all other tenants. But there was a problem:
the 4096 possible VLANs was not sufficient to account for all the tenants that a cloud might host, and
to complicate matters, in a cloud the network needs to connect virtual machines rather than the physical
machines that those VMs run on.

To address this problem, another standard called Virtual Extensible LAN (VXLAN) was introduced. Unlike
the original approach, which effectively encapsulated a virtualized ethernet frame inside another ethernet
frame, VXLAN encapsulates a virtual ethernet frame inside a UDP packet. This means a VXLAN-based
virtual network (which is often referred to as an overlay network) runs on top of an IP-based network, which
in turn runs on an underlying ethernet (or perhaps in just one VLAN of the underlying ethernet). VXLAN
also makes it possible for one cloud tenant to have multiple VLANs of their own, which allows them to
segregate their own internal traffic. This means it is ultimately possible to have a VLAN encapsulated in a
VXLAN overlay encapsulated in a VLAN.

The powerful thing about virtualization is that when done right, it should be possible to nest one virtualized
resource inside another virtualized resource, since after all, a virtual resource should behave just like a
physical resources and we know how to virtualize physical resources! Said another way, being able to
virtualize a virtual resource is the best proof that you have done a good job of virtualizing the original
physical resource. To re-purpose the mythology of the World Turtle: It’s virtual networks all the way down.

The actual VXLAN header is simple, as shown in Figure 3.41. It includes a 24-bit Virtual Network Id (VNI),
plus some flag and reserved bits. It also implies a particular setting of the UDP source and destination port
fields (see Section 5.1), with the destination port 4789 officially reserved for VXLANs. Figuring out how to

176 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.41.: VXLAN Header encapsulated in a UDP/IP packet. header.

uniquely identify virtual LANs (VLAN tags) and virtual networks (VXLAN VIDs) is the easy part. This is
because encapsulation is the fundamental cornerstone of virtualization; all you need to add is an identifier
that tells you which of many possible users this encapsulated packet belongs to.

The hard part is grappling with the idea of virtual networks being nested (encapsulated) inside virtual net-
works, which is networking’s version of recursion. The other challenge is understanding how to automate
the creation, management, migration, and deletion of virtual networks, and on this front there is still a lot
of room for improvement. Mastering this challenge will be at the heart of networking in the next decade,
and while some of this work will undoubtedly happen in proprietary settings, there are open source network
virtualization platforms (e.g., the Linux Foundation’s Tungsten Fabric project) leading the way.

Broader Perspective

To continue reading about the cloudification of the Internet, see Perspective: The Cloud is Eating the Inter-
net.

To learn more about the maturation of virtual networks, we recommend:

• Network Heresy, 2012.

• Tungsten Fabric, 2018.

3.5. Implementation 177

https://networkheresy.com/2012/05/31/network-virtualization/
https://tungstenfabric.github.io/website/

Computer Networks: A Systems Approach, Release Version 6.1

178 Chapter 3. Internetworking

CHAPTER

FOUR

ADVANCED INTERNETWORKING

Every seeming equality conceals a hierarchy.

—Mason Cooley

Problem: Scaling to Billions

We have now seen how to build an internetwork that consists of a number of networks of different types.
That is, we have dealt with the problem of heterogeneity. The second critical problem in internetwork-
ing—arguably the fundamental problem for all networking—is scale. To understand the problem of scaling
a network, it is worth considering the growth of the Internet, which has roughly doubled in size each year
for 30 years. This sort of growth forces us to face a number of challenges.

Chief among these is how do you build a routing system that can handle hundreds of thousands of networks
and billions of end nodes? As we will see in this chapter, most approaches to tackling the scalability of
routing depend on the introduction of hierarchy. We can introduce hierarchy in the form of areas within a
domain; we also use hierarchy to scale the routing system among domains. The interdomain routing protocol
that has enabled the Internet to scale to its current size is BGP. We will take a look at how BGP operates,
and consider the challenges faced by BGP as the Internet continues to grow.

Closely related to the scalability of routing is the problem of addressing. Even two decades ago it had
become apparent that the 32-bit addressing scheme of IP version 4 would not last forever. That led to the
definition of a new version of IP—version 6, since version 5 had been used in an earlier experiment. IPv6
primarily expands the address space but also adds a number of new features, some of which have been
retrofitted to IPv4.

While the Internet continues to grow in size, it also needs to evolve its functionality. The final sections of
this chapter cover some significant enhancements to the Internet’s capabilities. The first, multicast, is an
enhancement of the basic service model. We show how multicast—the ability to deliver the same packets to
a group of receivers efficiently—can be incorporated into an internet, and we describe several of the routing
protocols that have been developed to support multicast. The second enhancement, Multiprotocol Label
Switching (MPLS), modifies the forwarding mechanism of IP networks. This modification has enabled
some changes in the way IP routing is performed and in the services offered by IP networks. Finally, we
look at the effects of mobility on routing and describe some enhancements to IP to support mobile hosts and
routers. For each of these enhancements, issues of scalability continue to be important.

179

Computer Networks: A Systems Approach, Release Version 6.1

4.1 Global Internet

At this point, we have seen how to connect a heterogeneous collection of networks to create an internetwork
and how to use the simple hierarchy of the IP address to make routing in an internet somewhat scalable. We
say “somewhat” scalable because, even though each router does not need to know about all the hosts con-
nected to the internet, it does, in the model described so far, need to know about all the networks connected
to the internet. Today’s Internet has hundreds of thousands of networks connected to it (or more, depending
on how you count). Routing protocols such as those we have just discussed do not scale to those kinds of
numbers. This section looks at a variety of techniques that greatly improve scalability and that have enabled
the Internet to grow as far as it has.

Figure 4.1.: The tree structure of the Internet in 1990.

Before getting to these techniques, we need to have a general picture in our heads of what the global Internet
looks like. It is not just a random interconnection of Ethernets, but instead it takes on a shape that reflects
the fact that it interconnects many different organizations. Figure 4.1 gives a simple depiction of the state
of the Internet in 1990. Since that time, the Internet’s topology has grown much more complex than this
figure suggests—we present a slightly more accurate picture of the current Internet in a later section—but
this picture will do for now.

One of the salient features of this topology is that it consists of end-user sites (e.g., Stanford University)
that connect to service provider networks (e.g., BARRNET was a provider network that served sites in the
San Francisco Bay Area). In 1990, many providers served a limited geographic region and were thus known
as regional networks. The regional networks were, in turn, connected by a nationwide backbone. In 1990,
this backbone was funded by the National Science Foundation (NSF) and was therefore called the NSFNET
backbone.

NSFNET gave way to Internet2, which still runs a backbone on behalf of Research and Education institutions
in the US (there are similar R&E networks in other countries), but of course most people get their Internet
connectivity from commercial providers. Although the detail is not shown in the figure, today the largest
provider networks (they are called tier-1) are typically built from dozens of high-end routers located in major
meteropolitan areas (colloquially referred to as “NFL cities”) connected by point-to-point links (often with
100 Gbps capacity). Similarly, each end-user site is typically not a single network but instead consists of
multiple physical networks connected by switches and routers.

Notice in that each provider and end-user is likely to be an administratively independent entity. This has

180 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

some significant consequences on routing. For example, it is quite likely that different providers will have
different ideas about the best routing protocol to use within their networks and on how metrics should be
assigned to links in their network. Because of this independence, each provider’s network is usually a single
autonomous system (AS). We will define this term more precisely in a later section, but for now it is adequate
to think of an AS as a network that is administered independently of other ASs.

The fact that the Internet has a discernible structure can be used to our advantage as we tackle the problem of
scalability. In fact, we need to deal with two related scaling issues. The first is the scalability of routing. We
need to find ways to minimize the number of network numbers that get carried around in routing protocols
and stored in the routing tables of routers. The second is address utilization—that is, making sure that the
IP address space does not get consumed too quickly.

Throughout this book, we see the principle of hierarchy used again and again to improve scalability. We
saw in the previous chapter how the hierarchical structure of IP addresses, especially with the flexibility
provided by Classless Interdomain Routing (CIDR) and subnetting, can improve the scalability of routing.
In the next two sections, we’ll see further uses of hierarchy (and its partner, aggregation) to provide greater
scalability, first in a single domain and then between domains. Our final subsection looks at IP version 6,
the invention of which was largely the result of scalability concerns.

4.1.1 Routing Areas

As a first example of using hierarchy to scale up the routing system, we’ll examine how link-state routing
protocols (such as OSPF and IS-IS) can be used to partition a routing domain into subdomains called areas.
(The terminology varies somewhat among protocols—we use the OSPF terminology here.) By adding
this extra level of hierarchy, we enable single domains to grow larger without overburdening the routing
protocols or resorting to the more complex interdomain routing protocols described later.

An area is a set of routers that are administratively configured to exchange link-state information with each
other. There is one special area—the backbone area, also known as area 0. An example of a routing domain
divided into areas is shown in Figure 4.2 . Routers R1, R2, and R3 are members of the backbone area. They
are also members of at least one nonbackbone area; R1 is actually a member of both area 1 and area 2.
A router that is a member of both the backbone area and a nonbackbone area is an area border router (ABR).
Note that these are distinct from the routers that are at the edge of an AS, which are referred to as AS border
routers for clarity.

Routing within a single area is exactly as described in the previous chapter. All the routers in the area send
link-state advertisements to each other and thus develop a complete, consistent map of the area. However,
the link-state advertisements of routers that are not area border routers do not leave the area in which they
originated. This has the effect of making the flooding and route calculation processes considerably more
scalable. For example, router R4 in area 3 will never see a link-state advertisement from router R8 in area 1.
As a consequence, it will know nothing about the detailed topology of areas other than its own.

How, then, does a router in one area determine the right next hop for a packet destined to a network in
another area? The answer to this becomes clear if we imagine the path of a packet that has to travel from
one nonbackbone area to another as being split into three parts. First, it travels from its source network to the
backbone area, then it crosses the backbone, then it travels from the backbone to the destination network.
To make this work, the area border routers summarize routing information that they have learned from
one area and make it available in their advertisements to other areas. For example, R1 receives link-state
advertisements from all the routers in area 1 and can thus determine the cost of reaching any network in area

4.1. Global Internet 181

Computer Networks: A Systems Approach, Release Version 6.1

Figure 4.2.: A domain divided into areas.

1. When R1 sends link-state advertisements into area 0, it advertises the costs of reaching the networks in
area 1 much as if all those networks were directly connected to R1. This enables all the area 0 routers to
learn the cost to reach all networks in area 1. The area border routers then summarize this information and
advertise it into the nonbackbone areas. Thus, all routers learn how to reach all networks in the domain.

Note that, in the case of area 2, there are two ABRs and that routers in area 2 will thus have to make a
choice as to which one they use to reach the backbone. This is easy enough, since both R1 and R2 will be
advertising costs to various networks, so it will become clear which is the better choice as the routers in
area 2 run their shortest-path algorithm. For example, it is pretty clear that R1 is going to be a better choice
than R2 for destinations in area 1.

When dividing a domain into areas, the network administrator makes a tradeoff between scalability and
optimality of routing. The use of areas forces all packets traveling from one area to another to go via the
backbone area, even if a shorter path might have been available. For example, even if R4 and R5 were
directly connected, packets would not flow between them because they are in different nonbackbone areas.
It turns out that the need for scalability is often more important than the need to use the absolute shortest
path.

Key Takeaway

This illustrates an important principle in network design. There is frequently a trade-off between scalability
and some sort of optimality. When hierarchy is introduced, information is hidden from some nodes in
the network, hindering their ability to make perfect decisions. However, information hiding is essential
to scaling a solution, since it saves all nodes from having global knowledge. It is invariably true in large
networks that scalability is a more pressing design goal than selecting the optimal route. [Next]

Finally, we note that there is a trick by which network administrators can more flexibly decide which routers
go in area 0. This trick uses the idea of a virtual link between routers. Such a virtual link is obtained by

182 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

configuring a router that is not directly connected to area 0 to exchange backbone routing information with
a router that is. For example, a virtual link could be configured from R8 to R1, thus making R8 part of the
backbone. R8 would now participate in link-state advertisement flooding with the other routers in area 0.
The cost of the virtual link from R8 to R1 is determined by the exchange of routing information that takes
place in area 1. This technique can help to improve the optimality of routing.

4.1.2 Interdomain Routing (BGP)

At the beginning of this chapter, we introduced the notion that the Internet is organized as autonomous
systems, each of which is under the control of a single administrative entity. A corporation’s complex
internal network might be a single AS, as may the national network of any single Internet Service Provider
(ISP). Figure 4.3 shows a simple network with two autonomous systems.

Figure 4.3.: A network with two autonomous systems.

The basic idea behind autonomous systems is to provide an additional way to hierarchically aggregate rout-
ing information in a large internet, thus improving scalability. We now divide the routing problem into two
parts: routing within a single autonomous system and routing between autonomous systems. Since another
name for autonomous systems in the Internet is routing domains, we refer to the two parts of the routing
problem as interdomain routing and intradomain routing. In addition to improving scalability, the AS model
decouples the intradomain routing that takes place in one AS from that taking place in another. Thus, each
AS can run whatever intradomain routing protocols it chooses. It can even use static routes or multiple pro-

4.1. Global Internet 183

Computer Networks: A Systems Approach, Release Version 6.1

tocols, if desired. The interdomain routing problem is then one of having different ASs share reachability
information—descriptions of the set of IP addresses that can be reached via a given AS—with each other.

Challenges in Interdomain Routing

Perhaps the most important challenge of interdomain routing today is the need for each AS to determine
its own routing policies. A simple example routing policy implemented at a particular AS might look like
this: “Whenever possible, I prefer to send traffic via AS X than via AS Y, but I’ll use AS Y if it is the only
path, and I never want to carry traffic from AS X to AS Y or vice versa.” Such a policy would be typical
when I have paid money to both AS X and AS Y to connect my AS to the rest of the Internet, and AS X
is my preferred provider of connectivity, with AS Y being the fallback. Because I view both AS X and AS
Y as providers (and presumably I paid them to play this role), I don’t expect to help them out by carrying
traffic between them across my network (this is called transit traffic). The more autonomous systems I
connect to, the more complex policies I might have, especially when you consider backbone providers, who
may interconnect with dozens of other providers and hundreds of customers and have different economic
arrangements (which affect routing policies) with each one.

A key design goal of interdomain routing is that policies like the example above, and much more complex
ones, should be supported by the interdomain routing system. To make the problem harder, I need to be able
to implement such a policy without any help from other autonomous systems, and in the face of possible
misconfiguration or malicious behavior by other autonomous systems. Furthermore, there is often a desire
to keep the policies private, because the entities that run the autonomous systems—mostly ISPs—are often
in competition with each other and don’t want their economic arrangements made public.

There have been two major interdomain routing protocols in the history of the Internet. The first was the
Exterior Gateway Protocol (EGP), which had a number of limitations, perhaps the most severe of which was
that it constrained the topology of the Internet rather significantly. EGP was designed when the Internet had
a treelike topology, such as that illustrated in Figure 4.1, and did not allow for the topology to become more
general. Note that in this simple treelike structure there is a single backbone, and autonomous systems are
connected only as parents and children and not as peers.

The replacement for EGP was the Border Gateway Protocol (BGP), which has iterated through four versions
(BGP-4). BGP is often regarded as one of the more complex parts of the Internet. We’ll cover some of its
high points here.

Unlike its predecessor EGP, BGP makes virtually no assumptions about how autonomous systems are in-
terconnected—they form an arbitrary graph. This model is clearly general enough to accommodate non-
tree-structured internetworks, like the simplified picture of a multi-provider Internet shown in Figure 4.4. (It
turns out there is still some sort of structure to the Internet, as we’ll see below, but it’s nothing like as simple
as a tree, and BGP makes no assumptions about such structure.)

Unlike the simple tree-structured Internet shown in Figure 4.1, or even the fairly simple picture in Figure 4.4,
today’s Internet consists of a richly interconnected set of networks, mostly operated by private companies
(ISPs) rather than governments. Many Internet Service Providers (ISPs) exist mainly to provide service
to “consumers” (i.e., individuals with computers in their homes), while others offer something more like
the old backbone service, interconnecting other providers and sometimes larger corporations. Often, many
providers arrange to interconnect with each other at a single peering point.

To get a better sense of how we might manage routing among this complex interconnection of autonomous
systems, we can start by defining a few terms. We define local traffic as traffic that originates at or terminates

184 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 4.4.: A simple multi-provider Internet.

on nodes within an AS, and transit traffic as traffic that passes through an AS. We can classify autonomous
systems into three broad types:

• Stub AS—an AS that has only a single connection to one other AS; such an AS will only carry local
traffic. The small corporation in Figure 4.4 is an example of a stub AS.

• Multihomed AS—an AS that has connections to more than one other AS but that refuses to carry
transit traffic, such as the large corporation at the top of Figure 4.4.

• Transit AS—an AS that has connections to more than one other AS and that is designed to carry both
transit and local traffic, such as the backbone providers in Figure 4.4.

Whereas the discussion of routing in the previous chapter focused on finding optimal paths based on min-
imizing some sort of link metric, the goals of interdomain routing are rather more complex. First, it is
necessary to find some path to the intended destination that is loop free. Second, paths must be compliant
with the policies of the various autonomous systems along the path—and, as we have already seen, those
policies might be almost arbitrarily complex. Thus, while intradomain focuses on a well-defined problem
of optimizing the scalar cost of the path, interdomain focuses on finding a non-looping, policy-compliant
path—a much more complex optimization problem.

There are additional factors that make interdomain routing hard. The first is simply a matter of scale. An
Internet backbone router must be able to forward any packet destined anywhere in the Internet. That means
having a routing table that will provide a match for any valid IP address. While CIDR has helped to control
the number of distinct prefixes that are carried in the Internet’s backbone routing, there is inevitably a lot of
routing information to pass around—roughly 700,000 prefixes in mid-2018.

A further challenge in interdomain routing arises from the autonomous nature of the domains. Note that
each domain may run its own interior routing protocols and use any scheme it chooses to assign metrics to
paths. This means that it is impossible to calculate meaningful path costs for a path that crosses multiple
autonomous systems. A cost of 1000 across one provider might imply a great path, but it might mean an

4.1. Global Internet 185

Computer Networks: A Systems Approach, Release Version 6.1

unacceptably bad one from another provider. As a result, interdomain routing advertises only reachability.
The concept of reachability is basically a statement that “you can reach this network through this AS.” This
means that for interdomain routing to pick an optimal path is essentially impossible.

The autonomous nature of interdomain raises issue of trust. Provider A might be unwilling to believe certain
advertisements from provider B for fear that provider B will advertise erroneous routing information. For
example, trusting provider B when he advertises a great route to anywhere in the Internet can be a disastrous
choice if provider B turns out to have made a mistake configuring his routers or to have insufficient capacity
to carry the traffic.

The issue of trust is also related to the need to support complex policies as noted above. For example, I
might be willing to trust a particular provider only when he advertises reachability to certain prefixes, and
thus I would have a policy that says, “Use AS X to reach only prefixes 𝑝 and 𝑞, if and only if AS X advertises
reachability to those prefixes.”

Basics of BGP

Each AS has one or more border routers through which packets enter and leave the AS. In our simple
example in Figure 4.3, routers R2 and R4 would be border routers. (Over the years, routers have sometimes
also been known as gateways, hence the names of the protocols BGP and EGP). A border router is simply
an IP router that is charged with the task of forwarding packets between autonomous systems.

Each AS that participates in BGP must also have at least one BGP speaker, a router that “speaks” BGP to
other BGP speakers in other autonomous systems. It is common to find that border routers are also BGP
speakers, but that does not have to be the case.

BGP does not belong to either of the two main classes of routing protocols, distance-vector or link-state.
Unlike these protocols, BGP advertises complete paths as an enumerated list of autonomous systems to reach
a particular network. It is sometimes called a path-vector protocol for this reason. The advertisement of
complete paths is necessary to enable the sorts of policy decisions described above to be made in accordance
with the wishes of a particular AS. It also enables routing loops to be readily detected.

Figure 4.5.: Example of a network running BGP.

To see how this works, consider the very simple example network in Figure 4.5. Assume that the providers
are transit networks, while the customer networks are stubs. A BGP speaker for the AS of provider A (AS 2)

186 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

would be able to advertise reachability information for each of the network numbers assigned to customers P
and Q. Thus, it would say, in effect, “The networks 128.96, 192.4.153, 192.4.32, and 192.4.3 can be reached
directly from AS 2.” The backbone network, on receiving this advertisement, can advertise, “The networks
128.96, 192.4.153, 192.4.32, and 192.4.3 can be reached along the path (AS 1, AS 2).” Similarly, it could
advertise, “The networks 192.12.69, 192.4.54, and 192.4.23 can be reached along the path (AS 1, AS 3).”

Figure 4.6.: Example of loop among autonomous systems.

An important job of BGP is to prevent the establishment of looping paths. For example, consider the network
illustrated in Figure 4.6. It differs from Figure 4.5 only in the addition of an extra link between AS 2 and
AS 3, but the effect now is that the graph of autonomous systems has a loop in it. Suppose AS 1 learns
that it can reach network 128.96 through AS 2, so it advertises this fact to AS 3, who in turn advertises it
back to AS 2. In the absence of any loop prevention mechanism, AS 2 could now decide that AS 3 was the
preferred route for packets destined for 128.96. If AS 2 starts sending packets addressed to 128.96 to AS 3,
AS 3 would send them to AS 1; AS 1 would send them back to AS 2; and they would loop forever. This is
prevented by carrying the complete AS path in the routing messages. In this case, the advertisement for a
path to 128.96 received by AS 2 from AS 3 would contain an AS path of (AS 3, AS 1, AS 2, AS 4). AS 2
sees itself in this path, and thus concludes that this is not a useful path for it to use.

In order for this loop prevention technique to work, the AS numbers carried in BGP clearly need to be
unique. For example, AS 2 can only recognize itself in the AS path in the above example if no other AS
identifies itself in the same way. AS numbers are now 32-bits long, and they are assigned by a central
authority to assure uniqueness.

A given AS will only advertise routes that it considers good enough for itself. That is, if a BGP speaker has
a choice of several different routes to a destination, it will choose the best one according to its own local
policies, and then that will be the route it advertises. Furthermore, a BGP speaker is under no obligation to
advertise any route to a destination, even if it has one. This is how an AS can implement a policy of not
providing transit—by refusing to advertise routes to prefixes that are not contained within that AS, even if it
knows how to reach them.

Given that links fail and policies change, BGP speakers need to be able to cancel previously advertised paths.
This is done with a form of negative advertisement known as a withdrawn route. Both positive and negative
reachability information are carried in a BGP update message, the format of which is shown in Figure 4.7.
(Note that the fields in this figure are multiples of 16 bits, unlike other packet formats in this chapter.)

4.1. Global Internet 187

Computer Networks: A Systems Approach, Release Version 6.1

Figure 4.7.: BGP-4 update packet format.

Unlike the routing protocols described in the previous chapter, BGP is defined to run on top of TCP, the
reliable transport protocol. Because BGP speakers can count on TCP to be reliable, this means that any
information that has been sent from one speaker to another does not need to be sent again. Thus, as long as
nothing has changed, a BGP speaker can simply send an occasional keepalive message that says, in effect,
“I’m still here and nothing has changed.” If that router were to crash or become disconnected from its peer,
it would stop sending the keepalives, and the other routers that had learned routes from it would assume that
those routes were no longer valid.

Common AS Relationships and Policies

Having said that policies may be arbitrarily complex, there turn out to be a few common ones, reflecting
common relationships between autonomous systems. The most common relationships are illustrated in
Figure 4.8. The three common relationships and the policies that go with them are as follows:

• Provider-Customer—Providers are in the business of connecting their customers to the rest of the
Internet. A customer might be a corporation, or it might be a smaller ISP (which may have customers
of its own). So the common policy is to advertise all the routes I know about to my customer, and
advertise routes I learn from my customer to everyone.

• Customer-Provider—In the other direction, the customer wants to get traffic directed to him (and his
customers, if he has them) by his provider, and he wants to be able to send traffic to the rest of the
Internet through his provider. So the common policy in this case is to advertise my own prefixes and
routes learned from my customers to my provider, advertise routes learned from my provider to my
customers, but don’t advertise routes learned from one provider to another provider. That last part is
to make sure the customer doesn’t find himself in the business of carrying traffic from one provider to

188 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 4.8.: Common AS relationships.

another, which isn’t in his interests if he is paying the providers to carry traffic for him.

• Peer—The third option is a symmetrical peering between autonomous systems. Two providers who
view themselves as equals usually peer so that they can get access to each other’s customers without
having to pay another provider. The typical policy here is to advertise routes learned from my cus-
tomers to my peer, advertise routes learned from my peer to my customers, but don’t advertise routes
from my peer to any provider or vice versa.

One thing to note about this figure is the way it has brought back some structure to the apparently unstruc-
tured Internet. At the bottom of the hierarchy we have the stub networks that are customers of one or more
providers, and as we move up the hierarchy we see providers who have other providers as their customers. At
the top, we have providers who have customers and peers but are not customers of anyone. These providers
are known as the Tier-1 providers.

Key Takeaway

Let’s return to the real question: How does all this help us to build scalable networks? First, the number of
nodes participating in BGP is on the order of the number of autonomous systems, which is much smaller
than the number of networks. Second, finding a good interdomain route is only a matter of finding a path
to the right border router, of which there are only a few per AS. Thus, we have neatly subdivided the
routing problem into manageable parts, once again using a new level of hierarchy to increase scalability.
The complexity of interdomain routing is now on the order of the number of autonomous systems, and the
complexity of intradomain routing is on the order of the number of networks in a single AS. [Next]

Integrating Interdomain and Intradomain Routing

While the preceding discussion illustrates how a BGP speaker learns interdomain routing information, the
question still remains as to how all the other routers in a domain get this information. There are several ways
this problem can be addressed.

Let’s start with a very simple situation, which is also very common. In the case of a stub AS that only
connects to other autonomous systems at a single point, the border router is clearly the only choice for all

4.1. Global Internet 189

Computer Networks: A Systems Approach, Release Version 6.1

routes that are outside the AS. Such a router can inject a default route into the intradomain routing protocol.
In effect, this is a statement that any network that has not been explicitly advertised in the intradomain
protocol is reachable through the border router. Recall from the discussion of IP forwarding in the previous
chapter that the default entry in the forwarding table comes after all the more specific entries, and it matches
anything that failed to match a specific entry.

The next step up in complexity is to have the border routers inject specific routes they have learned from
outside the AS. Consider, for example, the border router of a provider AS that connects to a customer AS.
That router could learn that the network prefix 192.4.54/24 is located inside the customer AS, either through
BGP or because the information is configured into the border router. It could inject a route to that prefix into
the routing protocol running inside the provider AS. This would be an advertisement of the sort, “I have a
link to 192.4.54/24 of cost X.” This would cause other routers in the provider AS to learn that this border
router is the place to send packets destined for that prefix.

The final level of complexity comes in backbone networks, which learn so much routing information from
BGP that it becomes too costly to inject it into the intradomain protocol. For example, if a border router
wants to inject 10,000 prefixes that it learned about from another AS, it will have to send very big link-
state packets to the other routers in that AS, and their shortest-path calculations are going to become very
complex. For this reason, the routers in a backbone network use a variant of BGP called interior BGP
(iBGP) to effectively redistribute the information that is learned by the BGP speakers at the edges of the AS
to all the other routers in the AS. (The other variant of BGP, discussed above, runs between autonomous
systems and is called exterior BGP, or eBGP). iBGP enables any router in the AS to learn the best border
router to use when sending a packet to any address. At the same time, each router in the AS keeps track
of how to get to each border router using a conventional intradomain protocol with no injected information.
By combining these two sets of information, each router in the AS is able to determine the appropriate next
hop for all prefixes.

To see how this all works, consider the simple example network, representing a single AS, in Figure 4.9.
The three border routers, A, D, and E, speak eBGP to other autonomous systems and learn how to reach
various prefixes. These three border routers communicate with other and with the interior routers B and C
by building a mesh of iBGP sessions among all the routers in the AS. Let’s now focus in on how router B
builds up its complete view of how to forward packets to any prefix. Look at the top left of Figure 4.10,
which shows the information that router B learns from its iBGP sessions. It learns that some prefixes are
best reached via router A, some via D, and some via E. At the same time, all the routers in the AS are also
running some intradomain routing protocol such as Routing Information Protocol (RIP) or Open Shortest
Path First (OSPF). (A generic term for intradomain protocols is an interior gateway protocol, or IGP.) From
this completely separate protocol, B learns how to reach other nodes inside the domain, as shown in the top
right table. For example, to reach router E, B needs to send packets toward router C. Finally, in the bottom
table, B puts the whole picture together, combining the information about external prefixes learned from
iBGP with the information about interior routes to the border routers learned from the IGP. Thus, if a prefix
like 18.0/16 is reachable via border router E, and the best interior path to E is via C, then it follows that any
packet destined for 18.0/16 should be forwarded toward C. In this way, any router in the AS can build up a
complete routing table for any prefix that is reachable via some border router of the AS.

4.2 IP Version 6

The motivation for defining a new version of IP is simple: to deal with exhaustion of the IP address space.
CIDR helped considerably to contain the rate at which the Internet address space was being consumed and

190 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 4.9.: Example of interdomain and intradomain routing. All routers run iBGP and an intradomain
routing protocol. Border routers A, D, and E also run eBGP to other autonomous systems.

4.2. IP Version 6 191

Computer Networks: A Systems Approach, Release Version 6.1

Figure 4.10.: BGP routing table, IGP routing table, and combined table at router B.

192 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

also helped to control the growth of routing table information needed in the Internet’s routers. However,
these techniques are no longer adequate. In particular, it is virtually impossible to achieve 100% address
utilization efficiency, so the address space was consumed well before the 4 billionth host was connected to
the Internet. Even if we were able to use all 4 billion addresses, it is now clear that IP addresses need to be
assigned to more than traditional computers, including smart phones, televisions, household appliances, and
drones. With the clarity of 20/20 hindsight, a 32-bit address space is quite small.

4.2.1 Historical Perspective

The IETF began looking at the problem of expanding the IP address space in 1991, and several alternatives
were proposed. Since the IP address is carried in the header of every IP packet, increasing the size of the
address dictates a change in the packet header. This means a new version of the Internet Protocol and, as a
consequence, a need for new software for every host and router in the Internet. This is clearly not a trivial
matter—it is a major change that needs to be thought about very carefully.

The effort to define a new version of IP was originally known as IP Next Generation, or IPng. As the work
progressed, an official IP version number was assigned, so IPng became IPv6. Note that the version of IP
discussed so far in this chapter is version 4 (IPv4). The apparent discontinuity in numbering is the result of
version number 5 being used for an experimental protocol many years ago.

The significance of changing to a new version of IP caused a snowball effect. The general feeling among
network designers was that if you are going to make a change of this magnitude you might as well fix as
many other things in IP as possible at the same time. Consequently, the IETF solicited white papers from
anyone who cared to write one, asking for input on the features that might be desired in a new version of IP.
In addition to the need to accommodate scalable routing and addressing, some of the other wish list items
for IPng included:

• Support for real-time services

• Security support

• Autoconfiguration (i.e., the ability of hosts to automatically configure themselves with such informa-
tion as their own IP address and domain name)

• Enhanced routing functionality, including support for mobile hosts

It is interesting to note that, while many of these features were absent from IPv4 at the time IPv6 was being
designed, support for all of them has made its way into IPv4 in recent years, often using similar techniques
in both protocols. It can be argued that the freedom to think of IPv6 as a clean slate facilitated the design of
new capabilities for IP that were then retrofitted into IPv4.

In addition to the wish list, one absolutely non-negotiable feature for IPv6 was that there must be a transition
plan to move from the current version of IP (version 4) to the new version. With the Internet being so large
and having no centralized control, it would be completely impossible to have a “flag day” on which everyone
shut down their hosts and routers and installed a new version of IP. The architects expected a long transition
period in which some hosts and routers would run IPv4 only, some will run IPv4 and IPv6, and some will run
IPv6 only. It is doubtful they anticipated that transition period would be approaching its 30th anniversary.

4.2. IP Version 6 193

Computer Networks: A Systems Approach, Release Version 6.1

4.2.2 Addresses and Routing

First and foremost, IPv6 provides a 128-bit address space, as opposed to the 32 bits of version 4. Thus,
while version 4 can potentially address 4 billion nodes if address assignment efficiency reaches 100%, IPv6
can address 3.4 × 1038 nodes, again assuming 100% efficiency. As we have seen, though, 100% efficiency
in address assignment is not likely. Some analysis of other addressing schemes, such as those of the French
and U.S. telephone networks, as well as that of IPv4, have turned up some empirical numbers for address
assignment efficiency. Based on the most pessimistic estimates of efficiency drawn from this study, the
IPv6 address space is predicted to provide over 1500 addresses per square foot of the Earth’s surface, which
certainly seems like it should serve us well even when toasters on Venus have IP addresses.

Address Space Allocation

Drawing on the effectiveness of CIDR in IPv4, IPv6 addresses are also classless, but the address space is
still subdivided in various ways based on the leading bits. Rather than specifying different address classes,
the leading bits specify different uses of the IPv6 address. The current assignment of prefixes is listed in
Table 4.1.

Table 4.1.: Address Prefix Assignments for IPv6.
Prefix Use
00. . . 0 (128 bits) Unspecified
00. . . 1 (128 bits) Loopback
1111 1111 Multicast addresses
1111 1110 10 Link-local unicast
Everything else Global Unicast

This allocation of the address space warrants a little discussion. First, the entire functionality of IPv4’s
three main address classes (A, B, and C) is contained inside the “everything else” range. Global Unicast
Addresses, as we will see shortly, are a lot like classless IPv4 addresses, only much longer. These are the
main ones of interest at this point, with over 99% of the total IPv6 address space available to this important
form of address. (At the time of writing, IPv6 unicast addresses are being allocated from the block that
begins 001, with the remaining address space—about 87%—being reserved for future use.)

The multicast address space is (obviously) for multicast, thereby serving the same role as class D addresses
in IPv4. Note that multicast addresses are easy to distinguish—they start with a byte of all 1s. We will see
how these addresses are used in a later section.

The idea behind link-local use addresses is to enable a host to construct an address that will work on the
network to which it is connected without being concerned about the global uniqueness of the address. This
may be useful for autoconfiguration, as we will see below. Similarly, the site-local use addresses are intended
to allow valid addresses to be constructed on a site (e.g., a private corporate network) that is not connected
to the larger Internet; again, global uniqueness need not be an issue.

Within the global unicast address space are some important special types of addresses. A node may be
assigned an IPv4-compatible IPv6 address by zero-extending a 32-bit IPv4 address to 128 bits. A node that
is only capable of understanding IPv4 can be assigned an IPv4-mapped IPv6 address by prefixing the 32-bit
IPv4 address with 2 bytes of all 1s and then zero-extending the result to 128 bits. These two special address
types have uses in the IPv4-to-IPv6 transition (see the sidebar on this topic).

194 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Address Notation

Just as with IPv4, there is some special notation for writing down IPv6 addresses. The standard representa-
tion is x:x:x:x:x:x:x:x, where each x is a hexadecimal representation of a 16-bit piece of the address.
An example would be

47CD:1234:4422:ACO2:0022:1234:A456:0124

Any IPv6 address can be written using this notation. Since there are a few special types of IPv6 addresses,
there are some special notations that may be helpful in certain circumstances. For example, an address with
a large number of contiguous 0s can be written more compactly by omitting all the 0 fields. Thus,

47CD:0000:0000:0000:0000:0000:A456:0124

could be written

47CD::A456:0124

Clearly, this form of shorthand can only be used for one set of contiguous 0s in an address to avoid ambiguity.

The two types of IPv6 addresses that contain an embedded IPv4 address have their own special notation that
makes extraction of the IPv4 address easier. For example, the IPv4-mapped IPv6 address of a host whose
IPv4 address was 128.96.33.81 could be written as

::FFFF:128.96.33.81

That is, the last 32 bits are written in IPv4 notation, rather than as a pair of hexadecimal numbers separated
by a colon. Note that the double colon at the front indicates the leading 0s.

Global Unicast Addresses

By far the most important sort of addressing that IPv6 must provide is plain old unicast addressing. It must
do this in a way that supports the rapid rate of addition of new hosts to the Internet and that allows routing
to be done in a scalable way as the number of physical networks in the Internet grows. Thus, at the heart of
IPv6 is the unicast address allocation plan that determines how unicast addresses will be assigned to service
providers, autonomous systems, networks, hosts, and routers.

In fact, the address allocation plan that is proposed for IPv6 unicast addresses is extremely similar to that
being deployed with CIDR in IPv4. To understand how it works and how it provides scalability, it is helpful
to define some new terms. We may think of a nontransit AS (i.e., a stub or multihomed AS) as a subscriber,
and we may think of a transit AS as a provider. Furthermore, we may subdivide providers into direct and
indirect. The former are directly connected to subscribers. The latter primarily connect other providers, are
not connected directly to subscribers, and are often known as backbone networks.

With this set of definitions, we can see that the Internet is not just an arbitrarily interconnected set of au-
tonomous systems; it has some intrinsic hierarchy. The difficulty lies in making use of this hierarchy without
inventing mechanisms that fail when the hierarchy is not strictly observed, as happened with EGP. For ex-
ample, the distinction between direct and indirect providers becomes blurred when a subscriber connects to
a backbone or when a direct provider starts connecting to many other providers.

4.2. IP Version 6 195

Computer Networks: A Systems Approach, Release Version 6.1

As with CIDR, the goal of the IPv6 address allocation plan is to provide aggregation of routing information
to reduce the burden on intradomain routers. Again, the key idea is to use an address prefix—a set of
contiguous bits at the most significant end of the address—to aggregate reachability information to a large
number of networks and even to a large number of autonomous systems. The main way to achieve this is
to assign an address prefix to a direct provider and then for that direct provider to assign longer prefixes
that begin with that prefix to its subscribers. Thus, a provider can advertise a single prefix for all of its
subscribers.

Of course, the drawback is that if a site decides to change providers, it will need to obtain a new address
prefix and renumber all the nodes in the site. This could be a colossal undertaking, enough to dissuade
most people from ever changing providers. For this reason, there is ongoing research on other addressing
schemes, such as geographic addressing, in which a site’s address is a function of its location rather than the
provider to which it attaches. At present, however, provider-based addressing is necessary to make routing
work efficiently.

Note that while IPv6 address assignment is essentially equivalent to the way address assignment has hap-
pened in IPv4 since the introduction of CIDR, IPv6 has the significant advantage of not having a large
installed base of assigned addresses to fit into its plans.

One question is whether it makes sense for hierarchical aggregation to take place at other levels in the
hierarchy. For example, should all providers obtain their address prefixes from within a prefix allocated
to the backbone to which they connect? Given that most providers connect to multiple backbones, this
probably doesn’t make sense. Also, since the number of providers is much smaller than the number of sites,
the benefits of aggregating at this level are much fewer.

One place where aggregation may make sense is at the national or continental level. Continental boundaries
form natural divisions in the Internet topology. If all addresses in Europe, for example, had a common
prefix, then a great deal of aggregation could be done, and most routers in other continents would only need
one routing table entry for all networks with the Europe prefix. Providers in Europe would all select their
prefixes such that they began with the European prefix. Using this scheme, an IPv6 address might look
like Figure 4.11. The RegistryID might be an identifier assigned to a European address registry, with
different IDs assigned to other continents or countries. Note that prefixes would be of different lengths under
this scenario. For example, a provider with few customers could have a longer prefix (and thus less total
address space available) than one with many customers.

Figure 4.11.: An IPv6 provider-based unicast address.

One tricky situation could occur when a subscriber is connected to more than one provider. Which prefix
should the subscriber use for his or her site? There is no perfect solution to the problem. For example,
suppose a subscriber is connected to two providers, X and Y. If the subscriber takes his prefix from X, then
Y has to advertise a prefix that has no relationship to its other subscribers and that as a consequence cannot
be aggregated. If the subscriber numbers part of his AS with the prefix of X and part with the prefix of Y,
he runs the risk of having half his site become unreachable if the connection to one provider goes down.
One solution that works fairly well if X and Y have a lot of subscribers in common is for them to have three
prefixes between them: one for subscribers of X only, one for subscribers of Y only, and one for the sites
that are subscribers of both X and Y.

196 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

4.2.3 Packet Format

Despite the fact that IPv6 extends IPv4 in several ways, its header format is actually simpler. This simplicity
is due to a concerted effort to remove unnecessary functionality from the protocol. Figure 4.12 shows the
result.

As with many headers, this one starts with a Version field, which is set to 6 for IPv6. The Version field
is in the same place relative to the start of the header as IPv4’s Version field so that header-processing
software can immediately decide which header format to look for. The TrafficClass and FlowLabel
fields both relate to quality of service issues.

The PayloadLen field gives the length of the packet, excluding the IPv6 header, measured in bytes. The
NextHeader field cleverly replaces both the IP options and the Protocol field of IPv4. If options are
required, then they are carried in one or more special headers following the IP header, and this is indicated by
the value of the NextHeader field. If there are no special headers, the NextHeader field is the demux
key identifying the higher-level protocol running over IP (e.g., TCP or UDP); that is, it serves the same
purpose as the IPv4 Protocol field. Also, fragmentation is now handled as an optional header, which
means that the fragmentation-related fields of IPv4 are not included in the IPv6 header. The HopLimit
field is simply the TTL of IPv4, renamed to reflect the way it is actually used.

Finally, the bulk of the header is taken up with the source and destination addresses, each of which is 16 bytes
(128 bits) long. Thus, the IPv6 header is always 40 bytes long. Considering that IPv6 addresses are four
times longer than those of IPv4, this compares quite well with the IPv4 header, which is 20 bytes long in the
absence of options.

The way that IPv6 handles options is quite an improvement over IPv4. In IPv4, if any options were present,
every router had to parse the entire options field to see if any of the options were relevant. This is because
the options were all buried at the end of the IP header, as an unordered collection of ‘(type, length, value)’
tuples. In contrast, IPv6 treats options as extension headers that must, if present, appear in a specific order.
This means that each router can quickly determine if any of the options are relevant to it; in most cases, they
will not be. Usually this can be determined by just looking at the NextHeader field. The end result is
that option processing is much more efficient in IPv6, which is an important factor in router performance.
In addition, the new formatting of options as extension headers means that they can be of arbitrary length,
whereas in IPv4 they were limited to 44 bytes at most. We will see how some of the options are used below.

Each option has its own type of extension header. The type of each extension header is identified by the value
of the NextHeader field in the header that precedes it, and each extension header contains a NextHeader
field to identify the header following it. The last extension header will be followed by a transport-layer
header (e.g., TCP) and in this case the value of the NextHeader field is the same as the value of the
Protocol field would be in an IPv4 header. Thus, the NextHeader field does double duty; it may either
identify the type of extension header to follow, or, in the last extension header, it serves as a demux key to
identify the higher-layer protocol running over IPv6.

Consider the example of the fragmentation header, shown in Figure 4.13. This header provides functionality
similar to the fragmentation fields in the IPv4 header, but it is only present if fragmentation is necessary.
Assuming it is the only extension header present, then the NextHeader field of the IPv6 header would
contain the value 44, which is the value assigned to indicate the fragmentation header. The NextHeader
field of the fragmentation header itself contains a value describing the header that follows it. Again, assum-
ing no other extension headers are present, then the next header might be the TCP header, which results
in NextHeader containing the value 6, just as the Protocol field would in IPv4. If the fragmentation

4.2. IP Version 6 197

Computer Networks: A Systems Approach, Release Version 6.1

Figure 4.12.: IPv6 packet header.

Figure 4.13.: IPv6 fragmentation extension header.

198 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

header were followed by, say, an authentication header, then the fragmentation header’s NextHeader field
would contain the value 51.

4.2.4 Advanced Capabilities

As mentioned at the beginning of this section, the primary motivation behind the development of IPv6 was
to support the continued growth of the Internet. Once the IP header had to be changed for the sake of
the addresses, however, the door was open for a wide variety of other changes, two of which we describe
below. But IPv6 includes several additional features, most of which are covered elsewhere in this book; e.g.,
mobility, security, quality-of-service. It is interesting to note that, in most of these areas, the IPv4 and IPv6
capabilities have become virtually indistinguishable, so that the main driver for IPv6 remains the need for
larger addresses.

Autoconfiguration

While the Internet’s growth has been impressive, one factor that has inhibited faster acceptance of the tech-
nology is the fact that getting connected to the Internet has typically required a fair amount of system
administration expertise. In particular, every host that is connected to the Internet needs to be configured
with a certain minimum amount of information, such as a valid IP address, a subnet mask for the link to
which it attaches, and the address of a name server. Thus, it has not been possible to unpack a new computer
and connect it to the Internet without some preconfiguration. One goal of IPv6, therefore, is to provide
support for autoconfiguration, sometimes referred to as plug-and-play operation.

As we saw in the previous chapter, autoconfiguration is possible for IPv4, but it depends on the existence
of a server that is configured to hand out addresses and other configuration information to Dynamic Host
Configuration Protocol (DHCP) clients. The longer address format in IPv6 helps provide a useful, new form
of autoconfiguration called stateless autoconfiguration, which does not require a server.

Recall that IPv6 unicast addresses are hierarchical, and that the least significant portion is the interface ID.
Thus, we can subdivide the autoconfiguration problem into two parts:

1. Obtain an interface ID that is unique on the link to which the host is attached.

2. Obtain the correct address prefix for this subnet.

The first part turns out to be rather easy, since every host on a link must have a unique link-level address.
For example, all hosts on an Ethernet have a unique 48-bit Ethernet address. This can be turned into a valid
link-local use address by adding the appropriate prefix from :numref”Table %s <fig-v6tab> (1111 1110
10) followed by enough 0s to make up 128 bits. For some devices—for example, printers or hosts on a
small routerless network that do not connect to any other networks—this address may be perfectly adequate.
Those devices that need a globally valid address depend on a router on the same link to periodically advertise
the appropriate prefix for the link. Clearly, this requires that the router be configured with the correct address
prefix, and that this prefix be chosen in such a way that there is enough space at the end (e.g., 48 bits) to
attach an appropriate link-level address.

The ability to embed link-level addresses as long as 48 bits into IPv6 addresses was one of the reasons for
choosing such a large address size. Not only does 128 bits allow the embedding, but it leaves plenty of space
for the multilevel hierarchy of addressing that we discussed above.

4.2. IP Version 6 199

Computer Networks: A Systems Approach, Release Version 6.1

Source-Directed Routing

Another of IPv6’s extension headers is the routing header. In the absence of this header, routing for IPv6
differs very little from that of IPv4 under CIDR. The routing header contains a list of IPv6 addresses that
represent nodes or topological areas that the packet should visit en route to its destination. A topological
area may be, for example, a backbone provider’s network. Specifying that packets must visit this network
would be a way of implementing provider selection on a packet-by-packet basis. Thus, a host could say that
it wants some packets to go through a provider that is cheap, others through a provider that provides high
reliability, and still others through a provider that the host trusts to provide security.

To provide the ability to specify topological entities rather than individual nodes, IPv6 defines an anycast
address. An anycast address is assigned to a set of interfaces, and packets sent to that address will go to
the “nearest” of those interfaces, with nearest being determined by the routing protocols. For example, all
the routers of a backbone provider could be assigned a single anycast address, which would be used in the
routing header.

4.3 Multicast

Multi-access networks like Ethernet implement multicast in hardware. There are, however, applications that
need a broader multicasting capability that is effective at the scale of the Internet. For example, when a
radio station is broadcast over the Internet, the same data must be sent to all the hosts where a user has tuned
in to that station. In that example, the communication is one-to-many. Other examples of one-to-many
applications include transmitting the same news, current stock prices, software updates, or TV channels to
multiple hosts. The latter example is commonly called IPTV.

There are also applications whose communication is many-to-many, such as multimedia teleconferencing,
online multiplayer gaming, or distributed simulations. In such cases, members of a group receive data from
multiple senders, typically each other. From any particular sender, they all receive the same data.

Normal IP communication, in which each packet must be addressed and sent to a single host, is not well
suited to such applications. If an application has data to send to a group, it would have to send a separate
packet with the identical data to each member of the group. This redundancy consumes more bandwidth
than necessary. Furthermore, the redundant traffic is not distributed evenly but rather is focused around the
sending host, and may easily exceed the capacity of the sending host and the nearby networks and routers.

To better support many-to-many and one-to-many communication, IP provides an IP-level multicast analo-
gous to the link-level multicast provided by multi-access networks like Ethernet. Now that we are introduc-
ing the concept of multicast for IP, we also need a term for the traditional one-to-one service of IP that has
been described so far: That service is referred to as unicast.

The basic IP multicast model is a many-to-many model based on multicast groups, where each group has
its own IP multicast address. The hosts that are members of a group receive copies of any packets sent to
that group’s multicast address. A host can be in multiple groups, and it can join and leave groups freely by
telling its local router using a protocol that we will discuss shortly. Thus, while we think of unicast addresses
as being associated with a node or an interface, multicast addresses are associated with an abstract group,
the membership of which changes dynamically over time. Further, the original IP multicast service model
allows any host to send multicast traffic to a group; it doesn’t have to be a member of the group, and there
may be any number of such senders to a given group.

200 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Using IP multicast to send the identical packet to each member of the group, a host sends a single copy of
the packet addressed to the group’s multicast address. The sending host doesn’t need to know the individual
unicast IP address of each member of the group because, as we will see, that knowledge is distributed
among the routers in the internetwork. Similarly, the sending host doesn’t need to send multiple copies of
the packet because the routers will make copies whenever they have to forward the packet over more than
one link. Compared to using unicast IP to deliver the same packets to many receivers, IP multicast is more
scalable because it eliminates the redundant traffic (packets) that would have been sent many times over the
same links, especially those near to the sending host.

IP’s original many-to-many multicast has been supplemented with support for a form of one-to-many mul-
ticast. In this model of one-to-many multicast, called Source-Specific Multicast (SSM), a receiving host
specifies both a multicast group and a specific sending host. The receiving host would then receive multi-
casts addressed to the specified group, but only if they are from the specified sender. Many Internet multicast
applications (e.g., radio broadcasts) fit the SSM model. To contrast it with SSM, IP’s original many-to-many
model is sometimes referred to as Any Source Multicast (ASM).

A host signals its desire to join or leave a multicast group by communicating with its local router using
a special protocol for just that purpose. In IPv4, that protocol is the Internet Group Management Protocol
(IGMP); in IPv6, it is Multicast Listener Discovery (MLD). The router then has the responsibility for making
multicast behave correctly with regard to that host. Because a host may fail to leave a multicast group when
it should (after a crash or other failure, for example), the router periodically polls the network to determine
which groups are still of interest to the attached hosts.

4.3.1 Multicast Addresses

IP has a subrange of its address space reserved for multicast addresses. In IPv4, these addresses are assigned
in the class D address space, and IPv6 also has a portion of its address space reserved for multicast group
addresses. Some subranges of the multicast ranges are reserved for intradomain multicast, so they can be
reused independently by different domains.

There are thus 28 bits of possible multicast address in IPv4 when we ignore the prefix shared by all multicast
addresses. This presents a problem when attempting to take advantage of hardware multicasting on a local
area network (LAN). Let’s take the case of Ethernet. Ethernet multicast addresses have only 23 bits when we
ignore their shared prefix. In other words, to take advantage of Ethernet multicasting, IP has to map 28-bit
IP multicast addresses into 23-bit Ethernet multicast addresses. This is implemented by taking the low-order
23 bits of any IP multicast address to use as its Ethernet multicast address and ignoring the high-order 5 bits.
Thus, 32 (25) IP addresses map into each one of the Ethernet addresses.

In this section we use Ethernet as a canonical example of a networking technology that supports
multicast in hardware, but the same is also true of PON (Passive Optical Networks), which is
the access network technology often used to deliver fiber-to-the-home. In fact, IP Multicast
over PON is now a common way to deliver IPTV to homes.

When a host on an Ethernet joins an IP multicast group, it configures its Ethernet interface to receive any
packets with the corresponding Ethernet multicast address. Unfortunately, this causes the receiving host to
receive not only the multicast traffic it desired but also traffic sent to any of the other 31 IP multicast groups
that map to the same Ethernet address, if they are routed to that Ethernet. Therefore, IP at the receiving
host must examine the IP header of any multicast packet to determine whether the packet really belongs to
the desired group. In summary, the mismatch of multicast address sizes means that multicast traffic may

4.3. Multicast 201

Computer Networks: A Systems Approach, Release Version 6.1

place a burden on hosts that are not even interested in the group to which the traffic was sent. Fortunately,
in some switched networks (such as switched Ethernet) this problem can be mitigated by schemes wherein
the switches recognize unwanted packets and discard them.

One perplexing question is how senders and receivers learn which multicast addresses to use in the first
place. This is normally handled by out-of-band means, and there are some quite sophisticated tools to
enable group addresses to be advertised on the Internet.

4.3.2 Multicast Routing (DVMRP, PIM, MSDP)

A router’s unicast forwarding tables indicate, for any IP address, which link to use to forward the unicast
packet. To support multicast, a router must additionally have multicast forwarding tables that indicate,
based on multicast address, which links—possibly more than one—to use to forward the multicast packet
(the router duplicates the packet if it is to be forwarded over multiple links). Thus, where unicast forwarding
tables collectively specify a set of paths, multicast forwarding tables collectively specify a set of trees:
multicast distribution trees. Furthermore, to support Source-Specific Multicast (and, it turns out, for some
types of Any Source Multicast), the multicast forwarding tables must indicate which links to use based on
the combination of multicast address and the (unicast) IP address of the source, again specifying a set of
trees.

Multicast routing is the process by which the multicast distribution trees are determined or, more concretely,
the process by which the multicast forwarding tables are built. As with unicast routing, it is not enough that
a multicast routing protocol “work”; it must also scale reasonably well as the network grows, and it must
accommodate the autonomy of different routing domains.

DVMRP

Distance-vector routing used in unicast can be extended to support multicast. The resulting protocol is called
Distance Vector Multicast Routing Protocol, or DVMRP. DVMRP was the first multicast routing protocol
to see widespread use.

Recall that, in the distance-vector algorithm, each router maintains a table of Destination, Cost,
NextHop tuples, and exchanges a list of (Destination, Cost) pairs with its directly connected
neighbors. Extending this algorithm to support multicast is a two-stage process. First, we create a broadcast
mechanism that allows a packet to be forwarded to all the networks on the internet. Second, we need to
refine this mechanism so that it prunes back networks that do not have hosts that belong to the multicast
group. Consequently, DVMRP is one of several multicast routing protocols described as flood-and-prune
protocols.

Given a unicast routing table, each router knows that the current shortest path to a given destination
goes through NextHop. Thus, whenever it receives a multicast packet from source S, the router forwards
the packet on all outgoing links (except the one on which the packet arrived) if and only if the packet arrived
over the link that is on the shortest path to S (i.e., the packet came from the NextHop associated with S in
the routing table). This strategy effectively floods packets outward from S but does not loop packets back
toward S.

There are two major shortcomings to this approach. The first is that it truly floods the network; it has no
provision for avoiding LANs that have no members in the multicast group. We address this problem below.
The second limitation is that a given packet will be forwarded over a LAN by each of the routers connected

202 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

to that LAN. This is due to the forwarding strategy of flooding packets on all links other than the one on
which the packet arrived, without regard to whether or not those links are part of the shortest-path tree rooted
at the source.

The solution to this second limitation is to eliminate the duplicate broadcast packets that are generated
when more than one router is connected to a given LAN. One way to do this is to designate one router as
the parent router for each link, relative to the source, where only the parent router is allowed to forward
multicast packets from that source over the LAN. The router that has the shortest path to source S is selected
as the parent; a tie between two routers would be broken according to which router has the smallest address.
A given router can learn if it is the parent for the LAN (again relative to each possible source) based upon
the distance-vector messages it exchanges with its neighbors.

Notice that this refinement requires that each router keep, for each source, a bit for each of its incident links
indicating whether or not it is the parent for that source/link pair. Keep in mind that in an internet setting,
a source is a network, not a host, since an internet router is only interested in forwarding packets between
networks. The resulting mechanism is sometimes called Reverse Path Broadcast (RPB) or Reverse Path
Forwarding (RPF). The path is reverse because we are considering the shortest path toward the source when
making our forwarding decisions, as compared to unicast routing, which looks for the shortest path to a
given destination.

The RPB mechanism just described implements shortest-path broadcast. We now want to prune the set
of networks that receives each packet addressed to group G to exclude those that have no hosts that are
members of G. This can be accomplished in two stages. First, we need to recognize when a leaf network
has no group members. Determining that a network is a leaf is easy—if the parent router as described above
is the only router on the network, then the network is a leaf. Determining if any group members reside on
the network is accomplished by having each host that is a member of group G periodically announce this
fact over the network, as described in our earlier description of link-state multicast. The router then uses
this information to decide whether or not to forward a multicast packet addressed to G over this LAN.

The second stage is to propagate this “no members of G here” information up the shortest-path tree. This is
done by having the router augment the (Destination, Cost) pairs it sends to its neighbors with the
set of groups for which the leaf network is interested in receiving multicast packets. This information can
then be propagated from router to router, so that for each of its links a given router knows for what groups it
should forward multicast packets.

Note that including all of this information in the routing update is a fairly expensive thing to do. In practice,
therefore, this information is exchanged only when some source starts sending packets to that group. In
other words, the strategy is to use RPB, which adds a small amount of overhead to the basic distance-vector
algorithm, until a particular multicast address becomes active. At that time, routers that are not interested in
receiving packets addressed to that group speak up, and that information is propagated to the other routers.

PIM-SM

Protocol Independent Multicast, or PIM, was developed in response to the scaling problems of earlier mul-
ticast routing protocols. In particular, it was recognized that the existing protocols did not scale well in
environments where a relatively small proportion of routers want to receive traffic for a certain group. For
example, broadcasting traffic to all routers until they explicitly ask to be removed from the distribution is
not a good design choice if most routers don’t want to receive the traffic in the first place. This situation is
sufficiently common that PIM divides the problem space into sparse mode and dense mode, where sparse

4.3. Multicast 203

Computer Networks: A Systems Approach, Release Version 6.1

and dense refer to the proportion of routers that will want the multicast. PIM dense mode (PIM-DM) uses
a flood-and-prune algorithm like DVMRP and suffers from the same scalability problem. PIM sparse mode
(PIM-SM) has become the dominant multicast routing protocol and is the focus of our discussion here. The
“protocol independent” aspect of PIM, by the way, refers to the fact that, unlike earlier protocols such as
DVMRP, PIM does not depend on any particular sort of unicast routing—it can be used with any unicast
routing protocol, as we will see below.

In PIM-SM, routers explicitly join the multicast distribution tree using PIM protocol messages known as
Join messages. Note the contrast to DVMRP’s approach of creating a broadcast tree first and then pruning
the uninterested routers. The question that arises is where to send those Join messages because, after all,
any host (and any number of hosts) could send to the multicast group. To address this, PIM-SM assigns to
each group a special router known as the rendezvous point (RP). In general, a number of routers in a domain
are configured to be candidate RPs, and PIM-SM defines a set of procedures by which all the routers in a
domain can agree on the router to use as the RP for a given group. These procedures are rather complex, as
they must deal with a wide variety of scenarios, such as the failure of a candidate RP and the partitioning of
a domain into two separate networks due to a number of link or node failures. For the rest of this discussion,
we assume that all routers in a domain know the unicast IP address of the RP for a given group.

A multicast forwarding tree is built as a result of routers sending Join messages to the RP. PIM-SM allows
two types of trees to be constructed: a shared tree, which may be used by all senders, and a source-specific
tree, which may be used only by a specific sending host. The normal mode of operation creates the shared
tree first, followed by one or more source-specific trees if there is enough traffic to warrant it. Because
building trees installs state in the routers along the tree, it is important that the default is to have only one
tree for a group, not one for every sender to a group.

When a router sends a Join message toward the RP for a group G, it is sent using normal IP unicast
transmission. This is illustrated in Figure 4.14(a), in which router R4 is sending a Join to the rendezvous
point for some group. The initial Join message is “wildcarded”; that is, it applies to all senders. A Join
message clearly must pass through some sequence of routers before reaching the RP (e.g., R2). Each router
along the path looks at the Join and creates a forwarding table entry for the shared tree, called a (*, G) entry
(where * means “all senders”). To create the forwarding table entry, it looks at the interface on which the
Join arrived and marks that interface as one on which it should forward data packets for this group. It then
determines which interface it will use to forward the Join toward the RP. This will be the only acceptable
interface for incoming packets sent to this group. It then forwards the Join toward the RP. Eventually, the
message arrives at the RP, completing the construction of the tree branch. The shared tree thus constructed
is shown as a solid line from the RP to R4 in Figure 4.14(a).

As more routers send Joins toward the RP, they cause new branches to be added to the tree, as illustrated in
Figure 4.14(b). Note that, in this case, the Join only needs to travel to R2, which can add the new branch
to the tree simply by adding a new outgoing interface to the forwarding table entry created for this group.
R2 need not forward the Join on to the RP. Note also that the end result of this process is to build a tree
whose root is the RP.

At this point, suppose a host wishes to send a message to the group. To do so, it constructs a packet with the
appropriate multicast group address as its destination and sends it to a router on its local network known as
the designated router (DR). Suppose the DR is R1 in Figure 4.14. There is no state for this multicast group
between R1 and the RP at this point, so instead of simply forwarding the multicast packet, R1 tunnels it to
the RP. That is, R1 encapsulates the multicast packet inside a PIM Register message that it sends to the
unicast IP address of the RP. Just like an IP tunnel endpoint, the RP receives the packet addressed to it, looks
at the payload of the Register message, and finds inside an IP packet addressed to the multicast address

204 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 4.14.: PIM operation: (a) R4 sends a Join message to RP and joins shared tree; (b) R5 joins shared
tree; (c) RP builds source-specific tree to R1 by sending a Join message to R1; (d) R4 and R5 build source-
specific tree to R1 by sending Join messages to R1.

4.3. Multicast 205

Computer Networks: A Systems Approach, Release Version 6.1

of this group. The RP, of course, does know what to do with such a packet—it sends it out onto the shared
tree of which the RP is the root. In the example of Figure 4.14, this means that the RP sends the packet on
to R2, which is able to forward it on to R4 and R5. The complete delivery of a packet from R1 to R4 and
R5 is shown in Figure 4.15. We see the tunneled packet travel from R1 to the RP with an extra IP header
containing the unicast address of RP, and then the multicast packet addressed to G making its way along the
shared tree to R4 and R5.

At this point, we might be tempted to declare success, since all hosts can send to all receivers this way.
However, there is some bandwidth inefficiency and processing cost in the encapsulation and decapsulation
of packets on the way to the RP, so the RP forces knowledge about this group into the intervening routers so
tunneling can be avoided. It sends a Join message toward the sending host (Figure 4.14(c)). As this Join
travels toward the host, it causes the routers along the path (R3) to learn about the group, so that it will be
possible for the DR to send the packet to the group as native (i.e., not tunneled) multicast packets.

Figure 4.15.: Delivery of a packet along a shared tree. R1 tunnels the packet to the RP, which forwards it
along the shared tree to R4 and R5.

An important detail to note at this stage is that the Join message sent by the RP to the sending host is
specific to that sender, whereas the previous ones sent by R4 and R5 applied to all senders. Thus, the effect
of the new Join is to create sender-specific state in the routers between the identified source and the RP.
This is referred to as (S, G) state, since it applies to one sender to one group, and contrasts with the (*, G)
state that was installed between the receivers and the RP that applies to all senders. Thus, in Figure 4.14(c),
we see a source-specific route from R1 to the RP (indicated by the dashed line) and a tree that is valid for
all senders from the RP to the receivers (indicated by the solid line).

206 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

The next possible optimization is to replace the entire shared tree with a source-specific tree. This is desirable
because the path from sender to receiver via the RP might be significantly longer than the shortest possible
path. This again is likely to be triggered by a high data rate being observed from some sender. In this case,
the router at the downstream end of the tree—say, R4 in our example—sends a source-specific Join toward
the source. As it follows the shortest path toward the source, the routers along the way create (S, G) state for
this tree, and the result is a tree that has its root at the source, rather than the RP. Assuming both R4 and R5
made the switch to the source-specific tree, we would end up with the tree shown in Figure 4.14(d). Note
that this tree no longer involves the RP at all. We have removed the shared tree from this picture to simplify
the diagram, but in reality all routers with receivers for a group must stay on the shared tree in case new
senders show up.

We can now see why PIM is protocol independent. All of its mechanisms for building and maintaining
trees take advantage of unicast routing without depending on any particular unicast routing protocol. The
formation of trees is entirely determined by the paths that Join messages follow, which is determined by
the choice of shortest paths made by unicast routing. Thus, to be precise, PIM is “unicast routing protocol
independent,” as compared to DVMRP. Note that PIM is very much bound up with the Internet Protocol—it
is not protocol independent in terms of network-layer protocols.

The design of PIM-SM again illustrates the challenges in building scalable networks and how scalability is
sometimes pitted against some sort of optimality. The shared tree is certainly more scalable than a source-
specific tree, in the sense that it reduces the total state in routers to be on the order of the number of groups
rather than the number of senders times the number of groups. However, the source-specific tree is likely to
be necessary to achieve efficient routing and effective use of link bandwidth.

Interdomain Multicast (MSDP)

PIM-SM has some significant shortcomings when it comes to interdomain multicast. In particular, the
existence of a single RP for a group goes against the principle that domains are autonomous. For a given
multicast group, all the participating domains would be dependent on the domain where the RP is located.
Furthermore, if there is a particular multicast group for which a sender and some receivers shared a single
domain, the multicast traffic would still have to be routed initially from the sender to those receivers via
whatever domain has the RP for that multicast group. Consequently, the PIM-SM protocol is typically not
used across domains, only within a domain.

To extend multicast across domains using PIM-SM, the Multicast Source Discovery Protocol (MSDP) was
devised. MSDP is used to connect different domains—each running PIM-SM internally, with its own
RPs—by connecting the RPs of the different domains. Each RP has one or more MSDP peer RPs in other
domains. Each pair of MSDP peers is connected by a TCP connection over which the MSDP protocol runs.
Together, all the MSDP peers for a given multicast group form a loose mesh that is used as a broadcast
network. MSDP messages are broadcast through the mesh of peer RPs using the Reverse Path Broadcast
algorithm that we discussed in the context of DVMRP.

What information does MSDP broadcast through the mesh of RPs? Not group membership information;
when a host joins a group, the furthest that information will flow is its own domain’s RP. Instead, it is
source—multicast sender—information. Each RP knows the sources in its own domain because it receives a
Registermessage whenever a new source arises. Each RP periodically uses MSDP to broadcast Source
Active messages to its peers, giving the IP address of the source, the multicast group address, and the IP
address of the originating RP.

4.3. Multicast 207

Computer Networks: A Systems Approach, Release Version 6.1

Figure 4.16.: MSDP operation: (a) The source SR sends a Register message to its domain’s RP, RP1; then
RP1 sends a source-specific Join message to SR and an MSDP Source Active message to its MSDP peer in
Domain B, RP2; then RP2 sends a source-specific Join message to SR. (b) As a result, RP1 and RP2 are in
the source-specific tree for source SR.

208 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

If an MSDP peer RP that receives one of these broadcasts has active receivers for that multicast group, it
sends a source-specific Join, on that RP’s own behalf, to the source host, as shown in Figure 4.16(a). The
Join message builds a branch of the source-specific tree to this RP, as shown in Figure 4.16(b). The result
is that every RP that is part of the MSDP network and has active receivers for a particular multicast group
is added to the source-specific tree of the new source. When an RP receives a multicast from the source, the
RP uses its shared tree to forward the multicast to the receivers in its domain.

Source-Specific Multicast (PIM-SSM)

The original service model of PIM was, like earlier multicast protocols, a many-to-many model. Receivers
joined a group, and any host could send to the group. However, it was recognized in the late 1990s that
it might be useful to add a one-to-many model. Lots of multicast applications, after all, have only one
legitimate sender, such as the speaker at a conference being sent over the Internet. We already saw that
PIM-SM can create source-specific shortest path trees as an optimization after using the shared tree initially.
In the original PIM design, this optimization was invisible to hosts—only routers joined source-specific
trees. However, once the need for a one-to-many service model was recognized, it was decided to make
the source-specific routing capability of PIM-SM explicitly available to hosts. It turns out that this mainly
required changes to IGMP and its IPv6 analog, MLD, rather than PIM itself. The newly exposed capability
is now known as PIM-SSM (PIM Source-Specific Multicast).

PIM-SSM introduces a new concept, the channel, which is the combination of a source address S and a
group address G. The group address G looks just like a normal IP multicast address, and both IPv4 and
IPv6 have allocated subranges of the multicast address space for SSM. To use PIM-SSM, a host specifies
both the group and the source in an IGMP Membership Report message to its local router. That router then
sends a PIM-SM source-specific Join message toward the source, thereby adding a branch to itself in the
source-specific tree, just as was described above for “normal” PIM-SM, but bypassing the whole shared-tree
stage. Since the tree that results is source specific, only the designated source can send packets on that tree.

The introduction of PIM-SSM has provided some significant benefits, particularly since there is relatively
high demand for one-to-many multicasting:

• Multicasts travel more directly to receivers.

• The address of a channel is effectively a multicast group address plus a source address. Therefore,
given that a certain range of multicast group addresses will be used for SSM exclusively, multiple
domains can use the same multicast group address independently and without conflict, as long as they
use it only with sources in their own domains.

• Because only the specified source can send to an SSM group, there is less risk of attacks based on
malicious hosts overwhelming the routers or receivers with bogus multicast traffic.

• PIM-SSM can be used across domains exactly as it is used within a domain, without reliance on
anything like MSDP.

SSM, therefore, is quite a useful addition to the multicast service model.

Bidirectional Trees (BIDIR-PIM)

We round off our discussion of multicast with another enhancement to PIM known as Bidirectional PIM.
BIDIR-PIM is a recent variant of PIM-SM that is well suited to many-to-many multicasting within a domain,

4.3. Multicast 209

Computer Networks: A Systems Approach, Release Version 6.1

especially when senders and receivers to a group may be the same, as in a multiparty videoconference, for
example. As in PIM-SM, would-be receivers join groups by sending IGMP Membership Report messages
(which must not be source specific), and a shared tree rooted at an RP is used to forward multicast packets
to receivers. Unlike PIM-SM, however, the shared tree also has branches to the sources. That wouldn’t
make any sense with PIM-SM’s unidirectional tree, but BIDIR-PIM’s trees are bidirectional—a router that
receives a multicast packet from a downstream branch can forward it both up the tree and down other
branches. The route followed to deliver a packet to any particular receiver goes only as far up the tree as
necessary before going down the branch to that receiver. See the multicast route from R1 to R2 in Figure
4.17(b) for an example. R4 forwards a multicast packet downstream to R2 at the same time that it forwards
a copy of the same packet upstream to R5.

A surprising aspect of BIDIR-PIM is that there need not actually be an RP. All that is needed is a routable
address, which is known as an RP address even though it need not be the address of an RP or anything at all.
How can this be? A Join from a receiver is forwarded toward the RP address until it reaches a router with
an interface on the link where the RP address would reside, where the Join terminates. Figure 4.17(a) shows
a Join from R2 terminating at R5, and a Join from R3 terminating at R6. The upstream forwarding of
a multicast packet similarly flows toward the RP address until it reaches a router with an interface on the
link where the RP address would reside, but then the router forwards the multicast packet onto that link as
the final step of upstream forwarding, ensuring that all other routers on that link receive the packet. Figure
4.17(b) illustrates the flow of multicast traffic originating at R1.

BIDIR-PIM cannot thus far be used across domains. On the other hand, it has several advantages over
PIM-SM for many-to-many multicast within a domain:

• There is no source registration process because the routers already know how to route a multicast
packet toward the RP address.

• The routes are more direct than those that use PIM-SM’s shared tree because they go only as far up
the tree as necessary, not all the way to the RP.

• Bidirectional trees use much less state than the source-specific trees of PIM-SM because there is never
any source-specific state. (On the other hand, the routes will be longer than those of source-specific
trees.)

• The RP cannot be a bottleneck, and indeed no actual RP is needed.

One conclusion to draw from the fact that there are so many different approaches to multicast just within
PIM is that multicast is a difficult problem space in which to find optimal solutions. You need to decide
which criteria you want to optimize (bandwidth usage, router state, path length, etc.) and what sort of
application you are trying to support (one-to-many, many-to-many, etc.) before you can make a choice of
the “best” multicast mode for the task.

4.4 Multiprotocol Label Switching

We continue our discussion of enhancements to IP by describing an addition to the Internet architecture
that is very widely used but largely hidden from end users. The enhancement, called Multiprotocol Label
Switching (MPLS), combines some of the properties of virtual circuits with the flexibility and robustness
of datagrams. On the one hand, MPLS is very much associated with the Internet Protocol’s datagram-
based architecture—it relies on IP addresses and IP routing protocols to do its job. On the other hand,
MPLS-enabled routers also forward packets by examining relatively short, fixed-length labels, and these

210 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 4.17.: BIDIR-PIM operation: (a) R2 and R3 send Join messages toward the RP address that terminate
when they reach a router on the RP address’s link. (b) A multicast packet from R1 is forwarded upstream to
the RP address’s link and downstream wherever it intersects a group member branch.

4.4. Multiprotocol Label Switching 211

Computer Networks: A Systems Approach, Release Version 6.1

labels have local scope, just like in a virtual circuit network. It is perhaps this marriage of two seemingly
opposed technologies that has caused MPLS to have a somewhat mixed reception in the Internet engineering
community.

Before looking at how MPLS works, it is reasonable to ask “what is it good for?” Many claims have been
made for MPLS, but there are three main things that it is used for today:

• To enable IP capabilities on devices that do not have the capability to forward IP datagrams in the
normal manner

• To forward IP packets along explicit routes—precalculated routes that don’t necessarily match those
that normal IP routing protocols would select

• To support certain types of virtual private network services

It is worth noting that one of the original goals—improving performance—is not on the list. This has a lot to
do with the advances that have been made in forwarding algorithms for IP routers in recent years and with
the complex set of factors beyond header processing that determine performance.

The best way to understand how MPLS works is to look at some examples of its use. In the next three
sections, we will look at examples to illustrate the three applications of MPLS mentioned above.

4.4.1 Destination-Based Forwarding

One of the earliest publications to introduce the idea of attaching labels to IP packets was a paper by Chan-
dranmenon and Vargese that described an idea called threaded indices. A very similar idea is now imple-
mented in MPLS-enabled routers. The following example shows how this idea works.

Figure 4.18.: Routing tables in example network.

Consider the network in Figure 4.18. Each of the two routers on the far right (R3 and R4) has one connected
network, with prefixes 18.1.1/24 and 18.3.3/24. The remaining routers (R1 and R2) have routing
tables that indicate which outgoing interface each router would use when forwarding packets to one of those
two networks.

When MPLS is enabled on a router, the router allocates a label for each prefix in its routing table and
advertises both the label and the prefix that it represents to its neighboring routers. This advertisement is

212 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

carried in the Label Distribution Protocol. This is illustrated in Figure 4.19. Router R2 has allocated the label
value 15 for the prefix 18.1.1 and the label value 16 for the prefix 18.3.3. These labels can be chosen
at the convenience of the allocating router and can be thought of as indices into the routing table. After
allocating the labels, R2 advertises the label bindings to its neighbors; in this case, we see R2 advertising
a binding between the label 15 and the prefix 18.1.1 to R1. The meaning of such an advertisement is
that R2 has said, in effect, “Please attach the label 15 to all packets sent to me that are destined to prefix
18.1.1.” R1 stores the label in a table alongside the prefix that it represents as the remote or outgoing label
for any packets that it sends to that prefix.

In Figure 4.19(c), we see another label advertisement from router R3 to R2 for the prefix 18.1.1, and R2
places the remote label that it learned from R3 in the appropriate place in its table.

At this point, we can look at what happens when a packet is forwarded in this network. Suppose a packet
destined to the IP address 18.1.1.5 arrives from the left to router R1. R1 in this case is referred to as a
Label Edge Router (LER); an LER performs a complete IP lookup on arriving IP packets and then applies
labels to them as a result of the lookup. In this case, R1 would see that 18.1.1.5 matches the prefix
18.1.1 in its forwarding table and that this entry contains both an outgoing interface and a remote label
value. R1 therefore attaches the remote label 15 to the packet before sending it.

When the packet arrives at R2, R2 looks only at the label in the packet, not the IP address. The forwarding
table at R2 indicates that packets arriving with a label value of 15 should be sent out interface 1 and that
they should carry the label value 24, as advertised by router R3. R2 therefore rewrites, or swaps, the label
and forwards it on to R3.

What has been accomplished by all this application and swapping of labels? Observe that when R2 for-
warded the packet in this example it never actually needed to examine the IP address. Instead, R2 looked
only at the incoming label. Thus, we have replaced the normal IP destination address lookup with a label
lookup. To understand why this is significant, it helps to recall that, although IP addresses are always the
same length, IP prefixes are of variable length, and the IP destination address lookup algorithm needs to find
the longest match—the longest prefix that matches the high order bits in the IP address of the packet being
forwarded. By contrast, the label forwarding mechanism just described is an exact match algorithm. It is
possible to implement a very simple exact match algorithm, for example, by using the label as an index into
an array, where each element in the array is one line in the forwarding table.

Note that, while the forwarding algorithm has been changed from longest match to exact match, the routing
algorithm can be any standard IP routing algorithm (e.g., OSPF). The path that a packet will follow in this
environment is the exact same path that it would have followed if MPLS were not involved: the path chosen
by the IP routing algorithms. All that has changed is the forwarding algorithm.

An important fundamental concept of MPLS is illustrated by this example. Every MPLS label is associated
with a forwarding equivalence class (FEC)—a set of packets that are to receive the same forwarding treat-
ment in a particular router. In this example, each prefix in the routing table is an FEC; that is, all packets
that match the prefix 18.1.1—no matter what the low order bits of the IP address are—get forwarded along
the same path. Thus, each router can allocate one label that maps to 18.1.1, and any packet that contains an
IP address whose high order bits match that prefix can be forwarded using that label.

As we will see in the subsequent examples, FECs are a very powerful and flexible concept. FECs can be
formed using almost any criteria; for example, all the packets corresponding to a particular customer could
be considered to be in the same FEC.

Returning to the example at hand, we observe that changing the forwarding algorithm from normal IP
forwarding to label swapping has an important consequence: Devices that previously didn’t know how to

4.4. Multiprotocol Label Switching 213

Computer Networks: A Systems Approach, Release Version 6.1

Figure 4.19.: (a) R2 allocates labels and advertises bindings to R1. (b) R1 stores the received labels in a
table. (c) R3 advertises another binding, and R2 stores the received label in a table.

214 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

forward IP packets can be used to forward IP traffic in an MPLS network. The most notable early application
of this result was to ATM switches, which can support MPLS without any changes to their forwarding
hardware. ATM switches support the label-swapping forwarding algorithm just described, and by providing
these switches with IP routing protocols and a method to distribute label bindings they could be turned
into Label Switching Routers (LSRs)—devices that run IP control protocols but use the label switching
forwarding algorithm. More recently, the same idea has been applied to optical switches.

Before we consider the purported benefits of turning an ATM switch into an LSR, we should tie up some
loose ends. We have said that labels are “attached” to packets, but where exactly are they attached? The
answer depends on the type of link on which packets are carried. Two common methods for carrying labels
on packets are shown in Figure 4.20. When IP packets are carried as complete frames, as they are on most
link types including Ethernet and PPP, the label is inserted as a “shim” between the layer 2 header and the IP
(or other layer 3) header, as shown in the lower part of the figure. However, if an ATM switch is to function
as an MPLS LSR, then the label needs to be in a place where the switch can use it, and that means it needs
to be in the ATM cell header, exactly where one would normally find the virtual circuit identifier (VCI) and
virtual path identifier (VPI) fields.

Figure 4.20.: (a) Label on an ATM-encapsulated packet; (b) label on a frame-encapsulated packet.

Having now devised a scheme by which an ATM switch can function as an LSR, what have we gained?
One thing to note is that we could now build a network that uses a mixture of conventional IP routers, label
edge routers, and ATM switches functioning as LSRs, and they would all use the same routing protocols.
To understand the benefits of using the same protocols, consider the alternative. In Figure 4.21(a), we see
a set of routers interconnected by virtual circuits over an ATM network, a configuration called an overlay
network. At one point in time, networks of this type were often built because commercially available ATM
switches supported higher total throughput than routers. Today, networks like this are less common because
routers have caught up with and even surpassed ATM switches. However, these networks still exist because
of the significant installed base of ATM switches in network backbones, which in turn is partly a result of
ATM’s ability to support a range of capabilities such as circuit emulation and virtual circuit services.

In an overlay network, each router would potentially be connected to each of the other routers by a virtual
circuit, but in this case for clarity we have just shown the circuits from R1 to all of its peer routers. R1
has five routing neighbors and needs to exchange routing protocol messages with all of them—we say that
R1 has five routing adjacencies. By contrast, in Figure 4.21(b), the ATM switches have been replaced with
LSRs. There are no longer virtual circuits interconnecting the routers. Thus, R1 has only one adjacency,
with LSR1. In large networks, running MPLS on the switches leads to a significant reduction in the number
of adjacencies that each router must maintain and can greatly reduce the amount of work that the routers
have to do to keep each other informed of topology changes.

4.4. Multiprotocol Label Switching 215

Computer Networks: A Systems Approach, Release Version 6.1

Figure 4.21.: (a) Routers connect to each other using an overlay of virtual circuits. (b) Routers peer directly
with LSRs.

216 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

A second benefit of running the same routing protocols on edge routers and on the LSRs is that the edge
routers now have a full view of the topology of the network. This means that if some link or node fails inside
the network, the edge routers will have a better chance of picking a good new path than if the ATM switches
rerouted the affected VCs without the knowledge of the edge routers.

Note that the step of “replacing” ATM switches with LSRs is actually achieved by changing the protocols
running on the switches, but typically no change to the forwarding hardware is needed; that is, an ATM
switch can often be converted to an MPLS LSR by upgrading only its software. Furthermore, an MPLS
LSR might continue to support standard ATM capabilities at the same time as it runs the MPLS control
protocols, in what is referred to as “ships in the night” mode.

The idea of running IP control protocols on devices that are unable to forward IP packets natively has been
extended to Wavelength Division Multiplexing (WDM) and Time Division Multiplexing (TDM) networks
(e.g., SONET). This is known as Generalized MPLS (GMPLS). Part of the motivation for GMPLS was
to provide routers with topological knowledge of an optical network, just as in the ATM case. Even more
important was the fact that there were no standard protocols for controlling optical devices, so MPLS proved
to be a natural fit for that job.

4.4.2 Explicit Routing

IP has a source routing option, but it is not widely used for several reasons, including the fact that only a
limited number of hops can be specified and because it is usual processed outside the “fast path” on most
routers.

MPLS provides a convenient way to add capabilities similar to source-routing to IP networks, although
the capability is more often referred to as explicit routing rather than source routing. One reason for the
distinction is that it usually isn’t the real source of the packet that picks the route. More often it is one of
the routers inside a service provider’s network. Figure 4.22 shows an example of how the explicit routing
capability of MPLS might be applied. This sort of network is often called a fish network because of its shape
(the routers R1 and R2 form the tail; R7 is at the head).

Figure 4.22.: A network requiring explicit routing.

Suppose that the operator of the network in Figure 4.22 has determined that any traffic flowing from R1 to
R7 should follow the path R1-R3-R6-R7 and that any traffic going from R2 to R7 should follow the path
R2-R3-R4-R5-R7. One reason for such a choice would be to make good use of the capacity available along
the two distinct paths from R3 to R7. We can think of the R1-to-R7 traffic as constituting one forwarding

4.4. Multiprotocol Label Switching 217

Computer Networks: A Systems Approach, Release Version 6.1

equivalence class, and the R2-to-R7 traffic constitutes a second FEC. Forwarding traffic in these two classes
along different paths is difficult with normal IP routing, because R3 doesn’t normally look at where traffic
came from in making its forwarding decisions.

Because MPLS uses label swapping to forward packets, it is easy enough to achieve the desired routing if the
routers are MPLS enabled. If R1 and R2 attach distinct labels to packets before sending them to R3—thus
identifying them as being in different FECs—then R3 can forward packets from R1 and R2 along different
paths. The question that then arises is how do all the routers in the network agree on what labels to use
and how to forward packets with particular labels? Clearly, we can’t use the same procedures as described
in the preceding section to distribute labels, because those procedures establish labels that cause packets to
follow the normal paths picked by IP routing, which is exactly what we are trying to avoid. Instead, a new
mechanism is needed. It turns out that the protocol used for this task is the Resource Reservation Protocol
(RSVP). For now it suffices to say that it is possible to send an RSVP message along an explicitly specified
path (e.g., R1-R3-R6-R7) and use it to set up label forwarding table entries all along that path. This is very
similar to the process of establishing a virtual circuit.

One of the applications of explicit routing is traffic engineering, which refers to the task of ensuring that
sufficient resources are available in a network to meet the demands placed on it. Controlling exactly which
paths the traffic flows on is an important part of traffic engineering. Explicit routing can also help to make
networks more resilient in the face of failure, using a capability called fast reroute. For example, it is
possible to precalculate a path from router A to router B that explicitly avoids a certain link L. In the event
that link L fails, router A could send all traffic destined to B down the precalculated path. The combination
of precalculation of the backup path and the explicit routing of packets along the path means that A doesn’t
need to wait for routing protocol packets to make their way across the network or for routing algorithms to
be executed by various other nodes in the network. In certain circumstances, this can significantly reduce
the time taken to reroute packets around a point of failure.

One final point to note about explicit routing is that explicit routes need not be calculated by a network oper-
ator as in the above example. Routers can use various algorithms to calculate explicit routes automatically.
The most common of these is constrained shortest path first (CSPF), which is a link-state algorithm, but
which also takes various constraints into account. For example, if it was required to find a path from R1 to
R7 that could carry an offered load of 100 Mbps, we could say that the constraint is that each link must have
at least 100 Mbps of available capacity. CSPF addresses this sort of problem.

4.4.3 Virtual Private Networks and Tunnels

One way to build virtual private networks (VPNs) is to use tunnels. It turns out that MPLS can be thought
of as a way to build tunnels, and this makes it suitable for building VPNs of various types.

The simplest form of MPLS VPN to understand is a layer 2 VPN. In this type of VPN, MPLS is used to
tunnel layer 2 data (such as Ethernet frames or ATM cells) across a network of MPLS-enabled routers. One
reason for tunnels is to provide some sort of network service (such as multicast) that is not supported by
some routers in the network. The same logic applies here: IP routers are not ATM switches, so you cannot
provide an ATM virtual circuit service across a network of conventional routers. However, if you had a pair
of routers interconnected by a tunnel, they could send ATM cells across the tunnel and emulate an ATM
circuit. The term for this technique within the IETF is pseudowire emulation. Figure 4.23 illustrates the
idea.

We have already seen how IP tunnels are built: The router at the entrance of the tunnel wraps the data to

218 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 4.23.: An ATM circuit is emulated by a tunnel.

be tunneled in an IP header (the tunnel header), which represents the address of the router at the far end of
the tunnel and sends the data like any other IP packet. The receiving router receives the packet with its own
address in the header, strips the tunnel header, and finds the data that was tunneled, which it then processes.
Exactly what it does with that data depends on what it is. For example, if it were another IP packet, it would
then be forwarded on like a normal IP packet. However, it need not be an IP packet, as long as the receiving
router knows what to do with non-IP packets. We’ll return to the issue of how to handle non-IP data in a
moment.

An MPLS tunnel is not too different from an IP tunnel, except that the tunnel header consists of an MPLS
header rather than an IP header. Looking back to our first example, in Figure 4.19, we saw that router R1
attached a label (15) to every packet that it sent towards prefix 18.1.1. Such a packet would then follow
the path R1-R2-R3, with each router in the path examining only the MPLS label. Thus, we observe that
there was no requirement that R1 only send IP packets along this path—any data could be wrapped up in
the MPLS header and it would follow the same path, because the intervening routers never look beyond the
MPLS header. In this regard, an MPLS header is just like an IP tunnel header (except only 4 bytes long
instead of 20 bytes). The only issue with sending non-IP traffic along a tunnel, MPLS or otherwise, is what
to do with non-IP traffic when it reaches the end of the tunnel. The general solution is to carry some sort
of demultiplexing identifier in the tunnel payload that tells the router at the end of the tunnel what to do. It
turns out that an MPLS label is a perfect fit for such an identifier. An example will make this clear.

Let’s assume we want to tunnel ATM cells from one router to another across a network of MPLS-enabled
routers, as in Figure 4.23. Further, we assume that the goal is to emulate an ATM virtual circuit; that is, cells
arrive at the entrance, or head, of the tunnel on a certain input port with a certain VCI and should leave the
tail end of the tunnel on a certain output port and potentially different VCI. This can be accomplished by
configuring the head and tail routers as follows:

• The head router needs to be configured with the incoming port, the incoming VCI, the demultiplexing
label for this emulated circuit, and the address of the tunnel end router.

• The tail router needs to be configured with the outgoing port, the outgoing VCI, and the demultiplex-
ing label.

Once the routers are provided with this information, we can see how an ATM cell would be forwarded.
Figure 4.24 illustrates the steps.

1. An ATM cell arrives on the designated input port with the appropriate VCI value (101 in this example).

2. The head router attaches the demultiplexing label that identifies the emulated circuit.

3. The head router then attaches a second label, which is the tunnel label that will get the packet to the

4.4. Multiprotocol Label Switching 219

Computer Networks: A Systems Approach, Release Version 6.1

tail router. This label is learned by mechanisms just like those described elsewhere in this section.

4. Routers between the head and tail forward the packet using only the tunnel label.

5. The tail router removes the tunnel label, finds the demultiplexing label, and recognizes the emulated
circuit.

6. The tail router modifies the ATM VCI to the correct value (202 in this case) and sends it out the correct
port.

Figure 4.24.: Forward ATM cells along a tunnel.

One item in this example that might be surprising is that the packet has two labels attached to it. This is one
of the interesting features of MPLS—labels may be stacked on a packet to any depth. This provides some
useful scaling capabilities. In this example, it allows a single tunnel to carry a potentially large number of
emulated circuits.

The same techniques described here can be applied to emulate many other layer 2 services, including Frame
Relay and Ethernet. It is worth noting that virtually identical capabilities can be provided using IP tunnels;
the main advantage of MPLS here is the shorter tunnel header.

Before MPLS was used to tunnel layer 2 services, it was also being used to support layer 3 VPNs. We won’t
go into the details of layer 3 VPNs, which are quite complex, but we will note that they represent one of the
most popular uses of MPLS today. Layer 3 VPNs also use stacks of MPLS labels to tunnel packets across
an IP network. However, the packets that are tunneled are themselves IP packets—hence, the name layer 3
VPNs. In a layer 3 VPN, a single service provider operates a network of MPLS-enabled routers and provides
a “virtually private” IP network service to any number of distinct customers. That is, each customer of the
provider has some number of sites, and the service provider creates the illusion for each customer that there
are no other customers on the network. The customer sees an IP network interconnecting his own sites and
no other sites. This means that each customer is isolated from all other customers in terms of both routing
and addressing. Customer A can’t sent packets directly to customer B, and vice versa. Customer A can even
use IP addresses that have also been used by customer B. The basic idea is illustrated in Figure 4.25. As in
layer 2 VPNs, MPLS is used to tunnel packets from one site to another; however, the configuration of the
tunnels is performed automatically by some fairly elaborate use of BGP, which is beyond the scope of this
book.

Customer A in fact usually can send data to customer B in some restricted way. Most likely, both customer
A and customer B have some connection to the global Internet, and thus it is probably possible for customer
A to send email messages, for example, to the mail server inside customer B’s network. The “privacy”
offered by a VPN prevents customer A from having unrestricted access to all the machines and subnets
inside customer B’s network.

220 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 4.25.: Example of a layer 3 VPN. Customers A and B each obtain a virtually private IP service from
a single provider.

In summary, MPLS is a rather versatile tool that has been applied to a wide range of different networking
problems. It combines the label-swapping forwarding mechanism that is normally associated with virtual
circuit networks with the routing and control protocols of IP datagram networks to produce a class of net-
work that is somewhere between the two conventional extremes. This extends the capabilities of IP networks
to enable, among other things, more precise control of routing and the support of a range of VPN services.

4.5 Routing Among Mobile Devices

It probably should not be a great surprise to learn that mobile devices present some challenges for the Internet
architecture. The Internet was designed in an era when computers were large, immobile devices, and, while
the Internet’s designers probably had some notion that mobile devices might appear in the future, it’s fair to
assume it was not a top priority to accommodate them. Today, of course, mobile computers are everywhere,
notably in the form of laptops and smartphones, and increasingly in other forms, such as drones. In this
section, we will look at some of the challenges posed by the appearance of mobile devices and some of the
current approaches to accommodating them.

4.5.1 Challenges for Mobile Networking

It is easy enough today to turn up in a wireless hotspot, connect to the Internet using 802.11 or some other
wireless networking protocol, and obtain pretty good Internet service. One key enabling technology that

4.5. Routing Among Mobile Devices 221

Computer Networks: A Systems Approach, Release Version 6.1

made the hotspot feasible is DHCP. You can settle in at a coffee shop, open your laptop, obtain an IP address
for your laptop, and get your laptop talking to a default router and a Domain Name System (DNS) server,
and for a broad class of applications you have everything you need.

If we look a little more closely, however, it’s clear that for some application scenarios, just getting a new IP
address every time you move—which is what DHCP does for you—isn’t always enough. Suppose you are
using your laptop or smartphone for a Voice over IP telephone call, and while talking on the phone you move
from one hotspot to another, or even switch from Wi-Fi to the cellular network for your Internet connection.

Clearly, when you move from one access network to another, you need to get a new IP address—one that
corresponds to the new network. But, the computer or telephone at the other end of your conversation doesn’t
immediately know where you have moved or what your new IP address is. Consequently, in the absence of
some other mechanism, packets would continue to be sent to the address where you used to be, not where
you are now. This problem is illustrated in Figure 4.26; as the mobile node moves from the 802.11 network
in Figure 4.26(a) to the cellular network in Figure 4.26(b), somehow packets from the correspondent node
need to find their way to the new network and then on to the mobile node.

Figure 4.26.: Forwarding packets from a correspondent node to a mobile node.

There are many different ways to tackle the problem just described, and we will look at some of them below.
Assuming that there is some way to redirect packets so that they come to your new address rather than your
old address, the next immediately apparent problems relate to security. For example, if there is a mechanism
by which I can say, “My new IP address is X,” how do I prevent some attacker from making such a statement
without my permission, thus enabling him to either receive my packets, or to redirect my packets to some
unwitting third party? Thus, we see that security and mobility are quite closely related.

One issue that the above discussion highlights is the fact that IP addresses actually serve two tasks. They
are used as an identifier of an endpoint, and they are also used to locate the endpoint. Think of the identifier
as a long-lived name for the endpoint, and the locator as some possibly more temporary information about

222 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

how to route packets to the endpoint. As long as devices do not move, or do not move often, using a single
address for both jobs seem pretty reasonable. But once devices start to move, you would rather like to have
an identifier that does not change as you move—this is sometimes called an Endpoint Identifier or Host
Identifier—and a separate locator. This idea of separating locators from identifiers has been around for a
long time, and most of the approaches to handling mobility described below provide such a separation in
some form.

The assumption that IP addresses don’t change shows up in many different places. For example, transport
protocols like TCP have historically made assumptions about the IP address staying constant for the life of
a connection, so one approach could be to redesign transport protocols so they can operate with changing
end-point addresses.

But rather than try to change TCP, a common alternative is for the application to periodically re-establish
the TCP connection in case the client’s IP address has changed. As strange as this sounds, if the application
is HTTP-based (e.g., a web browser like Chrome or a streaming application like Netflix) then that is exactly
what happens. In other words, the strategy is for the application to work around situations where the user’s
IP address may have changed, instead of trying to maintain the appearance that it does not change.

While we are all familiar with endpoints that move, it is worth noting that routers can also move. This is
certainly less common today than endpoint mobility, but there are plenty of environments where a mobile
router might make sense. One example might be an emergency response team trying to deploy a network
after some natural disaster has knocked out all the fixed infrastructure. There are additional considerations
when all the nodes in a network, not just the endpoints, are mobile, a topic we will discuss later in this
section.

Before we start to look at some of the approaches to supporting mobile devices, a couple of points of
clarification. It is common to find that people confuse wireless networks with mobility. After all, mobility
and wireless often are found together for obvious reasons. But wireless communication is really about
getting data from A to B without a wire, while mobility is about dealing with what happens when a node
moves around as it communicates. Certainly many nodes that use wireless communication channels are not
mobile, and sometimes mobile nodes will use wired communication (although this is less common).

Finally, in this chapter we are mostly interested in what we might call network-layer mobility. That is, we
are interested in how to deal with nodes that move from one network to another. Moving from one access
point to another in the same 802.11 network can be handled by mechanisms specific to 802.11, and cellular
networks also have ways to handle mobility, of course, but in large heterogeneous systems like the Internet
we need to support mobility more broadly across networks.

4.5.2 Routing to Mobile Hosts (Mobile IP)

Mobile IP is the primary mechanism in today’s Internet architecture to tackle the problem of routing packets
to mobile hosts. It introduces a few new capabilities but does not require any change from non-mobile hosts
or most routers—thus making it incrementally deployable.

The mobile host is assumed to have a permanent IP address, called its home address, which has a network
prefix equal to that of its home network. This is the address that will be used by other hosts when they initially
send packets to the mobile host; because it does not change, it can be used by long-lived applications as the
host roams. We can think of this as the long-lived identifier of the host.

When the host moves to a new foreign network away from its home network, it typically acquires a new

4.5. Routing Among Mobile Devices 223

Computer Networks: A Systems Approach, Release Version 6.1

address on that network using some means such as DHCP. This address is going to change every time the
host roams to a new network, so we can think of this as being more like the locator for the host, but it is
important to note that the host does not lose its permanent home address when it acquires a new address on
the foreign network. This home address is critical to its ability to sustain communications as it moves, as
we’ll see below.

Because DHCP was developed around the same time as Mobile IP, the original Mobile IP
standards did not require DHCP, but DHCP is ubiquitous today.

While the majority of routers remain unchanged, mobility support does require some new functionality in at
least one router, known as the home agent of the mobile node. This router is located on the home network
of the mobile host. In some cases, a second router with enhanced functionality, the foreign agent, is also
required. This router is located on a network to which the mobile node attaches itself when it is away from
its home network. We will consider first the operation of Mobile IP when a foreign agent is used. An
example network with both home and foreign agents is shown in Figure 4.27.

Figure 4.27.: Mobile host and mobility agents.

Both home and foreign agents periodically announce their presence on the networks to which they are
attached using agent advertisement messages. A mobile host may also solicit an advertisement when it
attaches to a new network. The advertisement by the home agent enables a mobile host to learn the address
of its home agent before it leaves its home network. When the mobile host attaches to a foreign network, it
hears an advertisement from a foreign agent and registers with the agent, providing the address of its home
agent. The foreign agent then contacts the home agent, providing a care-of address. This is usually the IP
address of the foreign agent.

At this point, we can see that any host that tries to send a packet to the mobile host will send it with a
destination address equal to the home address of that node. Normal IP forwarding will cause that packet to
arrive on the home network of the mobile node on which the home agent is sitting. Thus, we can divide the
problem of delivering the packet to the mobile node into three parts:

1. How does the home agent intercept a packet that is destined for the mobile node?

2. How does the home agent then deliver the packet to the foreign agent?

3. How does the foreign agent deliver the packet to the mobile node?

The first problem might look easy if you just look at Figure 4.27, in which the home agent is clearly the
only path between the sending host and the home network and thus must receive packets that are destined

224 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

to the mobile node. But what if the sending (correspondent) node were on network 18, or what if there
were another router connected to network 18 that tried to deliver the packet without its passing through
the home agent? To address this problem, the home agent actually impersonates the mobile node, using a
technique called proxy ARP. This works just like Address Resolution Protocol (ARP), except that the home
agent inserts the IP address of the mobile node, rather than its own, in the ARP messages. It uses its own
hardware address, so that all the nodes on the same network learn to associate the hardware address of the
home agent with the IP address of the mobile node. One subtle aspect of this process is the fact that ARP
information may be cached in other nodes on the network. To make sure that these caches are invalidated
in a timely way, the home agent issues an ARP message as soon as the mobile node registers with a foreign
agent. Because the ARP message is not a response to a normal ARP request, it is termed a gratuitous ARP.

The second problem is the delivery of the intercepted packet to the foreign agent. Here we use the tunneling
technique described elsewhere. The home agent simply wraps the packet inside an IP header that is destined
for the foreign agent and transmits it into the internetwork. All the intervening routers just see an IP packet
destined for the IP address of the foreign agent. Another way of looking at this is that an IP tunnel is
established between the home agent and the foreign agent, and the home agent just drops packets destined
for the mobile node into that tunnel.

When a packet finally arrives at the foreign agent, it strips the extra IP header and finds inside an IP packet
destined for the home address of the mobile node. Clearly the foreign agent cannot treat this like any old
IP packet because this would cause it to send it back to the home network. Instead, it has to recognize the
address as that of a registered mobile node. It then delivers the packet to the hardware address of the mobile
node (e.g., its Ethernet address), which was learned as part of the registration process.

One observation that can be made about these procedures is that it is possible for the foreign agent and the
mobile node to be in the same box; that is, a mobile node can perform the foreign agent function itself. To
make this work, however, the mobile node must be able to dynamically acquire an IP address that is located
in the address space of the foreign network (e.g., using DHCP). This address will then be used as the care-of
address. In our example, this address would have a network number of 12. This approach has the desirable
feature of allowing mobile nodes to attach to networks that don’t have foreign agents; thus, mobility can
be achieved with only the addition of a home agent and some new software on the mobile node (assuming
DHCP is used on the foreign network).

What about traffic in the other direction (i.e., from mobile node to fixed node)? This turns out to be much
easier. The mobile node just puts the IP address of the fixed node in the destination field of its IP packets
while putting its permanent address in the source field, and the packets are forwarded to the fixed node using
normal means. Of course, if both nodes in a conversation are mobile, then the procedures described above
are used in each direction.

Route Optimization in Mobile IP

There is one significant drawback to the above approach: The route from the correspondent node to the
mobile node can be significantly suboptimal. One of the most extreme examples is when a mobile node and
the correspondent node are on the same network, but the home network for the mobile node is on the far side
of the Internet. The sending correspondent node addresses all packets to the home network; they traverse
the Internet to reach the home agent, which then tunnels them back across the Internet to reach the foreign
agent. Clearly, it would be nice if the correspondent node could find out that the mobile node is actually on
the same network and deliver the packet directly. In the more general case, the goal is to deliver packets as
directly as possible from correspondent node to mobile node without passing through a home agent. This is

4.5. Routing Among Mobile Devices 225

Computer Networks: A Systems Approach, Release Version 6.1

sometimes referred to as the triangle routing problem since the path from correspondent to mobile node via
home agent takes two sides of a triangle, rather than the third side that is the direct path.

The basic idea behind the solution to triangle routing is to let the correspondent node know the care-of
address of the mobile node. The correspondent node can then create its own tunnel to the foreign agent.
This is treated as an optimization of the process just described. If the sender has been equipped with the
necessary software to learn the care-of address and create its own tunnel, then the route can be optimized; if
not, packets just follow the suboptimal route.

When a home agent sees a packet destined for one of the mobile nodes that it supports, it can deduce that the
sender is not using the optimal route. Therefore, it sends a “binding update” message back to the source, in
addition to forwarding the data packet to the foreign agent. The source, if capable, uses this binding update
to create an entry in a binding cache, which consists of a list of mappings from mobile node addresses to
care-of addresses. The next time this source has a data packet to send to that mobile node, it will find the
binding in the cache and can tunnel the packet directly to the foreign agent.

There is an obvious problem with this scheme, which is that the binding cache may become out-of-date if
the mobile host moves to a new network. If an out-of-date cache entry is used, the foreign agent will receive
tunneled packets for a mobile node that is no longer registered on its network. In this case, it sends a binding
warning message back to the sender to tell it to stop using this cache entry. This scheme works only in the
case where the foreign agent is not the mobile node itself, however. For this reason, cache entries need to be
deleted after some period of time; the exact amount is specified in the binding update message.

As noted above, mobile routing provides some interesting security challenges, which are clearer now that
we have seen how Mobile IP works. For example, an attacker wishing to intercept the packets destined to
some other node in an internetwork could contact the home agent for that node and announce itself as the
new foreign agent for the node. Thus, it is clear that some authentication mechanisms are required.

Mobility in IPv6

There are a handful of significant differences between mobility support in IPv4 and IPv6. Most importantly,
it was possible to build mobility support into the standards for IPv6 pretty much from the beginning, thus
alleviating a number of incremental deployment problems. (It may be more correct to say that IPv6 is
one big incremental deployment problem, which, once solved, will deliver mobility support as part of the
package.)

Since all IPv6-capable hosts can acquire an address whenever they are attached to a foreign network (using
several mechanisms defined as part of the core v6 specifications), Mobile IPv6 does away with the foreign
agent and includes the necessary capabilities to act as a foreign agent in every host.

One other interesting aspect of IPv6 that comes into play with Mobile IP is its inclusion of a flexible set
of extension headers, as described elsewhere in this chapter. This is used in the optimized routing scenario
described above. Rather than tunneling a packet to the mobile node at its care-of address, an IPv6 node can
send an IP packet to the care-of address with the home address contained in a routing header. This header
is ignored by all the intermediate nodes, but it enables the mobile node to treat the packet as if it were sent
to the home address, thus enabling it to continue presenting higher layer protocols with the illusion that its
IP address is fixed. Using an extension header rather than a tunnel is more efficient from the perspective of
both bandwidth consumption and processing.

Finally, we note that many open issues remain in mobile networking. Managing the power consumption of

226 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

mobile devices is increasingly important, so that smaller devices with limited battery power can be built.
There is also the problem of ad hoc mobile networks—enabling a group of mobile nodes to form a net-
work in the absence of any fixed nodes—which has some special challenges. A particularly challenging
class of mobile networks is sensor networks. Sensors typically are small, inexpensive, and often battery
powered, meaning that issues of very low power consumption and limited processing capability must also
be considered. Furthermore, since wireless communications and mobility typically go hand in hand, the
continual advances in wireless technologies keep on producing new challenges and opportunities for mobile
networking.

Perspective: The Cloud is Eating the Internet

The Cloud and the Internet are symbiotic systems. They were historically distinct, but today the line be-
tween them is increasingly fuzzy. If you start with the textbook definition, the Internet provides end-to-end
connectivity between any two hosts (e.g., a client laptop and a remote server machine), and the cloud sup-
ports several warehouse-sized datacenters, each of which provides a cost-effective way to power, cool, and
operate a large number of server machines. End-users connect to the nearest datacenter over the Internet in
exactly the same way they connect to a server in a remote machine room.

That’s an accurate description of the relationship between the Internet and the Cloud in the early days of
commercial cloud providers like Amazon, Microsoft, and Google. For example, Amazon’s cloud circa 2009
had two datacenters, one on the east coast of the US and one on the west coast. Today, however, each
of the major cloud providers operates several dozen datacenters spread across the globe, and it should be
no surprise that they are strategically located in close proximity to Internet Exchange Points (IXP), each
of which provides rich connectivity to the rest of the Internet. There are over 150 IXPs worldwide, and
while not every cloud provider replicates a full datacenter near each one (many of these sites are co-location
facilities), it is fair to say the cloud’s most frequently accessed content (e.g., the most popular Netflix movies,
YouTube videos, and Facebook photos) is potentially distributed to that many locations.

There are two consequences to this wide dispersion of the cloud. One is that the end-to-end path from client
to server doesn’t necessarily traverse the entire Internet. A user is likely to find the content he or she wants
to access has been replicated at a nearby IXP—which is usually just one AS hop away—as opposed to
being on the far side of the globe. The second consequence is that the major cloud providers do not use the
public Internet to interconnect their distributed datacenters. It is common for cloud providers to keep their
content synchronized across distributed datacenters, but they typically do this over a private backbone. This
allows them to take advantage of whatever optimizations they want without needing to fully inter-operate
with anyone else.

In other words, while the figures in Section 4.1 fairly represents the Internet’s overall shape, and BGP makes
it possible to connect any pair of hosts, in practice most users interact with applications running in the
Cloud, which looks more like Figure 4.28. (One important detail that the figure does not convey is that
Cloud providers do not typically build a WAN by laying their own fiber, but they instead lease fiber from
servicer providers, meaning that the private cloud backbone and the service provider backbones often share
the same physical infrastructure.)

Note that while it is possible to replicate content across the cloud’s many locations, we do not yet have
the technology to replicate people. This means that when widely dispersed users want to talk with each
other—for example, as part of a video conference call—it’s the multicast tree that gets distributed across
the cloud. In other words, multicast isn’t typically running in the routers of the service provider backbones

4.5. Routing Among Mobile Devices 227

Computer Networks: A Systems Approach, Release Version 6.1

Figure 4.28.: Cloud is widely distributed throughout the Internet with private backbones.

(as Section 4.3 suggests), but it is instead running in server processes distributed across some subset of the
150+ locations that serve as the Internet’s major interconnection points. A multicast tree constructed in this
way is called an overlay, which is a topic that we return to in Section 9.4.

Broader Perspective

To continue reading about the cloudification of the Internet, see Perspective: HTTP is the New Narrow
Waist.

To learn more about the Cloud’s distributed footprint, we recommend How the Internet Travels Across the
Ocean, New York Times, March 2019.

228 Chapter 4. Advanced Internetworking

https://www.nytimes.com/interactive/2019/03/10/technology/internet-cables-oceans.html
https://www.nytimes.com/interactive/2019/03/10/technology/internet-cables-oceans.html

CHAPTER

FIVE

END-TO-END PROTOCOLS

Victory is the beautiful, bright coloured flower. Transport is the stem without which it could
never have blossomed.

—Winston Churchill

Problem: Getting Processes to Communicate

Many technologies can be used to connect together a collection of computers, ranging from simple Eth-
ernets and wireless networks to global-scale internetworks. Once interconnected, the next problem is to
turn this host-to-host packet delivery service into a process-to-process communication channel. This is the
role played by the transport level of the network architecture, which, because it supports communication
between application programs running in end nodes, is sometimes called the end-to-end protocol.

Two forces shape the end-to-end protocol. From above, the application-level processes that use its services
have certain requirements. The following list itemizes some of the common properties that a transport
protocol can be expected to provide:

• Guarantees message delivery

• Delivers messages in the same order they are sent

• Delivers at most one copy of each message

• Supports arbitrarily large messages

• Supports synchronization between the sender and the receiver

• Allows the receiver to apply flow control to the sender

• Supports multiple application processes on each host

Note that this list does not include all the functionality that application processes might want from the
network. For example, it does not include security features like authentication or encryption, which are
typically provided by protocols that sit above the transport level. (We discuss security-related topics in a
later chapter.)

From below, the underlying network upon which the transport protocol operates has certain limitations in
the level of service it can provide. Some of the more typical limitations of the network are that it may

• Drop messages

229

Computer Networks: A Systems Approach, Release Version 6.1

• Reorder messages

• Deliver duplicate copies of a given message

• Limit messages to some finite size

• Deliver messages after an arbitrarily long delay

Such a network is said to provide a best-effort level of service, as exemplified by the Internet.

The challenge, therefore, is to develop algorithms that turn the less-than-perfect properties of the underlying
network into the high level of service required by application programs. Different transport protocols employ
different combinations of these algorithms. This chapter looks at these algorithms in the context of four
representative services—a simple asynchronous demultiplexing service, a reliable byte-stream service, a
request/reply service, and a service for real-time applications.

In the case of the demultiplexing and byte-stream services, we use the Internet’s User Datagram Protocol
(UDP) and Transmission Control Protocol (TCP), respectively, to illustrate how these services are provided
in practice. In the case of a request/reply service, we discuss the role it plays in a Remote Procedure Call
(RPC) service and what features that entails. The Internet does not have a single RPC protocol, so we cap
this discussion off with a description of three widely used RPC protocols: SunRPC, DCE-RPC, and gRPC.

Finally, real-time applications make particular demands on the transport protocol, such as the need to carry
timing information that allows audio or video samples to be played back at the appropriate point in time.
We look at the requirements placed by applications on such a protocol and the most widely used example,
the Real-Time Transport Protocol (RTP).

5.1 Simple Demultiplexor (UDP)

The simplest possible transport protocol is one that extends the host-to-host delivery service of the under-
lying network into a process-to-process communication service. There are likely to be many processes
running on any given host, so the protocol needs to add a level of demultiplexing, thereby allowing multiple
application processes on each host to share the network. Aside from this requirement, the transport protocol
adds no other functionality to the best-effort service provided by the underlying network. The Internet’s
User Datagram Protocol is an example of such a transport protocol.

The only interesting issue in such a protocol is the form of the address used to identify the target process.
Although it is possible for processes to directly identify each other with an OS-assigned process id (pid),
such an approach is only practical in a closed distributed system in which a single OS runs on all hosts and
assigns each process a unique id. A more common approach, and the one used by UDP, is for processes to
indirectly identify each other using an abstract locater, usually called a port. The basic idea is for a source
process to send a message to a port and for the destination process to receive the message from a port.

The header for an end-to-end protocol that implements this demultiplexing function typically contains an
identifier (port) for both the sender (source) and the receiver (destination) of the message. For example, the
UDP header is given in Figure 5.1. Notice that the UDP port field is only 16 bits long. This means that
there are up to 64K possible ports, clearly not enough to identify all the processes on all the hosts in the
Internet. Fortunately, ports are not interpreted across the entire Internet, but only on a single host. That is,
a process is really identified by a port on some particular host: a (port, host) pair. This pair constitutes the
demultiplexing key for the UDP protocol.

230 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

The next issue is how a process learns the port for the process to which it wants to send a message. Typically,
a client process initiates a message exchange with a server process. Once a client has contacted a server, the
server knows the client’s port (from the SrcPrt field contained in the message header) and can reply to it.
The real problem, therefore, is how the client learns the server’s port in the first place. A common approach
is for the server to accept messages at a well-known port. That is, each server receives its messages at some
fixed port that is widely published, much like the emergency telephone service available in the United States
at the well-known phone number 911. In the Internet, for example, the Domain Name Server (DNS) receives
messages at well-known port 53 on each host, the mail service listens for messages at port 25, and the Unix
talk program accepts messages at well-known port 517, and so on. This mapping is published periodically
in an RFC and is available on most Unix systems in file /etc/services. Sometimes a well-known port
is just the starting point for communication: The client and server use the well-known port to agree on
some other port that they will use for subsequent communication, leaving the well-known port free for other
clients.

Figure 5.1.: Format for UDP header.

An alternative strategy is to generalize this idea, so that there is only a single well-known port—the one
at which the port mapper service accepts messages. A client would send a message to the port mapper’s
well-known port asking for the port it should use to talk to the “whatever” service, and the port mapper
returns the appropriate port. This strategy makes it easy to change the port associated with different services
over time and for each host to use a different port for the same service.

As just mentioned, a port is purely an abstraction. Exactly how it is implemented differs from system to
system, or more precisely, from OS to OS. For example, the socket API described in Chapter 1 is an example
implementation of ports. Typically, a port is implemented by a message queue, as illustrated in Figure 5.2.
When a message arrives, the protocol (e.g., UDP) appends the message to the end of the queue. Should the
queue be full, the message is discarded. There is no flow-control mechanism in UDP to tell the sender to
slow down. When an application process wants to receive a message, one is removed from the front of the
queue. If the queue is empty, the process blocks until a message becomes available.

Finally, although UDP does not implement flow control or reliable/ordered delivery, it does provide one more
function aside from demultiplexing messages to some application process—it also ensures the correctness
of the message by the use of a checksum. (The UDP checksum is optional in IPv4 but is mandatory in IPv6.)
The basic UDP checksum algorithm is the same one used for IP—that is, it adds up a set of 16-bit words
using ones’ complement arithmetic and takes the ones’ complement of the result. But the input data that is
used for the checksum is a little counterintuitive.

5.1. Simple Demultiplexor (UDP) 231

Computer Networks: A Systems Approach, Release Version 6.1

Figure 5.2.: UDP message queue.

232 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

The UDP checksum takes as input the UDP header, the contents of the message body, and something called
the pseudoheader. The pseudoheader consists of three fields from the IP header—protocol number, source
IP address, and destination IP address—plus the UDP length field. (Yes, the UDP length field is included
twice in the checksum calculation.) The motivation behind having the pseudoheader is to verify that this
message has been delivered between the correct two endpoints. For example, if the destination IP address
was modified while the packet was in transit, causing the packet to be misdelivered, this fact would be
detected by the UDP checksum.

5.2 Reliable Byte Stream (TCP)

In contrast to a simple demultiplexing protocol like UDP, a more sophisticated transport protocol is one
that offers a reliable, connection-oriented, byte-stream service. Such a service has proven useful to a wide
assortment of applications because it frees the application from having to worry about missing or reordered
data. The Internet’s Transmission Control Protocol is probably the most widely used protocol of this type;
it is also the most carefully tuned. It is for these two reasons that this section studies TCP in detail, although
we identify and discuss alternative design choices at the end of the section.

In terms of the properties of transport protocols given in the problem statement at the start of this chapter,
TCP guarantees the reliable, in-order delivery of a stream of bytes. It is a full-duplex protocol, meaning
that each TCP connection supports a pair of byte streams, one flowing in each direction. It also includes
a flow-control mechanism for each of these byte streams that allows the receiver to limit how much data
the sender can transmit at a given time. Finally, like UDP, TCP supports a demultiplexing mechanism that
allows multiple application programs on any given host to simultaneously carry on a conversation with their
peers.

In addition to the above features, TCP also implements a highly tuned congestion-control mechanism. The
idea of this mechanism is to throttle how fast TCP sends data, not for the sake of keeping the sender from
over-running the receiver, but so as to keep the sender from overloading the network. A description of TCP’s
congestion-control mechanism is postponed until the next chapter, where we discuss it in the larger context
of how network resources are fairly allocated.

Since many people confuse congestion control and flow control, we restate the difference. Flow control
involves preventing senders from over-running the capacity of receivers. Congestion control involves pre-
venting too much data from being injected into the network, thereby causing switches or links to become
overloaded. Thus, flow control is an end-to-end issue, while congestion control is concerned with how hosts
and networks interact.

5.2.1 End-to-End Issues

At the heart of TCP is the sliding window algorithm. Even though this is the same basic algorithm as is often
used at the link level, because TCP runs over the Internet rather than a physical point-to-point link, there are
many important differences. This subsection identifies these differences and explains how they complicate
TCP. The following subsections then describe how TCP addresses these and other complications.

First, whereas the link-level sliding window algorithm presented runs over a single physical link that always
connects the same two computers, TCP supports logical connections between processes that are running on
any two computers in the Internet. This means that TCP needs an explicit connection establishment phase
during which the two sides of the connection agree to exchange data with each other. This difference is

5.2. Reliable Byte Stream (TCP) 233

Computer Networks: A Systems Approach, Release Version 6.1

analogous to having to dial up the other party, rather than having a dedicated phone line. TCP also has an
explicit connection teardown phase. One of the things that happens during connection establishment is that
the two parties establish some shared state to enable the sliding window algorithm to begin. Connection
teardown is needed so each host knows it is OK to free this state.

Second, whereas a single physical link that always connects the same two computers has a fixed round-trip
time (RTT), TCP connections are likely to have widely different round-trip times. For example, a TCP
connection between a host in San Francisco and a host in Boston, which are separated by several thousand
kilometers, might have an RTT of 100 ms, while a TCP connection between two hosts in the same room,
only a few meters apart, might have an RTT of only 1 ms. The same TCP protocol must be able to support
both of these connections. To make matters worse, the TCP connection between hosts in San Francisco and
Boston might have an RTT of 100 ms at 3 a.m., but an RTT of 500 ms at 3 p.m. Variations in the RTT are
even possible during a single TCP connection that lasts only a few minutes. What this means to the sliding
window algorithm is that the timeout mechanism that triggers retransmissions must be adaptive. (Certainly,
the timeout for a point-to-point link must be a settable parameter, but it is not necessary to adapt this timer
for a particular pair of nodes.)

A third difference is that packets may be reordered as they cross the Internet, but this is not possible on a
point-to-point link where the first packet put into one end of the link must be the first to appear at the other
end. Packets that are slightly out of order do not cause a problem since the sliding window algorithm can
reorder packets correctly using the sequence number. The real issue is how far out of order packets can
get or, said another way, how late a packet can arrive at the destination. In the worst case, a packet can be
delayed in the Internet until the IP time to live (TTL) field expires, at which time the packet is discarded (and
hence there is no danger of it arriving late). Knowing that IP throws packets away after their TTL expires,
TCP assumes that each packet has a maximum lifetime. The exact lifetime, known as the maximum segment
lifetime (MSL), is an engineering choice. The current recommended setting is 120 seconds. Keep in mind
that IP does not directly enforce this 120-second value; it is simply a conservative estimate that TCP makes
of how long a packet might live in the Internet. The implication is significant—TCP has to be prepared for
very old packets to suddenly show up at the receiver, potentially confusing the sliding window algorithm.

Fourth, the computers connected to a point-to-point link are generally engineered to support the link. For
example, if a link’s delay × bandwidth product is computed to be 8 KB—meaning that a window size
is selected to allow up to 8 KB of data to be unacknowledged at a given time—then it is likely that the
computers at either end of the link have the ability to buffer up to 8 KB of data. Designing the system
otherwise would be silly. On the other hand, almost any kind of computer can be connected to the Internet,
making the amount of resources dedicated to any one TCP connection highly variable, especially considering
that any one host can potentially support hundreds of TCP connections at the same time. This means that
TCP must include a mechanism that each side uses to “learn” what resources (e.g., how much buffer space)
the other side is able to apply to the connection. This is the flow control issue.

Fifth, because the transmitting side of a directly connected link cannot send any faster than the bandwidth
of the link allows, and only one host is pumping data into the link, it is not possible to unknowingly congest
the link. Said another way, the load on the link is visible in the form of a queue of packets at the sender.
In contrast, the sending side of a TCP connection has no idea what links will be traversed to reach the
destination. For example, the sending machine might be directly connected to a relatively fast Ethernet—and
capable of sending data at a rate of 10 Gbps—but somewhere out in the middle of the network, a 1.5-Mbps
link must be traversed. And, to make matters worse, data being generated by many different sources might
be trying to traverse this same slow link. This leads to the problem of network congestion. Discussion of
this topic is delayed until the next chapter.

234 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

We conclude this discussion of end-to-end issues by comparing TCP’s approach to providing a reli-
able/ordered delivery service with the approach used by virtual-circuit-based networks like the historically
important X.25 network. In TCP, the underlying IP network is assumed to be unreliable and to deliver mes-
sages out of order; TCP uses the sliding window algorithm on an end-to-end basis to provide reliable/ordered
delivery. In contrast, X.25 networks use the sliding window protocol within the network, on a hop-by-hop
basis. The assumption behind this approach is that if messages are delivered reliably and in order between
each pair of nodes along the path between the source host and the destination host, then the end-to-end
service also guarantees reliable/ordered delivery.

The problem with this latter approach is that a sequence of hop-by-hop guarantees does not necessarily add
up to an end-to-end guarantee. First, if a heterogeneous link (say, an Ethernet) is added to one end of the
path, then there is no guarantee that this hop will preserve the same service as the other hops. Second,
just because the sliding window protocol guarantees that messages are delivered correctly from node A to
node B, and then from node B to node C, it does not guarantee that node B behaves perfectly. For example,
network nodes have been known to introduce errors into messages while transferring them from an input
buffer to an output buffer. They have also been known to accidentally reorder messages. As a consequence
of these small windows of vulnerability, it is still necessary to provide true end-to-end checks to guarantee
reliable/ordered service, even though the lower levels of the system also implement that functionality.

Key Takeaway

This discussion serves to illustrate one of the most important principles in system design—the end-to-end
argument. In a nutshell, the end-to-end argument says that a function (in our example, providing reli-
able/ordered delivery) should not be provided in the lower levels of the system unless it can be completely
and correctly implemented at that level. Therefore, this rule argues in favor of the TCP/IP approach. This
rule is not absolute, however. It does allow for functions to be incompletely provided at a low level as a per-
formance optimization. This is why it is perfectly consistent with the end-to-end argument to perform error
detection (e.g., CRC) on a hop-by-hop basis; detecting and retransmitting a single corrupt packet across one
hop is preferable to having to retransmit an entire file end-to-end. [Next]

5.2.2 Segment Format

TCP is a byte-oriented protocol, which means that the sender writes bytes into a TCP connection and the
receiver reads bytes out of the TCP connection. Although “byte stream” describes the service TCP offers to
application processes, TCP does not, itself, transmit individual bytes over the Internet. Instead, TCP on the
source host buffers enough bytes from the sending process to fill a reasonably sized packet and then sends
this packet to its peer on the destination host. TCP on the destination host then empties the contents of the
packet into a receive buffer, and the receiving process reads from this buffer at its leisure. This situation is
illustrated in Figure 5.3, which, for simplicity, shows data flowing in only one direction. Remember that, in
general, a single TCP connection supports byte streams flowing in both directions.

The packets exchanged between TCP peers in Figure 5.3 are called segments, since each one carries a
segment of the byte stream. Each TCP segment contains the header schematically depicted in Figure 5.4.
The relevance of most of these fields will become apparent throughout this section. For now, we simply
introduce them.

The SrcPort and DstPort fields identify the source and destination ports, respectively, just as in UDP.

5.2. Reliable Byte Stream (TCP) 235

Computer Networks: A Systems Approach, Release Version 6.1

Figure 5.3.: How TCP manages a byte stream.

Figure 5.4.: TCP header format.

236 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

These two fields, plus the source and destination IP addresses, combine to uniquely identify each TCP
connection. That is, TCP’s demux key is given by the 4-tuple

(SrcPort, SrcIPAddr, DstPort, DstIPAddr)

Note that because TCP connections come and go, it is possible for a connection between a particular pair
of ports to be established, used to send and receive data, and closed, and then at a later time for the same
pair of ports to be involved in a second connection. We sometimes refer to this situation as two different
incarnations of the same connection.

The Acknowledgement, SequenceNum, and AdvertisedWindow fields are all involved in TCP’s
sliding window algorithm. Because TCP is a byte-oriented protocol, each byte of data has a sequence
number. The SequenceNum field contains the sequence number for the first byte of data carried in that
segment, and the Acknowledgement and AdvertisedWindow fields carry information about the flow
of data going in the other direction. To simplify our discussion, we ignore the fact that data can flow in both
directions, and we concentrate on data that has a particular SequenceNum flowing in one direction and
Acknowledgement and AdvertisedWindow values flowing in the opposite direction, as illustrated in
Figure 5.5. The use of these three fields is described more fully later in this chapter.

Figure 5.5.: Simplified illustration (showing only one direction) of the TCP process, with data flow in one
direction and ACKs in the other.

The 6-bit Flags field is used to relay control information between TCP peers. The possible flags include
SYN, FIN, RESET, PUSH, URG, and ACK. The SYN and FIN flags are used when establishing and termi-
nating a TCP connection, respectively. Their use is described in a later section. The ACK flag is set any time
the Acknowledgement field is valid, implying that the receiver should pay attention to it. The URG flag
signifies that this segment contains urgent data. When this flag is set, the UrgPtr field indicates where the
nonurgent data contained in this segment begins. The urgent data is contained at the front of the segment
body, up to and including a value of UrgPtr bytes into the segment. The PUSH flag signifies that the
sender invoked the push operation, which indicates to the receiving side of TCP that it should notify the
receiving process of this fact. We discuss these last two features more in a later section. Finally, the RESET
flag signifies that the receiver has become confused—for example, because it received a segment it did not
expect to receive—and so wants to abort the connection.

Finally, the Checksum field is used in exactly the same way as for UDP—it is computed over the TCP
header, the TCP data, and the pseudoheader, which is made up of the source address, destination address,
and length fields from the IP header. The checksum is required for TCP in both IPv4 and IPv6. Also, since
the TCP header is of variable length (options can be attached after the mandatory fields), a HdrLen field is
included that gives the length of the header in 32-bit words. This field is also known as the Offset field,
since it measures the offset from the start of the packet to the start of the data.

5.2. Reliable Byte Stream (TCP) 237

Computer Networks: A Systems Approach, Release Version 6.1

5.2.3 Connection Establishment and Termination

A TCP connection begins with a client (caller) doing an active open to a server (callee). Assuming that the
server had earlier done a passive open, the two sides engage in an exchange of messages to establish the
connection. (Recall from Chapter 1 that a party wanting to initiate a connection performs an active open,
while a party willing to accept a connection does a passive open.1) Only after this connection establishment
phase is over do the two sides begin sending data. Likewise, as soon as a participant is done sending data,
it closes one direction of the connection, which causes TCP to initiate a round of connection termination
messages. Notice that, while connection setup is an asymmetric activity (one side does a passive open and
the other side does an active open), connection teardown is symmetric (each side has to close the connection
independently). Therefore, it is possible for one side to have done a close, meaning that it can no longer
send data, but for the other side to keep the other half of the bidirectional connection open and to continue
sending data.

Three-Way Handshake

The algorithm used by TCP to establish and terminate a connection is called a three-way handshake. We
first describe the basic algorithm and then show how it is used by TCP. The three-way handshake involves
the exchange of three messages between the client and the server, as illustrated by the timeline given in
Figure 5.6.

Figure 5.6.: Timeline for three-way handshake algorithm.

The idea is that two parties want to agree on a set of parameters, which, in the case of opening a TCP
connection, are the starting sequence numbers the two sides plan to use for their respective byte streams. In
general, the parameters might be any facts that each side wants the other to know about. First, the client (the
active participant) sends a segment to the server (the passive participant) stating the initial sequence number
it plans to use (Flags = SYN, SequenceNum = x). The server then responds with a single segment that
both acknowledges the client’s sequence number (Flags = ACK, Ack = x + 1) and states its own

1 To be more precise, TCP allows connection setup to be symmetric, with both sides trying to open the connection at the same
time, but the common case is for one side to do an active open and the other side to do a passive open.

238 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

beginning sequence number (Flags = SYN, SequenceNum = y). That is, both the SYN and ACK
bits are set in the Flags field of this second message. Finally, the client responds with a third segment that
acknowledges the server’s sequence number (Flags = ACK, Ack = y + 1). The reason why each
side acknowledges a sequence number that is one larger than the one sent is that the Acknowledgement
field actually identifies the “next sequence number expected,” thereby implicitly acknowledging all earlier
sequence numbers. Although not shown in this timeline, a timer is scheduled for each of the first two
segments, and if the expected response is not received the segment is retransmitted.

You may be asking yourself why the client and server have to exchange starting sequence numbers with
each other at connection setup time. It would be simpler if each side simply started at some “well-known”
sequence number, such as 0. In fact, the TCP specification requires that each side of a connection select
an initial starting sequence number at random. The reason for this is to protect against two incarnations
of the same connection reusing the same sequence numbers too soon—that is, while there is still a chance
that a segment from an earlier incarnation of a connection might interfere with a later incarnation of the
connection.

State-Transition Diagram

TCP is complex enough that its specification includes a state-transition diagram. A copy of this diagram
is given in Figure 5.7. This diagram shows only the states involved in opening a connection (everything
above ESTABLISHED) and in closing a connection (everything below ESTABLISHED). Everything that
goes on while a connection is open—that is, the operation of the sliding window algorithm—is hidden in
the ESTABLISHED state.

TCP’s state-transition diagram is fairly easy to understand. Each box denotes a state that one end of a TCP
connection can find itself in. All connections start in the CLOSED state. As the connection progresses,
the connection moves from state to state according to the arcs. Each arc is labeled with a tag of the form
event/action. Thus, if a connection is in the LISTEN state and a SYN segment arrives (i.e., a segment with
the SYN flag set), the connection makes a transition to the SYN_RCVD state and takes the action of replying
with an ACK+SYN segment.

Notice that two kinds of events trigger a state transition: (1) a segment arrives from the peer (e.g., the event
on the arc from LISTEN to SYN_RCVD), or (2) the local application process invokes an operation on TCP
(e.g., the active open event on the arc from CLOSED to SYN_SENT). In other words, TCP’s state-transition
diagram effectively defines the semantics of both its peer-to-peer interface and its service interface. The
syntax of these two interfaces is given by the segment format (as illustrated in Figure 5.4) and by some
application programming interface, such as the socket API, respectively.

Now let’s trace the typical transitions taken through the diagram in Figure 5.7. Keep in mind that at each
end of the connection, TCP makes different transitions from state to state. When opening a connection,
the server first invokes a passive open operation on TCP, which causes TCP to move to the LISTEN state.
At some later time, the client does an active open, which causes its end of the connection to send a SYN
segment to the server and to move to the SYN_SENT state. When the SYN segment arrives at the server,
it moves to the SYN_RCVD state and responds with a SYN+ACK segment. The arrival of this segment
causes the client to move to the ESTABLISHED state and to send an ACK back to the server. When this
ACK arrives, the server finally moves to the ESTABLISHED state. In other words, we have just traced the
three-way handshake.

There are three things to notice about the connection establishment half of the state-transition diagram. First,

5.2. Reliable Byte Stream (TCP) 239

Computer Networks: A Systems Approach, Release Version 6.1

Figure 5.7.: TCP state-transition diagram.

240 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

if the client’s ACK to the server is lost, corresponding to the third leg of the three-way handshake, then the
connection still functions correctly. This is because the client side is already in the ESTABLISHED state,
so the local application process can start sending data to the other end. Each of these data segments will
have the ACK flag set, and the correct value in the Acknowledgement field, so the server will move to
the ESTABLISHED state when the first data segment arrives. This is actually an important point about
TCP—every segment reports what sequence number the sender is expecting to see next, even if this repeats
the same sequence number contained in one or more previous segments.

The second thing to notice about the state-transition diagram is that there is a funny transition out of the
LISTEN state whenever the local process invokes a send operation on TCP. That is, it is possible for a
passive participant to identify both ends of the connection (i.e., itself and the remote participant that it is
willing to have connect to it), and then for it to change its mind about waiting for the other side and instead
actively establish the connection. To the best of our knowledge, this is a feature of TCP that no application
process actually takes advantage of.

The final thing to notice about the diagram is the arcs that are not shown. Specifically, most of the states
that involve sending a segment to the other side also schedule a timeout that eventually causes the segment
to be present if the expected response does not happen. These retransmissions are not depicted in the state-
transition diagram. If after several tries the expected response does not arrive, TCP gives up and returns to
the CLOSED state.

Turning our attention now to the process of terminating a connection, the important thing to keep in mind
is that the application process on both sides of the connection must independently close its half of the
connection. If only one side closes the connection, then this means it has no more data to send, but it is
still available to receive data from the other side. This complicates the state-transition diagram because it
must account for the possibility that the two sides invoke the close operator at the same time, as well as the
possibility that first one side invokes close and then, at some later time, the other side invokes close. Thus,
on any one side there are three combinations of transitions that get a connection from the ESTABLISHED
state to the CLOSED state:

• This side closes first: ESTABLISHED → FIN_WAIT_1 → FIN_WAIT_2 → TIME_WAIT →
CLOSED.

• The other side closes first: ESTABLISHED → CLOSE_WAIT → LAST_ACK → CLOSED.

• Both sides close at the same time: ESTABLISHED → FIN_WAIT_1 → CLOSING → TIME_WAIT
→ CLOSED.

There is actually a fourth, although rare, sequence of transitions that leads to the CLOSED state; it follows
the arc from FIN_WAIT_1 to TIME_WAIT. We leave it as an exercise for you to figure out what combination
of circumstances leads to this fourth possibility.

The main thing to recognize about connection teardown is that a connection in the TIME_WAIT state cannot
move to the CLOSED state until it has waited for two times the maximum amount of time an IP datagram
might live in the Internet (i.e., 120 seconds). The reason for this is that, while the local side of the connection
has sent an ACK in response to the other side’s FIN segment, it does not know that the ACK was successfully
delivered. As a consequence, the other side might retransmit its FIN segment, and this second FIN segment
might be delayed in the network. If the connection were allowed to move directly to the CLOSED state, then
another pair of application processes might come along and open the same connection (i.e., use the same
pair of port numbers), and the delayed FIN segment from the earlier incarnation of the connection would
immediately initiate the termination of the later incarnation of that connection.

5.2. Reliable Byte Stream (TCP) 241

Computer Networks: A Systems Approach, Release Version 6.1

5.2.4 Sliding Window Revisited

We are now ready to discuss TCP’s variant of the sliding window algorithm, which serves several purposes:
(1) it guarantees the reliable delivery of data, (2) it ensures that data is delivered in order, and (3) it en-
forces flow control between the sender and the receiver. TCP’s use of the sliding window algorithm is the
same as at the link level in the case of the first two of these three functions. Where TCP differs from the
link-level algorithm is that it folds the flow-control function in as well. In particular, rather than having
a fixed-size sliding window, the receiver advertises a window size to the sender. This is done using the
AdvertisedWindow field in the TCP header. The sender is then limited to having no more than a value
of AdvertisedWindow bytes of unacknowledged data at any given time. The receiver selects a suitable
value for AdvertisedWindow based on the amount of memory allocated to the connection for the pur-
pose of buffering data. The idea is to keep the sender from over-running the receiver’s buffer. We discuss
this at greater length below.

Reliable and Ordered Delivery

To see how the sending and receiving sides of TCP interact with each other to implement reliable and
ordered delivery, consider the situation illustrated in Figure 5.8. TCP on the sending side maintains a send
buffer. This buffer is used to store data that has been sent but not yet acknowledged, as well as data that has
been written by the sending application but not transmitted. On the receiving side, TCP maintains a receive
buffer. This buffer holds data that arrives out of order, as well as data that is in the correct order (i.e., there
are no missing bytes earlier in the stream) but that the application process has not yet had the chance to read.

Figure 5.8.: Relationship between TCP send buffer (a) and receive buffer (b).

To make the following discussion simpler to follow, we initially ignore the fact that both the buffers and the
sequence numbers are of some finite size and hence will eventually wrap around. Also, we do not distinguish
between a pointer into a buffer where a particular byte of data is stored and the sequence number for that
byte.

Looking first at the sending side, three pointers are maintained into the send buffer, each with an obvious
meaning: LastByteAcked, LastByteSent, and LastByteWritten. Clearly,

LastByteAcked <= LastByteSent

242 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

since the receiver cannot have acknowledged a byte that has not yet been sent, and

LastByteSent <= LastByteWritten

since TCP cannot send a byte that the application process has not yet written. Also note that none of
the bytes to the left of LastByteAcked need to be saved in the buffer because they have already been
acknowledged, and none of the bytes to the right of LastByteWritten need to be buffered because they
have not yet been generated.

A similar set of pointers (sequence numbers) are maintained on the receiving side: LastByteRead,
NextByteExpected, and LastByteRcvd. The inequalities are a little less intuitive, however, because
of the problem of out-of-order delivery. The first relationship

LastByteRead < NextByteExpected

is true because a byte cannot be read by the application until it is received and all preceding bytes have
also been received. NextByteExpected points to the byte immediately after the latest byte to meet this
criterion. Second,

NextByteExpected <= LastByteRcvd + 1

since, if data has arrived in order, NextByteExpected points to the byte after LastByteRcvd, whereas
if data has arrived out of order, then NextByteExpected points to the start of the first gap in the data,
as in Figure 5.8. Note that bytes to the left of LastByteRead need not be buffered because they have
already been read by the local application process, and bytes to the right of LastByteRcvd need not be
buffered because they have not yet arrived.

Flow Control

Most of the above discussion is similar to that found in the standard sliding window algorithm; the only real
difference is that this time we elaborated on the fact that the sending and receiving application processes are
filling and emptying their local buffer, respectively. (The earlier discussion glossed over the fact that data
arriving from an upstream node was filling the send buffer and data being transmitted to a downstream node
was emptying the receive buffer.)

You should make sure you understand this much before proceeding because now comes the point where
the two algorithms differ more significantly. In what follows, we reintroduce the fact that both buffers are
of some finite size, denoted MaxSendBuffer and MaxRcvBuffer, although we don’t worry about the
details of how they are implemented. In other words, we are only interested in the number of bytes being
buffered, not in where those bytes are actually stored.

Recall that in a sliding window protocol, the size of the window sets the amount of data that can be sent
without waiting for acknowledgment from the receiver. Thus, the receiver throttles the sender by advertising
a window that is no larger than the amount of data that it can buffer. Observe that TCP on the receive side
must keep

LastByteRcvd - LastByteRead <= MaxRcvBuffer

to avoid overflowing its buffer. It therefore advertises a window size of

5.2. Reliable Byte Stream (TCP) 243

Computer Networks: A Systems Approach, Release Version 6.1

AdvertisedWindow = MaxRcvBuffer - ((NextByteExpected - 1) - LastByteRead)

which represents the amount of free space remaining in its buffer. As data arrives, the receiver acknowledges
it as long as all the preceding bytes have also arrived. In addition, LastByteRcvd moves to the right (is
incremented), meaning that the advertised window potentially shrinks. Whether or not it shrinks depends
on how fast the local application process is consuming data. If the local process is reading data just as
fast as it arrives (causing LastByteRead to be incremented at the same rate as LastByteRcvd), then
the advertised window stays open (i.e., AdvertisedWindow = MaxRcvBuffer). If, however, the
receiving process falls behind, perhaps because it performs a very expensive operation on each byte of data
that it reads, then the advertised window grows smaller with every segment that arrives, until it eventually
goes to 0.

TCP on the send side must then adhere to the advertised window it gets from the receiver. This means that
at any given time, it must ensure that

LastByteSent - LastByteAcked <= AdvertisedWindow

Said another way, the sender computes an effective window that limits how much data it can send:

EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked)

Clearly, EffectiveWindow must be greater than 0 before the source can send more data. It is pos-
sible, therefore, that a segment arrives acknowledging x bytes, thereby allowing the sender to increment
LastByteAcked by x, but because the receiving process was not reading any data, the advertised window
is now x bytes smaller than the time before. In such a situation, the sender would be able to free buffer
space, but not to send any more data.

All the while this is going on, the send side must also make sure that the local application process does not
overflow the send buffer—that is,

LastByteWritten - LastByteAcked <= MaxSendBuffer

If the sending process tries to write y bytes to TCP, but

(LastByteWritten - LastByteAcked) + y > MaxSendBuffer

then TCP blocks the sending process and does not allow it to generate more data.

It is now possible to understand how a slow receiving process ultimately stops a fast sending process. First,
the receive buffer fills up, which means the advertised window shrinks to 0. An advertised window of 0
means that the sending side cannot transmit any data, even though data it has previously sent has been
successfully acknowledged. Finally, not being able to transmit any data means that the send buffer fills
up, which ultimately causes TCP to block the sending process. As soon as the receiving process starts
to read data again, the receive-side TCP is able to open its window back up, which allows the send-side
TCP to transmit data out of its buffer. When this data is eventually acknowledged, LastByteAcked is
incremented, the buffer space holding this acknowledged data becomes free, and the sending process is
unblocked and allowed to proceed.

There is only one remaining detail that must be resolved—how does the sending side know that the
advertised window is no longer 0? As mentioned above, TCP always sends a segment in response
to a received data segment, and this response contains the latest values for the Acknowledge and

244 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

AdvertisedWindow fields, even if these values have not changed since the last time they were sent.
The problem is this. Once the receive side has advertised a window size of 0, the sender is not permitted
to send any more data, which means it has no way to discover that the advertised window is no longer 0 at
some time in the future. TCP on the receive side does not spontaneously send nondata segments; it only
sends them in response to an arriving data segment.

TCP deals with this situation as follows. Whenever the other side advertises a window size of 0, the sending
side persists in sending a segment with 1 byte of data every so often. It knows that this data will probably not
be accepted, but it tries anyway, because each of these 1-byte segments triggers a response that contains the
current advertised window. Eventually, one of these 1-byte probes triggers a response that reports a nonzero
advertised window.

Note that these 1-byte messages are called Zero Window Probes and in practice they are sent every 5 to 60
seconds. As for what single byte of data to send in the probe: it’s the next byte of actual data just outside
the window. (It has to be real data in case it’s accepted by the receiver.)

Key Takeaway

Note that the reason the sending side periodically sends this probe segment is that TCP is designed to make
the receive side as simple as possible—it simply responds to segments from the sender, and it never initiates
any activity on its own. This is an example of a well-recognized (although not universally applied) protocol
design rule, which, for lack of a better name, we call the smart sender/ dumb receiver rule. Recall that we
saw another example of this rule when we discussed the use of NAKs in sliding window algorithm. [Next]

Protecting Against Wraparound

This subsection and the next consider the size of the SequenceNum and AdvertisedWindow fields
and the implications of their sizes on TCP’s correctness and performance. TCP’s SequenceNum field is
32 bits long, and its AdvertisedWindow field is 16 bits long, meaning that TCP has easily satisfied the
requirement of the sliding window algorithm that the sequence number space be twice as big as the window
size: 232 >> 2 × 216. However, this requirement is not the interesting thing about these two fields. Consider
each field in turn.

The relevance of the 32-bit sequence number space is that the sequence number used on a given connection
might wrap around—a byte with sequence number S could be sent at one time, and then at a later time a
second byte with the same sequence number S might be sent. Once again, we assume that packets cannot
survive in the Internet for longer than the recommended MSL. Thus, we currently need to make sure that the
sequence number does not wrap around within a 120-second period of time. Whether or not this happens
depends on how fast data can be transmitted over the Internet—that is, how fast the 32-bit sequence number
space can be consumed. (This discussion assumes that we are trying to consume the sequence number space
as fast as possible, but of course we will be if we are doing our job of keeping the pipe full.) Table 5.1 shows
how long it takes for the sequence number to wrap around on networks with various bandwidths.

5.2. Reliable Byte Stream (TCP) 245

Computer Networks: A Systems Approach, Release Version 6.1

Table 5.1.: Time Until 32-Bit Sequence Number Space Wraps
Around.

Bandwidth Time until Wraparound
T1 (1.5 Mbps) 6.4 hours
T3 (45 Mbps) 13 minutes
Fast Ethernet (100 Mbps) 6 minutes
OC-3 (155 Mbps) 4 minutes
OC-48 (2.5 Gbps) 14 seconds
OC-192 (10 Gbps) 3 seconds
10GigE (10 Gbps) 3 seconds

As you can see, the 32-bit sequence number space is adequate at modest bandwidths, but given that OC-192
links are now common in the Internet backbone, and that most servers now come with 10Gig Ethernet (or
10 Gbps) interfaces, we’re now well-past the point where 32 bits is too small. Fortunately, the IETF has
worked out an extension to TCP that effectively extends the sequence number space to protect against the
sequence number wrapping around. This and related extensions are described in a later section.

Keeping the Pipe Full

The relevance of the 16-bit AdvertisedWindow field is that it must be big enough to allow the sender to
keep the pipe full. Clearly, the receiver is free to not open the window as large as the AdvertisedWindow
field allows; we are interested in the situation in which the receiver has enough buffer space to handle as
much data as the largest possible AdvertisedWindow allows.

In this case, it is not just the network bandwidth but the delay x bandwidth product that dictates how big the
AdvertisedWindow field needs to be—the window needs to be opened far enough to allow a full delay
× bandwidth product’s worth of data to be transmitted. Assuming an RTT of 100 ms (a typical number for
a cross-country connection in the United States), Table 5.2 gives the delay × bandwidth product for several
network technologies.

Table 5.2.: Required Window Size for 100-ms RTT
Bandwidth Delay × Bandwidth Product
T1 (1.5 Mbps) 18 KB
T3 (45 Mbps) 549 KB
Fast Ethernet (100 Mbps) 1.2 MB
OC-3 (155 Mbps) 1.8 MB
OC-48 (2.5 Gbps) 29.6 MB
OC-192 (10 Gbps) 118.4 MB
10GigE (10 Gbps) 118.4 MB

As you can see, TCP’s AdvertisedWindow field is in even worse shape than its SequenceNum field—it
is not big enough to handle even a T3 connection across the continental United States, since a 16-bit field
allows us to advertise a window of only 64 KB. The very same TCP extension mentioned above provides a
mechanism for effectively increasing the size of the advertised window.

246 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

5.2.5 Triggering Transmission

We next consider a surprisingly subtle issue: how TCP decides to transmit a segment. As described earlier,
TCP supports a byte-stream abstraction; that is, application programs write bytes into the stream, and it is
up to TCP to decide that it has enough bytes to send a segment. What factors govern this decision?

If we ignore the possibility of flow control—that is, we assume the window is wide open, as would be
the case when a connection first starts—then TCP has three mechanisms to trigger the transmission of a
segment. First, TCP maintains a variable, typically called the maximum segment size (MSS), and it sends a
segment as soon as it has collected MSS bytes from the sending process. MSS is usually set to the size of the
largest segment TCP can send without causing the local IP to fragment. That is, MSS is set to the maximum
transmission unit (MTU) of the directly connected network, minus the size of the TCP and IP headers. The
second thing that triggers TCP to transmit a segment is that the sending process has explicitly asked it to do
so. Specifically, TCP supports a push operation, and the sending process invokes this operation to effectively
flush the buffer of unsent bytes. The final trigger for transmitting a segment is that a timer fires; the resulting
segment contains as many bytes as are currently buffered for transmission. However, as we will soon see,
this “timer” isn’t exactly what you expect.

Silly Window Syndrome

Of course, we can’t just ignore flow control, which plays an obvious role in throttling the sender. If the
sender has MSS bytes of data to send and the window is open at least that much, then the sender transmits a
full segment. Suppose, however, that the sender is accumulating bytes to send, but the window is currently
closed. Now suppose an ACK arrives that effectively opens the window enough for the sender to transmit,
say, MSS/2 bytes. Should the sender transmit a half-full segment or wait for the window to open to a full
MSS? The original specification was silent on this point, and early implementations of TCP decided to go
ahead and transmit a half-full segment. After all, there is no telling how long it will be before the window
opens further.

It turns out that the strategy of aggressively taking advantage of any available window leads to a situation
now known as the silly window syndrome. Figure 5.9 helps visualize what happens. If you think of a TCP
stream as a conveyor belt with “full” containers (data segments) going in one direction and empty containers
(ACKs) going in the reverse direction, then MSS-sized segments correspond to large containers and 1-byte
segments correspond to very small containers. As long as the sender is sending MSS-sized segments and
the receiver ACKs at least one MSS of data at a time, everything is good (Figure 5.9(a)). But, what if the
receiver has to reduce the window, so that at some time the sender can’t send a full MSS of data? If the
sender aggressively fills a smaller-than-MSS empty container as soon as it arrives, then the receiver will
ACK that smaller number of bytes, and hence the small container introduced into the system remains in the
system indefinitely. That is, it is immediately filled and emptied at each end and is never coalesced with
adjacent containers to create larger containers, as in Figure 5.9(b). This scenario was discovered when early
implementations of TCP regularly found themselves filling the network with tiny segments.

Note that the silly window syndrome is only a problem when either the sender transmits a small segment or
the receiver opens the window a small amount. If neither of these happens, then the small container is never
introduced into the stream. It’s not possible to outlaw sending small segments; for example, the application
might do a push after sending a single byte. It is possible, however, to keep the receiver from introducing
a small container (i.e., a small open window). The rule is that after advertising a zero window the receiver
must wait for space equal to an MSS before it advertises an open window.

5.2. Reliable Byte Stream (TCP) 247

Computer Networks: A Systems Approach, Release Version 6.1

Figure 5.9.: Silly window syndrome. (a) As long as the sender sends MSS-sized segments and the receiver
ACKs one MSS at a time, the system works smoothly. (b) As soon as the sender sends less than one MSS,
or the receiver ACKs less than one MSS, a small “container” enters the system and continues to circulate.

Since we can’t eliminate the possibility of a small container being introduced into the stream, we also need
mechanisms to coalesce them. The receiver can do this by delaying ACKs—sending one combined ACK
rather than multiple smaller ones—but this is only a partial solution because the receiver has no way of
knowing how long it is safe to delay waiting either for another segment to arrive or for the application to
read more data (thus opening the window). The ultimate solution falls to the sender, which brings us back
to our original issue: When does the TCP sender decide to transmit a segment?

Nagle’s Algorithm

Returning to the TCP sender, if there is data to send but the window is open less than MSS, then we may
want to wait some amount of time before sending the available data, but the question is how long? If we
wait too long, then we hurt interactive applications like Telnet. If we don’t wait long enough, then we risk
sending a bunch of tiny packets and falling into the silly window syndrome. The answer is to introduce a
timer and to transmit when the timer expires.

While we could use a clock-based timer—for example, one that fires every 100 ms—Nagle introduced
an elegant self-clocking solution. The idea is that as long as TCP has any data in flight, the sender will
eventually receive an ACK. This ACK can be treated like a timer firing, triggering the transmission of more
data. Nagle’s algorithm provides a simple, unified rule for deciding when to transmit:

When the application produces data to send
if both the available data and the window >= MSS

send a full segment
else

if there is unACKed data in flight
buffer the new data until an ACK arrives

(continues on next page)

248 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

(continued from previous page)

else
send all the new data now

In other words, it’s always OK to send a full segment if the window allows. It’s also all right to immediately
send a small amount of data if there are currently no segments in transit, but if there is anything in flight
the sender must wait for an ACK before transmitting the next segment. Thus, an interactive application
like Telnet that continually writes one byte at a time will send data at a rate of one segment per RTT. Some
segments will contain a single byte, while others will contain as many bytes as the user was able to type
in one round-trip time. Because some applications cannot afford such a delay for each write it does to
a TCP connection, the socket interface allows the application to turn off Nagel’s algorithm by setting the
TCP_NODELAY option. Setting this option means that data is transmitted as soon as possible.

5.2.6 Adaptive Retransmission

Because TCP guarantees the reliable delivery of data, it retransmits each segment if an ACK is not received
in a certain period of time. TCP sets this timeout as a function of the RTT it expects between the two ends of
the connection. Unfortunately, given the range of possible RTTs between any pair of hosts in the Internet, as
well as the variation in RTT between the same two hosts over time, choosing an appropriate timeout value is
not that easy. To address this problem, TCP uses an adaptive retransmission mechanism. We now describe
this mechanism and how it has evolved over time as the Internet community has gained more experience
using TCP.

Original Algorithm

We begin with a simple algorithm for computing a timeout value between a pair of hosts. This is the
algorithm that was originally described in the TCP specification—and the following description presents it
in those terms—but it could be used by any end-to-end protocol.

The idea is to keep a running average of the RTT and then to compute the timeout as a function of this RTT.
Specifically, every time TCP sends a data segment, it records the time. When an ACK for that segment
arrives, TCP reads the time again, and then takes the difference between these two times as a SampleRTT.
TCP then computes an EstimatedRTT as a weighted average between the previous estimate and this new
sample. That is,

EstimatedRTT = alpha x EstimatedRTT + (1 - alpha) x SampleRTT

The parameter alpha is selected to smooth the EstimatedRTT. A small alpha tracks changes in the
RTT but is perhaps too heavily influenced by temporary fluctuations. On the other hand, a large alpha is
more stable but perhaps not quick enough to adapt to real changes. The original TCP specification recom-
mended a setting of alpha between 0.8 and 0.9. TCP then uses EstimatedRTT to compute the timeout
in a rather conservative way:

TimeOut = 2 x EstimatedRTT

5.2. Reliable Byte Stream (TCP) 249

Computer Networks: A Systems Approach, Release Version 6.1

Karn/Partridge Algorithm

After several years of use on the Internet, a rather obvious flaw was discovered in this simple algorithm.
The problem was that an ACK does not really acknowledge a transmission; it actually acknowledges the
receipt of data. In other words, whenever a segment is retransmitted and then an ACK arrives at the sender,
it is impossible to determine if this ACK should be associated with the first or the second transmission of
the segment for the purpose of measuring the sample RTT. It is necessary to know which transmission to
associate it with so as to compute an accurate SampleRTT. As illustrated in Figure 5.10, if you assume
that the ACK is for the original transmission but it was really for the second, then the SampleRTT is too
large (a); if you assume that the ACK is for the second transmission but it was actually for the first, then the
SampleRTT is too small (b).

Figure 5.10.: Associating the ACK with (a) original transmission versus (b) retransmission.

The solution, which was proposed in 1987, is surprisingly simple. Whenever TCP retransmits a segment,
it stops taking samples of the RTT; it only measures SampleRTT for segments that have been sent only
once. This solution is known as the Karn/Partridge algorithm, after its inventors. Their proposed fix also
includes a second small change to TCP’s timeout mechanism. Each time TCP retransmits, it sets the next
timeout to be twice the last timeout, rather than basing it on the last EstimatedRTT. That is, Karn and
Partridge proposed that TCP use exponential backoff, similar to what the Ethernet does. The motivation
for using exponential backoff is simple: Congestion is the most likely cause of lost segments, meaning that
the TCP source should not react too aggressively to a timeout. In fact, the more times the connection times
out, the more cautious the source should become. We will see this idea again, embodied in a much more
sophisticated mechanism, in the next chapter.

Jacobson/Karels Algorithm

The Karn/Partridge algorithm was introduced at a time when the Internet was suffering from high levels
of network congestion. Their approach was designed to fix some of the causes of that congestion, but,
although it was an improvement, the congestion was not eliminated. The following year (1988), two other
researchers—Jacobson and Karels—proposed a more drastic change to TCP to battle congestion. The bulk
of that proposed change is described in the next chapter. Here, we focus on the aspect of that proposal that
is related to deciding when to time out and retransmit a segment.

250 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

As an aside, it should be clear how the timeout mechanism is related to congestion—if you time out too
soon, you may unnecessarily retransmit a segment, which only adds to the load on the network. The other
reason for needing an accurate timeout value is that a timeout is taken to imply congestion, which triggers
a congestion-control mechanism. Finally, note that there is nothing about the Jacobson/Karels timeout
computation that is specific to TCP. It could be used by any end-to-end protocol.

The main problem with the original computation is that it does not take the variance of the sample RTTs
into account. Intuitively, if the variation among samples is small, then the EstimatedRTT can be better
trusted and there is no reason for multiplying this estimate by 2 to compute the timeout. On the other hand,
a large variance in the samples suggests that the timeout value should not be too tightly coupled to the
EstimatedRTT.

In the new approach, the sender measures a new SampleRTT as before. It then folds this new sample into
the timeout calculation as follows:

Difference = SampleRTT - EstimatedRTT
EstimatedRTT = EstimatedRTT + (delta x Difference)
Deviation = Deviation + delta (|Difference| - Deviation)

where delta and delta are fractions between 0 and 1. That is, we calculate both the mean RTT and the
variation in that mean.

TCP then computes the timeout value as a function of both EstimatedRTT and Deviation as follows:

TimeOut = mu x EstimatedRTT + phi x Deviation

where based on experience, mu is typically set to 1 and phi is set to 4. Thus, when the variance is small,
TimeOut is close to EstimatedRTT; a large variance causes the Deviation term to dominate the
calculation.

Implementation

There are two items of note regarding the implementation of timeouts in TCP. The first is that it is possible to
implement the calculation for EstimatedRTT and Deviation without using floating-point arithmetic.
Instead, the whole calculation is scaled by 2n, with delta selected to be 1/2n. This allows us to do integer
arithmetic, implementing multiplicationand division using shifts, thereby achieving higher performance.
The resulting calculation is given by the following code fragment, where n=3 (i.e., delta = 1/8). Note
that EstimatedRTT and Deviation are stored in their scaled-up forms, while the value of SampleRTT
at the start of the code and of TimeOut at the end are real, unscaled values. If you find the code hard to
follow, you might want to try plugging some real numbers into it and verifying that it gives the same results
as the equations above.

{
SampleRTT -= (EstimatedRTT >> 3);
EstimatedRTT += SampleRTT;
if (SampleRTT < 0)

SampleRTT = -SampleRTT;
SampleRTT -= (Deviation >> 3);
Deviation += SampleRTT;

(continues on next page)

5.2. Reliable Byte Stream (TCP) 251

Computer Networks: A Systems Approach, Release Version 6.1

(continued from previous page)

TimeOut = (EstimatedRTT >> 3) + (Deviation >> 1);
}

The second point of note is that the Jacobson/Karels algorithm is only as good as the clock used to read the
current time. On typical Unix implementations at the time, the clock granularity was as large as 500 ms,
which is significantly larger than the average cross-country RTT of somewhere between 100 and 200 ms.
To make matters worse, the Unix implementation of TCP only checked to see if a timeout should happen
every time this 500-ms clock ticked and would only take a sample of the round-trip time once per RTT. The
combination of these two factors could mean that a timeout would happen 1 second after the segment was
transmitted. Once again, the extensions to TCP include a mechanism that makes this RTT calculation a bit
more precise.

All of the retransmission algorithms we have discussed are based on acknowledgment timeouts, which in-
dicate that a segment has probably been lost. Note that a timeout does not, however, tell the sender whether
any segments it sent after the lost segment were successfully received. This is because TCP acknowledg-
ments are cumulative; they identify only the last segment that was received without any preceding gaps. The
reception of segments that occur after a gap grows more frequent as faster networks lead to larger windows.
If ACKs also told the sender which subsequent segments, if any, had been received, then the sender could be
more intelligent about which segments it retransmits, draw better conclusions about the state of congestion,
and make better RTT estimates. A TCP extension supporting this is described in a later section.

Key Takeaway

There is one other point to make about computing timeouts. It is a surprisingly tricky business, so much so,
that there is an entire RFC dedicated to the topic: RFC 6298. The takeaway is that sometimes fully specify-
ing a protocol involves so much minutiae that the line between specification and implementation becomes
blurred. That has happened more than once with TCP, causing some to argue that “the implementation is
the specification.” But that’s not necessarily a bad thing as long as the reference implementation is available
as open source software. More generally, the industry is seeing open source software grow in importance as
open standards receed in importance. [Next]

5.2.7 Record Boundaries

Since TCP is a byte-stream protocol, the number of bytes written by the sender are not necessarily the same
as the number of bytes read by the receiver. For example, the application might write 8 bytes, then 2 bytes,
then 20 bytes to a TCP connection, while on the receiving side the application reads 5 bytes at a time inside
a loop that iterates 6 times. TCP does not interject record boundaries between the 8th and 9th bytes, nor
between the 10th and 11th bytes. This is in contrast to a message-oriented protocol, such as UDP, in which
the message that is sent is exactly the same length as the message that is received.

Even though TCP is a byte-stream protocol, it has two different features that can be used by the sender
to insert record boundaries into this byte stream, thereby informing the receiver how to break the stream
of bytes into records. (Being able to mark record boundaries is useful, for example, in many database
applications.) Both of these features were originally included in TCP for completely different reasons; they
have only come to be used for this purpose over time.

252 Chapter 5. End-to-End Protocols

https://tools.ietf.org/html/rfc6298

Computer Networks: A Systems Approach, Release Version 6.1

The first mechanism is the urgent data feature, as implemented by the URG flag and the UrgPtr field in the
TCP header. Originally, the urgent data mechanism was designed to allow the sending application to send
out-of-band data to its peer. By “out of band” we mean data that is separate from the normal flow of data
(e.g., a command to interrupt an operation already under way). This out-of-band data was identified in the
segment using the UrgPtr field and was to be delivered to the receiving process as soon as it arrived, even
if that meant delivering it before data with an earlier sequence number. Over time, however, this feature has
not been used, so instead of signifying “urgent” data, it has come to be used to signify “special” data, such
as a record marker. This use has developed because, as with the push operation, TCP on the receiving side
must inform the application that urgent data has arrived. That is, the urgent data in itself is not important. It
is the fact that the sending process can effectively send a signal to the receiver that is important.

The second mechanism for inserting end-of-record markers into a byte is the push operation. Originally,
this mechanism was designed to allow the sending process to tell TCP that it should send (flush) whatever
bytes it had collected to its peer. The push operation can be used to implement record boundaries because
the specification says that TCP must send whatever data it has buffered at the source when the application
says push, and, optionally, TCP at the destination notifies the application whenever an incoming segment
has the PUSH flag set. If the receiving side supports this option (the socket interface does not), then the
push operation can be used to break the TCP stream into records.

Of course, the application program is always free to insert record boundaries without any assistance from
TCP. For example, it can send a field that indicates the length of a record that is to follow, or it can insert its
own record boundary markers into the data stream.

5.2.8 TCP Extensions

We have mentioned at four different points in this section that there are now extensions to TCP that help to
mitigate some problem that TCP faced as the underlying network got faster. These extensions are designed
to have as small an impact on TCP as possible. In particular, they are realized as options that can be added
to the TCP header. (We glossed over this point earlier, but the reason why the TCP header has a HdrLen
field is that the header can be of variable length; the variable part of the TCP header contains the options
that have been added.) The significance of adding these extensions as options rather than changing the core
of the TCP header is that hosts can still communicate using TCP even if they do not implement the options.
Hosts that do implement the optional extensions, however, can take advantage of them. The two sides agree
that they will use the options during TCP’s connection establishment phase.

The first extension helps to improve TCP’s timeout mechanism. Instead of measuring the RTT using a
coarse-grained event, TCP can read the actual system clock when it is about to send a segment, and put this
time—think of it as a 32-bit timestamp—in the segment’s header. The receiver then echoes this timestamp
back to the sender in its acknowledgment, and the sender subtracts this timestamp from the current time to
measure the RTT. In essence, the timestamp option provides a convenient place for TCP to store the record
of when a segment was transmitted; it stores the time in the segment itself. Note that the endpoints in the
connection do not need synchronized clocks, since the timestamp is written and read at the same end of the
connection.

The second extension addresses the problem of TCP’s 32-bit SequenceNum field wrapping around too
soon on a high-speed network. Rather than define a new 64-bit sequence number field, TCP uses the 32-bit
timestamp just described to effectively extend the sequence number space. In other words, TCP decides
whether to accept or reject a segment based on a 64-bit identifier that has the SequenceNum field in the
low-order 32 bits and the timestamp in the high-order 32 bits. Since the timestamp is always increasing,

5.2. Reliable Byte Stream (TCP) 253

Computer Networks: A Systems Approach, Release Version 6.1

it serves to distinguish between two different incarnations of the same sequence number. Note that the
timestamp is being used in this setting only to protect against wraparound; it is not treated as part of the
sequence number for the purpose of ordering or acknowledging data.

The third extension allows TCP to advertise a larger window, thereby allowing it to fill larger delay × band-
width pipes that are made possible by high-speed networks. This extension involves an option that defines
a scaling factor for the advertised window. That is, rather than interpreting the number that appears in the
AdvertisedWindow field as indicating how many bytes the sender is allowed to have unacknowledged,
this option allows the two sides of TCP to agree that the AdvertisedWindow field counts larger chunks
(e.g., how many 16-byte units of data the sender can have unacknowledged). In other words, the window
scaling option specifies how many bits each side should left-shift the AdvertisedWindow field before
using its contents to compute an effective window.

The fourth extension allows TCP to augment its cumulative acknowledgment with selective acknowledg-
ments of any additional segments that have been received but aren’t contiguous with all previously received
segments. This is the selective acknowledgment, or SACK, option. When the SACK option is used, the
receiver continues to acknowledge segments normally—the meaning of the Acknowledge field does not
change—but it also uses optional fields in the header to acknowledge any additional blocks of received data.
This allows the sender to retransmit just the segments that are missing according to the selective acknowl-
edgment.

Without SACK, there are only two reasonable strategies for a sender. The pessimistic strategy responds to
a timeout by retransmitting not just the segment that timed out, but any segments transmitted subsequently.
In effect, the pessimistic strategy assumes the worst: that all those segments were lost. The disadvantage of
the pessimistic strategy is that it may unnecessarily retransmit segments that were successfully received the
first time. The other strategy is the optimistic strategy, which responds to a timeout by retransmitting only
the segment that timed out. In effect, the optimistic approach assumes the rosiest scenario: that only the
one segment has been lost. The disadvantage of the optimistic strategy is that it is very slow, unnecessarily,
when a series of consecutive segments has been lost, as might happen when there is congestion. It is slow
because each segment’s loss is not discovered until the sender receives an ACK for its retransmission of the
previous segment. So it consumes one RTT per segment until it has retransmitted all the segments in the lost
series. With the SACK option, a better strategy is available to the sender: retransmit just the segments that
fill the gaps between the segments that have been selectively acknowledged.

These extensions, by the way, are not the full story. We’ll see some more extensions in the next chapter
when we look at how TCP handles congestion. The Internet Assigned Numbers Authority (IANA) keeps
track of all the options that are defined for TCP (and for many other Internet protocols). See the references
at the end of the chapter for a link to IANA’s protocol number registry.

5.2.9 Performance

Recall that Chapter 1 introduced the two quantitative metrics by which network performance is evaluated:
latency and throughput. As mentioned in that discussion, these metrics are influenced not only by the under-
lying hardware (e.g., propagation delay and link bandwidth) but also by software overheads. Now that we
have a complete software-based protocol graph available to us that includes alternative transport protocols,
we can discuss how to meaningfully measure its performance. The importance of such measurements is that
they represent the performance seen by application programs.

We begin, as any report of experimental results should, by describing our experimental method. This in-

254 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

Figure 5.11.: Measured system: Two Linux workstations and a pair of Gbps Ethernet links.

cludes the apparatus used in the experiments; in this case, each workstation has a pair of dual CPU 2.4-GHz
Xeon processors running Linux. In order to enable speeds above 1 Gbps, a pair of Ethernet adaptors (labeled
NIC, for network interface card) are used on each machine. The Ethernet spans a single machine room so
propagation is not an issue, making this a measure of processor/software overheads. A test program running
on top of the socket interface simply tries to transfer data as quickly as possible from one machine to the
other. Figure 5.11 illustrates the setup.

You may notice that this experimental setup is not especially bleeding edge in terms of the hardware or link
speed. The point of this section is not to show how fast a particular protocol can run, but to illustrate the
general methodology for measuring and reporting protocol performance.

The throughput test is performed for a variety of message sizes using a standard benchmarking tool called
TTCP. The results of the throughput test are given in Figure 5.12. The key thing to notice in this graph is
that throughput improves as the messages get larger. This makes sense—each message involves a certain
amount of overhead, so a larger message means that this overhead is amortized over more bytes. The
throughput curve flattens off above 1 KB, at which point the per-message overhead becomes insignificant
when compared to the large number of bytes that the protocol stack has to process.

It’s worth noting that the maximum throughput is less than 2 Gbps, the available link speed in this setup.
Further testing and analysis of results would be needed to figure out where the bottleneck is (or if there
is more than one). For example, looking at CPU load might give an indication of whether the CPU is the
bottleneck or whether memory bandwidth, adaptor performance, or some other issue is to blame.

We also note that the network in this test is basically “perfect.” It has almost no delay or loss, so the only fac-
tors affecting performance are the TCP implementation and the workstation hardware and software. By con-
trast, most of the time we deal with networks that are far from perfect, notably our bandwidth-constrained,
last-mile links and loss-prone wireless links. Before we can fully appreciate how these links affect TCP

5.2. Reliable Byte Stream (TCP) 255

Computer Networks: A Systems Approach, Release Version 6.1

Figure 5.12.: Measured throughput using TCP, for various message sizes.

performance, we need to understand how TCP deals with congestion, which is the topic of the next chapter.

At various times in the history of networking, the steadily increasing speed of network links has threatened
to run ahead of what could be delivered to applications. For example, a large research effort was begun in the
United States in 1989 to build “gigabit networks,” where the goal was not only to build links and switches
that could run at 1Gbps or higher but also to deliver that throughput all the way to a single application
process. There were some real problems (e.g., network adaptors, workstation architectures, and operating
systems all had to be designed with network-to-application throughput in mind) and also some perceived
problems that turned out to be not so serious. High on the list of such problems was the concern that existing
transport protocols, TCP in particular, might not be up to the challenge of gigabit operation.

As it turns out, TCP has done well keeping up with the increasing demands of high-speed networks and
applications. One of the most important factors was the introduction of window scaling to deal with larger
bandwidth-delay products. However, there is often a big difference between the theoretical performance of
TCP and what is achieved in practice. Relatively simple problems like copying the data more times than
necessary as it passes from network adaptor to application can drive down performance, as can insufficient
buffer memory when the bandwidth-delay product is large. And the dynamics of TCP are complex enough
(as will become even more apparent in the next chapter) that subtle interactions among network behavior,
application behavior, and the TCP protocol itself can dramatically alter performance.

For our purposes, it’s worth noting that TCP continues to perform very well as network speeds increase, and
when it runs up against some limit (normally related to congestion, increasing bandwidth-delay products,
or both), researchers rush in to find solutions. We’ve seen some of those in this chapter, and we’ll see some
more in the next.

256 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

5.2.10 Alternative Design Choices (SCTP, QUIC)

Although TCP has proven to be a robust protocol that satisfies the needs of a wide range of applications, the
design space for transport protocols is quite large. TCP is by no means the only valid point in that design
space. We conclude our discussion of TCP by considering alternative design choices. While we offer an
explanation for why TCP’s designers made the choices they did, we observe that other protocols exist that
have made other choices, and more such protocols may appear in the future.

First, we have suggested from the very first chapter of this book that there are at least two interesting
classes of transport protocols: stream-oriented protocols like TCP and request/reply protocols like RPC. In
other words, we have implicitly divided the design space in half and placed TCP squarely in the stream-
oriented half of the world. We could further divide the stream-oriented protocols into two groups—reliable
and unreliable—with the former containing TCP and the latter being more suitable for interactive video
applications that would rather drop a frame than incur the delay associated with a retransmission.

This exercise in building a transport protocol taxonomy is interesting and could be continued in greater and
greater detail, but the world isn’t as black and white as we might like. Consider the suitability of TCP as a
transport protocol for request/reply applications, for example. TCP is a full-duplex protocol, so it would be
easy to open a TCP connection between the client and server, send the request message in one direction, and
send the reply message in the other direction. There are two complications, however. The first is that TCP is
a byte-oriented protocol rather than a message-oriented protocol, and request/reply applications always deal
with messages. (We explore the issue of bytes versus messages in greater detail in a moment.) The second
complication is that in those situations where both the request message and the reply message fit in a single
network packet, a well-designed request/reply protocol needs only two packets to implement the exchange,
whereas TCP would need at least nine: three to establish the connection, two for the message exchange, and
four to tear down the connection. Of course, if the request or reply messages are large enough to require
multiple network packets (e.g., it might take 100 packets to send a 100,000-byte reply message), then the
overhead of setting up and tearing down the connection is inconsequential. In other words, it isn’t always
the case that a particular protocol cannot support a certain functionality; it’s sometimes the case that one
design is more efficient than another under particular circumstances.

Second, as just suggested, you might question why TCP chose to provide a reliable byte-stream service rather
than a reliable message-stream service; messages would be the natural choice for a database application that
wants to exchange records. There are two answers to this question. The first is that a message-oriented
protocol must, by definition, establish an upper bound on message sizes. After all, an infinitely long message
is a byte stream. For any message size that a protocol selects, there will be applications that want to send
larger messages, rendering the transport protocol useless and forcing the application to implement its own
transport-like services. The second reason is that, while message-oriented protocols are definitely more
appropriate for applications that want to send records to each other, you can easily insert record boundaries
into a byte stream to implement this functionality.

A third decision made in the design of TCP is that it delivers bytes in order to the application. This means
that it may hold onto bytes that were received out of order from the network, awaiting some missing bytes
to fill a hole. This is enormously helpful for many applications but turns out to be quite unhelpful if the
application is capable of processing data out of order. As a simple example, a Web page containing multiple
embedded objects doesn’t need all the objects to be delivered in order before starting to display the page.
In fact, there is a class of applications that would prefer to handle out-of-order data at the application layer,
in return for getting data sooner when packets are dropped or misordered within the network. The desire to
support such applications led to the creation of not one but two IETF standard transport protocols. The first

5.2. Reliable Byte Stream (TCP) 257

Computer Networks: A Systems Approach, Release Version 6.1

of these was SCTP, the Stream Control Transmission Protocol. SCTP provides a partially ordered delivery
service, rather than the strictly ordered service of TCP. (SCTP also makes some other design decisions that
differ from TCP, including message orientation and support of multiple IP addresses for a single session.)
More recently, the IETF has been standardizing a protocol optimized for Web traffic, known as QUIC. More
on QUIC in a moment.

Fourth, TCP chose to implement explicit setup/teardown phases, but this is not required. In the case of
connection setup, it would be possible to send all necessary connection parameters along with the first data
message. TCP elected to take a more conservative approach that gives the receiver the opportunity to reject
the connection before any data arrives. In the case of teardown, we could quietly close a connection that has
been inactive for a long period of time, but this would complicate applications like remote login that want
to keep a connection alive for weeks at a time; such applications would be forced to send out-of-band “keep
alive” messages to keep the connection state at the other end from disappearing.

Finally, TCP is a window-based protocol, but this is not the only possibility. The alternative is a rate-based
design, in which the receiver tells the sender the rate—expressed in either bytes or packets per second—at
which it is willing to accept incoming data. For example, the receiver might inform the sender that it can
accommodate 100 packets a second. There is an interesting duality between windows and rate, since the
number of packets (bytes) in the window, divided by the RTT, is exactly the rate. For example, a window
size of 10 packets and a 100-ms RTT implies that the sender is allowed to transmit at a rate of 100 packets
a second. It is by increasing or decreasing the advertised window size that the receiver is effectively raising
or lowering the rate at which the sender can transmit. In TCP, this information is fed back to the sender
in the AdvertisedWindow field of the ACK for every segment. One of the key issues in a rate-based
protocol is how often the desired rate—which may change over time—is relayed back to the source: Is it for
every packet, once per RTT, or only when the rate changes? While we have just now considered window
versus rate in the context of flow control, it is an even more hotly contested issue in the context of congestion
control, which we will discuss in the next chapter.

QUIC

QUIC, Quick UDP Internet Connections, originated at Google in 2012 and, at the time of writing, is still
undergoing standardization at the IETF. It has already seen a moderate amount of deployment (in some
Web browsers and quite a number of popular Web sites). The fact that it has been successful to this degree
is in itself an interesting part of the QUIC story, and indeed deployability was a key consideration for the
designers of the protocol.

The motivation for QUIC comes directly from the points we noted above about TCP: certain design decisions
have turned out to be non-optimal for a range of applications that run over TCP, with HTTP (Web) traffic
being a particularly notable example. These issues have become more noticeable over time, due to factors
such as the rise of high-latency wireless networks, the availability of multiple networks for a single device
(e.g., Wi-Fi and cellular), and the increasing use of encrypted, authenticated connections on the Web. While
a full description of QUIC is beyond our scope, some of the key design decisions are worth discussing.

Multipath TCP

It isn’t always necessary to define a new protocol if you find an existing protocol does not adequately serve
a particular use case. Sometimes it’s possible to make substantial changes in how an existing protocol is

258 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

implemented, yet remain true to the original spec. Multipath TCP is an example of such a situation.

The idea of Multipath TCP is to steer packets over multiple paths through the Internet, for example, by
using two different IP addresses for one of the end-points. This can be especially helpful when delivering
data to a mobile device that is connected to both Wi-Fi and the cellular network (and hence, has two
unique IP addresses). Being wireless, both networks can experience significant packet-loss, so being able
to use both to carry packets can dramatically improve the user experience. The key is for the receiving side
of TCP to reconstruct the original, in-order byte stream before passing data up to the application, which
remains unaware it is sitting on top of Multipath TCP. (This is in contrast to applications that purposely
open two or more TCP connections to get better performance.)

As simple as Multipath TCP sounds, it is incredibly difficult to get right because it breaks many assump-
tions about how TCP flow control, in-order segment reassembly, and congestion control are implemented.
We leave it as an exercise for the reader to explore these subtleties. Doing so is a great way to make sure
your basic understanding of TCP is sound.

If network latency is high—in the hundreds of milliseconds—then a few RTTs can quickly add up to a visible
annoyance for an end user. Establishing an HTTP session over TCP with Transport Layer Security (Section
8.5) would typically take three round trips (one for TCP session establishment and two for setting up the
encryption parameters) before the first HTTP message could be sent. The designers of QUIC recognized
that this delay—the direct result of a layered approach to protocol design—could be dramatically reduced
if connection setup and the required security handshakes were combined and optimized for minimal round
trips.

Note also how the presence of multiple network interfaces might affect the design. If your mobile phone
loses its Wi-Fi connection and needs to switch to a cellular connection, that would typically require both
a TCP timeout on one connection and a new series of handshakes on the other. Making the connection
something that can persist over different network layer connections was another design goal for QUIC.

Finally, as noted above, the reliable byte stream model for TCP is a poor match to a Web page request, when
many objects need to be fetched and page rendering could begin before they have all arrived. While one
workaround for this would be to open multiple TCP connections in parallel, this approach (which was used
in the early days of the Web) has its own set of drawbacks, notably on congestion control (see Chapter 6).

Interestingly, by the time QUIC emerged, many design decisions had been made that presented challenges
for the deployment of a new transport protocol. Notably, many “middleboxes” such as NATs and firewalls
(see Section 8.5) have enough understanding of the existing widespread transport protocols (TCP and UDP)
that they can’t be relied upon to pass a new transport protocol. As a result, QUIC actually rides on top
of UDP. In other words, it is a transport protocol running on top of a transport protocol. This is not as
uncommon as our focus on layering might suggest, as the next two subsections also illustrate.

QUIC implements fast connection establishment with encryption and authentication in the first RTT. It
provides a connection identifier than persists across changes in the underlying network. It supports the
multiplexing of several streams onto a single transport connection, to avoid the head-of-line blocking that
may arise when a single packet is dropped while other useful data continues to arrive. And it preserves
the congestion avoidance properties of TCP, an important aspect of transport protocols that we return to in
Chapter 6.

QUIC is a most interesting development in the world of transport protocols. Many of the limitations of
TCP have been known for decades, but QUIC represents one of the most successful efforts to date to stake
out a different point in the design space. Because QUIC was inspired by experience with HTTP and the

5.2. Reliable Byte Stream (TCP) 259

Computer Networks: A Systems Approach, Release Version 6.1

Web—which arose long after TCP was well established in the Internet—it presents a fascinating case study
in the unforeseen consequences of layered designs and in the evolution of the Internet.

5.3 Remote Procedure Call

A common pattern of communication used by application programs structured as a client/server pair is the
request/reply message transaction: A client sends a request message to a server, and the server responds with
a reply message, with the client blocking (suspending execution) to wait for the reply. Figure 5.13 illustrates
the basic interaction between the client and server in such an exchange.

Figure 5.13.: Timeline for RPC.

A transport protocol that supports the request/reply paradigm is much more than a UDP message going in
one direction followed by a UDP message going in the other direction. It needs to deal with correctly identi-
fying processes on remote hosts and correlating requests with responses. It may also need to overcome some
or all of the limitations of the underlying network outlined in the problem statement at the beginning of this
chapter. While TCP overcomes these limitations by providing a reliable byte-stream service, it doesn’t per-
fectly match the request/reply paradigm either. This section describes a third category of transport protocol,
called Remote Procedure Call (RPC), that more closely matches the needs of an application involved in a
request/reply message exchange.

5.3.1 RPC Fundamentals

RPC is not technically a protocol—it is better thought of as a general mechanism for structuring distributed
systems. RPC is popular because it is based on the semantics of a local procedure call—the application
program makes a call into a procedure without regard for whether it is local or remote and blocks until the
call returns. An application developer can be largely unaware of whether the procedure is local or remote,
simplifying his task considerably. When the procedures being called are actually methods of remote objects
in an object-oriented language, RPC is known as remote method invocation (RMI). While the RPC concept
is simple, there are two main problems that make it more complicated than local procedure calls:

• The network between the calling process and the called process has much more complex properties
than the backplane of a computer. For example, it is likely to limit message sizes and has a tendency
to lose and reorder messages.

260 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

• The computers on which the calling and called processes run may have significantly different archi-
tectures and data representation formats.

Thus, a complete RPC mechanism actually involves two major components:

1. A protocol that manages the messages sent between the client and the server processes and that deals
with the potentially undesirable properties of the underlying network.

2. Programming language and compiler support to package the arguments into a request message on the
client machine and then to translate this message back into the arguments on the server machine, and
likewise with the return value (this piece of the RPC mechanism is usually called a stub compiler).

Figure 5.14 schematically depicts what happens when a client invokes a remote procedure. First, the client
calls a local stub for the procedure, passing it the arguments required by the procedure. This stub hides the
fact that the procedure is remote by translating the arguments into a request message and then invoking an
RPC protocol to send the request message to the server machine. At the server, the RPC protocol delivers
the request message to the server stub, which translates it into the arguments to the procedure and then calls
the local procedure. After the server procedure completes, it returns in a reply message that it hands off to
the RPC protocol for transmission back to the client. The RPC protocol on the client passes this message up
to the client stub, which translates it into a return value that it returns to the client program.

Figure 5.14.: Complete RPC mechanism.

This section considers just the protocol-related aspects of an RPC mechanism. That is, it ignores the stubs
and focuses instead on the RPC protocol, sometimes referred to as a request/reply protocol, that transmits
messages between client and server. The transformation of arguments into messages and vice versa is
covered elsewhere. It is also important to keep in mind that the client and server programs are written in

5.3. Remote Procedure Call 261

Computer Networks: A Systems Approach, Release Version 6.1

some programming language, meaning that a given RPC mechanism might support Python stubs, Java stubs,
GoLang stubs, and so on, each of which includes language-specific idioms for how procedures are invoked.

The term RPC refers to a type of protocol rather than a specific standard like TCP, so specific RPC protocols
vary in the functions they perform. And, unlike TCP, which is the dominant reliable byte-stream protocol,
there is no one dominant RPC protocol. Thus, in this section we will talk more about alternative design
choices than previously.

Identifiers in RPC

Two functions that must be performed by any RPC protocol are:

• Provide a name space for uniquely identifying the procedure to be called.

• Match each reply message to the corresponding request message.

The first problem has some similarities to the problem of identifying nodes in a network, something IP
addresses do, for example). One of the design choices when identifying things is whether to make this name
space flat or hierarchical. A flat name space would simply assign a unique, unstructured identifier (e.g., an
integer) to each procedure, and this number would be carried in a single field in an RPC request message.
This would require some kind of central coordination to avoid assigning the same procedure number to two
different procedures. Alternatively, the protocol could implement a hierarchical name space, analogous to
that used for file pathnames, which requires only that a file’s “basename” be unique within its directory.
This approach potentially simplifies the job of ensuring uniqueness of procedure names. A hierarchical
name space for RPC could be implemented by defining a set of fields in the request message format, one for
each level of naming in, say, a two- or three-level hierarchical name space.

The key to matching a reply message to the corresponding request is to uniquely identify request-replies
pairs using a message ID field. A reply message had its message ID field set to the same value as the
request message. When the client RPC module receives the reply, it uses the message ID to search for the
corresponding outstanding request. To make the RPC transaction appear like a local procedure call to the
caller, the caller is blocked until the reply message is received. When the reply is received, the blocked
caller is identified based on the request number in the reply, the remote procedure’s return value is obtained
from the reply, and the caller is unblocked so that it can return with that return value.

One of the recurrent challenges in RPC is dealing with unexpected responses, and we see this with message
IDs. For example, consider the following pathological (but realistic) situation. A client machine sends a
request message with a message ID of 0, then crashes and reboots, and then sends an unrelated request
message, also with a message ID of 0. The server may not have been aware that the client crashed and
rebooted and, upon seeing a request message with a message ID of 0, acknowledges it and discards it as a
duplicate. The client never gets a response to the request.

One way to eliminate this problem is to use a boot ID. A machine’s boot ID is a number that is incremented
each time the machine reboots; this number is read from nonvolatile storage (e.g., a disk or flash drive),
incremented, and written back to the storage device during the machine’s start-up procedure. This number
is then put in every message sent by that host. If a message is received with an old message ID but a new
boot ID, it is recognized as a new message. In effect, the message ID and boot ID combine to form a unique
ID for each transaction.

262 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

Overcoming Network Limitations

RPC protocols often perform additional functions to deal with the fact that networks are not perfect channels.
Two such functions are:

• Provide reliable message delivery

• Support large message sizes through fragmentation and reassembly

An RPC protocol might “define this problem away” by choosing to run on top of a reliable protocol like
TCP, but in many cases, the RCP protocol implements its own reliable message delivery layer on top of
an unreliable substrate (e.g., UDP/IP). Such an RPC protocol would likely implement reliability using ac-
knowledgments and timeouts, similarly to TCP.

The basic algorithm is straightforward, as illustrated by the timeline given in Figure 5.15. The client sends
a request message and the server acknowledges it. Then, after executing the procedure, the server sends a
reply message and the client acknowledges the reply.

Figure 5.15.: Simple timeline for a reliable RPC protocol.

Either a message carrying data (a request message or a reply message) or the ACK sent to acknowledge that
message may be lost in the network. To account for this possibility, both client and server save a copy of
each message they send until an ACK for it has arrived. Each side also sets a RETRANSMIT timer and
resends the message should this timer expire. Both sides reset this timer and try again some agreed-upon
number of times before giving up and freeing the message.

If an RPC client receives a reply message, clearly the corresponding request message must have been re-
ceived by the server. Hence, the reply message itself is an implicit acknowledgment, and any additional
acknowledgment from the server is not logically necessary. Similarly, a request message could implicitly
acknowledge the preceding reply message—assuming the protocol makes request-reply transactions sequen-
tial, so that one transaction must complete before the next begins. Unfortunately, this sequentiality would
severely limit RPC performance.

A way out of this predicament is for the RPC protocol to implement a channel abstraction. Within a given
channel, request/reply transactions are sequential—there can be only one transaction active on a given chan-
nel at any given time—but there can be multiple channels. Or said another way, the channel abstraction
makes it possible to multiplex multiple RPC request/reply transactions between a client/server pair.

5.3. Remote Procedure Call 263

Computer Networks: A Systems Approach, Release Version 6.1

Each message includes a channel ID field to indicate which channel the message belongs to. A request
message in a given channel would implicitly acknowledge the previous reply in that channel, if it hadn’t
already been acknowledged. An application program can open multiple channels to a server if it wants
to have more than one request/reply transaction between them at the same time (the application would
need multiple threads). As illustrated in Figure 5.16, the reply message serves to acknowledge the request
message, and a subsequent request acknowledges the preceding reply. Note that we saw a very similar
approach—called concurrent logical channels—in an earlier section as a way to improve on the performance
of a stop-and-wait reliability mechanism.

Figure 5.16.: Timeline for a reliable RPC protocol using implicit acknowledgment.

Another complication that RPC must address is that the server may take an arbitrarily long time to produce
the result, and, worse yet, it may crash before generating the reply. Keep in mind that we are talking about
the period of time after the server has acknowledged the request but before it has sent the reply. To help
the client distinguish between a slow server and a dead server, the RPC’s client side can periodically send
an “Are you alive?” message to the server, and the server side responds with an ACK. Alternatively, the
server could send “I am still alive” messages to the client without the client having first solicited them. The
approach is more scalable because it puts more of the per-client burden (managing the timeout timer) on the
clients.

RPC reliability may include the property known as at-most-once semantics. This means that for every
request message that the client sends, at most one copy of that message is delivered to the server. Each time
the client calls a remote procedure, that procedure is invoked at most one time on the server machine. We
say “at most once” rather than “exactly once” because it is always possible that either the network or the
server machine has failed, making it impossible to deliver even one copy of the request message.

To implement at-most-once semantics, RPC on the server side must recognize duplicate requests (and ignore
them), even if it has already successfully replied to the original request. Hence, it must maintain some state
information that identifies past requests. One approach is to identify requests using sequence numbers, so
a server need only remember the most recent sequence number. Unfortunately, this would limit an RPC to
one outstanding request (to a given server) at a time, since one request must be completed before the request
with the next sequence number can be transmitted. Once again, channels provide a solution. The server
could recognize duplicate requests by remembering the current sequence number for each channel, without
limiting the client to one request at a time.

264 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

As obvious as at-most-once sounds, not all RPC protocols support this behavior. Some support a semantics
that is facetiously called zero-or-more semantics; that is, each invocation on a client results in the remote
procedure being invoked zero or more times. It is not difficult to understand how this would cause problems
for a remote procedure that changed some local state variable (e.g., incremented a counter) or that had some
externally visible side effect (e.g., launched a missile) each time it was invoked. On the other hand, if the
remote procedure being invoked is idempotent—multiple invocations have the same effect as just one—then
the RPC mechanism need not support at-most-once semantics; a simpler (possibly faster) implementation
will suffice.

As was the case with reliability, the two reasons why an RPC protocol might implement message fragmenta-
tion and reassembly are that it is not provided by the underlying protocol stack or that it can be implemented
more efficiently by the RPC protocol. Consider the case where RPC is implemented on top of UDP/IP and
relies on IP for fragmentation and reassembly. If even one fragment of a message fails to arrive within a
certain amount of time, IP discards the fragments that did arrive and the message is effectively lost. Even-
tually, the RPC protocol (assuming it implements reliability) would time out and retransmit the message. In
contrast, consider an RPC protocol that implements its own fragmentation and reassembly and aggressively
ACKs or NACKs (negatively acknowledges) individual fragments. Lost fragments would be more quickly
detected and retransmitted, and only the lost fragments would be retransmitted, not the whole message.

Synchronous versus Asynchronous Protocols

One way to characterize a protocol is by whether it is synchronous or asynchronous. The precise meaning
of these terms depends on where in the protocol hierarchy you use them. At the transport layer, it is most
accurate to think of them as defining the extremes of a spectrum rather than as two mutually exclusive
alternatives. The key attribute of any point along the spectrum is how much the sending process knows after
the operation to send a message returns. In other words, if we assume that an application program invokes
a send operation on a transport protocol, then exactly what does the application know about the success of
the operation when the send operation returns?

At the asynchronous end of the spectrum, the application knows absolutely nothing when send returns.
Not only does it not know if the message was received by its peer, but it doesn’t even know for sure that
the message has successfully left the local machine. At the synchronous end of the spectrum, the send
operation typically returns a reply message. That is, the application not only knows that the message it sent
was received by its peer, but it also knows that the peer has returned an answer. Thus, synchronous protocols
implement the request/reply abstraction, while asynchronous protocols are used if the sender wants to be
able to transmit many messages without having to wait for a response. Using this definition, RPC protocols
are usually synchronous protocols.

Although we have not discussed them in this chapter, there are interesting points between these two ex-
tremes. For example, the transport protocol might implement send so that it blocks (does not return) until
the message has been successfully received at the remote machine, but returns before the sender’s peer on
that machine has actually processed and responded to it. This is sometimes called a reliable datagram
protocol.

5.3.2 RPC Implementations (SunRPC, DCE, gRPC)

We now turn our discussion to some example implementations of RPC protocols. These will serve to
highlight some of the different design decisions that protocol designers have made. Our first example is

5.3. Remote Procedure Call 265

Computer Networks: A Systems Approach, Release Version 6.1

SunRPC, a widely used RPC protocol also known as Open Network Computing RPC (ONC RPC). Our
second example, which we will refer to as DCE-RPC, is part of the Distributed Computing Environment
(DCE). DCE is a set of standards and software for building distributed systems that was defined by the Open
Software Foundation (OSF), a consortium of computer companies that originally included IBM, Digital
Equipment Corporation, and Hewlett-Packard; today, OSF goes by the name The Open Group. Our third
example is gRPC, a popular RPC mechanism that Google has open sourced, based on an RPC mechanism
that they have been using internally to implement cloud services in their datacenters.

These three examples represent interesting alternative design choices in the RPC solution space, but least
you think they are the only options, we describe three other RPC-like mechanisms (WSDL, SOAP, and
REST) in the context of web services in Chapter 9.

SunRPC

SunRPC became a de facto standard thanks to its wide distribution with Sun workstations and the central
role it plays in Sun’s popular Network File System (NFS). The IETF subsequently adopted it as a standard
Internet protocol under the name ONC RPC.

SunRPC can be implemented over several different transport protocols. Figure 5.17 illustrates the protocol
graph when SunRPC is implemented on UDP. As we noted earlier in this section, a strict layerist might
frown on the idea of running a transport protocol over a transport protocol, or argue that RPC must be
something other than a transport protocol since it appears “above” the transport layer. Pragmatically, the
design decision to run RPC over an existing transport layer makes quite a lot of sense, as will be apparent in
the following discussion.

Figure 5.17.: Protocol graph for SunRPC on top of UDP.

SunRPC uses two-tier identifiers to identify remote procedures: a 32-bit program number and a 32-bit
procedure number. (There is also a 32-bit version number, but we ignore that in the following discussion.)
For example, the NFS server has been assigned program number x00100003, and within this program
getattr is procedure 1, setattr is procedure 2, read is procedure 6, write is procedure 8, and so

266 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

on. The program number and procedure number are transmitted in the SunRPC request message’s header,
whose fields are shown in Figure 5.18. The server—which may support several program numbers—is
responsible for calling the specified procedure of the specified program. A SunRPC request really represents
a request to call the specified program and procedure on the particular machine to which the request was
sent, even though the same program number may be implemented on other machines in the same network.
Thus, the address of the server’s machine (e.g., an IP address) is an implicit third tier of the RPC address.

Figure 5.18.: SunRPC header formats: (a) request; (b) reply.

Different program numbers may belong to different servers on the same machine. These different servers
have different transport layer demux keys (e.g., UDP ports), most of which are not well-known numbers but
instead are assigned dynamically. These demux keys are called transport selectors. How can a SunRPC
client that wants to talk to a particular program determine which transport selector to use to reach the
corresponding server? The solution is to assign a well-known address to just one program on the remote
machine and let that program handle the task of telling clients which transport selector to use to reach any
other program on the machine. The original version of this SunRPC program is called the Port Mapper,
and it supports only UDP and TCP as underlying protocols. Its program number is x00100000, and its
well-known port is 111. RPCBIND, which evolved from the Port Mapper, supports arbitrary underlying
transport protocols. As each SunRPC server starts, it calls an RPCBIND registration procedure, on the
server’s own home machine, to register its transport selector and the program numbers that it supports. A
remote client can then call an RPCBIND lookup procedure to look up the transport selector for a particular
program number.

To make this more concrete, consider an example using the Port Mapper with UDP. To send a request
message to NFS’s read procedure, a client first sends a request message to the Port Mapper at well-known

5.3. Remote Procedure Call 267

Computer Networks: A Systems Approach, Release Version 6.1

UDP port 111, asking that procedure 3 be invoked to map program number x00100003 to the UDP port
where the NFS program currently resides. The client then sends a SunRPC request message with program
number x00100003 and procedure number 6 to this UDP port, and the SunRPC module listening at that
port calls the NFS read procedure. The client also caches the program-to-port number mapping so that it
need not go back to the Port Mapper each time it wants to talk to the NFS program.1

To match up a reply message with the corresponding request, so that the result of the RPC can be returned to
the correct caller, both request and reply message headers include a XID (transaction ID) field, as in Figure
5.18. A XID is a unique transaction ID used only by one request and the corresponding reply. After the
server has successfully replied to a given request, it does not remember the XID. Because of this, SunRPC
cannot guarantee at-most-once semantics.

The details of SunRPC’s semantics depend on the underlying transport protocol. It does not implement
its own reliability, so it is only reliable if the underlying transport is reliable. (Of course, any application
that runs over SunRPC may also choose to implement its own reliability mechanisms above the level of
SunRPC.) The ability to send request and reply messages that are larger than the network MTU is also
dependent on the underlying transport. In other words, SunRPC does not make any attempt to improve on
the underlying transport when it comes to reliability and message size. Since SunRPC can run over many
different transport protocols, this gives it considerable flexibility without complicating the design of the RPC
protocol itself.

Returning to the SunRPC header format of Figure 5.18, the request message contains variable-length
Credentials and Verifier fields, both of which are used by the client to authenticate itself to the
server—that is, to give evidence that the client has the right to invoke the server. How a client authenticates
itself to a server is a general issue that must be addressed by any protocol that wants to provide a reasonable
level of security. This topic is discussed in more detail in another chapter.

DCE-RPC

DCE-RPC is the RPC protocol at the core of the DCE system and was the basis of the RPC mechanism
underlying Microsoft’s DCOM and ActiveX. It can be used with the Network Data Representation (NDR)
stub compiler described in another chapter, but it also serves as the underlying RPC protocol for the Common
Object Request Broker Architecture (CORBA), which is an industry-wide standard for building distributed,
object-oriented systems.

DCE-RPC, like SunRPC, can be implemented on top of several transport protocols including UDP and
TCP. It is also similar to SunRPC in that it defines a two-level addressing scheme: the transport protocol
demultiplexes to the correct server, DCE-RPC dispatches to a particular procedure exported by that server,
and clients consult an “endpoint mapping service” (similar to SunRPC’s Port Mapper) to learn how to reach
a particular server. Unlike SunRPC, however, DCE-RPC implements at-most-once call semantics. (In truth,
DCE-RPC supports multiple call semantics, including an idempotent semantics similar to SunRPC’s, but
at-most-once is the default behavior.) There are some other differences between the two approaches, which
we will highlight in the following paragraphs.

Figure 5.19 gives a timeline for the typical exchange of messages, where each message is labeled by its
DCE-RPC type. The client sends a Request message, the server eventually replies with a Response
message, and the client acknowledges (Ack) the response. Instead of the server acknowledging the request

1 In practice, NFS is such an important program that it has been given its own well-known UDP port, but for the purposes of
illustration we’re pretending that’s not the case.

268 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

Figure 5.19.: Typical DCE-RPC message exchange.

5.3. Remote Procedure Call 269

Computer Networks: A Systems Approach, Release Version 6.1

messages, however, the client periodically sends a Ping message to the server, which responds with a
Working message to indicate that the remote procedure is still in progress. If the server’s reply is received
reasonably quickly, no Pings are sent. Although not shown in the figure, other message types are also
supported. For example, the client can send a Quit message to the server, asking it to abort an earlier call
that is still in progress; the server responds with a Quack (quit acknowledgment) message. Also, the server
can respond to a Request message with a Reject message (indicating that a call has been rejected), and
it can respond to a Ping message with a Nocall message (indicating that the server has never heard of
the caller).

Each request/reply transaction in DCE-RPC takes place in the context of an activity. An activity is a logical
request/reply channel between a pair of participants. At any given time, there can be only one message
transaction active on a given channel. Like the concurrent logical channel approach described above, the
application programs have to open multiple channels if they want to have more than one request/reply
transaction between them at the same time. The activity to which a message belongs is identified by the
message’s ActivityId field. A SequenceNum field then distinguishes between calls made as part of
the same activity; it serves the same purpose as SunRPC’s XID (transaction id) field. Unlike SunRPC, DCE-
RPC keeps track of the last sequence number used as part of a particular activity, so as to ensure at-most-once
semantics. To distinguish between replies sent before and after a server machine reboots, DCE-RPC uses a
ServerBoot field to hold the machine’s boot ID.

Another design choice made in DCE-RPC that differs from SunRPC is the support of fragmentation and
reassembly in the RPC protocol. As noted above, even if an underlying protocol such as IP provides frag-
mentation/reassembly, a more sophisticated algorithm implemented as part of RPC can result in quicker
recovery and reduced bandwidth consumption when fragments are lost. The FragmentNum field uniquely
identifies each fragment that makes up a given request or reply message. Each DCE-RPC fragment is as-
signed a unique fragment number (0, 1, 2, 3, and so on). Both the client and server implement a selective
acknowledgment mechanism, which works as follows. (We describe the mechanism in terms of a client
sending a fragmented request message to the server; the same mechanism applies when a server sends a
fragment response to the client.)

First, each fragment that makes up the request message contains both a unique FragmentNum and a flag
indicating whether this packet is a fragment of a call (frag) or the last fragment of a call (); request
messages that fit in a single packet carry a flag. The server knows it has received the complete request
message when it has the packet and there are no gaps in the fragment numbers. Second, in response to
each arriving fragment, the server sends a Fack (fragment acknowledgment) message to the client. This
acknowledgment identifies the highest fragment number that the server has successfully received. In other
words, the acknowledgment is cumulative, much like in TCP. In addition, however, the server selectively
acknowledges any higher fragment numbers it has received out of order. It does so with a bit vector that
identifies these out-of-order fragments relative to the highest in-order fragment it has received. Finally, the
client responds by retransmitting the missing fragments.

Figure 5.20 illustrates how this all works. Suppose the server has successfully received fragments up through
number 20, plus fragments 23, 25, and 26. The server responds with a Fack that identifies fragment 20 as
the highest in-order fragment, plus a bit-vector (SelAck) with the third (23=20+3), fifth (25=20+5), and
sixth (26=20+6) bits turned on. So as to support an (almost) arbitrarily long bit vector, the size of the vector
(measured in 32-bit words) is given in the SelAckLen field.

Given DCE-RPC’s support for very large messages—the FragmentNum field is 16 bits long, meaning it
can support 64K fragments—it is not appropriate for the protocol to blast all the fragments that make up
a message as fast as it can since doing so might overrun the receiver. Instead, DCE-RPC implements a

270 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

Figure 5.20.: Fragmentation with selective acknowledgments.

5.3. Remote Procedure Call 271

Computer Networks: A Systems Approach, Release Version 6.1

flow-control algorithm that is very similar to TCP’s. Specifically, each Fack message not only acknowl-
edges received fragments but also informs the sender of how many fragments it may now send. This is
the purpose of the WindowSize field in Figure 5.20, which serves exactly the same purpose as TCP’s
AdvertisedWindow field except it counts fragments rather than bytes. DCE-RPC also implements a
congestion-control mechanism that is similar to TCP’s. Given the complexity of congestion control, it is
perhaps not surprising that some RPC protocols avoid it by avoiding fragmentation.

In summary, designers have quite a range of options open to them when designing an RPC protocol. SunRPC
takes the more minimalist approach and adds relatively little to the underlying transport beyond the essentials
of locating the right procedure and identifying messages. DCE-RPC adds more functionality, with the
possibility of improved performance in some environments at the cost of greater complexity.

gRPC

Despite its origins in Google, gRPC does not stand for Google RPC. The “g” stands for something different
in each release. For version 1.10 it stood for “glamorous” and for 1.18 it stood for “goose”. Googlers are
wild and crazy people. Nonetheless, gRPC is popular because it makes available to everyone—as open
source—a decade’s worth of experience within Google using RPC to build scalable cloud services.

Before getting into the details, there are some major differences between gRPC and the other two exam-
ples we’ve just covered. The biggest is that gRPC is designed for cloud services rather than the simpler
client/server paradigm that preceded it. The difference is essentially an extra level of indirection. In the
client/server world, the client invokes a method on a specific server process running on a specific server
machine. One server process is presumed to be enough to serve calls from all the client processes that might
call it.

With cloud services, the client invokes a method on a service, which in order to support calls from arbitrarily
many clients at the same time, is implemented by a scalable number of server processes, each potentially run-
ning on a different server machine. This is where the cloud comes into play: datacenters make a seemingly
infinite number of server machines available to scale up cloud services. When we use the term “scalable”
we mean that the number of identical server processes you elect to create depends on the workload (i.e.,
the number of clients that want service at any given time) and that number can be adjusted dynamically
over time. One other detail is that cloud services don’t typically create a new process, per se, but rather,
they launch a new container, which is essentially a process encapsulated inside an isolated environment
that includes all the software packages the process needs to run. Docker is today’s canonical example of a
container platform.

Back to the claim that a service is essentially an extra level of indirection layered on top of a server, all this
means is that the caller identifies the service it wants to invoke, and a load balancer directs that invocation
to one of the many available server processes (containers) that implement that service, as shown in Figure
5.21. The load balancer can be implemented in different ways, including a hardware device, but it is typically
implemented by a proxy process that runs in a virtual machine (also hosted in the cloud) rather than as a
physical appliance.

There is a set of best practices for implementing the actual server code that eventually responds to that
request, and some additional cloud machinery to create/destroy containers and load balance requests across
those containers. Kubernetes is today’s canonical example of such a container management system, and
the micro-services architecture is what we call the best practices in building services in this cloud native
manner. Both are interesting topics, but beyond the scope of this book.

272 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

Figure 5.21.: Using RPC to invoke a scalable cloud service.

What we are interested in here is transport protocol at the core of gRPC. Here again, there is a major
departure from the two previous example protocols, not in terms of fundamental problems that need to be
addressed, but in terms of gRPC’s approach to addressing them. In short, gRPC “outsources” many of the
problems to other protocols, leaving gRPC to essentially package those capabilities in an easy-to-use form.
Let’s look at the details.

First, gRPC runs on top of TCP instead of UDP, which means it outsources the problems of connection
management and reliably transmitting request and reply messages of arbitrary size. Second, gRPC actually
runs on top of a secured version of TCP called Transport Layer Security (TLS)—a thin layer that sits
above TCP in the protocol stack—which means it outsources responsibility for securing the communication
channel so adversaries can’t eavesdrop or hijack the message exchange. Third, gRPC actually, actually runs
on top of HTTP/2 (which is itself layered on top of TCP and TLS), meaning gRPC outsources yet two
other problems: (1) efficiently encoding/compressing binary data into a message, (2) multiplexing multiple
remote procedure calls onto a single TCP connection. In other words, gRPC encodes the identifier for the
remote method as a URI, the request parameters to the remote method as content in the HTTP message,
and the return value from the remote method in the HTTP response. The full gRPC stack is depicted in
Figure 5.22, which also includes the language-specific elements. (One strength of gRPC is the wide set of
programming languages it supports, with only a small subset shown in Figure 5.22.)

We discuss TLS in Chapter 8 (in the context of a broad range of security topics) and HTTP in Chapter
9 (in the context of what are traditionally viewed as application level protocols). But we find ourselves
in an interesting dependency loop: RPC is a flavor of transport protocol used to implement distributed
applications, HTTP is an example of an application-level protocol, and yet gRPC runs on top of HTTP
rather than the other way around.

The short explanation is that layering provides a convenient way for humans to wrap their heads around
complex systems, but what we’re really trying to do is solve a set of problem (e.g., reliably transfer messages
of arbitrary size, identify senders and recipients, match requests messages with reply messages, and so on)
and the way these solutions get bundled into protocols, and those protocols then layered on top of each other,
is the consequence of incremental changes over time. You could argue it’s an historical accident. Had the

5.3. Remote Procedure Call 273

Computer Networks: A Systems Approach, Release Version 6.1

Figure 5.22.: gRPC core stacked on top of HTTP, TLS, and TCP and supporting a collection of languages.

Internet started with an RPC mechanism as ubiquitous as TCP, HTTP might have been implemented on top
of it (as might have almost all of the other application-level protocols described in Chapter 9) and Google
would have spent their time improving that protocol rather than inventing one of their own (as they and
others have been doing with TCP). What happened instead is that the web became the Internet’s killer app,
which meant that its application protocol (HTTP) became universally supported by the rest of the Internet’s
infrastructure: Firewalls, Load Balancers, Encryption, Authentication, Compression, and so on. Because all
of these network elements have been designed to work well with HTTP, HTTP has effectively become the
Internet’s universal request/reply transport protocol.

Returning to the unique characteristics of gRPC, the biggest value it brings to the table is to incorporate
streaming into the RPC mechanism, which is to say, gRPC supports four different request/reply patterns:

1. Simple RPC: The client sends a single request message and the server responds with a single reply
message.

2. Server Streaming RPC: The client sends a single request message and the server responds with a
stream of reply messages. The client completes once it has all the server’s responses.

3. Client Streaming RPC: The client sends a stream of requests to the server, and the server sends back
a single response, typically (but not necessarily) after it has received all the client’s requests.

4. Bidirectional Streaming RPC: The call is initiated by the client, but after that, the client and server
can read and write requests and responses in any order; the streams are completely independent.

This extra freedom in how the client and server interact means the gRPC transport protocol needs to send
additional metadata and control messages—in addition to the actual request and reply messages—between
the two peers. Examples include Error and Status codes (to indicate success or why something failed),
Timeouts (to indicate how long a client is willing to wait for a response), PING (a keep-alive notice to

274 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

indicate that one side or the other is still running), EOS (end-of-stream notice to indicate that there are no
more requests or responses), and GOAWAY (a notice from servers to clients to indicate that they will no
longer accept any new streams). Unlike many other protocols in this book, where we show the protocol’s
header format, the way this control information gets passed between the two sides is largely dictated by the
underlying transport protocol, in this case HTTP/2. For example, as we’ll see in Chapter 9, HTTP already
includes a set of header fields and reply codes that gRPC takes advantage of.

You may want to peruse the HTTP discussion in Chapter 9 before continuing, but the following is fairly
straightforward. A simple RPC request (with no streaming) might include the following HTTP message
from the client to the server:

HEADERS (flags = END_HEADERS)
:method = POST
:scheme = http
:path = /google.pubsub.v2.PublisherService/CreateTopic
:authority = pubsub.googleapis.com
grpc-timeout = 1S
content-type = application/grpc+proto
grpc-encoding = gzip
authorization = Bearer y235.wef315yfh138vh31hv93hv8h3v
DATA (flags = END_STREAM)
<Length-Prefixed Message>

leading to the following response message from the server back to the client:

HEADERS (flags = END_HEADERS)
:status = 200
grpc-encoding = gzip
content-type = application/grpc+proto
DATA
<Length-Prefixed Message>
HEADERS (flags = END_STREAM, END_HEADERS)
grpc-status = 0 # OK
trace-proto-bin = jher831yy13JHy3hc

In this example, HEADERS and DATA are two standard HTTP control messages, which effectively delineate
between “the message’s header” and “the message’s payload.” Specifically, each line following HEADERS
(but before DATA) is an attribute = value pair that makes up the header (think of each line as
analogous to a header field); those pairs that start with colon (e.g., :status = 200) are part of the HTTP
standard (e.g., status 200 indicates success); and those pairs that do not start with a colon are gRPC-specific
customizations (e.g., grpc-encoding = gzip indicates that the data in the message that follows has
been compressed using gzip, and grpc-timeout = 1S indicates that the client has set a one second
timeout).

There is one final piece to explain. The header line

content-type = application/grpc+proto

indicates that the message body (as demarcated by the DATA line) is meaningful only to the application
program (i.e., the server method) that this client is requesting service from. More specifically, the +proto
string specifies that the recipient will be able to interpret the bits in the message according to a Protocol
Buffer (abbreviated proto) interface specification. Protocol Buffers are gRPC’s way of specifying how the

5.3. Remote Procedure Call 275

Computer Networks: A Systems Approach, Release Version 6.1

parameters being passed to the server are encoded into a message, which is in turn used to generate the stubs
that sit between the underlying RPC mechanism and the actual functions being called (see Figure 5.14).
This is a topic we’ll take up in Chapter 7.

Key Takeaway

The bottom line is that complex mechanisms like RPC, once packaged as a monolithic bundle of software
(as with SunRPC and DCE-RPC), is nowadays built by assembling an assortment of smaller pieces, each of
which solves a narrow problem. gRPC is both an example of that approach, and a tool that enables further
adoption of the approach. The micro-services architecture mentioned earlier in this subsection applies the
“built from small parts” strategy to entire cloud applications (e.g., Uber, Lyft, Netflix, Yelp, Spotify), where
gRPC is often the communication mechanism used by those small pieces to exchange messages with each
other. [Next]

5.4 Transport for Real-Time (RTP)

In the early days of packet switching, most applications were concerned with transfering files, although as
early as 1981, experiments were under way to carry real-time traffic, such as digitized voice samples. We
call an application “real-time” when it has strong requirements for the timely delivery of information. Voice
over IP (VoIP) is a classic example of a real-time application because you can’t easily carry on a conversation
with someone if it takes more than a fraction of a second to get a response. As we will see shortly, real-time
applications place some specific demands on the transport protocol that are not well met by the protocols
discussed so far in this chapter.

Figure 5.23.: User interface of a videoconferencing tool.

276 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

Multimedia applications—those that involve video, audio, and data—are sometimes divided into two
classes: interactive applications and streaming applications. Figure 5.23 shows the authors using an example
conferencing tool that’s typical of the interactive class. Along with VoIP, these are the sort of applications
with the most stringent real-time requirements.

Streaming applications typically deliver audio or video streams from a server to a client and are typified by
such commercial products as Spotify. Streaming video, typified by YouTube and Netflix, has become one of
the dominant forms of traffic on the Internet. Because streaming applications lack human-to-human inter-
action, they place somewhat less stringent real-time requirements on the underlying protocols. Timeliness
is still important, however—for example, you want a video to start playing soon after pushing “play,” and
once it starts to play, late packets will either cause it to stall or create some sort of visual degradation. So,
while streaming applications are not strictly real time, they still have enough in common with interactive
multimedia applications to warrant consideration of a common protocol for both types of application.

It should by now be apparent that designers of a transport protocol for real-time and multimedia applica-
tions face a real challenge in defining the requirements broadly enough to meet the needs of very different
applications. They must also pay attention to the interactions among different applications, such as the syn-
chronization of audio and video streams. We will see below how these concerns affected the design of the
primary real-time transport protocol in use today: Real-time Transport Protocol (RTP).

Much of RTP actually derives from protocol functionality that was originally embedded in the application
itself. Two of the first such applications were vic and vat, the former supporting real-time video and the
latter supporting real-time audio. Both applications originally ran directly over UDP, while the designers
figured out which features were needed to handle the real-time nature of the communication. Later, they
realized that these features could be useful to many other applications and defined a protocol with those
features. That protocol was eventually standardized as RTP.

RTP can run over many lower-layer protocols, but still commonly runs over UDP. That leads to the protocol
stack shown in Figure 5.24. Note that we are therefore running a transport protocol over a transport protocol.
There is no rule against that, and in fact it makes a lot of sense, since UDP provides such a minimal level of
functionality, and the basic demultiplexing based on port numbers happens to be just what RTP needs as a
starting point. So, rather than recreate port numbers in RTP, RTP outsources the demultiplexing function to
UDP.

Figure 5.24.: Protocol stack for multimedia applications using RTP.

5.4. Transport for Real-Time (RTP) 277

Computer Networks: A Systems Approach, Release Version 6.1

5.4.1 Requirements

The most basic requirement for a general-purpose multimedia protocol is that it allows similar applications
to interoperate with each other. For example, it should be possible for two independently implemented
audioconferencing applications to talk to each other. This immediately suggests that the applications had
better use the same method of encoding and compressing voice; otherwise, the data sent by one party will be
incomprehensible to the receiving party. Since there are quite a few different coding schemes for voice, each
with its own trade-offs among quality, bandwidth requirements, and computational cost, it would probably
be a bad idea to decree that only one such scheme can be used. Instead, our protocol should provide a way
that a sender can tell a receiver which coding scheme it wants to use, and possibly negotiate until a scheme
that is available to both parties is identified.

Just as with audio, there are many different video coding schemes. Thus, we see that the first common
function that RTP can provide is the ability to communicate that choice of coding scheme. Note that this
also serves to identify the type of application (e.g., audio or video); once we know what coding algorithm is
being used, we know what type of data is being encoded as well.

Another important requirement is to enable the recipient of a data stream to determine the timing relationship
among the received data. Real-time applications need to place received data into a playback buffer to smooth
out the jitter that may have been introduced into the data stream during transmission across the network.
Thus, some sort of timestamping of the data will be necessary to enable the receiver to play it back at the
appropriate time.

Related to the timing of a single media stream is the issue of synchronization of multiple media in a confer-
ence. The obvious example of this would be to synchronize an audio and video stream that are originating
from the same sender. As we will see below, this is a slightly more complex problem than playback time
determination for a single stream.

Another important function to be provided is an indication of packet loss. Note that an application with tight
latency bounds generally cannot use a reliable transport like TCP because retransmission of data to correct
for loss would probably cause the packet to arrive too late to be useful. Thus, the application must be able
to deal with missing packets, and the first step in dealing with them is noticing that they are in fact missing.
As an example, a video application using MPEG encoding may take different actions when a packet is lost,
depending on whether the packet came from an I frame, a B frame, or a P frame.

Packet loss is also a potential indicator of congestion. Since multimedia applications generally do not run
over TCP, they also miss out on the congestion avoidance features of TCP. Yet, many multimedia appli-
cations are capable of responding to congestion—for example, by changing the parameters of the coding
algorithm to reduce the bandwidth consumed. Clearly, to make this work, the receiver needs to notify the
sender that losses are occurring so that the sender can adjust its coding parameters.

Another common function across multimedia applications is the concept of frame boundary indication. A
frame in this context is application specific. For example, it may be helpful to notify a video application
that a certain set of packets correspond to a single frame. In an audio application it is helpful to mark the
beginning of a “talkspurt,” which is a collection of sounds or words followed by silence. The receiver can
then identify the silences between talkspurts and use them as opportunities to move the playback point. This
follows the observation that slight shortening or lengthening of the spaces between words are not perceptible
to users, whereas shortening or lengthening the words themselves is both perceptible and annoying.

A final function that we might want to put into the protocol is some way of identifying senders that is more
user-friendly than an IP address. As illustrated in Figure 5.23, audio and video conferencing applications

278 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

can display strings such as on their control panels, and thus the application protocol should support the
association of such a string with a data stream.

In addition to the functionality that is required from our protocol, we note an additional requirement: It
should make reasonably efficient use of bandwidth. Put another way, we don’t want to introduce a lot of
extra bits that need to be sent with every packet in the form of a long header. The reason for this is that
audio packets, which are one of the most common types of multimedia data, tend to be small, so as to
reduce the time it takes to fill them with samples. Long audio packets would mean high latency due to
packetization, which has a negative effect on the perceived quality of conversations. (This was one of the
factors in choosing the length of ATM cells.) Since the data packets themselves are short, a large header
would mean that a relatively large amount of link bandwidth would be used by headers, thus reducing
the available capacity for “useful” data. We will see several aspects of the design of RTP that have been
influenced by the necessity of keeping the header short.

You could argue whether every single feature just described really needs to be in a real-time transport
protocol, and you could probably find some more that could be added. The key idea here is to make life
easier for application developers by giving them a useful set of abstractions and building blocks for their
applications. For example, by putting a timestamping mechanism into RTP, we save every developer of
a real-time application from inventing his own. We also increase the chances that two different real-time
applications might interoperate.

5.4.2 RTP Design

Now that we have seen the rather long list of requirements for our transport protocol for multimedia, we turn
to the details of the protocol that has been specified to meet those requirements. This protocol, RTP, was
developed in the IETF and is in widespread use. The RTP standard actually defines a pair of protocols, RTP
and the Real-time Transport Control Protocol (RTCP). The former is used for the exchange of multimedia
data, while the latter is used to periodically send control information associated with a certain data flow.
When running over UDP, the RTP data stream and the associated RTCP control stream use consecutive
transport-layer ports. The RTP data uses an even port number and the RTCP control information uses the
next higher (odd) port number.

Because RTP is designed to support a wide variety of applications, it provides a flexible mechanism by
which new applications can be developed without repeatedly revising the RTP protocol itself. For each class
of application (e.g., audio), RTP defines a profile and one or more formats. The profile provides a range of
information that ensures a common understanding of the fields in the RTP header for that application class,
as will be apparent when we examine the header in detail. The format specification explains how the data
that follows the RTP header is to be interpreted. For example, the RTP header might just be followed by a
sequence of bytes, each of which represents a single audio sample taken a defined interval after the previous
one. Alternatively, the format of the data might be much more complex; an MPEG-encoded video stream,
for example, would need to have a good deal of structure to represent all the different types of information.

Key Takeaway

The design of RTP embodies an architectural principle known as Application Level Framing (ALF). This
principle was put forward by Clark and Tennenhouse in 1990 as a new way to design protocols for emerging
multimedia applications. They recognized that these new applications were unlikely to be well served by
existing protocols such as TCP, and that furthermore they might not be well served by any sort of “one-size-

5.4. Transport for Real-Time (RTP) 279

Computer Networks: A Systems Approach, Release Version 6.1

fits-all” protocol. At the heart of this principle is the belief that an application understands its own needs
best. For example, an MPEG video application knows how best to recover from lost frames and how to react
differently if an I frame or a B frame is lost. The same application also understands best how to segment the
data for transmission—for example, it’s better to send the data from different frames in different datagrams,
so that a lost packet only corrupts a single frame, not two. It is for this reason that RTP leaves so many of
the protocol details to the profile and format documents that are specific to an application. [Next]

Header Format

Figure 5.25 shows the header format used by RTP. The first 12 bytes are always present, whereas the con-
tributing source identifiers are only used in certain circumstances. After this header there may be optional
header extensions, as described below. Finally, the header is followed by the RTP payload, the format of
which is determined by the application. The intention of this header is that it contain only the fields that are
likely to be used by many different applications, since anything that is very specific to a single application
would be more efficiently carried in the RTP payload for that application only.

Figure 5.25.: RTP header format.

The first two bits are a version identifier, which contains the value 2 in the RTP version deployed at the
time of writing. You might think that the designers of the protocol were rather bold to think that 2 bits
would be enough to contain all future versions of RTP, but recall that bits are at a premium in the RTP
header. Furthermore, the use of profiles for different applications makes it less likely that many revisions to
the base RTP protocol would be needed. In any case, if it turns out that another version of RTP is needed
beyond version 2, it would be possible to consider a change to the header format so that more than one future
version would be possible. For example, a new RTP header with the value 3 in the version field could have
a “subversion” field somewhere else in the header.

The next bit is the padding (P) bit, which is set in circumstances in which the RTP payload has been padded
for some reason. RTP data might be padded to fill up a block of a certain size as required by an encryption
algorithm, for example. In such a case, the complete length of the RTP header, data, and padding would be
conveyed by the lower-layer protocol header (e.g., the UDP header), and the last byte of the padding would
contain a count of how many bytes should be ignored. This is illustrated in Figure 5.26. Note that this

280 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

approach to padding removes any need for a length field in the RTP header (thus serving the goal of keeping
the header short); in the common case of no padding, the length is deduced from the lower-layer protocol.

Figure 5.26.: Padding of an RTP packet.

The extension (X) bit is used to indicate the presence of an extension header, which would be defined for a
specific application and follow the main header. Such headers are rarely used, since it is generally possible
to define a payload-specific header as part of the payload format definition for a particular application.

The X bit is followed by a 4-bit field that counts the number of contributing sources, if any are included in
the header. Contributing sources are discussed below.

We noted above the frequent need for some sort of frame indication; this is provided by the marker bit,
which has a profile-specific use. For a voice application, it could be set at the beginning of a talkspurt, for
example. The 7-bit payload type field follows; it indicates what type of multimedia data is carried in this
packet. One possible use of this field would be to enable an application to switch from one coding scheme to
another based on information about resource availability in the network or feedback on application quality.
The exact usage of the payload type is also determined by the application profile.

Note that the payload type is generally not used as a demultiplexing key to direct data to different ap-
plications (or to different streams within a single application, such as the audio and video stream for a
videoconference). This is because such demultiplexing is typically provided at a lower layer (e.g., by UDP,
as described in a previous section). Thus, two media streams using RTP would typically use different UDP
port numbers.

The sequence number is used to enable the receiver of an RTP stream to detect missing and misordered
packets. The sender simply increments the value by one for each transmitted packet. Note that RTP does
not do anything when it detects a lost packet, in contrast to TCP, which both corrects for the loss (by
retransmission) and interprets the loss as a congestion indication (which may cause it to reduce its window
size). Rather, it is left to the application to decide what to do when a packet is lost because this decision is
likely to be highly application dependent. For example, a video application might decide that the best thing
to do when a packet is lost is to replay the last frame that was correctly received. Some applications might
also decide to modify their coding algorithms to reduce bandwidth needs in response to loss, but this is not
a function of RTP. It would not be sensible for RTP to decide that the sending rate should be reduced, as this
might make the application useless.

The function of the timestamp field is to enable the receiver to play back samples at the appropriate inter-
vals and to enable different media streams to be synchronized. Because different applications may require
different granularities of timing, RTP itself does not specify the units in which time is measured. Instead,
the timestamp is just a counter of “ticks,” where the time between ticks is dependent on the encoding in
use. For example, an audio application that samples data once every 125 𝜇s could use that value as its clock
resolution. The clock granularity is one of the details that is specified in the RTP profile or payload format
for an application.

The timestamp value in the packet is a number representing the time at which the first sample in the packet

5.4. Transport for Real-Time (RTP) 281

Computer Networks: A Systems Approach, Release Version 6.1

was generated. The timestamp is not a reflection of the time of day; only the differences between timestamps
are relevant. For example, if the sampling interval is 125 𝜇s and the first sample in packet n+1 was generated
10 ms after the first sample in packet n, then the number of sampling instants between these two samples is

TimeBetweenPackets / TimePerSample

= (10 × 10−3)/(125 × 10−6) = 80

Assuming the clock granularity is the same as the sampling interval, then the timestamp in packet n+1
would be greater than that in packet n by 80. Note that fewer than 80 samples might have been sent due to
compression techniques such as silence detection, and yet the timestamp allows the receiver to play back
the samples with the correct temporal relationship.

The synchronization source (SSRC) is a 32-bit number that uniquely identifies a single source of an RTP
stream. In a given multimedia conference, each sender picks a random SSRC and is expected to resolve con-
flicts in the unlikely event that two sources pick the same value. By making the source identifier something
other than the network or transport address of the source, RTP ensures independence from the lower-layer
protocol. It also enables a single node with multiple sources (e.g., several cameras) to distinguish those
sources. When a single node generates different media streams (e.g., audio and video), it is not required to
use the same SSRC in each stream, as there are mechanisms in RTCP (described below) to allow intermedia
synchronization.

The contributing source (CSRC) is used only when a number of RTP streams pass through a mixer. A mixer
can be used to reduce the bandwidth requirements for a conference by receiving data from many sources
and sending it as a single stream. For example, the audio streams from several concurrent speakers could be
decoded and recoded as a single audio stream. In this case, the mixer lists itself as the synchronization source
but also lists the contributing sources—the SSRC values of the speakers who contributed to the packet in
question.

5.4.3 Control Protocol

RTCP provides a control stream that is associated with a data stream for a multimedia application. This
control stream provides three main functions:

1. Feedback on the performance of the application and the network

2. A way to correlate and synchronize different media streams that have come from the same sender

3. A way to convey the identity of a sender for display on a user interface.

The first function may be useful for detecting and responding to congestion. Some applications are able
to operate at different rates and may use performance data to decide to use a more aggressive compression
scheme to reduce congestion, for example, or to send a higher-quality stream when there is little congestion.
Performance feedback can also be useful in diagnosing network problems.

You might think that the second function is already provided by the synchronization source ID (SSRC) of
RTP, but in fact it is not. As already noted, multiple cameras from a single node might have different SSRC
values. Furthermore, there is no requirement that an audio and video stream from the same node use the
same SSRC. Because collisions of SSRC values may occur, it may be necessary to change the SSRC value of
a stream. To deal with this problem, RTCP uses the concept of a canonical name (CNAME) that is assigned
to a sender, which is then associated with the various SSRC values that might be used by that sender using
RTCP mechanisms.

282 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

Simply correlating two streams is only part of the problem of intermedia synchronization. Because different
streams may have completely different clocks (with different granularities and even different amounts of
inaccuracy, or drift), there needs to be a way to accurately synchronize streams with each other. RTCP
addresses this problem by conveying timing information that correlates actual time of day with the clock-
rate-dependent timestamps that are carried in RTP data packets.

RTCP defines a number of different packet types, including

• Sender reports, which enable active senders to a session to report transmission and reception statistics

• Receiver reports, which receivers who are not senders use to report reception statistics

• Source descriptions, which carry CNAMEs and other sender description information

• Application-specific control packets

These different RTCP packet types are sent over the lower-layer protocol, which, as we have noted, is
typically UDP. Several RTCP packets can be packed into a single PDU of the lower-level protocol. It is
required that at least two RTCP packets are sent in every lower-level PDU: One of these is a report packet;
the other is a source description packet. Other packets may be included up to the size limits imposed by the
lower-layer protocols.

Before looking further at the contents of an RTCP packet, we note that there is a potential problem with
every member of a multicast group sending periodic control traffic. Unless we take some steps to limit it,
this control traffic has the potential to be a significant consumer of bandwidth. In an audioconference, for
example, no more than two or three senders are likely to send audio data at any instant, since there is no point
in everyone talking at once. But there is no such social limit on everyone sending control traffic, and this
could be a severe problem in a conference with thousands of participants. To deal with this problem, RTCP
has a set of mechanisms by which the participants scale back their reporting frequency as the number of
participants increases. These rules are somewhat complex, but the basic goal is this: Limit the total amount
of RTCP traffic to a small percentage (typically 5%) of the RTP data traffic. To accomplish this goal, the
participants should know how much data bandwidth is likely to be in use (e.g., the amount to send three
audio streams) and the number of participants. They learn the former from means outside RTP (known as
session management, discussed at the end of this section), and they learn the latter from the RTCP reports
of other participants. Because RTCP reports might be sent at a very low rate, it might only be possible
to get an approximate count of the current number of recipients, but that is typically sufficient. Also, it is
recommended to allocate more RTCP bandwidth to active senders, on the assumption that most participants
would like to see reports from them—for example, to find out who is speaking.

Once a participant has determined how much bandwidth it can consume with RTCP traffic, it sets about
sending periodic reports at the appropriate rate. Sender reports and receiver reports differ only in that the
former include some extra information about the sender. Both types of reports contain information about
the data that was received from all sources in the most recent reporting period.

The extra information in a sender report consists of

• A timestamp containing the actual time of day when this report was generated

• The RTP timestamp corresponding to the time when the report was generated

• Cumulative counts of the packets and bytes sent by this sender since it began transmission

Note that the first two quantities can be used to enable synchronization of different media streams from the
same source, even if those streams use different clock granularities in their RTP data streams, since it gives

5.4. Transport for Real-Time (RTP) 283

Computer Networks: A Systems Approach, Release Version 6.1

the key to convert time of day to the RTP timestamps.

Both sender and receiver reports contain one block of data per source that has been heard from since the last
report. Each block contains the following statistics for the source in question:

• Its SSRC

• The fraction of data packets from this source that were lost since the last report was sent (calculated
by comparing the number of packets received with the number of packets expected; this last value can
be determined from the RTP sequence numbers)

• Total number of packets lost from this source since the first time it was heard from

• Highest sequence number received from this source (extended to 32 bits to account for wrapping of
the sequence number)

• Estimated interarrival jitter for the source (calculated by comparing the interarrival spacing of received
packets with the expected spacing at transmission time)

• Last actual timestamp received via RTCP for this source

• Delay since last sender report received via RTCP for this source

As you might imagine, the recipients of this information can learn all sorts of things about the state of the
session. In particular, they can see if other recipients are getting much better quality from some sender
than they are, which might be an indication that a resource reservation needs to be made, or that there is a
problem in the network that needs to be attended to. In addition, if a sender notices that many receivers are
experiencing high loss of its packets, it might decide that it should reduce its sending rate or use a coding
scheme that is more resilient to loss.

The final aspect of RTCP that we will consider is the source description packet. Such a packet contains,
at a minimum, the SSRC of the sender and the sender’s CNAME. The canonical name is derived in such a
way that all applications that generate media streams that might need to be synchronized (e.g., separately
generated audio and video streams from the same user) will choose the same CNAME even though they
might choose different SSRC values. This enables a receiver to identify the media stream that came from
the same sender. The most common format of the CNAME is , where host is the fully qualified domain
name of the sending machine. Thus, an application launched by the user whose user name is jdoe running
on the machine would use the string as its CNAME. The large and variable number of bytes used in this
representation would make it a bad choice for the format of an SSRC, since the SSRC is sent with every
data packet and must be processed in real time. Allowing CNAMEs to be bound to SSRC values in periodic
RTCP messages enables a compact and efficient format for the SSRC.

Other items may be included in the source description packet, such as the real name and email address of
the user. These are used in user interface displays and to contact participants, but are less essential to the
operation of RTP than the CNAME.

Like TCP, RTP and RTCP are a fairly complex pair of protocols. This complexity comes in large part from
the desire to make life easier for application designers. Because there is an infinite number of possible
applications, the challenge in designing a transport protocol is to make it general enough to meet the widely
varying needs of many different applications without making the protocol itself impossible to implement.
RTP has proven very successful in this regard, forming the basis for many real-time multimedia applications
run over the Internet today.

284 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

Perspective: HTTP is the New Narrow Waist

The Internet has been described as having a narrow waist architecture, with one universal protocol in the
middle (IP), widening to support many transport and application protocols above it (e.g., TCP, UDP, RTP,
SunRPC, DCE-RPC, gRPC, SMTP, HTTP, SNMP) and able to run on top of many network technologies
below (e.g., Ethernet, PPP, WiFi, SONET, ATM). This general structure has been a key to the Internet
becoming ubiquitous: by keeping the IP layer that everyone has to agree to minimal, a thousand flowers
were allowed to bloom both above and below. This is now a widely understood strategy for any platform
trying to achieve universal adoption.

But something else has happened over the last 30 years. By not addressing all the issues the Internet would
eventually face as it grew (e.g., security, congestion, mobility, real-time responsiveness, and so on) it became
necessary to introduce a series of additional features into the Internet architecture. Having IP’s universal ad-
dresses and best-effort service model was a necessary condition for adoption, but not a sufficient foundation
for all the applications people wanted to build.

We’re yet to see some of these solutions—future chapters will describe how the Internet manages congestion
(Chapter 6), provides security (Chapter 8), and supports real-time multimedia applications (Chapters 7 and
9)—but it is informative to take this opportunity to reconcile the value of a universal narrow waist with the
evolution that inevitably happens in any long-lived system: the “fixed point” around which the rest of the
architecture evolves has moved to a new spot in the software stack. In short, HTTP has become the new
narrow waist; the one shared/assumed piece of the global infrastructure that makes everything else possible.
This didn’t happen overnight or by proclamation, although some did anticipate it would happen. The narrow
waist drifted slowly up the protocol stack as a consequence of an evolution (to mix geoscience and biological
metaphors).

Figure 5.27.: HTTP (plus TLS, TCP, and IP) forming the narrow waist of today’s Internet architecture.

Putting the narrow waist label purely on HTTP is an over simplification. It’s actually a team effort, with the
HTTP/TLS/TCP/IP combination now serving as the Internet’s common platform.

• HTTP provides global object identifiers (URIs) and a simple GET/PUT interface.

• TLS provides end-to-end communication security.

• TCP provides connection management, reliable transmission, and congestion control.

5.4. Transport for Real-Time (RTP) 285

Computer Networks: A Systems Approach, Release Version 6.1

• IP provides global host addresses and a network abstraction layer.

In other words, even though you are free to invent your own congestion control algorithm, TCP solves this
problem quite well, so it makes sense to reuse that solution. Similarly, even though you are free to invent
your own RPC protocol, HTTP provides a perfectly serviceable one (which because it comes bundled with
proven security, has the added feature of not being blocked by enterprise firewalls), so again, it makes sense
to reuse it rather than reinvent the wheel.

Somewhat less obviously, HTTP also provides a good foundation for dealing with mobility. If the resource
you want to access has moved, you can have HTTP return a redirect response that points the client to a
new location. Similarly, HTTP enables injecting caching proxies between the client and server, making it
possible to replicate popular content in multiple locations and save clients the delay of going all the way
across the Internet to retrieve some piece of information. (Both of these capabilities are discussed in Section
9.1.) Finally, HTTP has been used to deliver real-time multimedia, in an approach known as adaptive
streaming. (See how in Section 7.2.)

Broader Perspective

To continue reading about the cloudification of the Internet, see Perspective: Software-Defined Traffic Engi-
neering.

To learn more about the centrality of HTTP, we recommend: HTTP: An Evolvable Narrow Waist for the
Future Internet, January 2012.

286 Chapter 5. End-to-End Protocols

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-5.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-5.pdf

CHAPTER

SIX

CONGESTION CONTROL

The hand that hath made you fair hath made you good.

—William Shakespeare

Problem: Allocating Resources

By now we have seen enough layers of the network protocol hierarchy to understand how data can be
transferred among processes across heterogeneous networks. We now turn to a problem that spans the entire
protocol stack—how to effectively and fairly allocate resources among a collection of competing users.
The resources being shared include the bandwidth of the links and the buffers on the routers or switches
where packets are queued awaiting transmission. Packets contend at a router for the use of a link, with each
contending packet placed in a queue waiting its turn to be transmitted over the link. When too many packets
are contending for the same link, the queue fills and two undesirable things happen: packets experience
increased end-to-end delay, and in the worst case, the queue overflows and packets have to be dropped.
When long queues persist and drops become common, the network is said to be congested. Most networks
provide a congestion-control mechanism to deal with just such a situation.

Congestion control and resource allocation are two sides of the same coin. On the one hand, if the network
takes an active role in allocating resources—for example, scheduling which virtual circuit gets to use a given
physical link during a certain period of time—then congestion may be avoided, thereby making congestion
control unnecessary. Allocating network resources with any precision is difficult, however, because the
resources in question are distributed throughout the network; multiple links connecting a series of routers
need to be scheduled. On the other hand, you can always let packet sources send as much data as they
want and then recover from congestion should it occur. This is the easier approach, but it can be disruptive
because many packets may be discarded by the network before congestion can be controlled. Furthermore,
it is precisely at those times when the network is congested—that is, resources have become scarce relative
to demand—that the need for resource allocation among competing users is most keenly felt. There are also
solutions in the middle, whereby inexact allocation decisions are made, but congestion can still occur and
hence some mechanism is still needed to recover from it. Whether you call such a mixed solution congestion
control or resource allocation does not really matter. In some sense, it is both.

Congestion control and resource allocation involve both hosts and network elements such as routers. In net-
work elements, various queuing disciplines can be used to control the order in which packets get transmitted
and which packets get dropped. The queuing discipline can also segregate traffic to keep one user’s packets
from unduly affecting another user’s packets. At the end hosts, the congestion-control mechanism paces

287

Computer Networks: A Systems Approach, Release Version 6.1

how fast sources are allowed to send packets. This is done in an effort to keep congestion from occurring in
the first place and, should it occur, to help eliminate the congestion.

This chapter starts with an overview of congestion control and resource allocation. We then discuss different
queuing disciplines that can be implemented on the routers inside the network, followed by a description
of the congestion-control algorithm provided by TCP on the hosts. The fourth section explores various
techniques involving both routers and hosts that aim to avoid congestion before it becomes a problem.
Finally, we examine the broad area of quality of service. We consider the needs of applications to receive
different levels of resource allocation in the network and describe a number of ways in which they can
request these resources and the network can meet the requests.

6.1 Issues in Resource Allocation

Resource allocation and congestion control are complex issues that have been the subject of much study
ever since the first network was designed. They are still active areas of research. One factor that makes
these issues complex is that they are not isolated to one single level of a protocol hierarchy. Resource
allocation is partially implemented in the routers, switches, and links inside the network and partially in
the transport protocol running on the end hosts. End systems may use signalling protocols to convey their
resource requirements to network nodes, which respond with information about resource availability. One
of the main goals of this chapter is to define a framework in which these mechanisms can be understood, as
well as to give the relevant details about a representative sample of mechanisms.

We should clarify our terminology before going any further. By resource allocation, we mean the pro-
cess by which network elements try to meet the competing demands that applications have for network
resources—primarily link bandwidth and buffer space in routers or switches. Of course, it will often not
be possible to meet all the demands, meaning that some users or applications may receive fewer network
resources than they want. Part of the resource allocation problem is deciding when to say no and to whom.

We use the term congestion control to describe the efforts made by network nodes to prevent or respond to
overload conditions. Since congestion is generally bad for everyone, the first order of business is making
congestion subside, or preventing it in the first place. This might be achieved simply by persuading a few
hosts to stop sending, thus improving the situation for everyone else. However, it is more common for
congestion-control mechanisms to have some aspect of fairness—that is, they try to share the pain among
all users, rather than causing great pain to a few. Thus, we see that many congestion-control mechanisms
have some sort of resource allocation built into them.

It is also important to understand the difference between flow control and congestion control. Flow control
involves keeping a fast sender from overrunning a slow receiver. Congestion control, by contrast, is intended
to keep a set of senders from sending too much data into the network because of lack of resources at some
point. These two concepts are often confused; as we will see, they also share some mechanisms.

6.1.1 Network Model

We begin by defining three salient features of the network architecture. For the most part, this is a summary
of material presented in the previous chapters that is relevant to the problem of resource allocation.

288 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

Packet-Switched Network

We consider resource allocation in a packet-switched network (or internet) consisting of multiple links and
switches (or routers). Since most of the mechanisms described in this chapter were designed for use on the
Internet, and therefore were originally defined in terms of routers rather than switches, we use the term router
throughout our discussion. The problem is essentially the same, whether on a network or an internetwork.

In such an environment, a given source may have more than enough capacity on the immediate outgoing
link to send a packet, but somewhere in the middle of a network its packets encounter a link that is being
used by many different traffic sources. Figure 6.1 illustrates this situation—two high-speed links are feeding
a low-speed link. This is in contrast to shared-access networks like Ethernet and wireless networks, where
the source can directly observe the traffic on the network and decide accordingly whether or not to send a
packet. We have already seen the algorithms used to allocate bandwidth on shared-access networks (e.g.,
Ethernet and Wi-Fi). These access-control algorithms are, in some sense, analogous to congestion-control
algorithms in a switched network.

Key Takeaway

Note that congestion control is a different problem than routing. While it is true that a congested link could
be assigned a large edge weight by the routing protocol, and, as a consequence, routers would route around
it, “routing around” a congested link does not generally solve the congestion problem. To see this, we need
look no further than the simple network depicted in Figure 6.1, where all traffic has to flow through the same
router to reach the destination. Although this is an extreme example, it is common to have a certain router
that it is not possible to route around. This router can become congested, and there is nothing the routing
mechanism can do about it. This congested router is sometimes called the bottleneck router. [Next]

Connectionless Flows

For much of our discussion, we assume that the network is essentially connectionless, with any connection-
oriented service implemented in the transport protocol that is running on the end hosts. (We explain the
qualification “essentially” in a moment.) This is precisely the model of the Internet, where IP provides a
connectionless datagram delivery service and TCP implements an end-to-end connection abstraction. Note
that this assumption does not hold in virtual circuit networks such as ATM and X.25. In such networks, a
connection setup message traverses the network when a circuit is established. This setup message reserves a
set of buffers for the connection at each router, thereby providing a form of congestion control—a connection
is established only if enough buffers can be allocated to it at each router. The major shortcoming of this
approach is that it leads to an underutilization of resources—buffers reserved for a particular circuit are not
available for use by other traffic even if they were not currently being used by that circuit. The focus of
this chapter is on resource allocation approaches that apply in an internetwork, and thus we focus mainly on
connectionless networks.

We need to qualify the term connectionless because our classification of networks as being either connec-
tionless or connection oriented is a bit too restrictive; there is a gray area in between. In particular, the
assumption that all datagrams are completely independent in a connectionless network is too strong. The
datagrams are certainly switched independently, but it is usually the case that a stream of datagrams between
a particular pair of hosts flows through a particular set of routers. This idea of a flow—a sequence of packets

6.1. Issues in Resource Allocation 289

Computer Networks: A Systems Approach, Release Version 6.1

Figure 6.1.: A potential bottleneck router.

sent between a source/destination pair and following the same route through the network—is an important
abstraction in the context of resource allocation; it is one that we will use in this chapter.

One of the powers of the flow abstraction is that flows can be defined at different granularities. For example,
a flow can be host-to-host (i.e., have the same source/destination host addresses) or process-to-process (i.e.,
have the same source/destination host/port pairs). In the latter case, a flow is essentially the same as a
channel, as we have been using that term throughout this book. The reason we introduce a new term is that
a flow is visible to the routers inside the network, whereas a channel is an end-to-end abstraction. Figure 6.2
illustrates several flows passing through a series of routers.

Because multiple related packets flow through each router, it sometimes makes sense to maintain some state
information for each flow, information that can be used to make resource allocation decisions about the
packets that belong to the flow. This state is sometimes called soft state. The main difference between
soft state and hard state is that soft state need not always be explicitly created and removed by signalling.
Soft state represents a middle ground between a purely connectionless network that maintains no state at
the routers and a purely connection-oriented network that maintains hard state at the routers. In general,
the correct operation of the network does not depend on soft state being present (each packet is still routed
correctly without regard to this state), but when a packet happens to belong to a flow for which the router is
currently maintaining soft state, then the router is better able to handle the packet.

Note that a flow can be either implicitly defined or explicitly established. In the former case, each router
watches for packets that happen to be traveling between the same source/destination pair—the router does
this by inspecting the addresses in the header—and treats these packets as belonging to the same flow for
the purpose of congestion control. In the latter case, the source sends a flow setup message across the
network, declaring that a flow of packets is about to start. While explicit flows are arguably no different
than a connection across a connection-oriented network, we call attention to this case because, even when
explicitly established, a flow does not imply any end-to-end semantics and, in particular, does not imply the
reliable and ordered delivery of a virtual circuit. It simply exists for the purpose of resource allocation. We
will see examples of both implicit and explicit flows in this chapter.

290 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

Figure 6.2.: Multiple flows passing through a set of routers.

Service Model

In the early part of this chapter, we will focus on mechanisms that assume the best-effort service model of
the Internet. With best-effort service, all packets are given essentially equal treatment, with end hosts given
no opportunity to ask the network that some packets or flows be given certain guarantees or preferential
service. Defining a service model that supports some kind of preferred service or guarantee—for example,
guaranteeing the bandwidth needed for a video stream—is the subject of a later section. Such a service
model is said to provide multiple qualities of service (QoS). As we will see, there is actually a spectrum
of possibilities, ranging from a purely best-effort service model to one in which individual flows receive
quantitative guarantees of QoS. One of the greatest challenges is to define a service model that meets the
needs of a wide range of applications and even allows for the applications that will be invented in the future.

6.1.2 Taxonomy

There are countless ways in which resource allocation mechanisms differ, so creating a thorough taxonomy
is a difficult proposition. For now, we describe three dimensions along which resource allocation mecha-
nisms can be characterized; more subtle distinctions will be called out during the course of this chapter.

Router-Centric versus Host-Centric

Resource allocation mechanisms can be classified into two broad groups: those that address the problem
from inside the network (i.e., at the routers or switches) and those that address it from the edges of the
network (i.e., in the hosts, perhaps inside the transport protocol). Since it is the case that both the routers
inside the network and the hosts at the edges of the network participate in resource allocation, the real issue
is where the majority of the burden falls.

6.1. Issues in Resource Allocation 291

Computer Networks: A Systems Approach, Release Version 6.1

In a router-centric design, each router takes responsibility for deciding when packets are forwarded and
selecting which packets are to be dropped, as well as for informing the hosts that are generating the network
traffic how many packets they are allowed to send. In a host-centric design, the end hosts observe the
network conditions (e.g., how many packets they are successfully getting through the network) and adjust
their behavior accordingly. Note that these two groups are not mutually exclusive. For example, a network
that places the primary burden for managing congestion on routers still expects the end hosts to adhere
to any advisory messages the routers send, while the routers in networks that use end-to-end congestion
control still have some policy, no matter how simple, for deciding which packets to drop when their queues
do overflow.

Reservation-Based versus Feedback-Based

A second way that resource allocation mechanisms are sometimes classified is according to whether they use
reservations or feedback. In a reservation-based system, some entity (e.g., the end host) asks the network for
a certain amount of capacity to be allocated for a flow. Each router then allocates enough resources (buffers
and/or percentage of the link’s bandwidth) to satisfy this request. If the request cannot be satisfied at some
router, because doing so would overcommit its resources, then the router rejects the reservation. This is
analogous to getting a busy signal when trying to make a phone call. In a feedback-based approach, the end
hosts begin sending data without first reserving any capacity and then adjust their sending rate according to
the feedback they receive. This feedback can be either explicit (i.e., a congested router sends a “please slow
down” message to the host) or implicit (i.e., the end host adjusts its sending rate according to the externally
observable behavior of the network, such as packet losses).

Note that a reservation-based system always implies a router-centric resource allocation mechanism. This
is because each router is responsible for keeping track of how much of its capacity is currently available
and deciding whether new reservations can be admitted. Routers may also have to make sure each host
lives within the reservation it made. If a host sends data faster than it claimed it would when it made the
reservation, then that host’s packets are good candidates for discarding, should the router become congested.
On the other hand, a feedback-based system can imply either a router- or host-centric mechanism. Typically,
if the feedback is explicit, then the router is involved, to at least some degree, in the resource allocation
scheme. If the feedback is implicit, then almost all of the burden falls to the end host; the routers silently
drop packets when they become congested.

Reservations do not have to be made by end hosts. It is possible for a network administrator to allocate
resources to flows or to larger aggregates of traffic, as we will see in a later section.

Window Based versus Rate Based

A third way to characterize resource allocation mechanisms is according to whether they are window based
or rate based. This is one of the areas, noted above, where similar mechanisms and terminology are used
for both flow control and congestion control. Both flow-control and resource allocation mechanisms need a
way to express, to the sender, how much data it is allowed to transmit. There are two general ways of doing
this: with a window or with a rate. We have already seen window-based transport protocols, such as TCP, in
which the receiver advertises a window to the sender. This window corresponds to how much buffer space
the receiver has, and it limits how much data the sender can transmit; that is, it supports flow control. A
similar mechanism—window advertisement—can be used within the network to reserve buffer space (i.e.,
to support resource allocation). TCP’s congestion-control mechanisms are window based.

292 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

It is also possible to control a sender’s behavior using a rate—that is, how many bits per second the receiver
or network is able to absorb. Rate-based control makes sense for many multimedia applications, which tend
to generate data at some average rate and which need at least some minimum throughput to be useful. For
example, a video codec might generate video at an average rate of 1 Mbps with a peak rate of 2 Mbps. As
we will see later in this chapter, rate-based characterization of flows is a logical choice in a reservation-
based system that supports different qualities of service—the sender makes a reservation for so many bits
per second, and each router along the path determines if it can support that rate, given the other flows it has
made commitments to.

Summary of Resource Allocation Taxonomy

Classifying resource allocation approaches at two different points along each of three dimensions, as we
have just done, would seem to suggest up to eight unique strategies. While eight different approaches are
certainly possible, we note that in practice two general strategies seem to be most prevalent; these two
strategies are tied to the underlying service model of the network.

On the one hand, a best-effort service model usually implies that feedback is being used, since such a model
does not allow users to reserve network capacity. This, in turn, means that most of the responsibility for
congestion control falls to the end hosts, perhaps with some assistance from the routers. In practice, such
networks use window-based information. This is the general strategy adopted in the Internet.

On the other hand, a QoS-based service model probably implies some form of reservation. Support for these
reservations is likely to require significant router involvement, such as queuing packets differently depending
on the level of reserved resources they require. Moreover, it is natural to express such reservations in terms
of rate, since windows are only indirectly related to how much bandwidth a user needs from the network.
We discuss this topic in a later section.

6.1.3 Evaluation Criteria

The final issue is one of knowing whether a resource allocation mechanism is good or not. Recall that in the
problem statement at the start of this chapter we posed the question of how a network effectively and fairly
allocates its resources. This suggests at least two broad measures by which a resource allocation scheme
can be evaluated. We consider each in turn.

Effective Resource Allocation

A good starting point for evaluating the effectiveness of a resource allocation scheme is to consider the two
principal metrics of networking: throughput and delay. Clearly, we want as much throughput and as little
delay as possible. Unfortunately, these goals are often somewhat at odds with each other. One sure way
for a resource allocation algorithm to increase throughput is to allow as many packets into the network as
possible, so as to drive the utilization of all the links up to 100%. We would do this to avoid the possibility
of a link becoming idle because an idle link necessarily hurts throughput. The problem with this strategy is
that increasing the number of packets in the network also increases the length of the queues at each router.
Longer queues, in turn, mean packets are delayed longer in the network.

To describe this relationship, some network designers have proposed using the ratio of throughput to delay
as a metric for evaluating the effectiveness of a resource allocation scheme. This ratio is sometimes referred

6.1. Issues in Resource Allocation 293

Computer Networks: A Systems Approach, Release Version 6.1

to as the power of the network:

Power = Throughput / Delay

Note that it is not obvious that power is the right metric for judging resource allocation effectiveness. For one
thing, the theory behind power is based on an M/M/1 queuing network that assumes infinite queues;1 real
networks have finite buffers and sometimes have to drop packets. For another, power is typically defined
relative to a single connection (flow); it is not clear how it extends to multiple, competing connections.
Despite these rather severe limitations, however, no alternatives have gained wide acceptance, and so power
continues to be used.

The objective is to maximize this ratio, which is a function of how much load you place on the network. The
load, in turn, is set by the resource allocation mechanism. Figure 6.3 gives a representative power curve,
where, ideally, the resource allocation mechanism would operate at the peak of this curve. To the left of the
peak, the mechanism is being too conservative; that is, it is not allowing enough packets to be sent to keep
the links busy. To the right of the peak, so many packets are being allowed into the network that increases
in delay due to queuing are starting to dominate any small gains in throughput.

Interestingly, this power curve looks very much like the system throughput curve in a timesharing computer
system. System throughput improves as more jobs are admitted into the system, until it reaches a point when
there are so many jobs running that the system begins to thrash (spends all of its time swapping memory
pages) and the throughput begins to drop.

Figure 6.3.: Ratio of throughput to delay as a function of load.

As we will see in later sections of this chapter, many congestion-control schemes are able to control load
in only very crude ways; that is, it is simply not possible to turn the “knob” a little and allow only a
small number of additional packets into the network. As a consequence, network designers need to be
concerned about what happens even when the system is operating under extremely heavy load—that is, at
the rightmost end of the curve in Figure 6.3. Ideally, we would like to avoid the situation in which the system
throughput goes to zero because the system is thrashing. In networking terminology, we want a system that

1 Since this is not a queuing theory book, we provide only this brief description of an M/M/1 queue. The 1 means it has a single
server, and the Ms mean that the distribution of both packet arrival and service times is Markovian, that is, exponential.

294 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

is stable—where packets continue to get through the network even when the network is operating under
heavy load. If a mechanism is not stable, the network may experience congestion collapse.

Fair Resource Allocation

The effective utilization of network resources is not the only criterion for judging a resource allocation
scheme. We must also consider the issue of fairness. However, we quickly get into murky waters when
we try to define what exactly constitutes fair resource allocation. For example, a reservation-based resource
allocation scheme provides an explicit way to create controlled unfairness. With such a scheme, we might
use reservations to enable a video stream to receive 1 Mbps across some link while a file transfer receives
only 10 kbps over the same link.

In the absence of explicit information to the contrary, when several flows share a particular link, we would
like for each flow to receive an equal share of the bandwidth. This definition presumes that a fair share of
bandwidth means an equal share of bandwidth. But, even in the absence of reservations, equal shares may
not equate to fair shares. Should we also consider the length of the paths being compared? For example, as
illustrated in Figure 6.4, what is fair when one four-hop flow is competing with three one-hop flows?

Figure 6.4.: One four-hop flow competing with three one-hop flows.

Assuming that fair implies equal and that all paths are of equal length, networking researcher Raj Jain
proposed a metric that can be used to quantify the fairness of a congestion-control mechanism. Jain’s
fairness index is defined as follows. Given a set of flow throughputs

(𝑥1, 𝑥2, . . . , 𝑥𝑛)

(measured in consistent units such as bits/second), the following function assigns a fairness index to the
flows:

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) =
(
∑︀𝑛

𝑖=1 𝑥𝑖)
2

𝑛
∑︀𝑛

𝑖=1 𝑥
2
𝑖

The fairness index always results in a number between 0 and 1, with 1 representing greatest fairness. To
understand the intuition behind this metric, consider the case where all n flows receive a throughput of 1 unit
of data per second. We can see that the fairness index in this case is

𝑛2

𝑛× 𝑛
= 1

Now, suppose one flow receives a throughput of 1 + ∆. Now the fairness index is

((𝑛− 1) + 1 + ∆)2

𝑛(𝑛− 1 + (1 + ∆)2)
=

𝑛2 + 2𝑛∆ + ∆2

𝑛2 + 2𝑛∆ + 𝑛∆2

6.1. Issues in Resource Allocation 295

Computer Networks: A Systems Approach, Release Version 6.1

Note that the denominator exceeds the numerator by (𝑛−1)∆2. Thus, whether the odd flow out was getting
more or less than all the other flows (positive or negative ∆), the fairness index has now dropped below one.
Another simple case to consider is where only k of the n flows receive equal throughput, and the remaining
n-k users receive zero throughput, in which case the fairness index drops to k/n.

6.2 Queuing Disciplines

Regardless of how simple or how sophisticated the rest of the resource allocation mechanism is, each router
must implement some queuing discipline that governs how packets are buffered while waiting to be transmit-
ted. The queuing algorithm can be thought of as allocating both bandwidth (which packets get transmitted)
and buffer space (which packets get discarded). It also directly affects the latency experienced by a packet
by determining how long a packet waits to be transmitted. This section introduces two common queuing
algorithms—first-in, first-out (FIFO) and fair queuing (FQ)—and identifies several variations that have been
proposed.

6.2.1 FIFO

The idea of FIFO queuing, also called first-come, first-served (FCFS) queuing, is simple: The first packet
that arrives at a router is the first packet to be transmitted. This is illustrated in Figure 6.5(a), which shows a
FIFO with “slots” to hold up to eight packets. Given that the amount of buffer space at each router is finite, if
a packet arrives and the queue (buffer space) is full, then the router discards that packet, as shown in Figure
6.5(b). This is done without regard to which flow the packet belongs to or how important the packet is. This
is sometimes called tail drop, since packets that arrive at the tail end of the FIFO are dropped.

Note that tail drop and FIFO are two separable ideas. FIFO is a scheduling discipline—it determines the
order in which packets are transmitted. Tail drop is a drop policy—it determines which packets get dropped.
Because FIFO and tail drop are the simplest instances of scheduling discipline and drop policy, respectively,
they are sometimes viewed as a bundle—the vanilla queuing implementation. Unfortunately, the bundle is
often referred to simply as FIFO queuing, when it should more precisely be called FIFO with tail drop. A
later section provides an example of another drop policy, which uses a more complex algorithm than “Is
there a free buffer?” to decide when to drop packets. Such a drop policy may be used with FIFO, or with
more complex scheduling disciplines.

FIFO with tail drop, as the simplest of all queuing algorithms, is the most widely used in Internet routers
at the time of writing. This simple approach to queuing pushes all responsibility for congestion control and
resource allocation out to the edges of the network. Thus, the prevalent form of congestion control in the
Internet currently assumes no help from the routers: TCP takes responsibility for detecting and responding
to congestion. We will see how this works in the next section.

A simple variation on basic FIFO queuing is priority queuing. The idea is to mark each packet with a
priority; the mark could be carried, for example, in the IP header, as we’ll discuss in a later section. The
routers then implement multiple FIFO queues, one for each priority class. The router always transmits
packets out of the highest-priority queue if that queue is nonempty before moving on to the next priority
queue. Within each priority, packets are still managed in a FIFO manner. This idea is a small departure from
the best-effort delivery model, but it does not go so far as to make guarantees to any particular priority class.
It just allows high-priority packets to cut to the front of the line.

296 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

Figure 6.5.: FIFO queuing (a), and tail drop at a FIFO queue (b).

The problem with priority queuing, of course, is that the high-priority queue can starve out all the other
queues; that is, as long as there is at least one high-priority packet in the high-priority queue, lower-priority
queues do not get served. For this to be viable, there needs to be hard limits on how much high-priority
traffic is inserted in the queue. It should be immediately clear that we can’t allow users to set their own
packets to high priority in an uncontrolled way; we must either prevent them from doing this altogether or
provide some form of “pushback” on users. One obvious way to do this is to use economics—the network
could charge more to deliver high-priority packets than low-priority packets. However, there are significant
challenges to implementing such a scheme in a decentralized environment such as the Internet.

One situation in which priority queuing is used in the Internet is to protect the most important pack-
ets—typically, the routing updates that are necessary to stabilize the routing tables after a topology change.
Often there is a special queue for such packets, which can be identified by the Differentiated Services Code
Point (formerly the TOS field) in the IP header. This is in fact a simple case of the idea of “Differentiated
Services.”

6.2.2 Fair Queuing

The main problem with FIFO queuing is that it does not discriminate between different traffic sources, or, in
the language introduced in the previous section, it does not separate packets according to the flow to which
they belong. This is a problem at two different levels. At one level, it is not clear that any congestion-
control algorithm implemented entirely at the source will be able to adequately control congestion with so
little help from the routers. We will suspend judgment on this point until the next section when we discuss
TCP congestion control. At another level, because the entire congestion-control mechanism is implemented

6.2. Queuing Disciplines 297

Computer Networks: A Systems Approach, Release Version 6.1

at the sources and FIFO queuing does not provide a means to police how well the sources adhere to this
mechanism, it is possible for an ill-behaved source (flow) to capture an arbitrarily large fraction of the
network capacity. Considering the Internet again, it is certainly possible for a given application not to use
TCP and, as a consequence, to bypass its end-to-end congestion-control mechanism. (Applications such as
Internet telephony do this today.) Such an application is able to flood the Internet’s routers with its own
packets, thereby causing other applications’ packets to be discarded.

Fair queuing (FQ) is an algorithm that has been designed to address this problem. The idea of FQ is to
maintain a separate queue for each flow currently being handled by the router. The router then services
these queues in a sort of round-robin, as illustrated in Figure 6.6. When a flow sends packets too quickly,
then its queue fills up. When a queue reaches a particular length, additional packets belonging to that flow’s
queue are discarded. In this way, a given source cannot arbitrarily increase its share of the network’s capacity
at the expense of other flows.

Figure 6.6.: Round-robin service of four flows at a router.

Note that FQ does not involve the router telling the traffic sources anything about the state of the router
or in any way limiting how quickly a given source sends packets. In other words, FQ is still designed to
be used in conjunction with an end-to-end congestion-control mechanism. It simply segregates traffic so
that ill-behaved traffic sources do not interfere with those that are faithfully implementing the end-to-end
algorithm. FQ also enforces fairness among a collection of flows managed by a well-behaved congestion-
control algorithm.

As simple as the basic idea is, there are still a modest number of details that you have to get right. The
main complication is that the packets being processed at a router are not necessarily the same length. To
truly allocate the bandwidth of the outgoing link in a fair manner, it is necessary to take packet length into
consideration. For example, if a router is managing two flows, one with 1000-byte packets and the other
with 500-byte packets (perhaps because of fragmentation upstream from this router), then a simple round-
robin servicing of packets from each flow’s queue will give the first flow two-thirds of the link’s bandwidth
and the second flow only one-third of its bandwidth.

What we really want is bit-by-bit round-robin, where the router transmits a bit from flow 1, then a bit from
flow 2, and so on. Clearly, it is not feasible to interleave the bits from different packets. The FQ mechanism
therefore simulates this behavior by first determining when a given packet would finish being transmitted if

298 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

it were being sent using bit-by-bit round-robin and then using this finishing time to sequence the packets for
transmission.

To understand the algorithm for approximating bit-by-bit round-robin, consider the behavior of a single flow
and imagine a clock that ticks once each time one bit is transmitted from all of the active flows. (A flow is
active when it has data in the queue.) For this flow, let 𝑃𝑖 denote the length of packet i, let 𝑆𝑖 denote the time
when the router starts to transmit packet i, and let 𝐹𝑖 denote the time when the router finishes transmitting
packet i. If 𝑃𝑖 is expressed in terms of how many clock ticks it takes to transmit packet i (keeping in
mind that time advances 1 tick each time this flow gets 1 bit’s worth of service), then it is easy to see that
𝐹𝑖 = 𝑆𝑖 + 𝑃𝑖.

When do we start transmitting packet i? The answer to this question depends on whether packet i arrived
before or after the router finished transmitting packet i-1 from this flow. If it was before, then logically
the first bit of packet i is transmitted immediately after the last bit of packet i-1. On the other hand, it
is possible that the router finished transmitting packet i-1 long before i arrived, meaning that there was a
period of time during which the queue for this flow was empty, so the round-robin mechanism could not
transmit any packets from this flow. If we let 𝐴𝑖 denote the time that packet i arrives at the router, then
𝑆𝑖 = max(𝐹𝑖−1, 𝐴𝑖). Thus, we can compute

𝐹𝑖 = max(𝐹𝑖−1, 𝐴𝑖) + 𝑃𝑖

Now we move on to the situation in which there is more than one flow, and we find that there is a catch to
determining 𝐴𝑖. We can’t just read the wall clock when the packet arrives. As noted above, we want time to
advance by one tick each time all the active flows get one bit of service under bit-by-bit round-robin, so we
need a clock that advances more slowly when there are more flows. Specifically, the clock must advance by
one tick when n bits are transmitted if there are n active flows. This clock will be used to calculate 𝐴𝑖.

Now, for every flow, we calculate 𝐹𝑖 for each packet that arrives using the above formula. We then treat all
the 𝐹𝑖 as timestamps, and the next packet to transmit is always the packet that has the lowest timestamp—the
packet that, based on the above reasoning, should finish transmission before all others.

Note that this means that a packet can arrive on a flow, and, because it is shorter than a packet from some
other flow that is already in the queue waiting to be transmitted, it can be inserted into the queue in front of
that longer packet. However, this does not mean that a newly arriving packet can preempt a packet that is
currently being transmitted. It is this lack of preemption that keeps the implementation of FQ just described
from exactly simulating the bit-by-bit round-robin scheme that we are attempting to approximate.

Figure 6.7.: Example of fair queuing in action: (a) Packets with earlier finishing times are sent first; (b) send-
ing of a packet already in progress is completed.

To better see how this implementation of fair queuing works, consider the example given in Figure 6.7.
Part (a) shows the queues for two flows; the algorithm selects both packets from flow 1 to be transmitted

6.2. Queuing Disciplines 299

Computer Networks: A Systems Approach, Release Version 6.1

before the packet in the flow 2 queue, because of their earlier finishing times. In (b), the router has already
begun to send a packet from flow 2 when the packet from flow 1 arrives. Though the packet arriving on flow 1
would have finished before flow 2 if we had been using perfect bit-by-bit fair queuing, the implementation
does not preempt the flow 2 packet.

There are two things to notice about fair queuing. First, the link is never left idle as long as there is at least
one packet in the queue. Any queuing scheme with this characteristic is said to be work conserving. One
effect of being work conserving is that if I am sharing a link with a lot of flows that are not sending any data
then; I can use the full link capacity for my flow. As soon as the other flows start sending, however, they
will start to use their share and the capacity available to my flow will drop.

The second thing to notice is that if the link is fully loaded and there are n flows sending data, I cannot
use more than 1/nth of the link bandwidth. If I try to send more than that, my packets will be assigned
increasingly large timestamps, causing them to sit in the queue longer awaiting transmission. Eventually,
the queue will overflow—although whether it is my packets or someone else’s that are dropped is a decision
that is not determined by the fact that we are using fair queuing. This is determined by the drop policy; FQ
is a scheduling algorithm, which, like FIFO, may be combined with various drop policies.

Because FQ is work conserving, any bandwidth that is not used by one flow is automatically available to
other flows. For example, if we have four flows passing through a router, and all of them are sending packets,
then each one will receive one-quarter of the bandwidth. But, if one of them is idle long enough that all its
packets drain out of the router’s queue, then the available bandwidth will be shared among the remaining
three flows, which will each now receive one-third of the bandwidth. Thus, we can think of FQ as providing
a guaranteed minimum share of bandwidth to each flow, with the possibility that it can get more than its
guarantee if other flows are not using their shares.

It is possible to implement a variation of FQ, called weighted fair queuing (WFQ), that allows a weight to
be assigned to each flow (queue). This weight logically specifies how many bits to transmit each time the
router services that queue, which effectively controls the percentage of the link’s bandwidth that that flow
will get. Simple FQ gives each queue a weight of 1, which means that logically only 1 bit is transmitted
from each queue each time around. This results in each flow getting 1/𝑛𝑡ℎ of the bandwidth when there are
n flows. With WFQ, however, one queue might have a weight of 2, a second queue might have a weight of
1, and a third queue might have a weight of 3. Assuming that each queue always contains a packet waiting
to be transmitted, the first flow will get one-third of the available bandwidth, the second will get one-sixth
of the available bandwidth, and the third will get one-half of the available bandwidth.

While we have described WFQ in terms of flows, note that it could be implemented on classes of traffic,
where classes are defined in some other way than the simple flows introduced at the start of this chapter. For
example, we could use some bits in the IP header to identify classes and allocate a queue and a weight to
each class. This is exactly what is proposed as part of the Differentiated Services architecture described in a
later section.

Note that a router performing WFQ must learn what weights to assign to each queue from somewhere,
either by manual configuration or by some sort of signalling from the sources. In the latter case, we are
moving toward a reservation-based model. Just assigning a weight to a queue provides a rather weak form
of reservation because these weights are only indirectly related to the bandwidth the flow receives. (The
bandwidth available to a flow also depends, for example, on how many other flows are sharing the link.) We
will see in a later section how WFQ can be used as a component of a reservation-based resource allocation
mechanism.

300 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

Key Takeaway

Finally, we observe that this whole discussion of queue management illustrates an important system design
principle known as separating policy and mechanism. The idea is to view each mechanism as a black box
that provides a multifaceted service that can be controlled by a set of knobs. A policy specifies a particular
setting of those knobs but does not know (or care) about how the black box is implemented. In this case,
the mechanism in question is the queuing discipline, and the policy is a particular setting of which flow gets
what level of service (e.g., priority or weight). We discuss some policies that can be used with the WFQ
mechanism in a later section. [Next]

6.3 TCP Congestion Control

This section describes the predominant example of end-to-end congestion control in use today, that imple-
mented by TCP. The essential strategy of TCP is to send packets into the network without a reservation and
then to react to observable events that occur. TCP assumes only FIFO queuing in the network’s routers, but
also works with fair queuing.

TCP congestion control was introduced into the Internet in the late 1980s by Van Jacobson, roughly eight
years after the TCP/IP protocol stack had become operational. Immediately preceding this time, the Internet
was suffering from congestion collapse—hosts would send their packets into the Internet as fast as the
advertised window would allow, congestion would occur at some router (causing packets to be dropped),
and the hosts would time out and retransmit their packets, resulting in even more congestion.

Broadly speaking, the idea of TCP congestion control is for each source to determine how much capacity
is available in the network, so that it knows how many packets it can safely have in transit. Once a given
source has this many packets in transit, it uses the arrival of an ACK as a signal that one of its packets has
left the network and that it is therefore safe to insert a new packet into the network without adding to the
level of congestion. By using ACKs to pace the transmission of packets, TCP is said to be self-clocking. Of
course, determining the available capacity in the first place is no easy task. To make matters worse, because
other connections come and go, the available bandwidth changes over time, meaning that any given source
must be able to adjust the number of packets it has in transit. This section describes the algorithms used by
TCP to address these and other problems.

Note that, although we describe the TCP congestion-control mechanisms one at a time, thereby giving the
impression that we are talking about three independent mechanisms, it is only when they are taken as a
whole that we have TCP congestion control. Also, while we are going to begin here with the variant of
TCP congestion control most often referred to as standard TCP, we will see that there are actually quite a
few variants of TCP congestion control in use today, and researchers continue to explore new approaches to
addressing this problem. Some of these new approaches are discussed below.

6.3.1 Additive Increase/Multiplicative Decrease

TCP maintains a new state variable for each connection, called CongestionWindow, which is used by
the source to limit how much data it is allowed to have in transit at a given time. The congestion window is
congestion control’s counterpart to flow control’s advertised window. TCP is modified such that the maxi-
mum number of bytes of unacknow- ledged data allowed is now the minimum of the congestion window and

6.3. TCP Congestion Control 301

Computer Networks: A Systems Approach, Release Version 6.1

the advertised window. Thus, using the variables defined in the previous chapter, TCP’s effective window is
revised as follows:

MaxWindow = MIN(CongestionWindow, AdvertisedWindow)
EffectiveWindow = MaxWindow - (LastByteSent - LastByteAcked)

That is, MaxWindow replaces AdvertisedWindow in the calculation of EffectiveWindow. Thus,
a TCP source is allowed to send no faster than the slowest component—the network or the destination
host—can accommodate.

The problem, of course, is how TCP comes to learn an appropriate value for CongestionWindow. Unlike
the AdvertisedWindow, which is sent by the receiving side of the connection, there is no one to send
a suitable CongestionWindow to the sending side of TCP. The answer is that the TCP source sets the
CongestionWindow based on the level of congestion it perceives to exist in the network. This involves
decreasing the congestion window when the level of congestion goes up and increasing the congestion
window when the level of congestion goes down. Taken together, the mechanism is commonly called
additive increase/multiplicative decrease (AIMD); the reason for this mouthful of a name will become
apparent below.

The key question, then, is how does the source determine that the network is congested and that it should
decrease the congestion window? The answer is based on the observation that the main reason packets are
not delivered, and a timeout results, is that a packet was dropped due to congestion. It is rare that a packet is
dropped because of an error during transmission. Therefore, TCP interprets timeouts as a sign of congestion
and reduces the rate at which it is transmitting. Specifically, each time a timeout occurs, the source sets
CongestionWindow to half of its previous value. This halving of the CongestionWindow for each
timeout corresponds to the “multiplicative decrease” part of AIMD.

Although CongestionWindow is defined in terms of bytes, it is easiest to understand multiplicative
decrease if we think in terms of whole packets. For example, suppose the CongestionWindow is cur-
rently set to 16 packets. If a loss is detected, CongestionWindow is set to 8. (Normally, a loss is
detected when a timeout occurs, but as we see below, TCP has another mechanism to detect dropped pack-
ets.) Additional losses cause CongestionWindow to be reduced to 4, then 2, and finally to 1 packet.
CongestionWindow is not allowed to fall below the size of a single packet, or in TCP terminology, the
maximum segment size .

A congestion-control strategy that only decreases the window size is obviously too conservative. We also
need to be able to increase the congestion window to take advantage of newly available capacity in the net-
work. This is the “additive increase” part of AIMD, and it works as follows. Every time the source success-
fully sends a CongestionWindow’s worth of packets—that is, each packet sent out during the last round-
trip time (RTT) has been ACKed—it adds the equivalent of 1 packet to CongestionWindow. This linear
increase is illustrated in Figure 6.8. Note that, in practice, TCP does not wait for an entire window’s worth
of ACKs to add 1 packet’s worth to the congestion window, but instead increments CongestionWindow
by a little for each ACK that arrives. Specifically, the congestion window is incremented as follows each
time an ACK arrives:

Increment = MSS x (MSS/CongestionWindow)
CongestionWindow += Increment

That is, rather than incrementing CongestionWindow by an entire MSS bytes each RTT, we increment it
by a fraction of MSS every time an ACK is received. Assuming that each ACK acknowledges the receipt of
MSS bytes, then that fraction is .

302 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

Figure 6.8.: Packets in transit during additive increase, with one packet being added each RTT.

Figure 6.9.: Typical TCP sawtooth pattern.

6.3. TCP Congestion Control 303

Computer Networks: A Systems Approach, Release Version 6.1

This pattern of continually increasing and decreasing the congestion window continues throughout the life-
time of the connection. In fact, if you plot the current value of CongestionWindow as a function of time,
you get a sawtooth pattern, as illustrated in Figure 6.9. The important concept to understand about AIMD is
that the source is willing to reduce its congestion window at a much faster rate than it is willing to increase
its congestion window. This is in contrast to an additive increase/additive decrease strategy in which the
window would be increased by 1 packet when an ACK arrives and decreased by 1 when a timeout occurs.
It has been shown that AIMD is a necessary condition for a congestion-control mechanism to be stable (see
the Further Reading section). One intuitive reason to decrease the window aggressively and increase it con-
servatively is that the consequences of having too large a window are much worse than those of it being too
small. For example, when the window is too large, packets that are dropped will be retransmitted, making
congestion even worse; thus, it is important to get out of this state quickly.

Finally, since a timeout is an indication of congestion that triggers multiplicative decrease, TCP needs the
most accurate timeout mechanism it can afford. We already covered TCP’s timeout mechanism in an earlier
chapter, so we do not repeat it here. The two main things to remember about that mechanism are that
(1) timeouts are set as a function of both the average RTT and the standard deviation in that average, and
(2) due to the cost of measuring each transmission with an accurate clock, TCP only samples the round-trip
time once per RTT (rather than once per packet) using a coarse-grained (500-ms) clock.

6.3.2 Slow Start

The additive increase mechanism just described is the right approach to use when the source is operating
close to the available capacity of the network, but it takes too long to ramp up a connection when it is starting
from scratch. TCP therefore provides a second mechanism, ironically called slow start, which is used to
increase the congestion window rapidly from a cold start. Slow start effectively increases the congestion
window exponentially, rather than linearly.

Specifically, the source starts out by setting CongestionWindow to one packet. When the ACK for this
packet arrives, TCP adds 1 to CongestionWindow and then sends two packets. Upon receiving the
corresponding two ACKs, TCP increments CongestionWindow by 2—one for each ACK—and next
sends four packets. The end result is that TCP effectively doubles the number of packets it has in transit
every RTT. Figure 6.10 shows the growth in the number of packets in transit during slow start. Compare this
to the linear growth of additive increase illustrated in Figure 6.8.

Why any exponential mechanism would be called “slow” is puzzling at first, but it can be explained if put
in the proper historical context. We need to compare slow start not against the linear mechanism of the
previous subsection, but against the original behavior of TCP. Consider what happens when a connection is
established and the source first starts to send packets—that is, when it currently has no packets in transit. If
the source sends as many packets as the advertised window allows—which is exactly what TCP did before
slow start was developed—then even if there is a fairly large amount of bandwidth available in the network,
the routers may not be able to consume this burst of packets. It all depends on how much buffer space is
available at the routers. Slow start was therefore designed to space packets out so that this burst does not
occur. In other words, even though its exponential growth is faster than linear growth, slow start is much
“slower” than sending an entire advertised window’s worth of data all at once.

There are actually two different situations in which slow start runs. The first is at the very beginning of a
connection, at which time the source has no idea how many packets it is going to be able to have in transit
at a given time. (Keep in mind that today TCP runs over everything from 1-Mbps links to 40-Gbps links,
so there is no way for the source to know the network’s capacity.) In this situation, slow start continues to

304 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

Figure 6.10.: Packets in transit during slow start.

6.3. TCP Congestion Control 305

Computer Networks: A Systems Approach, Release Version 6.1

double CongestionWindow each RTT until there is a loss, at which time a timeout causes multiplicative
decrease to divide CongestionWindow by 2.

The second situation in which slow start is used is a bit more subtle; it occurs when the connection goes
dead while waiting for a timeout to occur. Recall how TCP’s sliding window algorithm works—when a
packet is lost, the source eventually reaches a point where it has sent as much data as the advertised window
allows, and so it blocks while waiting for an ACK that will not arrive. Eventually, a timeout happens, but
by this time there are no packets in transit, meaning that the source will receive no ACKs to “clock” the
transmission of new packets. The source will instead receive a single cumulative ACK that reopens the
entire advertised window, but, as explained above, the source then uses slow start to restart the flow of data
rather than dumping a whole window’s worth of data on the network all at once.

Although the source is using slow start again, it now knows more information than it did at the beginning
of a connection. Specifically, the source has a current (and useful) value of CongestionWindow; this
is the value of CongestionWindow that existed prior to the last packet loss, divided by 2 as a result of
the loss. We can think of this as the target congestion window. Slow start is used to rapidly increase the
sending rate up to this value, and then additive increase is used beyond this point. Notice that we have
a small bookkeeping problem to take care of, in that we want to remember the target congestion window
resulting from multiplicative decrease as well as the actual congestion window being used by slow start.
To address this problem, TCP introduces a temporary variable to store the target window, typically called
CongestionThreshold, that is set equal to the CongestionWindow value that results from multi-
plicative decrease. The variable CongestionWindow is then reset to one packet, and it is incremented by
one packet for every ACK that is received until it reaches CongestionThreshold, at which point it is
incremented by one packet per RTT.

In other words, TCP increases the congestion window as defined by the following code fragment:

{
u_int cw = state->CongestionWindow;
u_int incr = state->maxseg;

if (cw > state->CongestionThreshold)
incr = incr * incr / cw;

state->CongestionWindow = MIN(cw + incr, TCP_MAXWIN);
}

where state represents the state of a particular TCP connection and defines an upper bound on how large
the congestion window is allowed to grow.

Figure 6.11 traces how TCP’s CongestionWindow increases and decreases over time and serves to il-
lustrate the interplay of slow start and additive increase/multiplicative decrease. This trace was taken from
an actual TCP connection and shows the current value of CongestionWindow—the colored line—over
time.

There are several things to notice about this trace. The first is the rapid increase in the congestion win-
dow at the beginning of the connection. This corresponds to the initial slow start phase. The slow start
phase continues until several packets are lost at about 0.4 seconds into the connection, at which time
CongestionWindow flattens out at about 34 KB. (Why so many packets are lost during slow start is
discussed below.) The reason why the congestion window flattens is that there are no ACKs arriving, due
to the fact that several packets were lost. In fact, no new packets are sent during this time, as denoted by
the lack of hash marks at the top of the graph. A timeout eventually happens at approximately 2 seconds, at

306 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

Figure 6.11.: Behavior of TCP congestion control. Colored line = value of CongestionWindow over time;
solid bullets at top of graph = timeouts; hash marks at top of graph = time when each packet is transmitted;
vertical bars = time when a packet that was eventually retransmitted was first transmitted.

which time the congestion window is divided by 2 (i.e., cut from approximately 34 KB to around 17 KB)
and CongestionThreshold is set to this value. Slow start then causes CongestionWindow to be
reset to one packet and to start ramping up from there.

There is not enough detail in the trace to see exactly what happens when a couple of packets are lost just
after 2 seconds, so we jump ahead to the linear increase in the congestion window that occurs between 2
and 4 seconds. This corresponds to additive increase. At about 4 seconds, CongestionWindow flattens
out, again due to a lost packet. Now, at about 5.5 seconds:

1. A timeout happens, causing the congestion window to be divided by 2, dropping it from approximately
22 KB to 11 KB, and CongestionThreshold is set to this amount.

2. CongestionWindow is reset to one packet, as the sender enters slow start.

3. Slow start causes CongestionWindow to grow exponentially until it reaches
CongestionThreshold.

4. CongestionWindow then grows linearly.

The same pattern is repeated at around 8 seconds when another timeout occurs.

We now return to the question of why so many packets are lost during the initial slow start period. At
this point, TCP is attempting to learn how much bandwidth is available on the network. This is a very
difficult task. If the source is not aggressive at this stage—for example, if it only increases the congestion
window linearly—then it takes a long time for it to discover how much bandwidth is available. This can
have a dramatic impact on the throughput achieved for this connection. On the other hand, if the source is
aggressive at this stage, as TCP is during exponential growth, then the source runs the risk of having half a
window’s worth of packets dropped by the network.

To see what can happen during exponential growth, consider the situation in which the source was just
able to successfully send 16 packets through the network, causing it to double its congestion window to
32. Suppose, however, that the network happens to have just enough capacity to support 16 packets from
this source. The likely result is that 16 of the 32 packets sent under the new congestion window will be
dropped by the network; actually, this is the worst-case outcome, since some of the packets will be buffered
in some router. This problem will become increasingly severe as the delay × bandwidth product of networks
increases. For example, a delay × bandwidth product of 500 KB means that each connection has the potential
to lose up to 500 KB of data at the beginning of each connection. Of course, this assumes that both the source

6.3. TCP Congestion Control 307

Computer Networks: A Systems Approach, Release Version 6.1

and the destination implement the “big windows” extension.

Alternatives to slow start, whereby the source tries to estimate the available bandwidth by more sophisticated
means, have also been explored. One example is called quick-start. The basic idea is that a TCP sender can
ask for an initial sending rate greater than slow start would allow by putting a requested rate in its SYN packet
as an IP option. Routers along the path can examine the option, evaluate the current level of congestion on
the outgoing link for this flow, and decide if that rate is acceptable, if a lower rate would be acceptable, or
if standard slow start should be used. By the time the SYN reaches the receiver, it will contain either a rate
that was acceptable to all routers on the path or an indication that one or more routers on the path could not
support the quick-start request. In the former case, the TCP sender uses that rate to begin transmission; in
the latter case, it falls back to standard slow start. If TCP is allowed to start off sending at a higher rate, a
session could more quickly reach the point of filling the pipe, rather than taking many round-trip times to
do so.

Clearly one of the challenges to this sort of enhancement to TCP is that it requires substantially more
cooperation from the routers than standard TCP does. If a single router in the path does not support quick-
start, then the system reverts to standard slow start. Thus, it could be a long time before these types of
enhancements could make it into the Internet; for now, they are more likely to be used in controlled network
environments (e.g., research networks).

6.3.3 Fast Retransmit and Fast Recovery

The mechanisms described so far were part of the original proposal to add congestion control to TCP. It
was soon discovered, however, that the coarse-grained implementation of TCP timeouts led to long periods
of time during which the connection went dead while waiting for a timer to expire. Because of this, a new
mechanism called fast retransmit was added to TCP. Fast retransmit is a heuristic that sometimes triggers
the retransmission of a dropped packet sooner than the regular timeout mechanism. The fast retransmit
mechanism does not replace regular timeouts; it just enhances that facility.

The idea of fast retransmit is straightforward. Every time a data packet arrives at the receiving side, the
receiver responds with an acknowledgment, even if this sequence number has already been acknowledged.
Thus, when a packet arrives out of order—when TCP cannot yet acknowledge the data the packet contains
because earlier data has not yet arrived—TCP resends the same acknowledgment it sent the last time. This
second transmission of the same acknowledgment is called a duplicate ACK. When the sending side sees
a duplicate ACK, it knows that the other side must have received a packet out of order, which suggests
that an earlier packet might have been lost. Since it is also possible that the earlier packet has only been
delayed rather than lost, the sender waits until it sees some number of duplicate ACKs and then retransmits
the missing packet. In practice, TCP waits until it has seen three duplicate ACKs before retransmitting the
packet.

Figure 6.12 illustrates how duplicate ACKs lead to a fast retransmit. In this example, the destination receives
packets 1 and 2, but packet 3 is lost in the network. Thus, the destination will send a duplicate ACK for
packet 2 when packet 4 arrives, again when packet 5 arrives, and so on. (To simplify this example, we think
in terms of packets 1, 2, 3, and so on, rather than worrying about the sequence numbers for each byte.) When
the sender sees the third duplicate ACK for packet 2—the one sent because the receiver had gotten packet
6—it retransmits packet 3. Note that when the retransmitted copy of packet 3 arrives at the destination, the
receiver then sends a cumulative ACK for everything up to and including packet 6 back to the source.

Figure 6.13 illustrates the behavior of a version of TCP with the fast retransmit mechanism. It is interesting

308 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

Figure 6.12.: Fast retransmit based on duplicate ACKs.

Figure 6.13.: Trace of TCP with fast retransmit. Colored line = CongestionWindow; solid bullet = timeout;
hash marks = time when each packet is transmitted; vertical bars = time when a packet that was eventually
retransmitted was first transmitted.

6.3. TCP Congestion Control 309

Computer Networks: A Systems Approach, Release Version 6.1

to compare this trace with that given in Figure 6.11, where fast retransmit was not implemented—the long
periods during which the congestion window stays flat and no packets are sent has been eliminated. In
general, this technique is able to eliminate about half of the coarse-grained timeouts on a typical TCP
connection, resulting in roughly a 20% improvement in the throughput over what could otherwise have been
achieved. Notice, however, that the fast retransmit strategy does not eliminate all coarse-grained timeouts.
This is because for a small window size there will not be enough packets in transit to cause enough duplicate
ACKs to be delivered. Given enough lost packets—for example, as happens during the initial slow start
phase—the sliding window algorithm eventually blocks the sender until a timeout occurs. In practice, TCP’s
fast retransmit mechanism can detect up to three dropped packets per window.

Finally, there is one last improvement we can make. When the fast retransmit mechanism signals congestion,
rather than drop the congestion window all the way back to one packet and run slow start, it is possible to
use the ACKs that are still in the pipe to clock the sending of packets. This mechanism, which is called fast
recovery, effectively removes the slow start phase that happens between when fast retransmit detects a lost
packet and additive increase begins. For example, fast recovery avoids the slow start period between 3.8
and 4 seconds in Figure 6.13 and instead simply cuts the congestion window in half (from 22 KB to 11 KB)
and resumes additive increase. In other words, slow start is only used at the beginning of a connection and
whenever a coarse-grained timeout occurs. At all other times, the congestion window is following a pure
additive increase/multiplicative decrease pattern.

6.3.4 TCP CUBIC

A variant of the standard TCP algorithm just described, called CUBIC, is the default congestion control
algorithm distributed with Linux. CUBIC’s primary goal is to support networks with large delay × band-
width products, which are sometimes called long-fat networks. Such networks suffer from the original TCP
algorithm requiring too many round-trips to reach the available capacity of the end-to-end path. CUBIC
does this by being more aggressive in how it increases the window size, but of course the trick is to be more
aggressive without being so aggressive as to adversely affect other flows.

One important aspect of CUBIC’s approach is to adjust its congestion window at regular intervals, based on
the amount of time that has elapsed since the last congestion event (e.g., the arrival of a duplicate ACK),
rather than only when ACKs arrive (the latter being a function of RTT). This allows CUBIC to behave fairly
when competing with short-RTT flows, which will have ACKs arriving more frequently.

The second important aspect of CUBIC is its use of a cubic function to adjust the congestion window. The
basic idea is easiest to understand by looking at the general shape of a cubic function, which has three phases:
slowing growth, flatten plateau, increasing growth. A generic example is shown in Figure 6.14, which we
have annotated with one extra piece of information: the maximum congestion window size achieved just
before the last congestion event as a target (denoted 𝑊𝑚𝑎𝑥). The idea is to start fast but slow the growth rate
as you get close to 𝑊𝑚𝑎𝑥, be cautious and have near-zero growth when close to 𝑊𝑚𝑎𝑥, and then increase
the growth rate as you move away from 𝑊𝑚𝑎𝑥. The latter phase is essentially probing for a new achievable
𝑊𝑚𝑎𝑥.

Specifically, CUBIC computes the congestion window as a function of time (t) since the last congestion
event

CWND(t) = C× (t− K)3 + W𝑚𝑎𝑥

310 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

Figure 6.14.: Generic cubic function illustrsting the change in the congestion window as a function of time.

where

K = 3
√︀
W𝑚𝑎𝑥 × (1 − 𝛽)/C

C is a scaling constant and 𝛽 is the multiplicative decrease factor. CUBIC sets the latter to 0.7 rather than
the 0.5 that standard TCP uses. Looking back at Figure 6.14, CUBIC is often described as shifting between
a concave function to being convex (whereas standard TCP’s additive function is only convex).

6.4 Advanced Congestion Control

This section explores congestion control more deeply. In doing so, it is important to understand that the
standard TCP’s strategy is to control congestion once it happens, as opposed to trying to avoid congestion
in the first place. In fact, TCP repeatedly increases the load it imposes on the network in an effort to find
the point at which congestion occurs, and then it backs off from this point. Said another way, TCP needs to
create losses to find the available bandwidth of the connection. An appealing alternative is to predict when
congestion is about to happen and then to reduce the rate at which hosts send data just before packets start
being discarded. We call such a strategy congestion avoidance to distinguish it from congestion control, but
it’s probably most accurate to think of “avoidance” as a subset of “control.”

We describe two different approaches to congestion-avoidance. The first puts a small amount of additional
functionality into the router to assist the end node in the anticipation of congestion. This approach is often
referred to as Active Queue Management (AQM). The second approach attempts to avoid congestion purely
from the end hosts. This approach is implemented in TCP, making it variant of the congestion control
mechanisms described in the previous section.

6.4.1 Active Queue Management (DECbit, RED, ECN)

The first approach requires changes to routers, which has never been the Internet’s preferred way of intro-
ducing new features, but nonetheless, has been a constant source of consternation over the last 20 years. The

6.4. Advanced Congestion Control 311

Computer Networks: A Systems Approach, Release Version 6.1

problem is that while it’s generally agreed that routers are in an ideal position to detect the onset of conges-
tion—i.e., their queues start to fill up—there has not been a consensus on exactly what the best algorithm
is. The following describes two of the classic mechanisms, and concludes with a brief discussion of where
things stand today.

DECbit

The first mechanism was developed for use on the Digital Network Architecture (DNA), a connectionless
network with a connection-oriented transport protocol. This mechanism could, therefore, also be applied to
TCP and IP. As noted above, the idea here is to more evenly split the responsibility for congestion control
between the routers and the end nodes. Each router monitors the load it is experiencing and explicitly
notifies the end nodes when congestion is about to occur. This notification is implemented by setting a
binary congestion bit in the packets that flow through the router, hence the name DECbit. The destination
host then copies this congestion bit into the ACK it sends back to the source. Finally, the source adjusts
its sending rate so as to avoid congestion. The following discussion describes the algorithm in more detail,
starting with what happens in the router.

A single congestion bit is added to the packet header. A router sets this bit in a packet if its average queue
length is greater than or equal to 1 at the time the packet arrives. This average queue length is measured
over a time interval that spans the last busy+idle cycle, plus the current busy cycle. (The router is busy when
it is transmitting and idle when it is not.) Figure 6.15 shows the queue length at a router as a function of
time. Essentially, the router calculates the area under the curve and divides this value by the time interval
to compute the average queue length. Using a queue length of 1 as the trigger for setting the congestion bit
is a trade-off between significant queuing (and hence higher throughput) and increased idle time (and hence
lower delay). In other words, a queue length of 1 seems to optimize the power function.

Figure 6.15.: Computing average queue length at a router.

Now turning our attention to the host half of the mechanism, the source records how many of its packets
resulted in some router setting the congestion bit. In particular, the source maintains a congestion window,

312 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

just as in TCP, and watches to see what fraction of the last window’s worth of packets resulted in the bit
being set. If less than 50% of the packets had the bit set, then the source increases its congestion window
by one packet. If 50% or more of the last window’s worth of packets had the congestion bit set, then the
source decreases its congestion window to 0.875 times the previous value. The value 50% was chosen as
the threshold based on analysis that showed it to correspond to the peak of the power curve. The “increase
by 1, decrease by 0.875” rule was selected because additive increase/multiplicative decrease makes the
mechanism stable.

Random Early Detection

A second mechanism, called random early detection (RED), is similar to the DECbit scheme in that each
router is programmed to monitor its own queue length and, when it detects that congestion is imminent, to
notify the source to adjust its congestion window. RED, invented by Sally Floyd and Van Jacobson in the
early 1990s, differs from the DECbit scheme in two major ways.

The first is that rather than explicitly sending a congestion notification message to the source, RED is most
commonly implemented such that it implicitly notifies the source of congestion by dropping one of its
packets. The source is, therefore, effectively notified by the subsequent timeout or duplicate ACK. In case
you haven’t already guessed, RED is designed to be used in conjunction with TCP, which currently detects
congestion by means of timeouts (or some other means of detecting packet loss such as duplicate ACKs).
As the “early” part of the RED acronym suggests, the gateway drops the packet earlier than it would have
to, so as to notify the source that it should decrease its congestion window sooner than it would normally
have. In other words, the router drops a few packets before it has exhausted its buffer space completely, so
as to cause the source to slow down, with the hope that this will mean it does not have to drop lots of packets
later on.

The second difference between RED and DECbit is in the details of how RED decides when to drop a packet
and what packet it decides to drop. To understand the basic idea, consider a simple FIFO queue. Rather than
wait for the queue to become completely full and then be forced to drop each arriving packet (the tail drop
policy of the previous section), we could decide to drop each arriving packet with some drop probability
whenever the queue length exceeds some drop level. This idea is called early random drop. The RED
algorithm defines the details of how to monitor the queue length and when to drop a packet.

In the following paragraphs, we describe the RED algorithm as originally proposed by Floyd and Jacobson.
We note that several modifications have since been proposed both by the inventors and by other researchers.
However, the key ideas are the same as those presented below, and most current implementations are close
to the algorithm that follows.

First, RED computes an average queue length using a weighted running average similar to the one used in
the original TCP timeout computation. That is, AvgLen is computed as

AvgLen = (1 - Weight) x AvgLen + Weight x SampleLen

where 0 < Weight < 1 and SampleLen is the length of the queue when a sample measurement is made.
In most software implementations, the queue length is measured every time a new packet arrives at the
gateway. In hardware, it might be calculated at some fixed sampling interval.

The reason for using an average queue length rather than an instantaneous one is that it more accurately
captures the notion of congestion. Because of the bursty nature of Internet traffic, queues can become full
very quickly and then become empty again. If a queue is spending most of its time empty, then it’s probably

6.4. Advanced Congestion Control 313

Computer Networks: A Systems Approach, Release Version 6.1

not appropriate to conclude that the router is congested and to tell the hosts to slow down. Thus, the weighted
running average calculation tries to detect long-lived congestion, as indicated in the right-hand portion of
Figure 6.16, by filtering out short-term changes in the queue length. You can think of the running average
as a low-pass filter, where Weight determines the time constant of the filter. The question of how we pick
this time constant is discussed below.

Figure 6.16.: Weighted running average queue length.

Second, RED has two queue length thresholds that trigger certain activity: MinThreshold and
MaxThreshold. When a packet arrives at the gateway, RED compares the current AvgLen with these
two thresholds, according to the following rules:

if AvgLen <= MinThreshold
queue the packet

if MinThreshold < AvgLen < MaxThreshold
calculate probability P
drop the arriving packet with probability P

if MaxThreshold <= AvgLen
drop the arriving packet

If the average queue length is smaller than the lower threshold, no action is taken, and if the average queue
length is larger than the upper threshold, then the packet is always dropped. If the average queue length
is between the two thresholds, then the newly arriving packet is dropped with some probability P. This
situation is depicted in Figure 6.17. The approximate relationship between P and AvgLen is shown in
Figure 6.18. Note that the probability of drop increases slowly when AvgLen is between the two thresholds,
reaching MaxP at the upper threshold, at which point it jumps to unity. The rationale behind this is that, if
AvgLen reaches the upper threshold, then the gentle approach (dropping a few packets) is not working and
drastic measures are called for: dropping all arriving packets. Some research has suggested that a smoother
transition from random dropping to complete dropping, rather than the discontinuous approach shown here,
may be appropriate.

314 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

Figure 6.17.: RED thresholds on a FIFO queue.

Figure 6.18.: Drop probability function for RED.

6.4. Advanced Congestion Control 315

Computer Networks: A Systems Approach, Release Version 6.1

Although Figure 6.18 shows the probability of drop as a function only of AvgLen, the situation is actually
a little more complicated. In fact, P is a function of both AvgLen and how long it has been since the last
packet was dropped. Specifically, it is computed as follows:

TempP = MaxP x (AvgLen - MinThreshold) / (MaxThreshold - MinThreshold)
P = TempP/(1 - count x TempP)

TempP is the variable that is plotted on the y-axis in Figure 6.18, count keeps track of how many newly
arriving packets have been queued (not dropped), and AvgLen has been between the two thresholds. P
increases slowly as count increases, thereby making a drop increasingly likely as the time since the last
drop increases. This makes closely spaced drops relatively less likely than widely spaced drops. This extra
step in calculating P was introduced by the inventors of RED when they observed that, without it, the packet
drops were not well distributed in time but instead tended to occur in clusters. Because packet arrivals from
a certain connection are likely to arrive in bursts, this clustering of drops is likely to cause multiple drops
in a single connection. This is not desirable, since only one drop per round-trip time is enough to cause a
connection to reduce its window size, whereas multiple drops might send it back into slow start.

As an example, suppose that we set MaxP to 0.02 and count is initialized to zero. If the average queue
length were halfway between the two thresholds, then TempP, and the initial value of P, would be half of
MaxP, or 0.01. An arriving packet, of course, has a 99 in 100 chance of getting into the queue at this point.
With each successive packet that is not dropped, P slowly increases, and by the time 50 packets have arrived
without a drop, P would have doubled to 0.02. In the unlikely event that 99 packets arrived without loss, P
reaches 1, guaranteeing that the next packet is dropped. The important thing about this part of the algorithm
is that it ensures a roughly even distribution of drops over time.

The intent is that, if RED drops a small percentage of packets when AvgLen exceeds MinThreshold,
this will cause a few TCP connections to reduce their window sizes, which in turn will reduce the rate at
which packets arrive at the router. All going well, AvgLen will then decrease and congestion is avoided.
The queue length can be kept short, while throughput remains high since few packets are dropped.

Note that, because RED is operating on a queue length averaged over time, it is possible for the instantaneous
queue length to be much longer than AvgLen. In this case, if a packet arrives and there is nowhere to put
it, then it will have to be dropped. When this happens, RED is operating in tail drop mode. One of the goals
of RED is to prevent tail drop behavior if possible.

The random nature of RED confers an interesting property on the algorithm. Because RED drops packets
randomly, the probability that RED decides to drop a particular flow’s packet(s) is roughly proportional
to the share of the bandwidth that that flow is currently getting at that router. This is because a flow that
is sending a relatively large number of packets is providing more candidates for random dropping. Thus,
there is some sense of fair resource allocation built into RED, although it is by no means precise. While
arguably fair, because RED punishes high-bandwidth flows more than low-bandwidth flows, it increases the
probability of a TCP restart, which is doubly painful for those high-bandwidth flows.

Key Takeaway

Note that a fair amount of analysis has gone into setting the various RED parameters—for example, and
Weight—all in the name of optimizing the power function (throughput-to-delay ratio). The performance
of these parameters has also been confirmed through simulation, and the algorithm has been shown not to
be overly sensitive to them. It is important to keep in mind, however, that all of this analysis and simulation
hinges on a particular characterization of the network workload. The real contribution of RED is a mecha-

316 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

nism by which the router can more accurately manage its queue length. Defining precisely what constitutes
an optimal queue length depends on the traffic mix and is still a subject of research, with real information
now being gathered from operational deployment of RED in the Internet. [Next]

Consider the setting of the two thresholds, MinThreshold and MaxThreshold. If the traffic is fairly
bursty, then MinThreshold should be sufficiently large to allow the link utilization to be maintained
at an acceptably high level. Also, the difference between the two thresholds should be larger than the
typical increase in the calculated average queue length in one RTT. Setting MaxThreshold to twice
MinThreshold seems to be a reasonable rule of thumb given the traffic mix on today’s Internet. In
addition, since we expect the average queue length to hover between the two thresholds during periods of
high load, there should be enough free buffer space above MaxThreshold to absorb the natural bursts that
occur in Internet traffic without forcing the router to enter tail drop mode.

We noted above that Weight determines the time constant for the running average low-pass filter, and this
gives us a clue as to how we might pick a suitable value for it. Recall that RED is trying to send signals to
TCP flows by dropping packets during times of congestion. Suppose that a router drops a packet from some
TCP connection and then immediately forwards some more packets from the same connection. When those
packets arrive at the receiver, it starts sending duplicate ACKs to the sender. When the sender sees enough
duplicate ACKs, it will reduce its window size. So, from the time the router drops a packet until the time
when the same router starts to see some relief from the affected connection in terms of a reduced window
size, at least one round-trip time must elapse for that connection. There is probably not much point in having
the router respond to congestion on time scales much less than the round-trip time of the connections passing
through it. As noted previously, 100 ms is not a bad estimate of average round-trip times in the Internet.
Thus, Weight should be chosen such that changes in queue length over time scales much less than 100 ms
are filtered out.

Since RED works by sending signals to TCP flows to tell them to slow down, you might wonder what would
happen if those signals are ignored. This is often called the unresponsive flow problem. Unresponsive
flows use more than their fair share of network resources and could cause congestive collapse if there were
enough of them, just as in the days before TCP congestion control. Some of the techniques described in
the next section can help with this problem by isolating certain classes of traffic from others. There is also
the possibility that a variant of RED could drop more heavily from flows that are unresponsive to the initial
hints that it sends.

Explicit Congestion Notification

RED is the most extensively studied AQM mechanism, but it has not been widely deployed, due in part
to the fact that it does not result in ideal behavior in all circumstances. It is, however, the benchmark for
understanding AQM behavior. The other thing that came out of RED is the recognition that TCP could do a
better job if routers were to send a more explicit congestion signal.

That is, instead of dropping a packet and assuming TCP will eventually notice (e.g., due to the arrival of
a duplicate ACK), RED (or any AQM algorithm for that matter) can do a better job if it instead marks the
packet and continues to send it along its way to the destination. This idea was codified in changes to the IP
and TCP headers known as Explicit Congestion Notification (ECN).

Specifically, this feedback is implemented by treating two bits in the IP TOS field as ECN bits. One bit is
set by the source to indicate that it is ECN-capable, that is, able to react to a congestion notification. This is

6.4. Advanced Congestion Control 317

Computer Networks: A Systems Approach, Release Version 6.1

called the ECT bit (ECN-Capable Transport). The other bit is set by routers along the end-to-end path when
congestion is encountered, as computed by whatever AQM algorithm it is running. This is called the CE bit
(Congestion Encountered).

In addition to these two bits in the IP header (which are transport-agnostic), ECN also includes the addition
of two optional flags to the TCP header. The first, ECE (ECN-Echo), communicates from the receiver to the
sender that it has received a packet with the CE bit set. The second, CWR (Congestion Window Reduced)
communicates from the sender to the receiver that it has reduced the congestion window.

While ECN is now the standard interpretation of two of the eight bits in the TOS field of the IP header
and support for ECN is highly recommended, it is not required. Moreover, there is no single recommended
AQM algorithm, but instead, there is a list of requirements a good AQM algorithm should meet. Like TCP
congestion control algorithms, every AQM algorithm has its advantages and disadvantages, and so we need
a lot of them. There is one particular scenario, however, where the TCP congestion control algorithm and
AQM algorithm are designed to work in concert: the datacenter. We return to this use case at the end of this
section.

6.4.2 Source-Based Approaches (Vegas, BBR, DCTCP)

Unlike the previous congestion-avoidance schemes, which depended on cooperation from routers, we now
describe a strategy for detecting the incipient stages of congestion—before losses occur—from the end
hosts. We first give a brief overview of a collection of related mechanisms that use different information to
detect the early stages of congestion, and then we describe two specific mechanisms in more detail.

The general idea of these techniques is to watch for a sign from the network that some router’s queue is
building up and that congestion will happen soon if nothing is done about it. For example, the source
might notice that as packet queues build up in the network’s routers, there is a measurable increase in the
RTT for each successive packet it sends. One particular algorithm exploits this observation as follows: The
congestion window normally increases as in TCP, but every two round-trip delays the algorithm checks to
see if the current RTT is greater than the average of the minimum and maximum RTTs seen so far. If it is,
then the algorithm decreases the congestion window by one-eighth.

A second algorithm does something similar. The decision as to whether or not to change the current window
size is based on changes to both the RTT and the window size. The window is adjusted once every two
round-trip delays based on the product

(CurrentWindow - OldWindow) x (CurrentRTT - OldRTT)

If the result is positive, the source decreases the window size by one-eighth; if the result is negative or 0,
the source increases the window by one maximum packet size. Note that the window changes during every
adjustment; that is, it oscillates around its optimal point.

Another change seen as the network approaches congestion is the flattening of the sending rate. A third
scheme takes advantage of this fact. Every RTT, it increases the window size by one packet and compares
the throughput achieved to the throughput when the window was one packet smaller. If the difference is
less than one-half the throughput achieved when only one packet was in transit—as was the case at the
beginning of the connection—the algorithm decreases the window by one packet. This scheme calculates
the throughput by dividing the number of bytes outstanding in the network by the RTT.

318 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

TCP Vegas

The mechanism we are going to describe in more detail is similar to the last algorithm in that it looks at
changes in the throughput rate or, more specifically, changes in the sending rate. However, it differs from
the previous algorithm in the way it calculates throughput, and instead of looking for a change in the slope of
the throughput it compares the measured throughput rate with an expected throughput rate. The algorithm,
TCP Vegas, is not widely deployed in the Internet today, but the strategy it uses has been adopted by other
implementations that are now being deployed.

The intuition behind the Vegas algorithm can be seen in the trace of standard TCP given in Figure 6.19. The
top graph shown in Figure 6.19 traces the connection’s congestion window; it shows the same information
as the traces given earlier in this section. The middle and bottom graphs depict new information: The middle
graph shows the average sending rate as measured at the source, and the bottom graph shows the average
queue length as measured at the bottleneck router. All three graphs are synchronized in time. In the period
between 4.5 and 6.0 seconds (shaded region), the congestion window increases (top graph). We expect the
observed throughput to also increase, but instead it stays flat (middle graph). This is because the throughput
cannot increase beyond the available bandwidth. Beyond this point, any increase in the window size only
results in packets taking up buffer space at the bottleneck router (bottom graph).

A useful metaphor that describes the phenomenon illustrated in Figure 6.19 is driving on ice. The speedome-
ter (congestion window) may say that you are going 30 miles an hour, but by looking out the car window
and seeing people pass you on foot (measured sending rate) you know that you are going no more than 5
miles an hour. The extra energy is being absorbed by the car’s tires (router buffers).

TCP Vegas uses this idea to measure and control the amount of extra data this connection has in transit,
where by “extra data” we mean data that the source would not have transmitted had it been trying to match
exactly the available bandwidth of the network. The goal of TCP Vegas is to maintain the “right” amount
of extra data in the network. Obviously, if a source is sending too much extra data, it will cause long delays
and possibly lead to congestion. Less obviously, if a connection is sending too little extra data, it cannot
respond rapidly enough to transient increases in the available network bandwidth. TCP Vegas’s congestion-
avoidance actions are based on changes in the estimated amount of extra data in the network, not only on
dropped packets. We now describe the algorithm in detail.

First, define a given flow’s BaseRTT to be the RTT of a packet when the flow is not congested. In practice,
TCP Vegas sets BaseRTT to the minimum of all measured round-trip times; it is commonly the RTT of the
first packet sent by the connection, before the router queues increase due to traffic generated by this flow. If
we assume that we are not overflowing the connection, then the expected throughput is given by

ExpectedRate = CongestionWindow / BaseRTT

where CongestionWindow is the TCP congestion window, which we assume (for the purpose of this
discussion) to be equal to the number of bytes in transit.

Second, TCP Vegas calculates the current sending rate, ActualRate. This is done by recording the
sending time for a distinguished packet, recording how many bytes are transmitted between the time that
packet is sent and when its acknowledgment is received, computing the sample RTT for the distinguished
packet when its acknowledgment arrives, and dividing the number of bytes transmitted by the sample RTT.
This calculation is done once per round-trip time.

Third, TCP Vegas compares ActualRate to ExpectedRate and adjusts the window accordingly. We
let Diff = ExpectedRate - ActualRate. Note that Diff is positive or 0 by definition, since

6.4. Advanced Congestion Control 319

Computer Networks: A Systems Approach, Release Version 6.1

Figure 6.19.: Congestion window versus observed throughput rate (the three graphs are synchronized). Top,
congestion window; middle, observed throughput; bottom, buffer space taken up at the router. Colored line
= CongestionWindow; solid bullet = timeout; hash marks = time when each packet is transmitted; vertical
bars = time when a packet that was eventually retransmitted was first transmitted.

320 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

ActualRate >ExpectedRate implies that we need to change BaseRTT to the latest sampled RTT.
We also define two thresholds, 𝛼 < 𝛽, roughly corresponding to having too little and too much extra data
in the network, respectively. When Diff < 𝛼, TCP Vegas increases the congestion window linearly during
the next RTT, and when Diff > 𝛽, TCP Vegas decreases the congestion window linearly during the next
RTT. TCP Vegas leaves the congestion window unchanged when 𝛼 < Diff < 𝛽.

Intuitively, we can see that the farther away the actual throughput gets from the expected throughput, the
more congestion there is in the network, which implies that the sending rate should be reduced. The 𝛽
threshold triggers this decrease. On the other hand, when the actual throughput rate gets too close to the
expected throughput, the connection is in danger of not utilizing the available bandwidth. The 𝛼 threshold
triggers this increase. The overall goal is to keep between𝛼 and 𝛽 extra bytes in the network.

Figure 6.20.: Trace of TCP Vegas congestion-avoidance mechanism. Top, congestion window; bottom,
expected (colored line) and actual (black line) throughput. The shaded area is the region between the 𝛼 and
𝛽 thresholds.

Figure 6.20 traces the TCP Vegas congestion-avoidance algorithm. The top graph traces the congestion
window, showing the same information as the other traces given throughout this chapter. The bottom graph
traces the expected and actual throughput rates that govern how the congestion window is set. It is this
bottom graph that best illustrates how the algorithm works. The colored line tracks the ExpectedRate,
while the black line tracks the ActualRate. The wide shaded strip gives the region between the 𝛼 and
𝛽 thresholds; the top of the shaded strip is 𝛼 KBps away from ExpectedRate, and the bottom of the
shaded strip is 𝛽 KBps away from ExpectedRate. The goal is to keep the ActualRate between these
two thresholds, within the shaded region. Whenever ActualRate falls below the shaded region (i.e., gets
too far from ExpectedRate), TCP Vegas decreases the congestion window because it fears that too many
packets are being buffered in the network. Likewise, whenever ActualRate goes above the shaded region
(i.e., gets too close to the ExpectedRate), TCP Vegas increases the congestion window because it fears
that it is underutilizing the network.

Because the algorithm, as just presented, compares the difference between the actual and expected through-
put rates to the 𝛼 and 𝛽 thresholds, these two thresholds are defined in terms of KBps. However, it is perhaps

6.4. Advanced Congestion Control 321

Computer Networks: A Systems Approach, Release Version 6.1

more accurate to think in terms of how many extra buffers the connection is occupying in the network. For
example, on a connection with a BaseRTT of 100 ms and a packet size of 1 KB, if 𝛼 = 30 KBps and 𝛽 =
60 KBps, then we can think of 𝛼 as specifying that the connection needs to be occupying at least 3 extra
buffers in the network and 𝛽 as specifying that the connection should occupy no more than 6 extra buffers
in the network. In practice, a setting of 𝛼 to 1 buffer and 𝛽 to 3 buffers works well.

Finally, you will notice that TCP Vegas decreases the congestion window linearly, seemingly in conflict with
the rule that multiplicative decrease is needed to ensure stability. The explanation is that TCP Vegas does
use multiplicative decrease when a timeout occurs; the linear decrease just described is an early decrease in
the congestion window that should happen before congestion occurs and packets start being dropped.

TCP BBR

BBR (Bottleneck Bandwidth and RTT) is a new TCP congestion control algorithm developed by researchers
at Google. Like Vegas, BBR is delay based, which means it tries to detect buffer growth so as to avoid
congestion and packet loss. Both BBR and Vegas use the minimum RTT and maximum RTT, as calculated
over some time interval, as their main control signals.

BBR also introduces new mechanisms to improve performance, including packet pacing, bandwidth prob-
ing, and RTT probing. Packet pacing spaces the packets based on the estimate of the available bandwidth.
This eliminates bursts and unnecessary queueing, which results in a better feedback signal. BBR also
periodically increases its rate, thereby probing the available bandwidth. Similarly, BBR periodically de-
creases its rate, thereby probing for a new minimum RTT. The RTT probing mechanism attempts to be
self-synchronizing, which is to say, when there are multiple BBR flows, their respective RTT probes happen
at the same time. This gives a more accurate view of the actual uncongested path RTT, which solves one
of the major issues with delay-based congestion control mechanisms: having accurate knowledge of the
uncongested path RTT.

BBR is actively being worked on and rapidly evolving. One major focus is fairness. For example, some
experiments show CUBIC flows get 100× less bandwidth when competing with BBR flows, and other ex-
periments show that unfairness among BBR flows is even possible. Another major focus is avoiding high
retransmission rates, where in some cases as many as 10% of packets are retransmitted.

DCTCP

We conclude with an example of a situation where a variant of the TCP congestion control algorithm has
been designed to work in concert with ECN: in cloud datacenters. The combination is called DCTCP, which
stands for Data Center TCP. The situation is unique in that a datacenter is self-contained, and so it is possible
to deploy a tailor-made version of TCP that does not need to worry about treating other TCP flows fairly.
Datacenters are also unique in that they are built using low-cost white-box switches, and because there is no
need to worry about long-fat pipes spanning a continent, the switches are typically provisioned without an
excess of buffers.

The idea is straightforward. DCTCP adapts ECN by estimating the fraction of bytes that encounter con-
gestion rather than simply detecting that some congestion is about to occur. At the end hosts, DCTCP then
scales the congestion window based on this estimate. The standard TCP algorithm still kicks in should a
packet actually be lost. The approach is designed to achieve high-burst tolerance, low latency, and high
throughput with shallow-buffered switches.

322 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

The key challenge DCTCP faces is to estimate the fraction of bytes encountering congestion. Each switch
is simple. If a packet arrives and the switch sees the queue length (K) is above some threshold; e.g.,

K > (RTT× C)/7

where C is the link rate in packets per second, then the switch sets the CE bit in the IP header. The complexity
of RED is not required.

The receiver then maintains a boolean variable for every flow, which we’ll denote SeenCE, and implements
the following state machine in response to every received packet:

• If the CE bit is set and SeenCE=False, set SeenCE to True and send an immediate ACK.

• If the CE bit is not set and SeenCE=True, set SeenCE to False and send an immediate ACK.

• Otherwise, ignore the CE bit.

The non-obvious consequence of the “otherwise” case is that the receiver continues to send delayed ACKs
once every n packets, whether or not the CE bit is set. This has proven important to maintaining high
performance.

Finally, the sender computes the fraction of bytes that encountered congestion during the previous observa-
tion window (usually chosen to be approximately the RTT), as the ratio of the total bytes transmitted and
the bytes acknowledged with the ECE flag set. DCTCP grows the congestion window in exactly the same
way as the standard algorithm, but it reduces the window in proportion to how many bytes encountered
congestion during the last observation window.

6.5 Quality of Service

The promise of general-purpose packet-switched networks is that they support all kinds of applications and
data, including multimedia applications that transmit digitized audio and video streams. In the early days,
one obstacle to the fulfillment of this promise was the need for higher-bandwidth links. That is no longer
an issue, but there is more to transmitting audio and video over a network than just providing sufficient
bandwidth.

Participants in a telephone conversation, for example, expect to be able to converse in such a way that one
person can respond to something said by the other and be heard almost immediately. Thus, the timeliness
of delivery can be very important. We refer to applications that are sensitive to the timeliness of data as
real-time applications. Voice and video applications tend to be the canonical examples, but there are others
such as industrial control—you would like a command sent to a robot arm to reach it before the arm crashes
into something. Even file transfer applications can have timeliness constraints, such as a requirement that a
database update complete overnight before the business that needs the data resumes on the next day.

The distinguishing characteristic of real-time applications is that they need some sort of assurance from the
network that data is likely to arrive on time (for some definition of “on time”). Whereas a non-real-time
application can use an end-to-end retransmission strategy to make sure that data arrives correctly, such a
strategy cannot provide timeliness: Retransmission only adds to total latency if data arrives late. Timely
arrival must be provided by the network itself (the routers), not just at the network edges (the hosts). We
therefore conclude that the best-effort model, in which the network tries to deliver your data but makes no
promises and leaves the cleanup operation to the edges, is not sufficient for real-time applications. What we
need is a new service model, in which applications that need higher assurances can ask the network for them.

6.5. Quality of Service 323

Computer Networks: A Systems Approach, Release Version 6.1

The network may then respond by providing an assurance that it will do better or perhaps by saying that it
cannot promise anything better at the moment. Note that such a service model is a superset of the original
model: Applications that are happy with best-effort service should be able to use the new service model;
their requirements are just less stringent. This implies that the network will treat some packets differently
from others—something that is not done in the best-effort model. A network that can provide these different
levels of service is often said to support quality of service (QoS).

6.5.1 Application Requirements

Before looking at the various protocols and mechanisms that may be used to provide quality of service
to applications, we should try to understand what the needs of those applications are. To begin, we can
divide applications into two types: real-time and non-real-time. The latter are sometimes called traditional
data applications, since they have traditionally been the major applications found on data networks. They
include most popular applications like SSH, file transfer, email, web browsing, and so on. All of these
applications can work without guarantees of timely delivery of data. Another term for this non-real-time
class of applications is elastic, since they are able to stretch gracefully in the face of increased delay. Note
that these applications can benefit from shorter-length delays, but they do not become unusable as delays
increase. Also note that their delay requirements vary from the interactive applications like SSH to more
asynchronous ones like email, with interactive bulk transfers like file transfer in the middle.

Figure 6.21.: An audio application.

Real-Time Audio Example

As a concrete example of a real-time application, consider an audio application similar to the one illustrated
in Figure 6.21. Data is generated by collecting samples from a microphone and digitizing them using
an analog-to-digital (A-to-D) converter. The digital samples are placed in packets, which are transmitted
across the network and received at the other end. At the receiving host, the data must be played back at
some appropriate rate. For example, if the voice samples were collected at a rate of one per 125 𝜇s, they
should be played back at the same rate. Thus, we can think of each sample as having a particular playback
time: the point in time at which it is needed in the receiving host. In the voice example, each sample has a
playback time that is 125 𝜇s later than the preceding sample. If data arrives after its appropriate playback
time, either because it was delayed in the network or because it was dropped and subsequently retransmitted,
it is essentially useless. It is the complete worthlessness of late data that characterizes real-time applications.
In elastic applications, it might be nice if data turns up on time, but we can still use it when it does not.

One way to make our voice application work would be to make sure all samples take exactly the same
amount of time to traverse the network. Then, since samples are injected at a rate of one per 125 𝜇s, they
will appear at the receiver at the same rate, ready to be played back. However, it is generally difficult to

324 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

guarantee that all data traversing a packet-switched network will experience exactly the same delay. Packets
encounter queues in switches or routers, and the lengths of these queues vary with time, meaning that the
delays tend to vary with time and, as a consequence, are potentially different for each packet in the audio
stream. The way to deal with this at the receiver end is to buffer up some amount of data in reserve, thereby
always providing a store of packets waiting to be played back at the right time. If a packet is delayed a short
time, it goes in the buffer until its playback time arrives. If it gets delayed a long time, then it will not need
to be stored for very long in the receiver’s buffer before being played back. Thus, we have effectively added
a constant offset to the playback time of all packets as a form of insurance. We call this offset the playback
point. The only time we run into trouble is if packets get delayed in the network for such a long time that
they arrive after their playback time, causing the playback buffer to be drained.

The operation of a playback buffer is illustrated in Figure 6.22. The left-hand diagonal line shows packets
being generated at a steady rate. The wavy line shows when the packets arrive, some variable amount of
time after they were sent, depending on what they encountered in the network. The right-hand diagonal line
shows the packets being played back at a steady rate, after sitting in the playback buffer for some period of
time. As long as the playback line is far enough to the right in time, the variation in network delay is never
noticed by the application. However, if we move the playback line a little to the left, then some packets will
begin to arrive too late to be useful.

Figure 6.22.: A playback buffer.

For our audio application, there are limits to how far we can delay playing back data. It is hard to carry on
a conversation if the time between when you speak and when your listener hears you is more than 300 ms.
Thus, what we want from the network in this case is a guarantee that all our data will arrive within 300 ms.
If data arrives early, we buffer it until its correct playback time. If it arrives late, we have no use for it and
must discard it.

To get a better appreciation of how variable network delay can be, Figure 6.23 shows the one-way delay
measured over a certain path across the Internet over the course of one particular day. While the exact
numbers would vary depending on the path and the date, the key factor here is the variability of the delay,

6.5. Quality of Service 325

Computer Networks: A Systems Approach, Release Version 6.1

Figure 6.23.: Example distribution of delays for an Internet connection.

which is consistently found on almost any path at any time. As denoted by the cumulative percentages given
across the top of the graph, 97% of the packets in this case had a latency of 100 ms or less. This means that
if our example audio application were to set the playback point at 100 ms, then, on average, 3 out of every
100 packets would arrive too late to be of any use. One important thing to notice about this graph is that the
tail of the curve—how far it extends to the right—is very long. We would have to set the playback point at
over 200 ms to ensure that all packets arrived in time.

Taxonomy of Real-Time Applications

Now that we have a concrete idea of how real-time applications work, we can look at some different classes
of applications that serve to motivate our service model. The following taxonomy owes much to the work
of Clark, Braden, Shenker, and Zhang, whose papers on this subject can be found in the Further Reading
section for this chapter. The taxonomy of applications is summarized in Figure 6.24.

The first characteristic by which we can categorize applications is their tolerance of loss of data, where “loss”
might occur because a packet arrived too late to be played back as well as arising from the usual causes in
the network. On the one hand, one lost audio sample can be interpolated from the surrounding samples
with relatively little effect on the perceived audio quality. It is only as more and more samples are lost that
quality declines to the point that the speech becomes incomprehensible. On the other hand, a robot control
program is likely to be an example of a real-time application that cannot tolerate loss—losing the packet that
contains the command instructing the robot arm to stop is unacceptable. Thus, we can categorize real-time
applications as tolerant or intolerant depending on whether they can tolerate occasional loss. (As an aside,
note that many real-time applications are more tolerant of occasional loss than non-real-time applications;
for example, compare our audio application to file transfer, where the uncorrected loss of one bit might
render a file completely useless.)

A second way to characterize real-time applications is by their adaptability. For example, an audio appli-
cation might be able to adapt to the amount of delay that packets experience as they traverse the network.
If we notice that packets are almost always arriving within 300 ms of being sent, then we can set our play-

326 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

Figure 6.24.: Taxonomy of applications.

back point accordingly, buffering any packets that arrive in less than 300 ms. Suppose that we subsequently
observe that all packets are arriving within 100 ms of being sent. If we moved up our playback point to
100 ms, then the users of the application would probably perceive an improvement. The process of shifting
the playback point would actually require us to play out samples at an increased rate for some period of
time. With a voice application, this can be done in a way that is barely perceptible, simply by shortening
the silences between words. Thus, playback point adjustment is fairly easy in this case, and it has been ef-
fectively implemented for several voice applications such as the audio teleconferencing program known as
vat. Note that playback point adjustment can happen in either direction, but that doing so actually involves
distorting the played-back signal during the period of adjustment, and that the effects of this distortion will
very much depend on how the end user uses the data.

Observe that if we set our playback point on the assumption that all packets will arrive within 100 ms and
then find that some packets are arriving slightly late, we will have to drop them, whereas we would not have
had to drop them if we had left the playback point at 300 ms. Thus, we should advance the playback point
only when it provides a perceptible advantage and only when we have some evidence that the number of late
packets will be acceptably small. We may do this because of observed recent history or because of some
assurance from the network.

We call applications that can adjust their playback point delay-adaptive applications. Another class of
adaptive applications is rate adaptive. For example, many video coding algorithms can trade off bit rate
versus quality. Thus, if we find that the network can support a certain bandwidth, we can set our coding
parameters accordingly. If more bandwidth becomes available later, we can change parameters to increase
the quality.

6.5. Quality of Service 327

Computer Networks: A Systems Approach, Release Version 6.1

Approaches to QoS Support

Considering this rich space of application requirements, what we need is a richer service model that meets
the needs of any application. This leads us to a service model with not just one class (best effort), but with
several classes, each available to meet the needs of some set of applications. Towards this end, we are now
ready to look at some of the approaches that have been developed to provide a range of qualities of service.
These can be divided into two broad categories:

• Fine-grained approaches, which provide QoS to individual applications or flows

• Coarse-grained approaches, which provide QoS to large classes of data or aggregated traffic

In the first category, we find Integrated Services, a QoS architecture developed in the IETF and often asso-
ciated with the Resource Reservation Protocol (RSVP). In the second category lies Differentiated Services,
which is probably the most widely deployed QoS mechanism today. We discuss these in turn in the next two
subsections.

Finally, as we suggested at the start of this section, adding QoS support to the network isn’t necessarily the
entire story about supporting real-time applications. We conclude our discussion by revisiting what the end-
host might do to better support real-time streams, independent of how widely deployed QoS mechanisms
like Integrated or Differentiated Services become.

6.5.2 Integrated Services (RSVP)

The term Integrated Services (often called IntServ for short) refers to a body of work that was produced
by the IETF around 1995-97. The IntServ working group developed specifications of a number of service
classes designed to meet the needs of some of the application types described above. It also defined how
RSVP could be used to make reservations using these service classes. The following paragraphs provide an
overview of these specifications and the mechanisms that are used to implement them.

Service Classes

One of the service classes is designed for intolerant applications. These applications require that a packet
never arrive late. The network should guarantee that the maximum delay that any packet will experience has
some specified value; the application can then set its playback point so that no packet will ever arrive after
its playback time. We assume that early arrival of packets can always be handled by buffering. This service
is referred to as the guaranteed service.

In addition to the guaranteed service, the IETF considered several other services, but eventually settled on
one to meet the needs of tolerant, adaptive applications. The service is known as controlled load and was
motivated by the observation that existing applications of this type run quite well on networks that are not
heavily loaded. Audio applications, for example, adjust their playback point as network delay varies and
produces reasonable audio quality as long as loss rates remain on the order of 10% or less.

The aim of the controlled load service is to emulate a lightly loaded network for those applications that
request the service, even though the network as a whole may in fact be heavily loaded. The trick to this is to
use a queuing mechanism such as WFQ to isolate the controlled load traffic from the other traffic and some
form of admission control to limit the total amount of controlled load traffic on a link such that the load is
kept reasonably low. We discuss admission control in more detail below.

328 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

Clearly, these two service classes are a subset of all the classes that might be provided. In fact, other
services were specified but never standardized as part of the IETF’s work. So far, the two services described
above (along with traditional best effort) have proven flexible enough to meet the needs of a wide range of
applications.

Overview of Mechanisms

Now that we have augmented our best-effort service model with some new service classes, the next question
is how we implement a network that provides these services to applications. This section outlines the key
mechanisms. Keep in mind while reading this section that the mechanisms being described are still being
hammered out by the Internet design community. The main thing to take away from the discussion is a
general understanding of the pieces involved in supporting the service model outlined above.

First, whereas with a best-effort service we can just tell the network where we want our packets to go and
leave it at that, a real-time service involves telling the network something more about the type of service
we require. We may give it qualitative information such as “use a controlled load service” or quantitative
information such as “I need a maximum delay of 100 ms.” In addition to describing what we want, we need
to tell the network something about what we are going to inject into it, since a low-bandwidth application
is going to require fewer network resources than a high-bandwidth application. The set of information that
we provide to the network is referred to as a flowspec. This name comes from the idea that a set of packets
associated with a single application and that share common requirements is called a flow, consistent with
our use of the term in the earlier section outlining the relevant issues.

Second, when we ask the network to provide us with a particular service, the network needs to decide if it
can in fact provide that service. For example, if 10 users ask for a service in which each will consistently
use 2 Mbps of link capacity, and they all share a link with 10-Mbps capacity, the network will have to say
no to some of them. The process of deciding when to say no is called admission control.

Third, we need a mechanism by which the users of the network and the components of the network itself
exchange information such as requests for service, flowspecs, and admission control decisions. This is
sometimes called signalling, but since that word has several meanings, we refer to this process as resource
reservation, and it is achieved using a resource reservation protocol.

Finally, when flows and their requirements have been described, and admission control decisions have been
made, the network switches and routers need to meet the requirements of the flows. A key part of meeting
these requirements is managing the way packets are queued and scheduled for transmission in the switches
and routers. This last mechanism is packet scheduling.

Flowspecs

There are two separable parts to the flowspec: the part that describes the flow’s traffic characteristics (called
the TSpec) and the part that describes the service requested from the network (the RSpec). The RSpec is
very service specific and relatively easy to describe. For example, with a controlled load service, the RSpec
is trivial: The application just requests controlled load service with no additional parameters. With a guar-
anteed service, you could specify a delay target or bound. (In the IETF’s guaranteed service specification,
you specify not a delay but another quantity from which delay can be calculated.)

The TSpec is a little more complicated. As our example above showed, we need to give the network enough
information about the bandwidth used by the flow to allow intelligent admission control decisions to be

6.5. Quality of Service 329

Computer Networks: A Systems Approach, Release Version 6.1

made. For most applications, however, the bandwidth is not a single number; it is something that varies
constantly. A video application, for example, will generally generate more bits per second when the scene
is changing rapidly than when it is still. Just knowing the long-term average bandwidth is not enough, as
the following example illustrates. Suppose that we have 10 flows that arrive at a switch on separate input
ports and that all leave on the same 10-Mbps link. Assume that over some suitably long interval each flow
can be expected to send no more than 1 Mbps. You might think that this presents no problem. However,
if these are variable bit rate applications, such as compressed video, then they will occasionally send more
than their average rates. If enough sources send at above their average rates, then the total rate at which data
arrives at the switch will be greater than 10 Mbps. This excess data will be queued before it can be sent on
the link. The longer this condition persists, the longer the queue will get. Packets might have to be dropped
and, even if it doesn’t come to that, data sitting in the queue is being delayed. If packets are delayed long
enough, the service that was requested will not be provided.

Exactly how we manage our queues to control delay and avoid dropping packets is something we discuss
below. However, note here that we need to know something about how the bandwidth of our sources varies
with time. One way to describe the bandwidth characteristics of sources is called a token bucket filter. Such
a filter is described by two parameters: a token rate r, and a bucket depth B. It works as follows. To be able
to send a byte, I must have a token. To send a packet of length n, I need n tokens. I start with no tokens and I
accumulate them at a rate of r per second. I can accumulate no more than B tokens. What this means is that I
can send a burst of as many as B bytes into the network as fast as I want, but over a sufficiently long interval
I can’t send more than r bytes per second. It turns out that this information is very helpful to the admission
control algorithm when it tries to figure out whether it can accommodate a new request for service.

Figure 6.25.: Two flows with equal average rates but different token bucket descriptions.

Figure 6.25 illustrates how a token bucket can be used to characterize a flow’s bandwidth requirements. For
simplicity, assume that each flow can send data as individual bytes rather than as packets. Flow A generates
data at a steady rate of 1 MBps, so it can be described by a token bucket filter with a rate r = 1 MBps and a
bucket depth of 1 byte. This means that it receives tokens at a rate of 1 MBps but that it cannot store more
than 1 token—it spends them immediately. Flow B also sends at a rate that averages out to 1 MBps over the
long term, but does so by sending at 0.5 MBps for 2 seconds and then at 2 MBps for 1 second. Since the
token bucket rate r is, in a sense, a long-term average rate, flow B can be described by a token bucket with a
rate of 1 MBps. Unlike flow A, however, flow B needs a bucket depth B of at least 1 MB, so that it can store
up tokens while it sends at less than 1 MBps to be used when it sends at 2 MBps. For the first 2 seconds in

330 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

this example, it receives tokens at a rate of 1 MBps but spends them at only 0.5 MBps, so it can save up 2
× 0.5 = 1 MB of tokens, which it then spends in the third second (along with the new tokens that continue
to accrue in that second) to send data at 2 MBps. At the end of the third second, having spent the excess
tokens, it starts to save them up again by sending at 0.5 MBps again.

It is interesting to note that a single flow can be described by many different token buckets. As a trivial
example, flow A could be described by the same token bucket as flow B, with a rate of 1 MBps and a bucket
depth of 1 MB. The fact that it never actually needs to accumulate tokens does not make that an inaccurate
description, but it does mean that we have failed to convey some useful information to the network—the fact
that flow A is actually very consistent in its bandwidth needs. In general, it is good to be as explicit about
the bandwidth needs of an application as possible to avoid over-allocation of resources in the network.

Admission Control

The idea behind admission control is simple: When some new flow wants to receive a particular level
of service, admission control looks at the TSpec and RSpec of the flow and tries to decide if the desired
service can be provided to that amount of traffic, given the currently available resources, without causing
any previously admitted flow to receive worse service than it had requested. If it can provide the service, the
flow is admitted; if not, then it is denied. The hard part is figuring out when to say yes and when to say no.

Admission control is very dependent on the type of requested service and on the queuing discipline employed
in the routers; we discuss the latter topic later in this section. For a guaranteed service, you need to have
a good algorithm to make a definitive yes/no decision. The decision is fairly straightforward if weighted
fair queuing is used at each router. For a controlled load service, the decision may be based on heuristics,
such as “The last time I allowed a flow with this TSpec into this class, the delays for the class exceeded the
acceptable bound, so I’d better say no” or “My current delays are so far inside the bounds that I should be
able to admit another flow without difficulty.”

Admission control should not be confused with policing. The former is a per-flow decision to admit a new
flow or not. The latter is a function applied on a per-packet basis to make sure that a flow conforms to the
TSpec that was used to make the reservation. If a flow does not conform to its TSpec—for example, because
it is sending twice as many bytes per second as it said it would—then it is likely to interfere with the service
provided to other flows, and some corrective action must be taken. There are several options, the obvious
one being to drop offending packets. However, another option would be to check if the packets really are
interfering with the service of other flows. If they are not interfering, the packets could be sent on after being
marked with a tag that says, in effect, “This is a nonconforming packet. Drop it first if you need to drop any
packets.”

Admission control is closely related to the important issue of policy. For example, a network administrator
might wish to allow reservations made by his company’s CEO to be admitted while rejecting reservations
made by more lowly employees. Of course, the CEO’s reservation request might still fail if the requested
resources aren’t available, so we see that issues of policy and resource availability may both be addressed
when admission control decisions are made. The application of policy to networking is an area receiving
much attention at the time of writing.

6.5. Quality of Service 331

Computer Networks: A Systems Approach, Release Version 6.1

Reservation Protocol

While connection-oriented networks have always needed some sort of setup protocol to establish the neces-
sary virtual circuit state in the switches, connectionless networks like the Internet have had no such protocols.
As this section has indicated, however, we need to provide a lot more information to our network when we
want a real-time service from it. While there have been a number of setup protocols proposed for the Inter-
net, the one on which most current attention is focused is the RSVP. It is particularly interesting because it
differs so substantially from conventional signalling protocols for connection-oriented networks.

One of the key assumptions underlying RSVP is that it should not detract from the robustness that we find
in today’s connectionless networks. Because connectionless networks rely on little or no state being stored
in the network itself, it is possible for routers to crash and reboot and for links to go up and down while
end-to-end connectivity is still maintained. RSVP tries to maintain this robustness by using the idea of soft
state in the routers. Soft state—in contrast to the hard state found in connection-oriented networks—does
not need to be explicitly deleted when it is no longer needed. Instead, it times out after some fairly short
period (say, a minute) if it is not periodically refreshed. We will see later how this helps robustness.

Another important characteristic of RSVP is that it aims to support multicast flows just as effectively as
unicast flows. This is not surprising, since many of the first applications that could benefit from improved
quality of service were also multicast applications—video conferenceing tools, for example. One of the
insights of RSVP’s designers is that most multicast applications have many more receivers than senders,
as typified by the large audience and one speaker for a lecture. Also, receivers may have different require-
ments. For example, one receiver might want to receive data from only one sender, while others might
wish to receive data from all senders. Rather than having the senders keep track of a potentially large num-
ber of receivers, it makes more sense to let the receivers keep track of their own needs. This suggests the
receiver-oriented approach adopted by RSVP. In contrast, connection-oriented networks usually leave re-
source reservation to the sender, just as it is normally the originator of a phone call who causes resources to
be allocated in the phone network.

The soft state and receiver-oriented nature of RSVP give it a number of good properties. One such property
is that it is very straightforward to increase or decrease the level of resource allocation provided to a receiver.
Since each receiver periodically sends refresh messages to keep the soft state in place, it is easy to send a
new reservation that asks for a new level of resources. Further, soft state deals gracefully with the possibility
of network or node failures. In the event of a host crash, resources allocated by that host to a flow will
naturally time out and be released. To see what happens in the event of a router or link failure, we need to
look a little more closely at the mechanics of making a reservation.

Initially, consider the case of one sender and one receiver trying to get a reservation for traffic flowing
between them. There are two things that need to happen before a receiver can make the reservation. First,
the receiver needs to know what traffic the sender is likely to send so that it can make an appropriate
reservation. That is, it needs to know the sender’s TSpec. Second, it needs to know what path the packets
will follow from sender to receiver, so that it can establish a resource reservation at each router on the path.
Both of these requirements can be met by sending a message from the sender to the receiver that contains
the TSpec. Obviously, this gets the TSpec to the receiver. The other thing that happens is that each router
looks at this message (called a PATH message) as it goes past, and it figures out the reverse path that will be
used to send reservations from the receiver back to the sender in an effort to get the reservation to each router
on the path. Building the multicast tree in the first place is done by mechanisms such as those described in
another chapter.

Having received a PATH message, the receiver sends a reservation back up the multicast tree in a RESV

332 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

message. This message contains the sender’s TSpec and an RSpec describing the requirements of this
receiver. Each router on the path looks at the reservation request and tries to allocate the necessary resources
to satisfy it. If the reservation can be made, the RESV request is passed on to the next router. If not, an error
message is returned to the receiver who made the request. If all goes well, the correct reservation is installed
at every router between the sender and the receiver. As long as the receiver wants to retain the reservation,
it sends the same RESV message about once every 30 seconds.

Now we can see what happens when a router or link fails. Routing protocols will adapt to the failure and
create a new path from sender to receiver. PATH messages are sent about every 30 seconds, and may be sent
sooner if a router detects a change in its forwarding table, so the first one after the new route stabilizes will
reach the receiver over the new path. The receiver’s next RESV message will follow the new path and, if
all goes well, establish a new reservation on the new path. Meanwhile, the routers that are no longer on the
path will stop getting RESV messages, and these reservations will time out and be released. Thus, RSVP
deals quite well with changes in topology, as long as routing changes are not excessively frequent.

Figure 6.26.: Making reservations on a multicast tree.

The next thing we need to consider is how to cope with multicast, where there may be multiple senders to
a group and multiple receivers. This situation is illustrated in Figure 6.26. First, let’s deal with multiple
receivers for a single sender. As a RESV message travels up the multicast tree, it is likely to hit a piece of
the tree where some other receiver’s reservation has already been established. It may be the case that the
resources reserved upstream of this point are adequate to serve both receivers. For example, if receiver A
has already made a reservation that provides for a guaranteed delay of less than 100 ms, and the new request
from receiver B is for a delay of less than 200 ms, then no new reservation is required. On the other hand, if
the new request were for a delay of less than 50 ms, then the router would first need to see if it could accept

6.5. Quality of Service 333

Computer Networks: A Systems Approach, Release Version 6.1

the request; if so, it would send the request on upstream. The next time receiver A asked for a minimum of
a 100-ms delay, the router would not need to pass this request on. In general, reservations can be merged in
this way to meet the needs of all receivers downstream of the merge point.

If there are also multiple senders in the tree, receivers need to collect the TSpecs from all senders and
make a reservation that is large enough to accommodate the traffic from all senders. However, this may not
mean that the TSpecs need to be added up. For example, in an audioconference with 10 speakers, there
is not much point in allocating enough resources to carry 10 audio streams, since the result of 10 people
speaking at once would be incomprehensible. Thus, we could imagine a reservation that is large enough
to accommodate two speakers and no more. Calculating the correct overall TSpec from all of the sender
TSpecs is clearly application specific. Also, we may only be interested in hearing from a subset of all
possible speakers; RSVP has different reservation styles to deal with such options as “Reserve resources for
all speakers,” “Reserve resources for any 𝑛 speakers,” and “Reserve resources for speakers A and B only.”

Packet Classifying and Scheduling

Once we have described our traffic and our desired network service and have installed a suitable reservation
at all the routers on the path, the only thing that remains is for the routers to actually deliver the requested
service to the data packets. There are two things that need to be done:

• Associate each packet with the appropriate reservation so that it can be handled correctly, a process
known as classifying packets.

• Manage the packets in the queues so that they receive the service that has been requested, a process
known as packet scheduling.

The first part is done by examining up to five fields in the packet: the source address, destination address,
protocol number, source port, and destination port. (In IPv6, it is possible that the FlowLabel field in
the header could be used to enable the lookup to be done based on a single, shorter key.) Based on this
information, the packet can be placed in the appropriate class. For example, it may be classified into the
controlled load classes, or it may be part of a guaranteed flow that needs to be handled separately from
all other guaranteed flows. In short, there is a mapping from the flow-specific information in the packet
header to a single class identifier that determines how the packet is handled in the queue. For guaranteed
flows this might be a one-to-one mapping, while for other services it might be many to one. The details of
classification are closely related to the details of queue management.

It should be clear that something as simple as a FIFO queue in a router will be inadequate to provide many
different services and to provide different levels of delay within each service. Several more sophisticated
queue management disciplines were discussed in an earlier section, and some combination of these is likely
to be used in a router.

The details of packet scheduling ideally should not be specified in the service model. Instead, this is an
area where implementors can try to do creative things to realize the service model efficiently. In the case of
guaranteed service, it has been established that a weighted fair queuing discipline, in which each flow gets
its own individual queue with a certain share of the link, will provide a guaranteed end-to-end delay bound
that can readily be calculated. For controlled load, simpler schemes may be used. One possibility includes
treating all the controlled load traffic as a single, aggregated flow (as far as the scheduling mechanism is con-
cerned), with the weight for that flow being set based on the total amount of traffic admitted in the controlled
load class. The problem is made harder when you consider that, in a single router, many different services
are likely to be provided concurrently and that each of these services may require a different scheduling

334 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

algorithm. Thus, some overall queue management algorithm is needed to manage the resources between the
different services.

Scalability Issues

Although the Integrated Services architecture and RSVP represented a significant enhancement of the best-
effort service model of IP, many Internet service providers felt that it was not the right model for them to
deploy. The reason for this reticence relates to one of the fundamental design goals of IP: scalability. In
the best-effort service model, routers in the Internet store little or no state about the individual flows passing
through them. Thus, as the Internet grows, the only thing routers have to do to keep up with that growth
is to move more bits per second and to deal with larger routing tables, but RSVP raises the possibility that
every flow passing through a router might have a corresponding reservation. To understand the severity of
this problem, suppose that every flow on an OC-48 (2.5-Gbps) link represents a 64-kbps audio stream. The
number of such flows is

2.5 × 109/64 × 103 = 39,000

Each of those reservations needs some amount of state that needs to be stored in memory and refreshed
periodically. The router needs to classify, police, and queue each of those flows. Admission control decisions
need to be made every time such a flow requests a reservation, and some mechanism is needed to “push back”
on users (e.g., charge their credit cards) so that they don’t make arbitrarily large reservations for long periods
of time.

These scalability concerns have limited widespread deployment of IntServ. Because of these concerns, other
approaches that do not require so much “per-flow” state have been developed. The next section discusses a
number of such approaches.

6.5.3 Differentiated Services (EF, AF)

Whereas the Integrated Services architecture allocates resources to individual flows, the Differentiated Ser-
vices model (often called DiffServ for short) allocates resources to a small number of classes of traffic. In
fact, some proposed approaches to DiffServ simply divide traffic into two classes. This is an eminently sen-
sible approach to take: If you consider the difficulty that network operators experience just trying to keep a
best-effort internet running smoothly, it makes sense to add to the service model in small increments.

Suppose that we have decided to enhance the best-effort service model by adding just one new class, which
we’ll call “premium.” Clearly, we will need some way to figure out which packets are premium and which
are regular old best effort. Rather than using a protocol like RSVP to tell all the routers that some flow is
sending premium packets, it would be much easier if the packets could just identify themselves to the router
when they arrive. This could obviously be done by using a bit in the packet header—if that bit is a 1, the
packet is a premium packet; if it’s a 0, the packet is best effort. With this in mind, there are two questions
we need to address:

• Who sets the premium bit and under what circumstances?

• What does a router do differently when it sees a packet with the bit set?

There are many possible answers to the first question, but a common approach is to set the bit at an adminis-
trative boundary. For example, the router at the edge of an Internet service provider’s network might set the

6.5. Quality of Service 335

Computer Networks: A Systems Approach, Release Version 6.1

bit for packets arriving on an interface that connects to a particular company’s network. The Internet service
provider might do this because that company has paid for a higher level of service than best effort. It is also
possible that not all packets would be marked as premium; for example, the router might be configured to
mark packets as premium up to some maximum rate and to leave all excess packets as best effort.

Assuming that packets have been marked in some way, what do the routers that encounter marked packets
do with them? Here again there are many answers. In fact, the IETF standardized a set of router behaviors
to be applied to marked packets. These are called per-hop behaviors (PHBs), a term that indicates that they
define the behavior of individual routers rather than end-to-end services. Because there is more than one
new behavior, there is also a need for more than 1 bit in the packet header to tell the routers which behavior
to apply. The IETF decided to take the old TOS byte from the IP header, which had not been widely used,
and redefine it. Six bits of this byte have been allocated for DiffServ code points (DSCPs), where each
DSCP is a 6-bit value that identifies a particular PHB to be applied to a packet. (The remaining two bits are
used by ECN.)

The Expedited Forwarding (EF) PHB

One of the simplest PHBs to explain is known as expedited forwarding (EF). Packets marked for EF treat-
ment should be forwarded by the router with minimal delay and loss. The only way that a router can
guarantee this to all EF packets is if the arrival rate of EF packets at the router is strictly limited to be less
than the rate at which the router can forward EF packets. For example, a router with a 100-Mbps interface
needs to be sure that the arrival rate of EF packets destined for that interface never exceeds 100 Mbps. It
might also want to be sure that the rate will be somewhat below 100 Mbps, so that it occasionally has time
to send other packets such as routing updates.

The rate limiting of EF packets is achieved by configuring the routers at the edge of an administrative domain
to allow a certain maximum rate of EF packet arrivals into the domain. A simple, albeit conservative,
approach would be to ensure that the sum of the rates of all EF packets entering the domain is less than the
bandwidth of the slowest link in the domain. This would ensure that, even in the worst case where all EF
packets converge on the slowest link, it is not overloaded and can provide the correct behavior.

There are several possible implementation strategies for the EF behavior. One is to give EF packets strict
priority over all other packets. Another is to perform weighted fair queuing between EF packets and other
packets, with the weight of EF set sufficiently high that all EF packets can be delivered quickly. This has an
advantage over strict priority: The non-EF packets can be assured of getting some access to the link, even if
the amount of EF traffic is excessive. This might mean that the EF packets fail to get exactly the specified
behavior, but it could also prevent essential routing traffic from being locked out of the network in the event
of an excessive load of EF traffic.

The Assured Forwarding (AF) PHB

The assured forwarding (AF) PHB has its roots in an approach known as RED with In and Out (RIO)
or Weighted RED, both of which are enhancements to the basic RED algorithm described in an earlier
section. Figure 6.27 shows how RIO works; as with RED, we see drop probability on the 𝑦-axis increasing
as average queue length increases along the 𝑥-axis. But now, for our two classes of traffic, we have two
separate drop probability curves. RIO calls the two classes “in” and “out” for reasons that will become
clear shortly. Because the “out” curve has a lower MinThreshold than the “in” curve, it is clear that,
under low levels of congestion, only packets marked “out” will be discarded by the RED algorithm. If the

336 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

congestion becomes more serious, a higher percentage of “out” packets are dropped, and then if the average
queue length exceeds , RED starts to drop “in” packets as well.

Figure 6.27.: RED with In and Out drop probabilities.

The reason for calling the two classes of packets “in” and “out” stems from the way the packets are marked.
We already noted that packet marking can be performed by a router at the edge of an administrative domain.
We can think of this router as being at the boundary between a network service provider and some customer
of that network. The customer might be any other network—for example, the network of a corporation or
of another network service provider. The customer and the network service provider agree on some sort of
profile for the assured service (and perhaps the customer pays the network service provider for this profile).
The profile might be something like “Customer X is allowed to send up to 𝑦 Mbps of assured traffic,” or it
could be significantly more complex. Whatever the profile is, the edge router can clearly mark the packets
that arrive from this customer as being either in or out of profile. In the example just mentioned, as long as
the customer sends less than 𝑦 Mbps, all his packets will be marked “in,” but once he exceeds that rate the
excess packets will be marked “out.”

The combination of a profile meter at the edge and RIO in all the routers of the service provider’s network
should provide the customer with a high assurance (but not a guarantee) that packets within his profile can
be delivered. In particular, if the majority of packets, including those sent by customers who have not paid
extra to establish a profile, are “out” packets, then it should usually be the case that the RIO mechanism
will act to keep congestion low enough that “in” packets are rarely dropped. Clearly, there must be enough
bandwidth in the network so that the “in” packets alone are rarely able to congest a link to the point where
RIO starts dropping “in” packets.

Just like RED, the effectiveness of a mechanism like RIO depends to some extent on correct parameter
choices, and there are considerably more parameters to set for RIO. Exactly how well the scheme will work
in production networks is not known at the time of writing.

One interesting property of RIO is that it does not change the order of “in” and “out” packets. For example,
if a TCP connection is sending packets through a profile meter, and some packets are being marked “in”
while others are marked “out,” those packets will receive different drop probabilities in the router queues,
but they will be delivered to the receiver in the same order in which they were sent. This is important for most
TCP implementations, which perform much better when packets arrive in order, even if they are designed

6.5. Quality of Service 337

Computer Networks: A Systems Approach, Release Version 6.1

to cope with misordering. Note also that mechanisms such as fast retransmit can be falsely triggered when
misordering happens.

The idea of RIO can be generalized to provide more than two drop probability curves, and this is the idea
behind the approach known as weighted RED (WRED). In this case, the value of the DSCP field is used to
pick one of several drop probability curves, so that several different classes of service can be provided.

A third way to provide Differentiated Services is to use the DSCP value to determine which queue to put
a packet into in a weighted fair queuing scheduler. As a very simple case, we might use one code point to
indicate the best-effort queue and a second code point to select the premium queue. We then need to choose a
weight for the premium queue that makes the premium packets get better service than the best-effort packets.
This depends on the offered load of premium packets. For example, if we give the premium queue a weight
of 1 and the best-effort queue a weight of 4, that ensures that the bandwidth available to premium packets is

𝐵premium = 𝑊premium/(𝑊premium + 𝑊best−effort) = 1/(1 + 4) = 0.2

That is, we have effectively reserved 20% of the link for premium packets, so if the offered load of premium
traffic is only 10% of the link on average, then the premium traffic will behave as if it is running on a very
underloaded network and the service will be very good. In particular, the delay experienced by the premium
class can be kept low, since WFQ will try to transmit premium packets as soon as they arrive in this scenario.
On the other hand, if the premium traffic load were 30%, it would behave like a highly loaded network, and
delay could be very high for the premium packets—even worse than for the so-called best-effort packets.
Thus, knowledge of the offered load and careful setting of weights is important for this type of service.
However, note that the safe approach is to be very conservative in setting the weight for the premium queue.
If this weight is made very high relative to the expected load, it provides a margin of error and yet does not
prevent the best-effort traffic from using any bandwidth that has been reserved for premium but is not used
by premium packets.

Just as in WRED, we can generalize this WFQ-based approach to allow more than two classes represented
by different code points. Furthermore, we can combine the idea of a queue selector with a drop preference.
For example, with 12 code points we can have four queues with different weights, each of which has three
drop preferences. This is exactly what the IETF has done in the definition of “assured service.”

6.5.4 Equation-Based Congestion Control

We conclude our discussion of QoS by returning full circle to TCP congestion control, but this time in the
context of real-time applications. Recall that TCP adjusts the sender’s congestion window (and, hence, the
rate at which it can transmit) in response to ACK and timeout events. One of the strengths of this approach
is that it does not require cooperation from the network’s routers; it is a purely host-based strategy. Such
a strategy complements the QoS mechanisms we’ve been considering, because (1) applications can use
host-based solutions without depending on router support, and (2) even with DiffServ fully deployed, it is
still possible for a router queue to be oversubscribed, and we would like real-time applications to react in a
reasonable way should this happen.

While we would like to take advantage of TCP’s congestion control algorithm, TCP itself is not appropriate
for real-time applications. One reason is that TCP is a reliable protocol, and real-time applications often
cannot afford the delays introduced by retransmission. However, what if we were to decouple TCP from
its congestion control mechanism, to add TCP-like congestion control to an unreliable protocol like UDP?
Could real-time applications make use of such a protocol?

338 Chapter 6. Congestion Control

Computer Networks: A Systems Approach, Release Version 6.1

On the one hand, this is an appealing idea because it would cause real-time streams to compete fairly with
TCP streams. The alternative (which happens today) is that video applications use UDP without any form
of congestion control and, as a consequence, steal bandwidth away from TCP flows that back off in the
presence of congestion. On the other hand, the sawtooth behavior of TCP’s congestion-control algorithm
is not appropriate for real-time applications; it means that the rate at which the application transmits is
constantly going up and down. In contrast, real-time applications work best when they are able to sustain a
smooth transmission rate over a relatively long period of time.

Is it possible to achieve the best of both worlds: compatibility with TCP congestion control for the sake of
fairness, while sustaining a smooth transmission rate for the sake of the application? Recent work suggests
that the answer is yes. Specifically, several so called TCP-friendly congestion-control algorithms have been
proposed. These algorithms have two main goals. One is to slowly adapt the congestion window. This is
done by adapting over relatively longer time periods (e.g., an RTT) rather than on a per-packet basis. This
smooths out the transmission rate. The second is to be TCP friendly in the sense of being fair to competing
TCP flows. This property is often enforced by ensuring that the flow’s behavior adheres to an equation that
models TCP’s behavior. Hence, this approach is sometimes called equation-based congestion control.

We saw a simplified form of the TCP rate equation in an earlier section. For our purposes, it is sufficient to
note that the equation takes this general form:

𝑅𝑎𝑡𝑒 ∝
(︂

1

𝑅𝑇𝑇 ×√
𝜌

)︂
which says that to be TCP-friendly, the transmission rate must be inversely proportional to the round-trip
time (RTT) and the square root of the loss rate (𝜌). In other words, to build a congestion control mechanism
out of this relationship, the receiver must periodically report the loss rate it is experiencing back to the
sender (e.g., it might report that it failed to receive 10% of the last 100 packets), and the sender then adjusts
its sending rate up or down, such that this relationship continues to hold. Of course, it is still up to the
application to adapt to these changes in the available rate, but as we will see in the next chapter, many
real-time applications are quite adaptable.

Perspective: Software-Defined Traffic Engineering

The overarching problem this chapter addresses is how to allocate the available network bandwidth to a set of
end-to-end flows. Whether it’s TCP congestion control, integrated services, or differentiated services, there
is an assumption that the underlying network bandwidth being allocated is fixed: a 1-Gbps link between site
A and site B is always a 1-Gbps link, and the algorithms focus on how to best share that 1-Gbps among
competing users. But what if that’s not the case? What if you could “instantly” acquire additional capacity,
so the 1-Gbps link is upgraded to a 10-Gbps link, or perhaps you could add a new link between two sites
that had not previously been connected?

This possibility is real, and it’s a topic that’s usually referred to as traffic engineering, a term that dates
back to the early days of networking when operators would analyze the traffic workloads on their network,
and periodically re-engineer their networks to add capacity when the existing links became chronically
overloaded. In those early days, the decision to add capacity was not taken lightly; you needed to be sure
the usage trend you observed was not just a passing blip since it would take a significant amount of time and
money to change the network. In the worse case, it might involve laying cable across an ocean or launching
a satellite into space.

6.5. Quality of Service 339

Computer Networks: A Systems Approach, Release Version 6.1

But with the advent of technologies like DWDM (Section 3.1) and MPLS (Section 4.4), we don’t always
have to lay more fiber, but can instead turn on additional wavelengths or establish new circuits between
any pair of sites. (These sites need not be directly connected by fiber. For example, a wavelength between
Boston and San Francisco might run through ROADMs in Chicago and Denver, but from the perspective of
the L2/L3 network topology, Boston and San Francisco are connected by a direct link.) This dramatically
lowers the time-to-availability, but reconfiguring hardware still requires manual intervention, and so our
definition of “instantly” is still measured in days, if not weeks. Afterall, there are requisition forms to be
filled out, in triplicate!

But as we have seen again and again, once you provide the right programmatic interfaces, software can be
brought to bear on the problem, and “instantly” can, for all practical purposes, be truly instantaneous. This
is effectively what cloud providers do with the private backbones they build to interconnect their datacen-
ters. For example, Google has publicly described their private WAN, called B4, which is built entirely using
white-box switches and SDN. B4 does not add/drop wavelengths to adjust inter-node bandwidth—it dynam-
ically builds end-to-end tunnels using a technique called Equal-Cost Multipath (ECMP), an alternative to
CSPF introduced in Section 4.4—but the flexibility it affords is similar.

A Traffic Engineering (TE) control program then provisions the network according to the needs of various
classes of applications. B4 identifies three such classes: (1) copying user data (e.g., email, documents, au-
dio/video) to remote datacenters for availability; (2) accessing remote storage by computations that run over
distributed data sources; and (3) pushing large-scale data to synchronize state across multiple datacenters.
These classes are ordered in increasing volume, decreasing latency sensitivity, and decreasing overall prior-
ity. For example, user-data represents the lowest volume on B4, is the most latency sensitive, and is of the
highest priority.

By centralizing the decision-making process, which is one of the claimed advantages of SDN, Google has
been able to drive their link utilizations to near 100%. This is two to three times better than the 30-40%
average utilization that WAN links are typically provisioned for, which is necessary to allow those networks
to deal with both traffic bursts and link/switch failures. If you can centrally decide how to allocate resources
across the entire network, it is possible to run the network much closer to maximum utilization. Keep in
mind that provisioning links in the network is done for coarse-grain application classes. TCP congestion
control still operates on a connection-by-connection basis, and routing decisions are still made on top of
the B4 topology. (As an aside, it is worth noting that because B4 is a private WAN, Google is free to run
their own congestion control algorithm, such as BBR, without fear that it will unfairly disadvantage other
algorithms.)

One lesson to take away from systems like B4 is that the line between traffic engineering and congestion
control (as well as between traffic engineering and routing) is fuzzy. There are different mechanisms working
to address the same general problem, and so there is no fixed-and-hard line that says where one mechanism
stops and another begins. In short, layer boundaries become soft (and easy to move) when the layers are
implemented in software rather than hardware. This is increasingly becoming the norm.

Broader Perspective

To continue reading about the cloudification of the Internet, see Perspective: Big Data and Analytics.

To learn more about the B4, we recommend: B4: Experience with a Globally Deployed Software Defined
WAN, August 2013.

340 Chapter 6. Congestion Control

https://cseweb.ucsd.edu/~vahdat/papers/b4-sigcomm13.pdf
https://cseweb.ucsd.edu/~vahdat/papers/b4-sigcomm13.pdf

CHAPTER

SEVEN

END-TO-END DATA

It is a capital mistake to theorize before one has data.

—Sir Arthur Conan Doyle

Problem: What Do We Do with the Data?

From the network’s perspective, application programs send messages to each other. Each of these messages
is just an uninterpreted string of bytes. From the application’s perspective, however, these messages contain
various kinds of data—arrays of integers, video frames, lines of text, digital images, and so on. In other
words, these bytes have meaning. We now consider the problem of how best to encode the different kinds
of data that application programs want to exchange into byte strings. In many respects, this is similar to the
problem of encoding byte strings into electromagnetic signals that we saw in an earlier chapter.

Thinking back to our discussion of encoding, there are essentially two concerns. The first is that the receiver
be able to extract the same message from the signal as the transmitter sent; this is the framing problem.
The second is making the encoding as efficient as possible. Both of these concerns are also present when
encoding application data into network messages.

In order for the receiver to extract the message sent by the transmitter, the two sides need to agree to a
message format, often called the presentation format. If the sender wants to send the receiver an array of
integers, for example, then the two sides have to agree what each integer looks like (how many bits long it is,
what order the bytes are arranged in, and whether the most significant bit comes first or last, for example) and
how many elements are in the array. The first section describes various encodings of traditional computer
data, such as integers, floating-point numbers, character strings, arrays, and structures. Well-established
formats also exist for multimedia data: Video, for example, is typically transmitted in one of the formats
created by the Moving Picture Experts Group (MPEG), and still images are usually transmitted in Joint
Photographic Experts Group (JPEG) format. The particular issues that arise in the encoding of multimedia
data are discussed in the next section.

Multimedia data types require us to think about both presentation and compression. The well-known formats
for the transmission and storage of audio and video deal with both these issues: making sure that what was
recorded, photographed, or heard at the sender can be interpreted correctly by the receiver, and doing so in
a way that does not overwhelm the network with massive amounts of multimedia data.

Compression and, more generally, the efficiency of encoding have a rich history, dating back to Shannon’s
pioneering work on information theory in the 1940s. In effect, there are two opposing forces at work here.
In one direction, you would like as much redundancy in the data as possible so that the receiver is able

341

Computer Networks: A Systems Approach, Release Version 6.1

to extract the right data even if errors are introduced into the message. The error detection and correcting
codes we saw in an earlier chapter add redundant information to messages for exactly this purpose. In the
other direction, we would like to remove as much redundancy from the data as possible so that we may
encode it in as few bits as possible. It turns out the multimedia data offers a wealth of opportunities for
compression because of the way our senses and brains process visual and auditory signals. We don’t hear
high frequencies as well as lower ones, and we don’t notice fine detail as much as the bigger picture in an
image, especially if the image is moving.

Compression is important to the designers of networks for many reasons, not just because we rarely find
ourselves with an abundance of bandwidth everywhere in the network. For example, the way we design a
compression algorithm affects our sensitivity to lost or delayed data and thus may influence the design of
resource allocation mechanisms and end-to-end protocols. Conversely, if the underlying network is unable
to guarantee a fixed amount of bandwidth for the duration of a videoconference, we may choose to design
compression algorithms that can adapt to changing network conditions.

Finally, an important aspect of both presentation formatting and data compression is that they require the
sending and receiving hosts to process every byte of data in the message. It is for this reason that presentation
formatting and compression are sometimes called data manipulation functions. This is in contrast to most
of the protocols we have seen up to this point, which process a message without ever looking at its contents.
Because of this need to read, compute on, and write every byte of data in a message, data manipulations
affect end-to-end throughput over the network. In some cases, these manipulations can be the limiting factor.

7.1 Presentation Formatting

One of the most common transformations of network data is from the representation used by the application
program into a form that is suitable for transmission over a network and vice versa. This transformation is
typically called presentation formatting. As illustrated in Figure 7.1, the sending program translates the data
it wants to transmit from the representation it uses internally into a message that can be transmitted over
the network; that is, the data is encoded in a message. On the receiving side, the application translates this
arriving message into a representation that it can then process; that is, the message is decoded. This process
is sometimes called argument marshalling or serialization. This terminology comes from the Remote Pro-
cedure Call (RPC) world, where the client thinks it is invoking a procedure with a set of arguments, but these
arguments are then “brought together and ordered in an appropriate and effective way” to form a network
message.

You might ask what makes this problem challenging. One reason is that computers represent data in different
ways. For example, some computers represent floating-point numbers in IEEE standard 754 format, while
some older machines still use their own nonstandard format. Even for something as simple as integers,
different architectures use different sizes (e.g., 16-bit, 32-bit, 64-bit). To make matters worse, on some
machines integers are represented in big-endian form (the most significant bit of a word is in the byte
with the highest address), while on other machines integers are represented in little-endian form (the most
significant bit is in the byte with the lowest address). For example, PowerPC processors are big-endian
machines, and the Intel x86 family is a little-endian architecture. Today, many architectures support both
representations (and so are called bi-endian), but the point is that you can never be sure how the host you
are communicating with stores integers. The big-endian and little-endian representations of the integer
34,677,374 are given in Figure 7.2.

Another reason that marshalling is difficult is that application programs are written in different languages,

342 Chapter 7. End-to-End Data

Computer Networks: A Systems Approach, Release Version 6.1

Figure 7.1.: Presentation formatting involves encoding and decoding application data.

Figure 7.2.: Big-endian and little-endian byte order for the integer 34,677,374

7.1. Presentation Formatting 343

Computer Networks: A Systems Approach, Release Version 6.1

and even when you are using a single language there may be more than one compiler. For example, compilers
have a fair amount of latitude in how they lay out structures (records) in memory, such as how much padding
they put between the fields that make up the structure. Thus, you could not simply transmit a structure from
one machine to another, even if both machines were of the same architecture and the program was written in
the same language, because the compiler on the destination machine might align the fields in the structure
differently.

7.1.1 Taxonomy

Although argument marshalling is not rocket science—it is a small matter of bit twiddling—there are a
surprising number of design choices that you must address. We begin by giving a simple taxonomy for
argument marshalling systems. The following is by no means the only viable taxonomy, but it is sufficient
to cover most of the interesting alternatives.

Data Types

The first question is what data types the system is going to support. In general, we can classify the types
supported by an argument marshalling mechanism at three levels. Each level complicates the task faced by
the marshalling system.

At the lowest level, a marshalling system operates on some set of base types. Typically, the base types
include integers, floating-point numbers, and characters. The system might also support ordinal types and
Booleans. As described above, the implication of the set of base types is that the encoding process must
be able to convert each base type from one representation to another—for example, convert an integer from
big-endian to little-endian.

At the next level are flat types—structures and arrays. While flat types might at first not appear to compli-
cate argument marshalling, the reality is that they do. The problem is that the compilers used to compile
application programs sometimes insert padding between the fields that make up the structure so as to align
these fields on word boundaries. The marshalling system typically packs structures so that they contain no
padding.

At the highest level, the marshalling system might have to deal with complex types—those types that are
built using pointers. That is, the data structure that one program wants to send to another might not be
contained in a single structure, but might instead involve pointers from one structure to another. A tree is
a good example of a complex type that involves pointers. Clearly, the data encoder must prepare the data
structure for transmission over the network because pointers are implemented by memory addresses, and
just because a structure lives at a certain memory address on one machine does not mean it will live at the
same address on another machine. In other words, the marshalling system must serialize (flatten) complex
data structures.

In summary, depending on how complicated the type system is, the task of argument marshalling usually
involves converting the base types, packing the structures, and linearizing the complex data structures, all to
form a contiguous message that can be transmitted over the network. Figure 7.3 illustrates this task.

344 Chapter 7. End-to-End Data

Computer Networks: A Systems Approach, Release Version 6.1

Figure 7.3.: Argument marshalling: converting, packing, and linearizing

Conversion Strategy

Once the type system is established, the next issue is what conversion strategy the argument marshaller will
use. There are two general options: canonical intermediate form and receiver-makes-right. We consider
each, in turn.

The idea of canonical intermediate form is to settle on an external representation for each type; the sending
host translates from its internal representation to this external representation before sending data, and the
receiver translates from this external representation into its local representation when receiving data. To
illustrate the idea, consider integer data; other types are treated in a similar manner. You might declare
that the big-endian format will be used as the external representation for integers. The sending host must
translate each integer it sends into big-endian form, and the receiving host must translate big-endian integers
into whatever representation it uses. (This is what is done in the Internet for protocol headers.) Of course, a
given host might already use big-endian form, in which case no conversion is necessary.

The alternative, receiver-makes-right, has the sender transmit data in its own internal format; the sender does
not convert the base types, but usually has to pack and flatten more complex data structures. The receiver
is then responsible for translating the data from the sender’s format into its own local format. The problem
with this strategy is that every host must be prepared to convert data from all other machine architectures.
In networking, this is known as an N-by-N solution: Each of N machine architectures must be able to handle
all N architectures. In contrast, in a system that uses a canonical intermediate form, each host needs to know
only how to convert between its own representation and a single other representation—the external one.

Using a common external format is clearly the correct thing to do, right? This has certainly been the
conventional wisdom in the networking community for over 30 years. The answer is not cut and dried,
however. It turns out that there are not that many different representations for the various base classes, or,
said another way, N is not that large. In addition, the most common case is for two machines of the same type
to be communicating with each other. In this situation, it seems silly to translate data from that architecture’s

7.1. Presentation Formatting 345

Computer Networks: A Systems Approach, Release Version 6.1

representation into some foreign external representation, only to have to translate the data back into the same
architecture’s representation on the receiver.

A third option, although we know of no existing system that exploits it, is to use receiver-makes-right
if the sender knows that the destination has the same architecture; the sender would use some canonical
intermediate form if the two machines use different architectures. How would a sender learn the receiver’s
architecture? It could learn this information either from a name server or by first using a simple test case to
see if the appropriate result occurs.

Tags

The third issue in argument marshalling is how the receiver knows what kind of data is contained in the
message it receives. There are two common approaches: tagged and untagged data. The tagged approach is
more intuitive, so we describe it first.

A tag is any additional information included in a message—beyond the concrete representation of the base
types—that helps the receiver decode the message. There are several possible tags that might be included in
a message. For example, each data item might be augmented with a type tag. A type tag indicates that the
value that follows is an integer, a floating-point number, or whatever. Another example is a length tag. Such
a tag is used to indicate the number of elements in an array or the size of an integer. A third example is an
architecture tag, which might be used in conjunction with the receiver-makes-right strategy to specify the
architecture on which the data contained in the message was generated. Figure 7.4a depicts how a simple
32-bit integer might be encoded in a tagged message.

Figure 7.4.: A 32-bit integer encoded in a tagged message.

The alternative, of course, is not to use tags. How does the receiver know how to decode the data in this
case? It knows because it was programmed to know. In other words, if you call a remote procedure that takes
two integers and a floating-point number as arguments, then there is no reason for the remote procedure to
inspect tags to know what it has just received. It simply assumes that the message contains two integers and
a float and decodes it accordingly. Note that, while this works for most cases, the one place it breaks down
is when sending variable-length arrays. In such a case, a length tag is commonly used to indicate how long
the array is.

It is also worth noting that the untagged approach means that the presentation formatting is truly end to end.
It is not possible for some intermediate agent to interpret the message unless the data is tagged. Why would
an intermediate agent need to interpret a message, you might ask? Stranger things have happened, mostly
resulting from ad hoc solutions to unexpected problems that the system was not engineered to handle. Poor
network design is beyond the scope of this book.

Stubs

A stub is the piece of code that implements argument marshalling. Stubs are typically used to support RPC.
On the client side, the stub marshals the procedure arguments into a message that can be transmitted by

346 Chapter 7. End-to-End Data

Computer Networks: A Systems Approach, Release Version 6.1

means of the RPC protocol. On the server side, the stub converts the message back into a set of variables
that can be used as arguments to call the remote procedure. Stubs can either be interpreted or compiled.

In a compilation-based approach, each procedure has a customized client and server stub. While it is pos-
sible to write stubs by hand, they are typically generated by a stub compiler, based on a description of the
procedure’s interface. This situation is illustrated in Figure 7.5. Since the stub is compiled, it is usually
very efficient. In an interpretation-based approach, the system provides generic client and server stubs that
have their parameters set by a description of the procedure’s interface. Because it is easy to change this
description, interpreted stubs have the advantage of being flexible. Compiled stubs are more common in
practice.

Figure 7.5.: Stub compiler takes interface description as input and outputs client and server stubs.

7.1.2 Examples (XDR, ASN.1, NDR, ProtoBufs)

We now briefly describe four popular network data representations in terms of this taxonomy. We use the
integer base type to illustrate how each system works.

XDR

External Data Representation (XDR) is the network format used with SunRPC. In the taxonomy just intro-
duced, XDR

7.1. Presentation Formatting 347

Computer Networks: A Systems Approach, Release Version 6.1

• Supports the entire C-type system with the exception of function pointers

• Defines a canonical intermediate form

• Does not use tags (except to indicate array lengths)

• Uses compiled stubs

An XDR integer is a 32-bit data item that encodes a C integer. It is represented in twos’ complement
notation, with the most significant byte of the C integer in the first byte of the XDR integer and the least
significant byte of the C integer in the fourth byte of the XDR integer. That is, XDR uses big-endian format
for integers. XDR supports both signed and unsigned integers, just as C does.

XDR represents variable-length arrays by first specifying an unsigned integer (4 bytes) that gives the num-
ber of elements in the array, followed by that many elements of the appropriate type. XDR encodes the
components of a structure in the order of their declaration in the structure. For both arrays and structures,
the size of each element/component is represented in a multiple of 4 bytes. Smaller data types are padded
out to 4 bytes with 0s. The exception to this “pad to 4 bytes” rule is made for characters, which are encoded
one per byte.

Figure 7.6.: Example encoding of a structure in XDR.

The following code fragment gives an example C structure (item) and the XDR routine that en-
codes/decodes this structure (xdr_item). Figure 7.6 schematically depicts XDR’s on-the-wire represen-
tation of this structure when the field name is seven characters long and the array list has three values in
it.

In this example, xdr_array, xdr_int, and xdr_string are three primitive functions provided by
XDR to encode and decode arrays, integers, and character strings, respectively. Argument xdrs is a context
variable that XDR uses to keep track of where it is in the message being processed; it includes a flag that
indicates whether this routine is being used to encode or decode the message. In other words, routines like
xdr_item are used on both the client and the server. Note that the application programmer can either
write the routine xdr_item by hand or use a stub compiler called rpcgen (not shown) to generate this
encoding/decoding routine. In the latter case, rpcgen takes the remote procedure that defines the data
structure item as input and outputs the corresponding stub.

#define MAXNAME 256;
#define MAXLIST 100;

struct item {
int count;
char name[MAXNAME];
int list[MAXLIST];

(continues on next page)

348 Chapter 7. End-to-End Data

Computer Networks: A Systems Approach, Release Version 6.1

(continued from previous page)

};

bool_t
xdr_item(XDR *xdrs, struct item *ptr)
{

return(xdr_int(xdrs, &ptr->count) &&
xdr_string(xdrs, &ptr->name, MAXNAME) &&
xdr_array(xdrs, &ptr->list, &ptr->count, MAXLIST,

sizeof(int), xdr_int));
}

Exactly how XDR performs depends, of course, on the complexity of the data. In a simple case of an array
of integers, where each integer has to be converted from one byte order to another, an average of three
instructions are required for each byte, meaning that converting the whole array is likely to be limited by the
memory bandwidth of the machine. More complex conversions that require significantly more instructions
per byte will be CPU limited and thus perform at a data rate less than the memory bandwidth.

ASN.1

Abstract Syntax Notation One (ASN.1) is an ISO standard that defines, among other things, a representation
for data sent over a network. The representation-specific part of ASN.1 is called the Basic Encoding Rules
(BER). ASN.1 supports the C-type system without function pointers, defines a canonical intermediate form,
and uses type tags. Its stubs can be either interpreted or compiled. One of the claims to fame of ASN.1 BER
is that it is used by the Internet standard Simple Network Management Protocol (SNMP).

ASN.1 represents each data item with a triple of the form

(tag, length, value)

The tag is typically an 8-bit field, although ASN.1 allows for the definition of multibyte tags. The length
field specifies how many bytes make up the value; we discuss lengthmore below. Compound data types,
such as structures, can be constructed by nesting primitive types, as illustrated in Figure 7.7.

Figure 7.7.: Compound types created by means of nesting in ASN.1 BER.

Figure 7.8.: ASN.1 BER representation for a 4-byte integer.

If the value is 127 or fewer bytes long, then the length is specified in a single byte. Thus, for example,
a 32-bit integer is encoded as a 1-byte type, a 1-byte length, and the 4 bytes that encode the integer, as
illustrated in Figure 7.8. The value itself, in the case of an integer, is represented in twos’ complement

7.1. Presentation Formatting 349

Computer Networks: A Systems Approach, Release Version 6.1

notation and big-endian form, just as in XDR. Keep in mind that, even though the value of the integer is
represented in exactly the same way in both XDR and ASN.1, the XDR representation has neither the type
nor the length tags associated with that integer. These two tags both take up space in the message and,
more importantly, require processing during marshalling and unmarshalling. This is one reason why ASN.1
is not as efficient as XDR. Another is that the very fact that each data value is preceded by a length field
means that the data value is unlikely to fall on a natural byte boundary (e.g., an integer beginning on a word
boundary). This complicates the encoding/decoding process.

If the value is 128 or more bytes long, then multiple bytes are used to specify its length. At this point
you may be asking why a byte can specify a length of up to 127 bytes rather than 256. The reason is that
1 bit of the length field is used to denote how long the length field is. A 0 in the eighth bit indicates a
1-byte length field. To specify a longer length, the eighth bit is set to 1, and the other 7 bits indicate
how many additional bytes make up the length. Figure 7.9 illustrates a simple 1-byte length and a
multibyte length.

Figure 7.9.: ASN.1 BER representation for length: (a) 1 byte; (b) multibyte.

NDR

Network Data Representation (NDR) is the data-encoding standard used in the Distributed Computing En-
vironment (DCE). Unlike XDR and ASN.1, NDR uses receiver-makes-right. It does this by inserting an
architecture tag at the front of each message; individual data items are untagged. NDR uses a compiler to
generate stubs. This compiler takes a description of a program written in the Interface Definition Language
(IDL) and generates the necessary stubs. IDL looks pretty much like C, and so essentially supports the
C-type system.

Figure 7.10.: NDR’s architecture tag.

Figure 7.10 illustrates the 4-byte architecture definition tag that is included at the front of each NDR-encoded
message. The first byte contains two 4-bit fields. The first field, IntegrRep, defines the format for all
integers contained in the message. A 0 in this field indicates big-endian integers, and a 1 indicates little-
endian integers. The CharRep field indicates what character format is used: 0 means ASCII (American
Standard Code for Information Interchange) and 1 means EBCDIC (an older, IBM-defined alternative to
ASCII). Next, the FloatRep byte defines which floating-point representation is being used: 0 means IEEE

350 Chapter 7. End-to-End Data

Computer Networks: A Systems Approach, Release Version 6.1

754, 1 means VAX, 2 means Cray, and 3 means IBM. The final 2 bytes are reserved for future use. Note
that, in simple cases such as arrays of integers, NDR does the same amount of work as XDR, and so it is
able to achieve the same performance.

ProtoBufs

Protocol Buffers (Protobufs, for short) is a language-neutral and platform-neutral way of serializing struc-
tured data, commonly used with gRPC. It uses a tagged strategy with a canonical intermediate form, where
the stub on both sides is generated from a shared .proto file. This specification uses a simple C-like
syntax, as the following example illustrates:

message Person {
required string name = 1;
required int32 id = 2;
optional string email = 3;

enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;

}

message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = HOME];

}

required PhoneNumber phone = 4;
}

where message could roughly be interpreted as equivalent to typedef struct in C. The rest of the ex-
ample is fairly intuitive, except that every field is given a numeric identifier to ensure uniqueness should the
specification change over time, and each field can be annotated as being either required or optional.

The way Protobufs encodes integers is novel. It uses a technique called varints (variable length integers) in
which each 8-bit byte uses the most significant bit to indicate whether there are more bytes in the integer,
and the lower seven bits to encode the two’s complement representation of the next group of seven bits in
the value. The least significant group is first in the serialization.

This means a small integer (less than 128) can be encoded in a single byte (e.g., the integer 2 is encoded
as 0000 0010), while for an integer bigger than 128, more bytes are needed. For example, 365 would be
encoded as

1110 1101 0000 0010

To see this, first drop the most significant bit from each byte, as it is there to tell us whether we’ve reached
the end of the integer. In this example, the 1 in the most significant bit of the first byte indicates there is
more than one byte in the varint:

1110 1101 0000 0010
→ 110 1101 000 0010

7.1. Presentation Formatting 351

Computer Networks: A Systems Approach, Release Version 6.1

Since varints store numbers with the least significant group first, you next reverse the two groups of seven
bits. Then you concatenate them to get your final value:

000 0010 110 1101
→ 000 0010 || 110 1101
→ 101101101
→ 256 + 64 + 32 + 8 + 4 + 1 = 365

For the larger message specification, you can think of the serialized byte stream as a collection of key/value
pairs, where the key (i.e., tag) has two sub-parts: the unique identifier for the field (i.e., those extra numbers
in the example .proto file) and the wire type of the value (e.g., Varint is the one example wire type we
have seen so far). Other supported wire types include 32-bit and 64-bit (for fixed-length integers), and
length-delimited (for strings and embedded messages). The latter tells you how many bytes long the
embedded message (structure) is, but it’s another message specification in the .proto file that tells you
how to interpret those bytes.

7.1.3 Markup Languages (XML)

Although we have been discussing the presentation formatting problem from the perspective of RPC—that
is, how does one encode primitive data types and compound data structures so they can be sent from a client
program to a server program—the same basic problem occurs in other settings. For example, how does
a web server describe a Web page so that any number of different browsers know what to display on the
screen? In this specific case, the answer is the HyperText Markup Language (HTML), which indicates that
certain character strings should be displayed in bold or italics, what font type and size should be used, and
where images should be positioned.

The availability of all sorts of Web applications and data have also created a situation in which different
Web applications need to communicate with each other and understand each other’s data. For example,
an e-commerce website might need to talk to a shipping company’s website to allow a customer to track
a package without ever leaving the e-commerce website. This quickly starts to look a lot like RPC, and
the approach taken in the Web today to enable such communication among web servers is based on the
Extensible Markup Language (XML)—a way to describe the data being exchanged between Web apps.

Markup languages, of which HTML and XML are both examples, take the tagged data approach to the
extreme. Data is represented as text, and text tags known as markup are intermingled with the data text
to express information about the data. In the case of HTML, markup indicates how the text should be
displayed; other markup languages like XML can express the type and structure of the data.

XML is actually a framework for defining different markup languages for different kinds of data. For
example, XML has been used to define a markup language that is roughly equivalent to HTML called
Extensible HyperText Markup Language (XHTML). XML defines a basic syntax for mixing markup with
data text, but the designer of a specific markup language has to name and define its markup. It is common
practice to refer to individual XML-based languages simply as XML, but we will emphasize the distinction
in this introductory material.

XML syntax looks much like HTML. For example, an employee record in a hypothetical XML-based lan-
guage might look like the following XML document, which might be stored in a file named employee.
xml. The first line indicates the version of XML being used, and the remaining lines represent four fields
that make up the employee record, the last of which (hiredate) contains three subfields. In other words,
XML syntax provides for a nested structure of tag/value pairs, which is equivalent to a tree structure for

352 Chapter 7. End-to-End Data

Computer Networks: A Systems Approach, Release Version 6.1

the represented data (with employee as the root). This is similar to XDR, ASN.1, and NDR’s ability to
represent compound types, but in a format that can be both processed by programs and read by humans.
More importantly, programs such as parsers can be used across different XML-based languages, because
the definitions of those languages are themselves expressed as machine-readable data that can be input to
the programs.

<?xml version="1.0"?>
<employee>

<name>John Doe</name>
<title>Head Bottle Washer</title>
<id>123456789</id>
<hiredate>

<day>5</day>
<month>June</month>
<year>1986</year>

</hiredate>
</employee>

Although the markup and the data in this document are highly suggestive to the human reader, it is the
definition of the employee record language that actually determines what tags are legal, what they mean,
and what data types they imply. Without some formal definition of the tags, a human reader (or a computer)
can’t tell whether 1986 in the year field, for example, is a string, an integer, an unsigned integer, or a
floating point number.

The definition of a specific XML-based language is given by a schema, which is a database term for a
specification of how to interpret a collection of data. Several schema languages have been defined for
XML; we will focus here on the leading standard, known by the none-too-surprising name XML Schema.
An individual schema defined using XML Schema is known as an XML Schema Document (XSD). The
following is an XSD specification for the example; in other words, it defines the language to which the
example document conforms. It might be stored in a file named employee.xsd.

<?xml version="1.0"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema">

<element name="employee">
<complexType>

<sequence>
<element name="name" type="string"/>
<element name="title" type="string"/>
<element name="id" type="string"/>
<element name="hiredate">
<complexType>

<sequence>
<element name="day" type="integer"/>
<element name="month" type="string"/>
<element name="year" type="integer"/>

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

</schema>

7.1. Presentation Formatting 353

Computer Networks: A Systems Approach, Release Version 6.1

This XSD looks superficially similar to our example document employee.xml, and for good reason:
XML Schema is itself an XML-based language. There is an obvious relationship between this XSD and the
document defined above. For example,

<element name="title" type="string"/>

indicates that the value bracketed by the markup title is to be interpreted as a string. The sequence and
nesting of that line in the XSD indicate that a title field must be the second item in an employee record.

Unlike some schema languages, XML Schema provides datatypes such as string, integer, decimal, and
Boolean. It allows the datatypes to be combined in sequences or nested, as in employee.xsd, to create
compound data types. So an XSD defines more than a syntax; it defines its own abstract data model. A
document that conforms to the XSD represents a collection of data that conforms to the data model.

The significance of an XSD defining an abstract data model and not just a syntax is that there can be other
ways besides XML of representing data that conforms to the model. And XML does, after all, have some
shortcomings as an on-the-wire representation: it is not as compact as other data representations, and it
is relatively slow to parse. A number of alternative representations described as binary are in use. The
International Standards Organization (ISO) has published one called Fast Infoset, while the World Wide
Web Consortium (W3C) has produced the Efficient XML Interchange (EXI) proposal. Binary representations
sacrifice human readability for greater compactness and faster parsing.

XML Namespaces

XML has to solve a common problem, that of name clashes. The problem arises because schema languages
such as XML Schema support modularity in the sense that a schema can be reused as part of another schema.
Suppose two XSDs are defined independently, and both happen to define the markup name idNumber.
Perhaps one XSD uses that name to identify employees of a company, and the other XSD uses it to identify
laptop computers owned by the company. We might like to reuse those two XSDs in a third XSD for
describing which assets are associated with which employees, but to do that we need some mechanism for
distinguishing employees’ idNumbers from laptop idNumbers.

XML’s solution to this problem is XML namespaces. A namespace is a collection of names. Each XML
namespace is identified by a Uniform Resource Identifier (URI). URIs will be described in some detail in a
later chapter; for now, all you really need to know is that URIs are a form of globally unique identifier. (An
HTTP URL is a particular type of UNI.) A simple markup name like idNumber can be added to a namespace
as long as it is unique within that namespace. Since the namespace is globally unique and the simple name
is unique within the namespace, the combination of the two is a globally unique qualified name that cannot
clash.

An XSD usually specifies a target namespace with a line like the following:

targetNamespace="http://www.example.com/employee"

is a Uniform Resource Identifier, identifying a made-up namespace. All the new markup defined in that
XSD will belong to that namespace.

Now, if an XSD wants to reference names that have been defined in other XSDs, it can do so by qualifying
those names with a namespace prefix. This prefix is a short abbreviation for the full URI that actually

354 Chapter 7. End-to-End Data

Computer Networks: A Systems Approach, Release Version 6.1

identifies the namespace. For example, the following line assigns emp as the namespace prefix for the
employee namespace:

xmlns:emp="http://www.example.com/employee"

Any markup from that namespace would be qualified by prefixing it with emp: , as is title in the
following line:

<emp:title>Head Bottle Washer</emp:title>

In other words, emp:title is a qualified name, which will not clash with the name title from some
other namespace.

It is remarkable how widely XML is now used in applications that range from RPC-style communication
among Web-based services to office productivity tools to instant messaging. It is certainly one of the core
protocols on which the upper layers of the Internet now depend.

7.2 Multimedia Data

Multimedia data, comprised of audio, video, and still images, now makes up the majority of traffic on the
Internet. Part of what has made the widespread transmission of multimedia across networks possible is
advances in compression technology. Because multimedia data is consumed mostly by humans using their
senses—vision and hearing—and processed by the human brain, there are unique challenges to compressing
it. You want to try to keep the information that is most important to a human, while getting rid of anything
that doesn’t improve the human’s perception of the visual or auditory experience. Hence, both computer
science and the study of human perception come into play. In this section, we’ll look at some of the major
efforts in representing and compressing multimedia data.

The uses of compression are not limited to multimedia data of course—for example, you may well have used
a utility like zip or compress to compress files before sending them over a network, or to uncompress a
data file after downloading. It turns out that the techniques used for compressing data—which are typically
lossless, because most people don’t like to lose data from a file—also show up as part of the solution
for multimedia compression. In contrast, lossy compression, commonly used for multimedia data, does not
promise that the data received is exactly the same as the data sent. As noted above, this is because multimedia
data often contains information that is of little utility to the human who receives it. Our senses and brains
can only perceive so much detail. They are also very good at filling in missing pieces and even correcting
some errors in what we see or hear. And, lossy algorithms typically achieve much better compression ratios
than do their lossless counterparts; they can be an order of magnitude better or more.

To get a sense of how important compression has been to the spread of networked multimedia, consider the
following example. A high-definition TV screen has something like 1080 × 1920 pixels, each of which has
24 bits of color information, so each frame is

1080 × 1920 × 24 = 50 𝑀𝑏

so if you want to send 24 frames per second, that would be over 1 Gbps. That’s more than most Internet
users have access to. By contrast, modern compression techniques can get a reasonably high-quality HDTV
signal down to the range of 10 Mbps, a two order of magnitude reduction and well within the reach of most
broadband users. Similar compression gains apply to lower quality video such as YouTube clips—Web

7.2. Multimedia Data 355

Computer Networks: A Systems Approach, Release Version 6.1

video could never have reached its current popularity without compression to make all those entertaining
videos fit within the bandwidth of today’s networks.

Compression techniques as applied to multimedia have been an area of great innovation, particularly lossy
compression. Lossless techniques also have an important role to play, however. Indeed, most of the lossy
techniques include some steps that are lossless, so we begin our discussion with an overview of lossless
compression.

7.2.1 Lossless Compression Techniques

In many ways, compression is inseparable from data encoding. When thinking about how to encode a piece
of data in a set of bits, we might just as well think about how to encode the data in the smallest set of bits
possible. For example, if you have a block of data that is made up of the 26 symbols A through Z, and if
all of these symbols have an equal chance of occurring in the data block you are encoding, then encoding
each symbol in 5 bits is the best you can do (since 25 = 32 is the lowest power of 2 above 26). If, however,
the symbol R occurs 50% of the time, then it would be a good idea to use fewer bits to encode the R than
any of the other symbols. In general, if you know the relative probability that each symbol will occur in the
data, then you can assign a different number of bits to each possible symbol in a way that minimizes the
number of bits it takes to encode a given block of data. This is the essential idea of Huffman codes, one of
the important early developments in data compression.

Run Length Encoding

Run length encoding (RLE) is a compression technique with a brute-force simplicity. The idea is to replace
consecutive occurrences of a given symbol with only one copy of the symbol, plus a count of how many
times that symbol occurs—hence, the name run length. For example, the string AAABBCDDDD would be
encoded as 3A2B1C4D.

RLE turns out to be useful for compressing some classes of images. It can be used in this context by com-
paring adjacent pixel values and then encoding only the changes. For images that have large homogeneous
regions, this technique is quite effective. For example, it is not uncommon that RLE can achieve compres-
sion ratios on the order of 8-to-1 for scanned text images. RLE works well on such files because they often
contain a large amount of white space that can be removed. For those old enough to remember the technol-
ogy, RLE was the key compression algorithm used to transmit faxes. However, for images with even a small
degree of local variation, it is not uncommon for compression to actually increase the image byte size, since
it takes 2 bytes to represent a single symbol when that symbol is not repeated.

Differential Pulse Code Modulation

Another simple lossless compression algorithm is Differential Pulse Code Modulation (DPCM). The idea
here is to first output a reference symbol and then, for each symbol in the data, to output the difference
between that symbol and the reference symbol. For example, using symbol A as the reference symbol, the
string AAABBCDDDD would be encoded as A0001123333 because A is the same as the reference symbol,
B has a difference of 1 from the reference symbol, and so on. Note that this simple example does not
illustrate the real benefit of DPCM, which is that when the differences are small they can be encoded with
fewer bits than the symbol itself. In this example, the range of differences, 0-3, can be represented with

356 Chapter 7. End-to-End Data

Computer Networks: A Systems Approach, Release Version 6.1

2 bits each, rather than the 7 or 8 bits required by the full character. As soon as the difference becomes too
large, a new reference symbol is selected.

DPCM works better than RLE for most digital imagery, since it takes advantage of the fact that adjacent
pixels are usually similar. Due to this correlation, the dynamic range of the differences between the adjacent
pixel values can be significantly less than the dynamic range of the original image, and this range can
therefore be represented using fewer bits. Using DPCM, we have measured compression ratios of 1.5-to-1
on digital images. DPCM also works on audio, because adjacent samples of an audio waveform are likely
to be close in value.

A slightly different approach, called delta encoding, simply encodes a symbol as the difference from the
previous one. Thus, for example, AAABBCDDDD would be represented as A001011000. Note that delta
encoding is likely to work well for encoding images where adjacent pixels are similar. It is also possible to
perform RLE after delta encoding, since we might find long strings of 0s if there are many similar symbols
next to each other.

Dictionary-Based Methods

The final lossless compression method we consider is the dictionary-based approach, of which the Lempel-
Ziv (LZ) compression algorithm is the best known. The Unix compress and gzip commands use variants
of the LZ algorithm.

The idea of a dictionary-based compression algorithm is to build a dictionary (table) of variable-length
strings (think of them as common phrases) that you expect to find in the data and then to replace each of
these strings when it appears in the data with the corresponding index to the dictionary. For example, instead
of working with individual characters in text data, you could treat each word as a string and output the index
in the dictionary for that word. To further elaborate on this example, the word compression has the index
4978 in one particular dictionary; it is the 4978th word in . To compress a body of text, each time the
string “compression” appears, it would be replaced by 4978. Since this particular dictionary has just over
25,000 words in it, it would take 15 bits to encode the index, meaning that the string “compression” could be
represented in 15 bits rather than the 77 bits required by 7-bit ASCII. This is a compression ratio of 5-to-1!
At another data point, we were able to get a 2-to-1 compression ratio when we applied the compress
command to the source code for the protocols described in this book.

Of course, this leaves the question of where the dictionary comes from. One option is to define a static
dictionary, preferably one that is tailored for the data being compressed. A more general solution, and the
one used by LZ compression, is to adaptively define the dictionary based on the contents of the data being
compressed. In this case, however, the dictionary constructed during compression has to be sent along with
the data so that the decompression half of the algorithm can do its job. Exactly how you build an adaptive
dictionary has been a subject of extensive research.

7.2.2 Image Representation and Compression (GIF, JPEG)

Given the ubiquitous use of digital imagery—this use was spawned by the invention of graphical displays,
not high-speed networks—the need for standard representation formats and compression algorithms for
digital imagery data has become essential. In response to this need, the ISO defined a digital image format
known as JPEG, named after the Joint Photographic Experts Group that designed it. (The “Joint” in JPEG
stands for a joint ISO/ITU effort.) JPEG is the most widely used format for still images in use today. At the

7.2. Multimedia Data 357

Computer Networks: A Systems Approach, Release Version 6.1

heart of the definition of the format is a compression algorithm, which we describe below. Many techniques
used in JPEG also appear in MPEG, the set of standards for video compression and transmission created by
the Moving Picture Experts Group.

Before delving into the details of JPEG, we observe that there are quite a few steps to get from a digital
image to a compressed representation of that image that can be transmitted, decompressed, and displayed
correctly by a receiver. You probably know that digital images are made up of pixels (hence, the megapixels
quoted in smartphone camera advertisements). Each pixel represents one location in the two-dimensional
grid that makes up the image, and for color images each pixel has some numerical value representing a color.
There are lots of ways to represent colors, referred to as color spaces; the one most people are familiar with
is RGB (red, green, blue). You can think of color as being a three dimensional quantity—you can make
any color out of red, green, and blue light in different amounts. In a three-dimensional space, there are lots
of different, valid ways to describe a given point (consider Cartesian and polar coordinates, for example).
Similarly, there are various ways to describe a color using three quantities, and the most common alternative
to RGB is YUV. The Y is luminance, roughly the overall brightness of the pixel, and U and V contain
chrominance, or color information. Confoundingly, there are a few different variants of the YUV color
space as well. More on this in a moment.

The significance of this discussion is that the encoding and transmission of color images (either still or
moving) requires agreement between the two ends on the color space. Otherwise, of course, you’d end up
with different colors being displayed by the receiver than were captured by the sender. Hence, agreeing on
a color space definition (and perhaps a way to communicate which particular space is in use) is part of the
definition of any image or video format.

Let’s look at the example of the Graphical Interchange Format (GIF). GIF uses the RGB color space and
starts out with 8 bits to represent each of the three dimensions of color for a total of 24 bits. Rather than
sending those 24 bits per pixel, however, GIF first reduces 24-bit color images to 8-bit color images. This is
done by identifying the colors used in the picture, of which there will typically be considerably fewer than
224, and then picking the 256 colors that most closely approximate the colors used in the picture. There
might be more than 256 colors, however, so the trick is to try not to distort the color too much by picking
256 colors such that no pixel has its color changed too much.

The 256 colors are stored in a table, which can be indexed with an 8-bit number, and the value for each pixel
is replaced by the appropriate index. Note that this is an example of lossy compression for any picture with
more than 256 colors. GIF then runs an LZ variant over the result, treating common sequences of pixels as
the strings that make up the dictionary—a lossless operation. Using this approach, GIF is sometimes able
to achieve compression ratios on the order of 10:1, but only when the image consists of a relatively small
number of discrete colors. Graphical logos, for example, are handled well by GIF. Images of natural scenes,
which often include a more continuous spectrum of colors, cannot be compressed at this ratio using GIF. It
is also not too hard for a human eye to detect the distortion caused by the lossy color reduction of GIF in
some cases.

The JPEG format is considerably more well suited to photographic images, as you would hope given the
name of the group that created it. JPEG does not reduce the number of colors like GIF. Instead, JPEG starts
off by transforming the RGB colors (which are what you usually get out of a digital camera) to the YUV
space. The reason for this has to do with the way the eye perceives images. There are receptors in the eye for
brightness, and separate receptors for color. Because we’re very good at perceiving variations in brightness,
it makes sense to spend more bits on transmitting brightness information. Since the Y component of YUV
is, roughly, the brightness of the pixel, we can compress that component separately, and less aggressively,
from the other two (chrominance) components.

358 Chapter 7. End-to-End Data

Computer Networks: A Systems Approach, Release Version 6.1

As noted above, YUV and RGB are alternative ways to describe a point in a 3-dimensional space, and it’s
possible to convert from one color space to another using linear equations. For one YUV space that is
commonly used to represent digital images, the equations are:

Y = 0.299R + 0.587G + 0.114B
U = (B-Y) x 0.565
V = (R-Y) x 0.713

The exact values of the constants here are not important, as long as the encoder and decoder agree on what
they are. (The decoder will have to apply the inverse transformations to recover the RGB components
needed to drive a display.) The constants are, however, carefully chosen based on the human perception of
color. You can see that Y, the luminance, is a sum of the red, green, and blue components, while U and V
are color difference components. U represents the difference between the luminance and blue, and V the
difference between luminance and red. You may notice that setting R, G, and B to their maximum values
(which would be 255 for 8-bit representations) will also produce a value of Y=255 while U and V in this
case would be zero. That is, a fully white pixel is (255,255,255) in RGB space and (255,0,0) in YUV space.

Figure 7.11.: Subsampling the U and V components of an image.

Once the image has been transformed into YUV space, we can now think about compressing each of the
three components separately. We want to be more aggressive in compressing the U and V components,
to which human eyes are less sensitive. One way to compress the U and V components is to subsample
them. The basic idea of subsampling is to take a number of adjacent pixels, calculate the average U or V
value for that group of pixels, and transmit that, rather than sending the value for every pixel. Figure 7.11
illustrates the point. The luminance (Y) component is not subsampled, so the Y value of all the pixels will be
transmitted, as indicated by the 16 × 16 grid of pixels on the left. In the case of U and V, we treat each group
of four adjacent pixels as a group, calculate the average of the U or V value for that group, and transmit that.
Hence, we end up with an 8 × 8 grid of U and V values to transmit. Thus, in this example, for every four
pixels, we transmit six values (four Y and one each of U and V) rather than the original 12 values (four each
for all three components), for a 50% reduction in information.

It’s worth noting that you could be either more or less aggressive in the subsampling, with corresponding
increases in compression and decreases in quality. The subsampling approach shown here, in which chromi-
nance is subsampled by a factor of two in both horizontal and vertical directions (and which goes by the
identification 4:2:0), happens to match the most common approach used for both JPEG and MPEG.

Once subsampling is done, we now have three grids of pixels to deal with, and each one is dealt with
separately. JPEG compression of each component takes place in three phases, as illustrated in Figure 7.12.
On the compression side, the image is fed through these three phases one 8 × 8 block at a time. The first

7.2. Multimedia Data 359

Computer Networks: A Systems Approach, Release Version 6.1

Figure 7.12.: Block diagram of JPEG compression.

phase applies the discrete cosine transform (DCT) to the block. If you think of the image as a signal in the
spatial domain, then DCT transforms this signal into an equivalent signal in the spatial frequency domain.
This is a lossless operation but a necessary precursor to the next, lossy step. After the DCT, the second
phase applies a quantization to the resulting signal and, in so doing, loses the least significant information
contained in that signal. The third phase encodes the final result, but in so doing also adds an element of
lossless compression to the lossy compression achieved by the first two phases. Decompression follows
these same three phases, but in reverse order.

DCT Phase

DCT is a transformation closely related to the fast Fourier transform (FFT). It takes an 8 × 8 matrix of pixel
values as input and outputs an 8 × 8 matrix of frequency coefficients. You can think of the input matrix as
a 64-point signal that is defined in two spatial dimensions (x and y); DCT breaks this signal into 64 spatial
frequencies. To get an intuitive feel for spatial frequency, imagine yourself moving across a picture in, say,
the x direction. You would see the value of each pixel varying as some function of x. If this value changes
slowly with increasing x, then it has a low spatial frequency; if it changes rapidly, it has a high spatial
frequency. So the low frequencies correspond to the gross features of the picture, while the high frequencies
correspond to fine detail. The idea behind the DCT is to separate the gross features, which are essential to
viewing the image, from the fine detail, which is less essential and, in some cases, might be barely perceived
by the eye.

DCT, along with its inverse, which recovers the original pixels and during decompression, are defined by
the following formulas:

𝐷𝐶𝑇 (𝑖, 𝑗) =
1√
2𝑁

𝐶(𝑖)𝐶(𝑗)

𝑁−1∑︁
𝑥=0

𝑁−1∑︁
𝑦=0

𝑝𝑖𝑥𝑒𝑙(𝑥, 𝑦) cos

[︂
(2𝑥 + 1)𝑖𝜋

2𝑁

]︂
cos

[︂
(2𝑦 + 1)𝑗𝜋

2𝑁

]︂

pixel(𝑥, 𝑦) =
1√
2𝑁

𝑁−1∑︁
𝑖=0

𝑁−1∑︁
𝑗=0

𝐶(𝑖)𝐶(𝑗)𝐷𝐶𝑇 (𝑖, 𝑗) cos

[︂
(2𝑥 + 1)𝑖𝜋

2𝑁

]︂
cos

[︂
(2𝑦 + 1)𝑗𝜋

2𝑁

]︂
where 𝐶(𝑥) = 1/

√
2 when 𝑥 = 0 and 1 when 𝑥 > 0, and 𝑝𝑖𝑥𝑒𝑙(𝑥, 𝑦) is the grayscale value of the pixel at

position (x,y) in the 8 × 8 block being compressed; N = 8 in this case.

The first frequency coefficient, at location (0,0) in the output matrix, is called the DC coefficient. Intuitively,
we can see that the DC coefficient is a measure of the average value of the 64 input pixels. The other
63 elements of the output matrix are called the AC coefficients. They add the higher-spatial-frequency
information to this average value. Thus, as you go from the first frequency coefficient toward the 64th
frequency coefficient, you are moving from low-frequency information to high-frequency information, from
the broad strokes of the image to finer and finer detail. These higher-frequency coefficients are increasingly
unimportant to the perceived quality of the image. It is the second phase of JPEG that decides which portion
of which coefficients to throw away.

360 Chapter 7. End-to-End Data

Computer Networks: A Systems Approach, Release Version 6.1

Quantization Phase

The second phase of JPEG is where the compression becomes lossy. DCT does not itself lose information;
it just transforms the image into a form that makes it easier to know what information to remove. (Although
not lossy, per se, there is of course some loss of precision during the DCT phase because of the use of fixed-
point arithmetic.) Quantization is easy to understand—it’s simply a matter of dropping the insignificant bits
of the frequency coefficients.

To see how the quantization phase works, imagine that you want to compress some whole numbers less
than 100, such as 45, 98, 23, 66, and 7. If you decided that knowing these numbers truncated to the nearest
multiple of 10 is sufficient for your purposes, then you could divide each number by the quantum 10 using
integer arithmetic, yielding 4, 9, 2, 6, and 0. These numbers can each be encoded in 4 bits rather than the
7 bits needed to encode the original numbers.

Table 7.1.: Example JPEG Quantization Table.
Quantum
3 5 7 9 11 13 15 17
5 7 9 11 13 15 17 19
7 9 11 13 15 17 19 21
9 11 13 15 17 19 21 23
11 13 15 17 19 21 23 25
13 15 17 19 21 23 25 27
15 17 19 21 23 25 27 29
17 19 21 23 25 27 29 31

Rather than using the same quantum for all 64 coefficients, JPEG uses a quantization table that gives the
quantum to use for each of the coefficients, as specified in the formula given below. You can think of this ta-
ble (Quantum) as a parameter that can be set to control how much information is lost and, correspondingly,
how much compression is achieved. In practice, the JPEG standard specifies a set of quantization tables that
have proven effective in compressing digital images; an example quantization table is given in Table 7.1. In
tables like this one, the low coefficients have a quantum close to 1 (meaning that little low-frequency infor-
mation is lost) and the high coefficients have larger values (meaning that more high-frequency information
is lost). Notice that as a result of such quantization tables many of the high-frequency coefficients end up
being set to 0 after quantization, making them ripe for further compression in the third phase.

The basic quantization equation is

QuantizedValue(i,j) = IntegerRound(DCT(i,j), Quantum(i,j))

where

IntegerRound(x) =
Floor(x + 0.5) if x >= 0
Floor(x - 0.5) if x < 0

Decompression is then simply defined as

DCT(i,j) = QuantizedValue(i,j) x Quantum(i,j)

7.2. Multimedia Data 361

Computer Networks: A Systems Approach, Release Version 6.1

For example, if the DC coefficient (i.e., DCT(0,0)) for a particular block was equal to 25, then the quantiza-
tion of this value using Table 7.1 would result in

Floor(25/3+0.5) = 8

During decompression, this coefficient would then be restored as 8 × 3 = 24.

Encoding Phase

The final phase of JPEG encodes the quantized frequency coefficients in a compact form. This results in
additional compression, but this compression is lossless. Starting with the DC coefficient in position (0,0),
the coefficients are processed in the zigzag sequence shown in Figure 7.13. Along this zigzag, a form of run
length encoding is used—RLE is applied to only the 0 coefficients, which is significant because many of
the later coefficients are 0. The individual coefficient values are then encoded using a Huffman code. (The
JPEG standard allows the implementer to use an arithmetic coding instead of the Huffman code.)

Figure 7.13.: Zigzag traversal of quantized frequency coefficients.

In addition, because the DC coefficient contains a large percentage of the information about the 8 × 8 block
from the source image, and images typically change slowly from block to block, each DC coefficient is
encoded as the difference from the previous DC coefficient. This is the delta encoding approach described
in a later section.

JPEG includes a number of variations that control how much compression you achieve versus the fidelity
of the image. This can be done, for example, by using different quantization tables. These variations, plus
the fact that different images have different characteristics, make it impossible to say with any precision
the compression ratios that can be achieved with JPEG. Ratios of 30:1 are common, and higher ratios are
certainly possible, but artifacts (noticeable distortion due to compression) become more severe at higher
ratios.

362 Chapter 7. End-to-End Data

Computer Networks: A Systems Approach, Release Version 6.1

7.2.3 Video Compression (MPEG)

We now turn our attention to the MPEG format, named after the Moving Picture Experts Group that defined
it. To a first approximation, a moving picture (i.e., video) is simply a succession of still images—also called
frames or pictures—displayed at some video rate. Each of these frames can be compressed using the same
DCT-based technique used in JPEG. Stopping at this point would be a mistake, however, because it fails to
remove the interframe redundancy present in a video sequence. For example, two successive frames of video
will contain almost identical information if there is not much motion in the scene, so it would be unnecessary
to send the same information twice. Even when there is motion, there may be plenty of redundancy since a
moving object may not change from one frame to the next; in some cases, only its position changes. MPEG
takes this interframe redundancy into consideration. MPEG also defines a mechanism for encoding an audio
signal with the video, but we consider only the video aspect of MPEG in this section.

Frame Types

MPEG takes a sequence of video frames as input and compresses them into three types of frames,
called I frames (intrapicture), P frames (predicted picture), and B frames (bidirectional predicted picture).
Each frame of input is compressed into one of these three frame types. I frames can be thought of as
reference frames; they are self-contained, depending on neither earlier frames nor later frames. To a first
approximation, an I frame is simply the JPEG compressed version of the corresponding frame in the video
source. P and B frames are not self-contained; they specify relative differences from some reference frame.
More specifically, a P frame specifies the differences from the previous I frame, while a B frame gives an
interpolation between the previous and subsequent I or P frames.

Figure 7.14.: Sequence of I, P, and B frames generated by MPEG.

Figure 7.14 illustrates a sequence of seven video frames that, after being compressed by MPEG, result in
a sequence of I, P, and B frames. The two I frames stand alone; each can be decompressed at the receiver
independently of any other frames. The P frame depends on the preceding I frame; it can be decompressed at
the receiver only if the preceding I frame also arrives. Each of the B frames depends on both the preceding I
or P frame and the subsequent I or P frame. Both of these reference frames must arrive at the receiver before
MPEG can decompress the B frame to reproduce the original video frame.

7.2. Multimedia Data 363

Computer Networks: A Systems Approach, Release Version 6.1

Note that, because each B frame depends on a later frame in the sequence, the compressed frames are not
transmitted in sequential order. Instead, the sequence I B B P B B I shown in Figure 7.14 is transmitted as
I P B B I B B. Also, MPEG does not define the ratio of I frames to P and B frames; this ratio may vary
depending on the required compression and picture quality. For example, it is permissible to transmit only
I frames. This would be similar to using JPEG to compress the video.

In contrast to the preceding discussion of JPEG, the following focuses on the decoding of an MPEG stream.
It is a little easier to describe, and it is the operation that is more often implemented in networking systems
today, since MPEG coding is so expensive that it is frequently done offline (i.e., not in real time). For
example, in a video-on-demand system, the video would be encoded and stored on disk ahead of time.
When a viewer wanted to watch the video, the MPEG stream would then be transmitted to the viewer’s
machine, which would decode and display the stream in real time.

Let’s look more closely at the three frame types. As mentioned above, I frames are approximately equal to
the JPEG compressed version of the source frame. The main difference is that MPEG works in units of 16
× 16 macroblocks. For a color video represented in YUV, the U and V components in each macroblock are
subsampled into an 8 × 8 block, as we discussed above in the context of JPEG. Each 2 × 2 subblock in the
macroblock is given by one U value and one V value—the average of the four pixel values. The subblock
still has four Y values. The relationship between a frame and the corresponding macroblocks is given in
Figure 7.15.

Figure 7.15.: Each frame as a collection of macroblocks.

The P and B frames are also processed in units of macroblocks. Intuitively, we can see that the information
they carry for each macroblock captures the motion in the video; that is, it shows in what direction and how
far the macroblock moved relative to the reference frame(s). The following describes how a B frame is used
to reconstruct a frame during decompression; P frames are handled in a similar manner, except that they
depend on only one reference frame instead of two.

Before getting to the details of how a B frame is decompressed, we first note that each macroblock in a
B frame is not necessarily defined relative to both an earlier and a later frame, as suggested above, but may
instead simply be specified relative to just one or the other. In fact, a given macroblock in a B frame can
use the same intracoding as is used in an I frame. This flexibility exists because if the motion picture is

364 Chapter 7. End-to-End Data

Computer Networks: A Systems Approach, Release Version 6.1

changing too rapidly then it sometimes makes sense to give the intrapicture encoding rather than a forward-
or backward-predicted encoding. Thus, each macroblock in a B frame includes a type field that indicates
which encoding is used for that macroblock. In the following discussion, however, we consider only the
general case in which the macroblock uses bidirectional predictive encoding.

In such a case, each macroblock in a B frame is represented with a 4-tuple: (1) a coordinate for the mac-
roblock in the frame, (2) a motion vector relative to the previous reference frame, (3) a motion vector relative
to the subsequent reference frame, and (4) a delta (𝛿) for each pixel in the macroblock (i.e., how much each
pixel has changed relative to the two reference pixels). For each pixel in the macroblock, the first task is to
find the corresponding reference pixel in the past and future reference frames. This is done using the two
motion vectors associated with the macroblock. Then, the delta for the pixel is added to the average of these
two reference pixels. Stated more precisely, if we let Fp and Ff denote the past and future reference frames,
respectively, and the past/future motion vectors are given by (xp, yp) and (xf, yf), then the pixel at coordinate
(x,y) in the current frame (denoted Fc) is computed as

𝐹𝑐(𝑥, 𝑦) = (𝐹𝑝(𝑥 + 𝑥𝑝, 𝑦 + 𝑦𝑝) + 𝐹𝑓 (𝑥 + 𝑥𝑓 , 𝑦 + 𝑦𝑓))/2 + 𝛿(𝑥, 𝑦)

where 𝛿 is the delta for the pixel as specified in the B frame. These deltas are encoded in the same way as
pixels in I frames; that is, they are run through DCT and then quantized. Since the deltas are typically small,
most of the DCT coefficients are 0 after quantization; hence, they can be effectively compressed.

It should be fairly clear from the preceding discussion how encoding would be performed, with one ex-
ception. When generating a B or P frame during compression, MPEG must decide where to place the
macroblocks. Recall that each macroblock in a P frame, for example, is defined relative to a macroblock in
an I frame, but that the macroblock in the P frame need not be in the same part of the frame as the corre-
sponding macroblock in the I frame—the difference in position is given by the motion vector. You would
like to pick a motion vector that makes the macroblock in the P frame as similar as possible to the corre-
sponding macroblock in the I frame, so that the deltas for that macroblock can be as small as possible. This
means that you need to figure out where objects in the picture moved from one frame to the next. This is the
problem of motion estimation, and several techniques (heuristics) for solving this problem are known. (We
discuss papers that consider this problem at the end of this chapter.) The difficulty of this problem is one
of the reasons why MPEG encoding takes longer than decoding on equivalent hardware. MPEG does not
specify any particular technique; it only defines the format for encoding this information in B and P frames
and the algorithm for reconstructing the pixel during decompression, as given above.

Effectiveness and Performance

MPEG typically achieves a compression ratio of 90:1, although ratios as high as 150:1 are not unheard of.
In terms of the individual frame types, we can expect a compression ratio of approximately 30:1 for the
I frames (this is consistent with the ratios achieved using JPEG when 24-bit color is first reduced to 8-bit
color), while P and B frame compression ratios are typically three to five times smaller than the rates for
the I frame. Without first reducing the 24 bits of color to 8 bits, the achievable compression with MPEG is
typically between 30:1 and 50:1.

MPEG involves an expensive computation. On the compression side, it is typically done offline, which is not
a problem for preparing movies for a video-on-demand service. Video can be compressed in real time using
hardware today, but software implementations are quickly closing the gap. On the decompression side, low-
cost MPEG video boards are available, but they do little more than YUV color lookup, which fortunately is
the most expensive step. Most of the actual MPEG decoding is done in software. In recent years, processors

7.2. Multimedia Data 365

Computer Networks: A Systems Approach, Release Version 6.1

have become fast enough to keep pace with 30-frames-per-second video rates when decoding MPEG streams
purely in software—modern processors can even decode MPEG streams of high definition video (HDTV).

Video Encoding Standards

We conclude by noting that MPEG is an evolving standard of significant complexity. This complexity
comes from a desire to give the encoding algorithm every possible degree of freedom in how it encodes a
given video stream, resulting in different video transmission rates. It also comes from the evolution of the
standard over time, with the Moving Picture Experts Group working hard to retain backwards compatibility
(e.g., MPEG-1, MPEG-2, MPEG-4). What we describe in this book is the essential ideas underlying MPEG-
based compression, but certainly not all the intricacies involved in an international standard.

What’s more, MPEG is not the only standard available for encoding video. For example, the ITU-T has also
defined the H series for encoding real-time multimedia data. Generally, the H series includes standards for
video, audio, control, and multiplexing (e.g., mixing audio, video, and data onto a single bit stream). Within
the series, H.261 and H.263 were the first- and second-generation video encoding standards. In principle,
both H.261 and H.263 look a lot like MPEG: They use DCT, quantization, and interframe compression. The
differences between H.261/H.263 and MPEG are in the details.

Today, a partnership between the ITU-T and the MPEG group has lead to the joint H.264/MPEG-4 standard,
which is used for both Blu-ray Discs and by many popular streaming sources (e.g., YouTube, Vimeo).

7.2.4 Transmitting MPEG over a Network

As we’ve noted, MPEG and JPEG are not just compression standards but also definitions of the format
of video and images, respectively. Focusing on MPEG, the first thing to keep in mind is that it defines
the format of a video stream; it does not specify how this stream is broken into network packets. Thus,
MPEG can be used for videos stored on disk, as well as videos transmitted over a stream-oriented network
connection, like that provided by TCP.

What we describe below is called the main profile of an MPEG video stream that is being sent over a
network. You can think of an MPEG profile as being analogous to a “version,” except the profile is not
explicitly specified in an MPEG header; the receiver has to deduce the profile from the combination of
header fields it sees.

A main profile MPEG stream has a nested structure, as illustrated in Figure 7.16. (Keep in mind that this fig-
ure hides a lot of messy details.) At the outermost level, the video contains a sequence of groups of pictures
(GOP) separated by a SeqHdr. The sequence is terminated by a SeqEndCode (0xb7). The SeqHdr that
precedes every GOP specifies—among other things—the size of each picture (frame) in the GOP (measured
in both pixels and macroblocks), the interpicture period (measured in 𝜇s), and two quantization matrices for
the macroblocks within this GOP: one for intracoded macroblocks (I blocks) and one for intercoded mac-
roblocks (B and P blocks). Since this information is given for each GOP—rather than once for the entire
video stream, as you might expect—it is possible to change the quantization table and frame rate at GOP
boundaries throughout the video. This makes it possible to adapt the video stream over time, as we discuss
below.

Each GOP is given by a GOPHdr, followed by the set of pictures that make up the GOP. The GOPHdr
specifies the number of pictures in the GOP, as well as synchronization information for the GOP (i.e.,
when the GOP should play, relative to the beginning of the video). Each picture, in turn, is given by a

366 Chapter 7. End-to-End Data

Computer Networks: A Systems Approach, Release Version 6.1

Figure 7.16.: Format of an MPEG-compressed video stream.

PictureHdr and a set of slices that make up the picture. (A slice is a region of the picture, such as one
horizontal line.) The PictureHdr identifies the type of the picture (I, B, or P) and defines a picture-
specific quantization table. The SliceHdr gives the vertical position of the slice, plus another opportunity
to change the quantization table—this time by a constant scaling factor rather than by giving a whole new
table. Next, the SliceHdr is followed by a sequence of macroblocks. Finally, each macroblock includes
a header that specifies the block address within the picture, along with data for the six blocks within the
macroblock: one for the U component, one for the V component, and four for the Y component. (Recall
that the Y component is 16 × 16, while the U and V components are 8 × 8.)

It should be clear that one of the powers of the MPEG format is that it gives the encoder an opportunity
to change the encoding over time. It can change the frame rate, the resolution, the mix of frame types that
define a GOP, the quantization table, and the encoding used for individual macroblocks. As a consequence,
it is possible to adapt the rate at which a video is transmitted over a network by trading picture quality for
network bandwidth. Exactly how a network protocol might exploit this adaptability is currently a subject of
research (see sidebar).

Another interesting aspect of sending an MPEG stream over the network is exactly how the stream is broken
into packets. If sent over a TCP connection, packetization is not an issue; TCP decides when it has enough
bytes to send the next IP datagram. When using video interactively, however, it is rare to transmit it over
TCP, since TCP has several features that are ill suited to highly latency-sensitive applications (such as abrupt
rate changes after a packet loss and retransmission of lost packets). If we are transmitting video using UDP,
say, then it makes sense to break the stream at carefully selected points, such as at macroblock boundaries.
This is because we would like to confine the effects of a lost packet to a single macroblock, rather than
damaging several macroblocks with a single loss. This is an example of Application Level Framing, which
was discussed in an earlier chapter.

7.2. Multimedia Data 367

Computer Networks: A Systems Approach, Release Version 6.1

Packetizing the stream is only the first problem in sending MPEG-compressed video over a network. The
next complication is dealing with packet loss. On the one hand, if a B frame is dropped by the network, then
it is possible to simply replay the previous frame without seriously compromising the video; 1 frame out of
30 is no big deal. On the other hand, a lost I frame has serious consequences—none of the subsequent B
and P frames can be processed without it. Thus, losing an I frame would result in losing multiple frames
of the video. While you could retransmit the missing I frame, the resulting delay would probably not be
acceptable in a real-time videoconference. One solution to this problem would be to use the Differentiated
Services techniques described in the previous chapter to mark the packets containing I frames with a lower
drop probability than other packets.

One final observation is that how you choose to encode video depends on more than just the available
network bandwidth. It also depends on the application’s latency constraints. Once again, an interactive
application like videoconferencing needs small latencies. The critical factor is the combination of I, P, and
B frames in the GOP. Consider the following GOP:

I B B B B P B B B B I

The problem this GOP causes a videoconferencing application is that the sender has to delay the transmission
of the four B frames until the P or I that follows them is available. This is because each B frame depends on
the subsequent P or I frame. If the video is playing at 15 frames per second (i.e., one frame every 67 ms),
this means the first B frame is delayed 4 × 67 ms, which is more than a quarter of a second. This delay is in
addition to any propagation delay imposed by the network. A quarter of a second is far greater than the 100-
ms threshold that humans are able to perceive. It is for this reason that many videoconference applications
encode video using JPEG, which is often called motion-JPEG. (Motion-JPEG also addresses the problem
of dropping a reference frame since all frames are able to stand alone.) Notice, however, that an interframe
encoding that depends upon only prior frames rather than later frames is not a problem. Thus, a GOP of

I P P P P I

would work just fine for interactive videoconferencing.

Adaptive Streaming

Because encoding schemes like MPEG allow for a trade-off between the bandwidth consumed and the qual-
ity of the image, there is an opportunity to adapt a video stream to match the available network bandwidth.
This is effectively what video streaming services like Netflix do today.

For starters, let’s assume that we have some way to measure the amount of free capacity and level of con-
gestion along a path, for example, by observing the rate at which packets are successfully arriving at the
destination. As the available bandwidth fluctuates, we can feed that information back to the codec so that
it adjusts its coding parameters to back off during congestion and to send more aggressively (with a higher
picture quality) when the network is idle. This is analogous to the behavior of TCP, except in the video case
we are actually modifying the total amount of data sent rather than how long we take to send a fixed amount
of data, since we don’t want to introduce delay into a video application.

In the case of video-on-demand services like Netflix, we don’t adapt the encoding on the fly, but instead
we encode a handful of video quality levels ahead of time, and save them to files named accordingly. The
receiver simply changes the file name it requests to match the quality its measurements indicate the network
will be able to deliver. The receiver watches its playback queue, and asks for a higher quality encoding when
the queue becomes too full and a lower quality encoding when the queue becomes too empty.

368 Chapter 7. End-to-End Data

Computer Networks: A Systems Approach, Release Version 6.1

How does this approach know where in the movie to jump to should the requested quality change? In
effect, the receiver never asks the sender to stream the whole movie, but instead it requests a sequence
of short movie segments, typically a few seconds long (and always on GOP boundary). Each segment is
an opportunity to change the quality level to match what the network is able to deliver. (It turns out that
requesting movie chunks also makes it easier to implement trick play, jumping around from one place to
another in the movie.) In other words, a movie is typically stored as a set of N × M chunks (files): N quality
levels for each of M segments.

There’s one last detail. Since the receiver is effectively requesting a sequence of discrete video chunks
by name, the most common approach for issuing these requests is to use HTTP. Each chuck is a separate
HTTP GET request with the URL identifying the specific chunk the receiver wants next. When you start
downloading a movie, your video player first downloads a manifest file that contains nothing more than
the URLs for the N × M chunks in the movie, and then it issues a sequence of HTTP requests using the
appropriate URL for the situation. This general approach is called HTTP adaptive streaming, although it
has been standardized in slightly different ways by various organizations, most notably MPEG’s DASH
(Dynamic Adaptive Streaming over HTTP) and Apple’s HLS (HTTP Live Streaming).

7.2.5 Audio Compression (MP3)

Not only does MPEG define how video is compressed, but it also defines a standard for compressing audio.
This standard can be used to compress the audio portion of a movie (in which case the MPEG standard
defines how the compressed audio is interleaved with the compressed video in a single MPEG stream) or it
can be used to compress stand-alone audio (for example, an audio CD).

To understand audio compression, we need to begin with the data. CD-quality audio, which is the de facto
digital representation for high-quality audio, is sampled at a rate of 44.1 KHz (i.e., a sample is collected
approximately once every 23 𝜇s). Each sample is 16 bits, which means that a stereo (2-channel) audio
stream results in a bit rate of

2 × 44.1 × 1000 × 16 = 1.41 𝑀𝑏𝑝𝑠

By comparison, telephone-quality voice is sampled at a rate of 8 KHz, with 8-bit samples, resulting in a bit
rate of 64 kbps.

Clearly, some amount of compression is going to be required to transmit CD-quality audio over, say, the 128-
kbps capacity of an ISDN data/voice line pair. To make matters worse, synchronization and error correction
overhead require that 49 bits be used to encode each 16-bit sample, resulting in an actual bit rate of

49/16 × 1.41 𝑀𝑏𝑝𝑠 = 4.32 𝑀𝑏𝑝𝑠

MPEG addresses this need by defining three levels of compression, as enumerated in Table 7.2. Of these,
Layer III, which is more widely known as MP3, is the most commonly used.

Table 7.2.: MP3 Compression Rates.
Coding Bit Rates Compression Factor
Layer I 384 kbps 14
Layer II 192 kbps 18
Layer III 128 kbps 12

7.2. Multimedia Data 369

Computer Networks: A Systems Approach, Release Version 6.1

To achieve these compression ratios, MP3 uses techniques that are similar to those used by MPEG to com-
press video. First, it splits the audio stream into some number of frequency subbands, loosely analogous to
the way MPEG processes the Y, U, and V components of a video stream separately. Second, each subband is
broken into a sequence of blocks, which are similar to MPEG’s macroblocks except they can vary in length
from 64 to 1024 samples. (The encoding algorithm can vary the block size depending on certain distortion
effects that are beyond our discussion.) Finally, each block is transformed using a modified DCT algorithm,
quantized, and Huffman encoded, just as for MPEG video.

The trick to MP3 is how many subbands it elects to use and how many bits it allocates to each subband,
keeping in mind that it is trying to produce the highest-quality audio possible for the target bit rate. Exactly
how this allocation is made is governed by psychoacoustic models that are beyond the scope of this book,
but to illustrate the idea consider that it makes sense to allocate more bits to low-frequency subbands when
compressing a male voice and more bits to high-frequency subbands when compressing a female voice. Op-
erationally, MP3 dynamically changes the quantization tables used for each subband to achieve the desired
effect.

Once compressed, the subbands are packaged into fixed-size frames, and a header is attached. This header
includes synchronization information, as well as the bit allocation information needed by the decoder to
determine how many bits are used to encode each subband. As mentioned above, these audio frames can
then be interleaved with video frames to form a complete MPEG stream. One interesting side note is that,
while it might work to drop B frames in the network should congestion occur, experience teaches us that it
is not a good idea to drop audio frames since users are better able to tolerate bad video than bad audio.

Perspective: Big Data and Analytics

This chapter is about data, and since no topic in Computer Science is receiving more attention than big
data (or alternatively, data analytics), a natural question is what relationship there might be between big
data and computer networks. Although the term is often used informally by the popular press, a working
definition is quite simple: sensor data is collected by monitoring some physical or man-made system and
then analyzed for insights using the statistical methods of Machine Learning. Because the amount of raw
data that’s collected is often voluminous, the “big” qualifier is applied. So are there any implications to
networking?

At first blush, networks are purposely designed to be data-agnostic. If you collect it and want to ship to
somewhere for analysis, the network is happy to do that for you. You might compress the data to reduce the
bandwidth required to transmit it, but otherwise big data is no different than plain old regular data. But this
ignores two important factors.

The first is that while the network doesn’t care about the meaning of the data (i.e., what the bits represent),
it does concern itself with the volume of data. This impacts the access network in particular, which has been
engineered to favor download speeds over upload speeds. That bias makes sense when the dominant use
case is video that flows out to end-users, but in a world where your car, every appliance in your house, and
the drones flying over your city are all reporting data back into the network (uploaded into the cloud), the
situation is reversed. In fact, the amount of data being generated by Autonomous Vehicles and the Internet-
of-Things (IoT) is potentially overwhelming.

While one could imagine dealing with this problem by using one of the compression algorithms described
in Section 7.2, people are instead thinking outside the box, and pursuing new applications that reside at the
edge of the network. These edge-native applications both provide better sub-millisecond response time and

370 Chapter 7. End-to-End Data

Computer Networks: A Systems Approach, Release Version 6.1

they dramatically reduce the volume of data that ultimately needs to be uploaded into the cloud. You can
think of this data reduction as application-specific compression, but it’s more accurate to say that the edge
application needs only write summaries of the data, not the raw data, back to the cloud.

We introduced the access-edge cloud technology needed to support edge-native applications at the end of
Chapter 2, but what is perhaps more interesting is to look at some examples of edge-native applications.
One such example is enterprises in the automotive, factory, and warehouse space increasingly want to de-
ploy private 5G networks for a variety of physical automation use cases. These include a garage where a
remote valet parks your car or a factory floor making use of automation robots. The common theme is high
bandwidth, low latency connectivity from the robot to intelligence sitting nearby in an edge cloud. This
drives lower robot costs (you don’t need to place heavy compute on each one) and enables robot swarms
and coordination more scalably.

Another illustrative example is Wearable Cognitive Assistance. The idea is to generalize what navigation
software does for us: it uses one sensor (GPS), gives us step-by-step guidance on a complex task (get-
ting around an unknown city), catches our errors promptly, and helps us recover. Can we generalize this
metaphor? Could a person wearing a device (e.g., Google Glass, Microsoft Hololens) be guided step-by-
step on a complex task, perhaps for the first time? The system would effectively act as “an angel on your
shoulder.” All the sensors on the device (e.g., video, audio, accelerometer, gyroscope) are streamed over
wireless (possibly after some device preprocessing) to a nearby edge-cloud that performs the heavy lifting.
This is a human-in-the-loop metaphor, with the “look and feel of augmented reality” but implemented by
AI algorithms (e.g., computer vision, natural language recognition.)

The second factor is that because a network is like many other man-made systems, it is possible to collect
data about its behavior (e.g., performance, failures, traffic patterns), apply analytics programs to that data,
and use the insights gained to improve the network. It should not come as a surprise that this is an active
area of research, with the goal of building a closed control loop. Setting aside the analytics itself, which are
well outside the scope of this book, the interesting questions are (1) what useful data can we collect, and (2)
what aspects of the network are most promising to control? Let’s look at two promising answers.

One is 5G cellular networks, which are inherently complex. They include multiple layers of virtual func-
tions, virtual and physical RAN assets, spectrum usage, and as we have just discussed, edge computing
nodes. It is widely expected that network analytics will be essential to building a flexible 5G network. This
will include network planning, which will need to decide where to scale specific network functions and
application services based on machine learning algorithms that analyze network utilization and traffic data
patterns.

A second is In-band Network Telemetry (INT), a framework to collect and report network state, directly in
the data plane. This is in contrast to the conventional reporting done by the network control plane, as typified
by the example systems described in Section 9.3. In the INT architecture, packets contain header fields that
are interpreted as “telemetry instructions” by network devices. These instructions tell an INT-capable device
what state to collect and write into the packet as it transits the network. INT traffic sources (e.g., applications,
end-host networking stacks, VM hypervisors) can embed the instructions either in normal data packets or
in special probe packets. Similarly, INT traffic sinks retrieve (and optionally report) the collected results of
these instructions, allowing the traffic sinks to monitor the exact data plane state that the packets “observed”
while being forwarded. INT is still early-stage, and takes advantage of the programmable pipelines described
in Section 3.5, but it has the potential to provide a qualitatively deeper insights into traffic patterns and the
root causes of network failures.

Broader Perspective

7.2. Multimedia Data 371

Computer Networks: A Systems Approach, Release Version 6.1

To continue reading about the cloudification of the Internet, see Perspective: Blockchain and a Decentralized
Internet.

To learn more about promising edge-native applications, we recommend: Open Edge Computing Initiative,
2019.

To learn more about In-band Network Telemetry, we recommend: In-band Network Telemetry via Pro-
grammable Dataplanes, August 2015.

372 Chapter 7. End-to-End Data

http://openedgecomputing.org
https://pdfs.semanticscholar.org/a3f1/9dc8520e2f42673be7cbd8d80cd96e3ec0c1.pdf
https://pdfs.semanticscholar.org/a3f1/9dc8520e2f42673be7cbd8d80cd96e3ec0c1.pdf

CHAPTER

EIGHT

NETWORK SECURITY

It is true greatness to have in one the frailty of a man and the security of a god.

—Seneca

Problem: Security Attacks

Computer networks are typically a shared resource used by many applications representing different inter-
ests. The Internet is particularly widely shared, being used by competing businesses, mutually antagonistic
governments, and opportunistic criminals. Unless security measures are taken, a network conversation or a
distributed application may be compromised by an adversary.

Consider, for example, some threats to secure use of the web. Suppose you are a customer using a credit card
to order an item from a website. An obvious threat is that an adversary would eavesdrop on your network
communication, reading your messages to obtain your credit card information. How might that eavesdrop-
ping be accomplished? It is trivial on a broadcast network such as an Ethernet or Wi-Fi, where any node
can be configured to receive all the message traffic on that network. More elaborate approaches include
wiretapping and planting spy software on any of the chain of nodes involved. Only in the most extreme
cases (e.g.,national security) are serious measures taken to prevent such monitoring, and the Internet is not
one of those cases. It is possible and practical, however, to encrypt messages so as to prevent an adversary
from understanding the message contents. A protocol that does so is said to provide confidentiality. Taking
the concept a step farther, concealing the quantity or destination of communication is called traffic confiden-
tiality—because merely knowing how much communication is going where can be useful to an adversary in
some situations.

Even with confidentiality there still remains threats for the website customer. An adversary who can’t read
the contents of your encrypted message might still be able to change a few bits in it, resulting in a valid
order for, say, a completely different item or perhaps 1000 units of the item. There are techniques to detect,
if not prevent, such tampering. A protocol that detects such message tampering is said to provide integrity.

Another threat to the customer is unknowingly being directed to a false website. This can result from a
Domain Name System (DNS) attack, in which false information is entered in a DNS server or the name
service cache of the customer’s computer. This leads to translating a correct URL into an incorrect IP
address—the address of a false website. A protocol that ensures that you really are talking to whom you
think you’re talking is said to provide authentication. Authentication entails integrity, since it is meaningless
to say that a message came from a certain participant if it is no longer the same message.

373

Computer Networks: A Systems Approach, Release Version 6.1

The owner of the website can be attacked as well. Some websites have been defaced; the files that make
up the website content have been remotely accessed and modified without authorization. That is an issue of
access control: enforcing the rules regarding who is allowed to do what. Websites have also been subject to
denial of service (DoS) attacks, during which would-be customers are unable to access the website because
it is being overwhelmed by bogus requests. Ensuring a degree of access is called availability.

In addition to these issues, the Internet has notably been used as a means for deploying malicious code,
generally called malware, that exploits vulnerabilities in end systems. Worms, pieces of self-replicating
code that spread over networks, have been known for several decades and continue to cause problems, as do
their relatives, viruses, which are spread by the transmission of infected files. Infected machines can then be
arranged into botnets, which can be used to inflict further harm, such as launching DoS attacks.

8.1 Trust and Threats

Before we address the how’s and why’s of building secure networks, it is important to establish one simple
truth: We will inevitably fail. This is because security is ultimately an exercise in making assumptions about
trust, evaluating threats, and mitigating risk. There is no such thing as perfect security.

Trust and threats are two sides of the same coin. A threat is a potential failure scenario that you design your
system to avoid, and trust is an assumption you make about how external actors and internal components
you build upon will behave. For example, if you are transmitting a message over WiFi on an open campus,
you would likely identify an eavesdropper that can intercept the message as a threat (and adopt some of the
methods discussed in this chapter as a countermeasure), but if you are transmitting a message over a fiber
link between two machines in a locked datacenter, you might trust that channel is secure, and so take no
additional steps.

You could argue that since you already have a way to protect WiFi-based communication you just as well
use it to protect the fiber-based channel, but that presumes the outcome of a cost/benefit analysis. Suppose
protecting any message, whether sent over WiFi or fiber, slows the communication down by 10% due to
the overhead of encryption. If you need to squeeze every last ounce of performance out of a scientific
computation (e.g., you are trying to model a hurricane) and the odds of someone breaking into the datacenter
are one in a million (and even if they did, the data being transmitted has little value), then you would be
well-justified in not securing the fiber communication channel.

These sorts of calculations happen all the time, although they are often implicit and unstated. For example,
you may run the world’s most secure encryption algorithm on a message before transmitting it, but you’ve
implicitly trusted that the server you’re running on is both faithfully executing that algorithm and not leaking
a copy of your unencrypted message to an adversary. Do you treat this as a threat or do you trust that the
server does not misbehave? At the end of the day, the best you can do is mitigate risk: identify those threats
that you can eliminate in a cost effective way, and be explicit about what trust assumptions you are making
so you aren’t caught off-guard by changing circumstances, such as an ever more determined or sophisticated
adversary.

In this particular example, the threat of an adversary compromising a server has become quite real as more
of our computations move from local servers into the cloud, and so research is now going into building a
Trusted Computing Base (TCB), an interesting topic, but one that is in the realm of computer architecture
rather than computer networks. For the purpose of this chapter, our recommendation is to pay attention to
the words trust and threat (or adversary), as they are key to understanding the context in which security
claims are made.

374 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

There is one final historical note that helps set the table for this chapter. The Internet (and the ARPANET
before it) where funded by the U.S. Department of Defense, an organization that certainly understands
threat analysis. The original assessment was dominated by concerns about the network surviving in the
face of routers and networks failing (or being destroyed), which explains why the routing algorithms are
decentralized, with no central point of failure. On the other hand, the original design assumed all actors
inside the network were trusted, and so little or no attention was paid what today we would call cybersecurity
(attacks from bad actors that are able to connect to the network). What this means is that many of the tools
described in this chapter could be considered patches. They are strongly-grounded in cryptography, but
“add-ons” nonetheless. If a comprehensive redesign of the Internet were to take place, integrating security
would likely be the foremost driving factor.

8.2 Cryptographic Building Blocks

We introduce the concepts of cryptography-based security step by step. The first step is the cryptographic
algorithms—ciphers and cryptographic hashes—that are introduced in this section. They are not a solution
in themselves, but rather building blocks from which a solution can be built. Cryptographic algorithms are
parameterized by keys, and a later section then addresses the problem of distributing the keys. In the next
step, we describe how to incorporate the cryptographic building blocks into protocols that provide secure
communication between participants who possess the correct keys. A final section then examines several
complete security protocols and systems in current use.

8.2.1 Principles of Ciphers

Encryption transforms a message in such a way that it becomes unintelligible to any party that does not
have the secret of how to reverse the transformation. The sender applies an encryption function to the
original plaintext message, resulting in a ciphertext message that is sent over the network, as shown in Figure
8.1. The receiver applies a secret decryption function—the inverse of the encryption function—to recover
the original plaintext. The ciphertext transmitted across the network is unintelligible to any eavesdropper,
assuming the eavesdropper doesn’t know the decryption function. The transformation represented by an
encryption function and its corresponding decryption function is called a cipher.

Cryptographers have been led to the principle, first stated in 1883, that encryption and decryption functions
should be parameterized by a key, and furthermore that the functions should be considered public knowl-
edge—only the key need be secret. Thus, the ciphertext produced for a given plaintext message depends on
both the encryption function and the key. One reason for this principle is that if you depend on the cipher
being kept secret, then you have to retire the cipher (not just the keys) when you believe it is no longer
secret. This means potentially frequent changes of cipher, which is problematic since it takes a lot of work
to develop a new cipher. Also, one of the best ways to know that a cipher is secure is to use it for a long
time—if no one breaks it, it’s probably secure. (Fortunately, there are plenty of people who will try to break
ciphers and who will let it be widely known when they have succeeded, so no news is generally good news.)
Thus, there is considerable cost and risk in deploying a new cipher. Finally, parameterizing a cipher with
keys provides us with what is in effect a very large family of ciphers; by switching keys, we essentially
switch ciphers, thereby limiting the amount of data that a cryptanalyst (code-breaker) can use to try to break
our key/cipher and the amount she can read if she succeeds.

The basic requirement for an encryption algorithm is that it turn plaintext into ciphertext in such a way that
only the intended recipient—the holder of the decryption key—can recover the plaintext. What this means

8.2. Cryptographic Building Blocks 375

Computer Networks: A Systems Approach, Release Version 6.1

Figure 8.1.: Secret-key encryption and decryption.

is that encrypted messages cannot be read by people who do not hold the key.

It is important to realize that when a potential attacker receives a piece of ciphertext, he may have more
information at his disposal than just the ciphertext itself. For example, he may know that the plaintext was
written in English, which means that the letter e occurs more often in the plaintext that any other letter; the
frequency of many other letters and common letter combinations can also be predicted. This information
can greatly simplify the task of finding the key. Similarly, he may know something about the likely contents
of the message; for example, the word “login” is likely to occur at the start of a remote login session. This
may enable a known plaintext attack, which has a much higher chance of success than a ciphertext only
attack. Even better is a chosen plaintext attack, which may be enabled by feeding some information to the
sender that you know the sender is likely to transmit—such things have happened in wartime, for example.

The best cryptographic algorithms, therefore, can prevent the attacker from deducing the key even when
the individual knows both the plaintext and the ciphertext. This leaves the attacker with no choice but to
try all the possible keys—exhaustive, “brute force” search. If keys have n bits, then there are 2n possible
values for a key (each of the n bits could be either a zero or a one). An attacker could be so lucky as to try
the correct value immediately, or so unlucky as to try every incorrect value before finally trying the correct
value of the key, having tried all 2n possible values; the average number of guesses to discover the correct
value is halfway between those extremes, 2n/2. This can be made computationally impractical by choosing a
sufficiently large key space and by making the operation of checking a key reasonably costly. What makes
this difficult is that computing speeds keep increasing, making formerly infeasible computations feasible.
Furthermore, although we are concentrating on the security of data as it moves through the network—that
is, the data is sometimes vulnerable for only a short period of time—in general, security people have to
consider the vulnerability of data that needs to be stored in archives for tens of years. This argues for a
generously large key size. On the other hand, larger keys make encryption and decryption slower.

Most ciphers are block ciphers; they are defined to take as input a plaintext block of a certain fixed size,
typically 64 to 128 bits. Using a block cipher to encrypt each block independently—known as electronic
codebook (ECB) mode encryption—has the weakness that a given plaintext block value will always result

376 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

in the same ciphertext block. Hence, recurring block values in the plaintext are recognizable as such in the
ciphertext, making it much easier for a cryptanalyst to break the cipher.

To prevent this, block ciphers are always augmented to make the ciphertext for a block vary depending on
context. Ways in which a block cipher may be augmented are called modes of operation. A common mode
of operation is cipher block chaining (CBC), in which each plaintext block is XORed with the previous
block’s ciphertext before being encrypted. The result is that each block’s ciphertext depends in part on the
preceding blocks (i.e., on its context). Since the first plaintext block has no preceding block, it is XORed
with a random number. That random number, called an initialization vector (IV), is included with the series
of ciphertext blocks so that the first ciphertext block can be decrypted. This mode is illustrated in Figure
8.2. Another mode of operation is counter mode, in which successive values of a counter (e.g., 1, 2, 3, . . .)
are incorporated into the encryption of successive blocks of plaintext.

Figure 8.2.: Cipher Block Chaining.

8.2.2 Secret-Key Ciphers

In a secret-key cipher, both participants in a communication share the same key.1 In other words, if a
message is encrypted using a particular key, the same key is required for decrypting the message. If the
cipher illustrated in Figure 8.1 were a secret-key cipher, then the encryption and decryption keys would be
identical. Secret-key ciphers are also known as symmetric-key ciphers since the secret is shared with both

1 We use the term participant for the parties involved in a secure communication since that is the term we have been using
throughout the book to identify the two endpoints of a channel. In the security world, they are typically called principals.

8.2. Cryptographic Building Blocks 377

Computer Networks: A Systems Approach, Release Version 6.1

participants. We’ll take a look at the alternative, public-key ciphers, shortly. (Public-key cipers are known
as also asymmetric-key ciphers, since as we’ll soon se, the two participants use different keys.)

The U.S. National Institute of Standards and Technology (NIST) has issued standards for a series of secret-
key ciphers. Data Encryption Standard (DES) was the first, and it has stood the test of time in that no
cryptanalytic attack better than brute force search has been discovered. Brute force search, however, has
gotten faster. DES’s keys (56 independent bits) are now too small given current processor speeds. DES keys
have 56 independent bits (although they have 64 bits in total; the last bit of every byte is a parity bit). As
noted above, you would, on average, have to search half of the space of 256 possible keys to find the right
one, giving 255 = 3.6 × 1016 keys. That may sound like a lot, but such a search is highly parallelizable, so
it’s possible to throw as many computers at the task as you can get your hands on—and these days it’s easy
to lay your hands on thousands of computers. (Amazon will rent them to you for a few cents an hour.) By
the late 1990s, it was already possible to recover a DES key after a few hours. Consequently, NIST updated
the DES standard in 1999 to indicate that DES should only be used for legacy systems.

NIST also standardized the cipher Triple DES (3DES), which leverages the cryptanalysis resistance of DES
while in effect increasing the key size. A 3DES key has 168 (= 3 × 56) independent bits, and is used as three
DES keys; let’s call them DES-key1, DES-key2, and DES-key3. 3DES encryption of a block is performed
by first DES encrypting the block using DES-key1, then DES decrypting the result using DES-key2, and
finally DES encrypting that result using DES-key3. Decryption involves decrypting using DES-key3, then
encrypting using DES-key2, then decrypting using DES-key1.

The reason 3DES encryption uses DES decryption with DES-key2 is to interoperate with legacy DES sys-
tems. If a legacy DES system uses a single key, then a 3DES system can perform the same encryption
function by using that key for each of DES-key1, DES-key2, and DES-key3; in the first two steps, we
encrypt and then decrypt with the same key, producing the original plaintext, which we then encrypt again.

Although 3DES solves DES’s key-length problem, it inherits some other shortcomings. Software implemen-
tations of DES/3DES are slow because it was originally designed by IBM for implementation in hardware.
Also, DES/3DES uses a 64-bit block size; a larger block size is more efficient and more secure.

3DES is now being superseded by the Advanced Encryption Standard (AES) standard issued by NIST.
The cipher underlying AES (with a few minor modifications) was originally named Rijndael (pronounced
roughly like “Rhine dahl”) based on the names of its inventors, Daemen and Rijmen. AES supports key
lengths of 128, 192, or 256 bits, and the block length is 128 bits. AES permits fast implementations in both
software and hardware. It doesn’t require much memory, which makes it suitable for small mobile devices.
AES has some mathematically proven security properties and, as of the time of writing, has not suffered
from any significant successful attacks.

8.2.3 Public-Key Ciphers

An alternative to secret-key ciphers is public-key, ciphers. Instead of a single key shared by two participants,
a public-key cipher uses a pair of related keys, one for encryption and a different one for decryption. The
pair of keys is “owned” by just one participant. The owner keeps the decryption key secret so that only the
owner can decrypt messages; that key is called the private key. The owner makes the encryption key public,
so that anyone can encrypt messages for the owner; that key is called the public key. Obviously, for such a
scheme to work, it must not be possible to deduce the private key from the public key. Consequently, any
participant can get the public key and send an encrypted message to the owner of the keys, and only the
owner has the private key necessary to decrypt it. This scenario is depicted in Figure 8.3.

378 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

Figure 8.3.: Public-key encryption.

Because it is somewhat unintuitive, we emphasize that the public encryption key is useless for decrypting
a message—you couldn’t even decrypt a message that you yourself had just encrypted unless you had the
private decryption key. If we think of keys as defining a communication channel between participants, then
another difference between public-key and secret-key ciphers is the topology of the channels. A key for
a secret-key cipher provides a channel that is two-way between two participants—each participant holds
the same (symmetric) key that either one can use to encrypt or decrypt messages in either direction. A
public/private key pair, in contrast, provides a channel that is one way and many-to-one: from everyone who
has the public key to the unique owner of the private key, as illustrated in Figure 8.3.

An important additional property of public-key ciphers is that the private “decryption” key can be used
with the encryption algorithm to encrypt messages so that they can only be decrypted using the public
“encryption” key. This property clearly wouldn’t be useful for confidentiality since anyone with the public
key could decrypt such a message. (Indeed, for two-way confidentiality between two participants, each
participant needs its own pair of keys, and each encrypts messages using the other’s public key.) This
property is, however, useful for authentication since it tells the receiver of such a message that it could only
have been created by the owner of the keys (subject to certain assumptions that we will get into later). This
is illustrated in Figure 8.4. It should be clear from the figure that anyone with the public key can decrypt
the encrypted message, and, assuming that the result of the decryption matches the expected result, it can be
concluded that the private key must have been used to perform the encryption. Exactly how this operation
is used to provide authentication is the topic of a later section. As we will see, public-key ciphers are
used primarily for authentication and to confidentially distribute secret (symmetric) keys, leaving the rest of
confidentiality to secret-key ciphers.

A bit of interesting history: The concept of public-key ciphers was first published in 1976 by Diffie and

8.2. Cryptographic Building Blocks 379

Computer Networks: A Systems Approach, Release Version 6.1

Figure 8.4.: Authentication using public keys.

Hellman. Subsequently, however, documents have come to light proving that Britain’s Communications-
Electronics Security Group had discovered public-key ciphers by 1970, and the U.S. National Security
Agency (NSA) claims to have discovered them in the mid-1960s.

The best-known public-key cipher is RSA, named after its inventors: Rivest, Shamir, and Adleman. RSA
relies on the high computational cost of factoring large numbers. The problem of finding an efficient way to
factor numbers is one that mathematicians have worked on unsuccessfully since long before RSA appeared
in 1978, and RSA’s subsequent resistance to cryptanalysis has further bolstered confidence in its security.
Unfortunately, RSA needs relatively large keys, at least 1024 bits, to be secure. This is larger than keys for
secret-key ciphers because it is faster to break an RSA private key by factoring the large number on which
the pair of keys is based than by exhaustively searching the key space.

Another public-key cipher is ElGamal. Like RSA, it relies on a mathematical problem, the discrete logarithm
problem, for which no efficient solution has been found, and requires keys of at least 1024 bits. There is
a variation of the discrete logarithm problem, arising when the input is an elliptic curve, that is thought to
be even more difficult to compute; cryptographic schemes based on this problem are referred to as elliptic
curve cryptography.

Public-key ciphers are, unfortunately, several orders of magnitude slower than secret-key ciphers. Conse-
quently, secret-key ciphers are used for the vast majority of encryption, while public-key ciphers are reserved
for use in authentication and session key establishment.

8.2.4 Authenticators

Encryption alone does not provide data integrity. For example, just randomly modifying a ciphertext mes-
sage could turn it into something that decrypts into valid-looking plaintext, in which case the tampering
would be undetectable by the receiver. Nor does encryption alone provide authentication. It is not much use
to say that a message came from a certain participant if the contents of the message have been modified after
that participant created it. In a sense, integrity and authentication are fundamentally inseparable.

An authenticator is a value, to be included in a transmitted message, that can be used to verify simultane-
ously the authenticity and the data integrity of a message. We will see how authenticators can be used in
protocols. For now, we focus on the algorithms that produce authenticators.

You may recall that checksums and cyclic redundancy checks (CRCs) are pieces of information added to a
message so the receiver detect when the message has been inadvertently modified by bit errors. A similar
concept applies to authenticators, with the added challenge that the corruption of the message is likely to be

380 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

deliberately performed by someone who wants the corruption to go undetected. To support authentication,
an authenticator includes some proof that whoever created the authenticator knows a secret that is known
only to the alleged sender of the message; for example, the secret could be a key, and the proof could be
some value encrypted using the key. There is a mutual dependency between the form of the redundant
information and the form of the proof of secret knowledge. We discuss several workable combinations.

We initially assume that the original message need not be confidential—that a transmitted message will
consist of the plaintext of the original message plus an authenticator. Later we will consider the case where
confidentiality is desired.

One kind of authenticator combines encryption and a cryptographic hash function. Cryptographic hash
algorithms are treated as public knowledge, as with cipher algorithms. A cryptographic hash function (also
known as a cryptographic checksum) is a function that outputs sufficient redundant information about a
message to expose any tampering. Just as a checksum or CRC exposes bit errors introduced by noisy links,
a cryptographic checksum is designed to expose deliberate corruption of messages by an adversary. The
value it outputs is called a message digest and, like an ordinary checksum, is appended to the message. All
the message digests produced by a given hash have the same number of bits regardless of the length of the
original message. Since the space of possible input messages is larger than the space of possible message
digests, there will be different input messages that produce the same message digest, like collisions in a hash
table.

An authenticator can be created by encrypting the message digest. The receiver computes a digest of the
plaintext part of the message and compares that to the decrypted message digest. If they are equal, then
the receiver would conclude that the message is indeed from its alleged sender (since it would have to have
been encrypted with the right key) and has not been tampered with. No adversary could get away with
sending a bogus message with a matching bogus digest because she would not have the key to encrypt the
bogus digest correctly. An adversary could, however, obtain the plaintext original message and its encrypted
digest by eavesdropping. The adversary could then (since the hash function is public knowledge) compute
the digest of the original message and generate alternative messages looking for one with the same message
digest. If she finds one, she could undetectably send the new message with the old authenticator. Therefore,
security requires that the hash function have the one-way property: It must be computationally infeasible for
an adversary to find any plaintext message that has the same digest as the original.

For a hash function to meet this requirement, its outputs must be fairly randomly distributed. For example,
if digests are 128 bits long and randomly distributed, then you would need to try 2127 messages, on average,
before finding a second message whose digest matches that of a given message. If the outputs are not
randomly distributed—that is, if some outputs are much more likely than others—then for some messages
you could find another message with the same digest much more easily than this, which would reduce the
security of the algorithm. If you were instead just trying to find any collision—any two messages that
produce the same digest—then you would need to compute the digests of only 264 messages, on average.
This surprising fact is the basis of the “birthday attack”—see the exercises for more details.

There have been several common cryptographic hash algorithms over the years, including Message Digest
5 (MD5) and the Secure Hash Algorithm (SHA) family. Weaknesses of MD5 and earlier versions of SHA
have been known for some time, which led NIST to recommend using SHA-3 in 2015. generating an
encrypted message digest, the digest encryption could use either a secret-key cipher or a public-key cipher.
If a public-key cipher is used, the digest would be encrypted using the sender’s private key (the one we
normally think of as being used for decryption), and the receiver—or anyone else—could decrypt the digest
using the sender’s public key.

A digest encrypted with a public key algorithm but using the private key is called a digital signature because

8.2. Cryptographic Building Blocks 381

Computer Networks: A Systems Approach, Release Version 6.1

it provides nonrepudiation like a written signature. The receiver of a message with a digital signature can
prove to any third party that the sender really sent that message, because the third party can use the sender’s
public key to check for herself. (secret-key encryption of a digest does not have this property because only
the two participants know the key; furthermore, since both participants know the key, the alleged receiver
could have created the message herself.) Any public-key cipher can be used for digital signatures. Digital
Signature Standard (DSS) is a digital signature format that has been standardized by NIST. DSS signatures
may use any one of three public-key ciphers, one based on RSA, another on ElGamal, and a third called the
Elliptic Curve Digital Signature Algorithm.

Another kind of authenticator is similar, but instead of encrypting a hash it uses a hash-like function that
takes a secret value (known only to the sender and the receiver) as a parameter, as illustrated in Figure 8.5.
Such a function outputs an authenticator called a message authentication code (MAC). The sender appends
the MAC to her plaintext message. The receiver recomputes the MAC using the plaintext and the secret
value and compares that recomputed MAC to the received MAC.

Figure 8.5.: Computing a MAC (a) versus computing an HMAC (b).

A common variation on MACs is to apply a cryptographic hash (such as MD5 or SHA-1) to the concate-
nation of the plaintext message and the secret value, as illustrated in Figure 8.5. The resulting digest is
called a hashed message authentication code (HMAC) since it is essentially a MAC. The HMAC, but not
the secret value, is appended to the plaintext Only a receiver who knows the secret value can compute the
correct HMAC to compare with the received HMAC. If it weren’t for the one-way property of the hash, an
adversary might be able to find the input that generated the HMAC and compare it to the plaintext message
to determine the secret value.

Up to this point, we have been assuming that the message wasn’t confidential, so the original message
could be transmitted as plaintext. To add confidentiality to a message with an authenticator, it suffices to
encrypt the concatenation of the entire message including its authenticator—the MAC, HMAC, or encrypted
digest. Remember that, in practice, confidentiality is implemented using secret-key ciphers because they
are so much faster than public-key ciphers. Furthermore, it costs little to include the authenticator in the
encryption, and it increases security. A common simplification is to encrypt the message with its (raw)
digest, such that the digest is only encrypted once; in this case, the entire ciphertext message is considered

382 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

to be an authenticator.

Although authenticators may seem to solve the authentication problem, we will see in a later section that
they are only the foundation of a solution. First, however, we address the issue of how participants obtain
keys in the first place.

8.3 Key Predistribution

To use ciphers and authenticators, the communicating participants need to know what keys to use. In the
case of a secret-key cipher, how does a pair of participants obtain the key they share? In the case of a public-
key cipher, how do participants know what public key belongs to a certain participant? The answer differs
depending on whether the keys are short-lived session keys or longer-lived predistributed keys.

A session key is a key used to secure a single, relatively short episode of communication: a session. Each
distinct session between a pair of participants uses a new session key, which is always a secret key for speed.
The participants determine what session key to use by means of a protocol—a session key establishment
protocol. A session key establishment protocol needs its own security (so that, for example, an adversary
cannot learn the new session key); that security is based on the longer-lived predistributed keys.

There are two primary motivations for this division of labor between session keys and predistributed keys:

• Limiting the amount of time a key is used results in less time for computationally intensive attacks,
less ciphertext for cryptanalysis, and less information exposed should the key be broken.

• Public key ciphers are generally superior for authentication and session key establishment but too
slow to use for encrypting entire messages for confidentiality.

This section explains how predistributed keys are distributed, and the next section will explain how session
keys are then established. We henceforth use “Alice” and “Bob” to designate participants, as is common in
the cryptography literature. Bear in mind that although we tend to refer to participants in anthropomorphic
terms, we are more frequently concerned with the communication between software or hardware entities
such as clients and servers that often have no direct relationship with any particular person.

8.3.1 Predistribution of Public Keys

The algorithms to generate a matched pair of public and private keys are publicly known, and software that
does it is widely available. So, if Alice wanted to use a public-key cipher, she could generate her own pair
of public and private keys, keep the private key hidden, and publicize the public key. But, how can she
publicize her public key—assert that it belongs to her—in such a way that other participants can be sure it
really belongs to her? Not via email or Web, because an adversary could forge an equally plausible claim
that key x belongs to Alice when x really belongs to the adversary.

A complete scheme for certifying bindings between public keys and identities—what key belongs to
whom—is called a Public Key Infrastructure (PKI). A PKI starts with the ability to verify identities and
bind them to keys out of band. By “out of band,” we mean something outside the network and the comput-
ers that comprise it, such as in the following If Alice and Bob are individuals who know each other, then
they could get together in the same room and Alice could give her public key to Bob directly, perhaps on a

8.3. Key Predistribution 383

Computer Networks: A Systems Approach, Release Version 6.1

business card. If Bob is an organization, Alice the individual could present conventional identification, per-
haps involving a photograph or fingerprints. If Alice and Bob are computers owned by the same company,
then a system administrator could configure Bob with Alice’s public key.

Establishing keys out of band doesn’t sound like it would scale well, but it suffices to bootstrap a PKI.
Bob’s knowledge that Alice’s key is x can be widely, scalably disseminated using a combination of digital
signatures and a concept of trust. For example, suppose that you have received Bob’s public key out of band
and that you know enough about Bob to trust him on matters of keys and identities. Then Bob could send
you a message asserting that Alice’s key is x and—since you already know Bob’s public key—you could
authenticate the message as having come from Bob. (Remember that to digitally sign the statement Bob
would append a cryptographic hash of it that has been encrypted using his private key.) Since you trust Bob
to tell the truth, you would now know that Alice’s key is x, even though you had never met her or exchanged
a single message with her. Using digital signatures, Bob wouldn’t even have to send you a message; he
could simply create and publish a digitally signed statement that Alice’s key is x. Such a digitally signed
statement of a public key binding is called a public key certificate, or simply a certificate. Bob could send
Alice a copy of the certificate, or post it on a website. If and when someone needs to verify Alice’s public
key, they could do so by getting a copy of the certificate, perhaps directly from Alice—as long as they trust
Bob and know his public key. You can see how starting from a very small number of keys (in this case,
just Bob’s) you could build up a large set of trusted keys over time. Bob in this case is playing the role
often referred to as a certification authority (CA), and much of today’s Internet security depends on CAs.
VeriSign is one well-known commercial CA. We return to this topic below.

One of the major standards for certificates is known as X.509. This standard leaves a lot of details open, but
specifies a basic structure. A certificate clearly must include:

• The identity of the entity being certified

• The public key of the entity being certified

• The identity of the signer

• The digital signature

• A digital signature algorithm identifier (which cryptographic hash and which cipher)

An optional component is an expiration time for the certificate. We will see a particular use of this feature
below.

Since a certificate creates a binding between an identity and a public key, we should look more closely at
what we mean by “identity.” For example, a certificate that says, “This public key belongs to John Smith,”
may not be terribly useful if you can’t tell which of the thousands of John Smiths is being identified. Thus,
certificates must use a well-defined name space for the identities being certified; for example, certificates
are often issued for email addresses and DNS domains.

There are different ways a PKI could formalize the notion of trust. We discuss the two main approaches.

Certification Authorities

In this model of trust, trust is binary; you either trust someone completely or not at all. Together with
certificates, this allows the building of chains of trust. If X certifies that a certain public key belongs to Y,
and then Y goes on to certify that another public key belongs to Z, then there exists a chain of certificates
from X to Z, even though X and Z may have never met. If you know X’s key—and you trust X and Y—then

384 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

you can believe the certificate that gives Z’s key. In other words, all you need is a chain of certificates, all
signed by entities you trust, as long as it leads back to an entity whose key you already know.

A certification authority or certificate authority (CA) is an entity claimed (by someone) to be trustworthy
for verifying identities and issuing public key certificates. There are commercial CAs, governmental CAs,
and even free CAs. To use a CA, you must know its own key. You can learn that CA’s key, however, if you
can obtain a chain of CA-signed certificates that starts with a CA whose key you already know. Then you
can believe any certificate signed by that new CA.

A common way to build such chains is to arrange them in a tree-structured hierarchy, as shown in Figure
8.6. If everyone has the public key of the root CA, then any participant can provide a chain of certificates to
another participant and know that it will be sufficient to build a chain of trust for that participant.

Figure 8.6.: Tree-structured certification authority hierarchy.

There are some significant issues with building chains of trust. Most importantly, even if you are certain that
you have the public key of the root CA, you need to be sure that every CA from the root on down is doing
its job properly. If just one CA in the chain is willing to issue certificates to entities without verifying their
identities, then what looks like a valid chain of certificates becomes meaningless. For example, a root CA
might issue a certificate to a second-tier CA and thoroughly verify that the name on the certificate matches
the business name of the CA, but that second-tier CA might be willing to sell certificates to anyone who asks,
without verifying their identity. This problem gets worse the longer the chain of trust. X.509 certificates
provide the option of restricting the set of entities that the subject of a certificate is, in turn, trusted to certify.

There can be more than one root to a certification tree, and this is common in securing Web transactions
today, for example. Web browsers such as Firefox and Internet Explorer come pre-equipped with certificates
for a set of CAs; in effect, the browser’s producer has decided these CAs and their keys can be trusted. A
user can also add CAs to those that their browser recognizes as trusted. These certificates are accepted by
Secure Socket Layer (SSL)/Transport Layer Security (TLS), the protocol most often used to secure Web
transactions, which we discuss in a later section. (If you are curious, you can poke around in the preferences
settings for your browser and find the “view certificates” option to see how many CAs your browser is
configured to trust.)

8.3. Key Predistribution 385

Computer Networks: A Systems Approach, Release Version 6.1

Web of Trust

An alternative model of trust is the web of trust exemplified by Pretty Good Privacy (PGP), which is further
discussed in a later section. PGP is a security system for email, so email addresses are the identities to
which keys are bound and by which certificates are signed. In keeping with PGP’s roots as protection
against government intrusion, there are no CAs. Instead, every individual decides whom they trust and how
much they trust them—in this model, trust is a matter of degree. In addition, a public key certificate can
include a confidence level indicating how confident the signer is of the key binding claimed in the certificate,
so a given user may have to have several certificates attesting to the same key binding before he is willing to
trust it.

For example, suppose you have a certificate for Bob provided by Alice; you can assign a moderate level of
trust to that certificate. However, if you have additional certificates for Bob that were provided by C and D,
each of whom is also moderately trustworthy, that might considerably increase your level of confidence that
the public key you have for Bob is valid. In short, PGP recognizes that the problem of establishing trust is
quite a personal matter and gives users the raw material to make their own decisions, rather than assuming
that they are all willing to trust in a single hierarchical structure of CAs. To quote Phil Zimmerman, the
developer of PGP, “PGP is for people who prefer to pack their own parachutes.”

PGP has become quite popular in the networking community, and PGP key-signing parties are a regular
feature of various networking events, such as IETF meetings. At these gatherings, an individual can

• Collect public keys from others whose identity he knows.

• Provide his public key to others.

• Get his public key signed by others, thus collecting certificates that will be persuasive to an increas-
ingly large set of people.

• Sign the public key of other individuals, thus helping them build up their set of certificates that they
can use to distribute their public keys.

• Collect certificates from other individuals whom he trusts enough to sign keys.

Thus, over time, a user will collect a set of certificates with varying degrees of trust.

Certificate Revocation

One issue that arises with certificates is how to revoke, or undo, a certificate. Why is this important? Suppose
that you suspect that someone has discovered your private key. There may be any number of certificates in
the universe that assert that you are the owner of the public key corresponding to that private key. The person
who discovered your private key thus has everything he needs to impersonate you: valid certificates and your
private key. To solve this problem, it would be nice to be able to revoke the certificates that bind your old,
compromised key to your identity, so that the impersonator will no longer be able to persuade other people
that he is you.

The basic solution to the problem is simple enough. Each CA can issue a certificate revocation list (CRL),
which is a digitally signed list of certificates that have been revoked. The CRL is periodically updated and
made publicly available. Because it is digitally signed, it can just be posted on a website. Now, when Alice
receives a certificate for Bob that she wants to verify, she will first consult the latest CRL issued by the CA.
As long as the certificate has not been revoked, it is valid. Note that, if all certificates have unlimited life

386 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

spans, the CRL would always be getting longer, since you could never take a certificate off the CRL for fear
that some copy of the revoked certificate might be used. For this reason, it is common to attach an expiration
date to a certificate when it is issued. Thus, we can limit the length of time that a revoked certificate needs
to stay on a CRL. As soon as its original expiration date is passed, it can be removed from the CRL.

8.3.2 Predistribution of Secret Keys

If Alice wants to use a secret-key cipher to communicate with Bob, she can’t just pick a key and send it
to him because, without already having a key, they can’t encrypt this key to keep it confidential and they
can’t authenticate each other. As with public keys, some predistribution scheme is needed. Predistribution
is harder for secret keys than for public keys for two obvious reasons:

• While only one public key per entity is sufficient for authentication and confidentiality, there must be
a secret key for each pair of entities who wish to communicate. If there are N entities, that means
N(N-1)/2 keys.

• Unlike public keys, secret keys must be kept secret.

In summary, there are a lot more keys to distribute, and you can’t use certificates that everyone can read.

The most common solution is to use a Key Distribution Center (KDC). A KDC is a trusted entity that shares
a secret key with each other entity. This brings the number of keys down to a more manageable N-1, few
enough to establish out of band for some applications. When Alice wishes to communicate with Bob, that
communication does not travel via the KDC. Rather, the KDC participates in a protocol that authenticates
Alice and Bob—using the keys that the KDC already shares with each of them—and generates a new session
key for them to use. Then Alice and Bob communicate directly using their session key. Kerberos is a widely
used system based on this approach. We describe Kerberos (which also provides authentication) in the next
section. The following subsection describes a powerful alternative.

8.3.3 Diffie-Hellman Key Exchange

Another approach to establishing a shared secret key is to use the Diffie-Hellman key exchange protocol,
which works without using any predistributed keys. The messages exchanged between Alice and Bob can
be read by anyone able to eavesdrop, and yet the eavesdropper won’t know the secret key that Alice and Bob
end up with.

Diffie-Hellman doesn’t authenticate the participants. Since it is rarely useful to communicate securely with-
out being sure whom you’re communicating with, Diffie-Hellman is usually augmented in some way to
provide authentication. One of the main uses of Diffie-Hellman is in the Internet Key Exchange (IKE)
protocol, a central part of the IP Security (IPsec) architecture.

The Diffie-Hellman protocol has two parameters, p and g, both of which are public and may be used by all
the users in a particular system. Parameter p must be a prime number. The integers mod 𝑝 (short for modulo
p) are 0 through p-1, since 𝑥 mod 𝑝 is the remainder after x is divided by p, and form what mathematicians
call a group under multiplication. Parameter g (usually called a generator) must be a primitive root of p: For
every number n from 1 through p-1 there must be some value k such that 𝑛 = 𝑔𝑘 mod 𝑝. For example, if p
were the prime number 5 (a real system would use a much larger number), then we might choose 2 to be the
generator g since:

1 = 20 mod 𝑝

8.3. Key Predistribution 387

Computer Networks: A Systems Approach, Release Version 6.1

2 = 21 mod 𝑝

3 = 23 mod 𝑝

4 = 22 mod 𝑝

Suppose Alice and Bob want to agree on a shared secret key. Alice and Bob, and everyone else, already know
the values of p and g. Alice generates a random private value a and Bob generates a random private value b.
Both a and b are drawn from the set of integers {1, . . . , 𝑝 − 1}. Alice and Bob derive their corresponding
public values—the values they will send to each other unencrypted—as follows. Alice’s public value is

𝑔𝑎 mod 𝑝

and Bob’s public value is

𝑔𝑏 mod 𝑝

They then exchange their public values. Finally, Alice computes

𝑔𝑎𝑏 mod 𝑝 = (𝑔𝑏 mod 𝑝)𝑎 mod 𝑝

and Bob computes

𝑔𝑏𝑎 mod 𝑝 = (𝑔𝑎 mod 𝑝)𝑏 mod 𝑝.

Alice and Bob now have 𝑔𝑎𝑏 mod 𝑝 (which is equal to 𝑔𝑏𝑎 mod 𝑝) as their shared secret key.

Any eavesdropper would know p, g, and the two public values 𝑔𝑎 mod 𝑝 and 𝑔𝑏 mod 𝑝. If only the eaves-
dropper could determine a or b, she could easily compute the resulting key. Determining a or b from that
information is, however, computationally infeasible for suitably large p,a, and b; it is known as the discrete
logarithm problem.

For example, using p = 5 and g = 2 from above, suppose Alice picks the random number a = 3 and Bob
picks the random number b = 4. Then Alice sends Bob the public value

23 mod 5 = 3

and Bob sends Alice the public value

24 mod 5 = 1

Alice is then able to compute

𝑔𝑎𝑏 mod 𝑝 = (2𝑏 mod 5)3 mod 5 = (1)3 mod 5 = 1

by substituting Bob’s public value for (2𝑏 mod 5). Similarly, Bob is able to compute

𝑔𝑏𝑎 mod 𝑝 = (𝑔𝑎 mod 5)4 mod 5 = (3)4 mod 5 = 1.

by substituting Alice’s public value for (2𝑎 mod 5). Both Alice and Bob now agree that the secret key is 1.

There is the problem of Diffie-Hellman’s lack of authentication. One attack that can take advantage of this
is the man-in-the-middle attack. Suppose Mallory is an adversary with the ability to intercept messages.

388 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

Figure 8.7.: A man-in-the-middle attack.

Mallory already knows p and g since they are public, and she generates random private values 𝑐 and 𝑑 to
use with Alice and Bob, respectively. When Alice and Bob send their public values to each other, Mallory
intercepts them and sends her own public values, as in Figure 8.7. The result is that Alice and Bob each end
up unknowingly sharing a key with Mallory instead of each other.

A variant of Diffie-Hellman sometimes called fixed Diffie-Hellman supports authentication of one or both
participants. It relies on certificates that are similar to public key certificates but instead certify the Diffie-
Hellman public parameters of an entity. For example, such a certificate would state that Alice’s Diffie-
Hellman parameters are p, g, and 𝑔𝑎 mod 𝑝 (note that the value of a would still be known only to Alice).
Such a certificate would assure Bob that the other participant in Diffie-Hellman is Alice—or else the other
participant won’t be able to compute the secret key, because she won’t know a. If both participants have
certificates for their Diffie-Hellman parameters, they can authenticate each other. If just one has a certificate,
then just that one can be authenticated. This is useful in some situations; for example, when one participant
is a web server and the other is an arbitrary client, the client can authenticate the web server and establish a
secret key for confidentiality before sending a credit card number to the web server.

8.4 Authentication Protocols

So far we described how to encrypt messages, build authenticators, predistribute the necessary keys. It might
seem as if all we have to do to make a protocol secure is append an authenticator to every message and, if
we want confidentiality, encrypt the message.

There are two main reasons why it’s not that simple. First, there is the problem of a replay attack: an
adversary retransmitting a copy of a message that was previously sent. If the message was an order you had
placed on a website, for example, then the replayed message would appear to the website as though you had
ordered more of the same. Even though it wasn’t the original incarnation of the message, its authenticator
would still be valid; after all, the message was created by you, and it wasn’t modified. Clearly, we need a
solution that ensures originality.

In a variation of this attack called a suppress-replay attack, an adversary might merely delay your message
(by intercepting and later replaying it), so that it is received at a time when it is no longer appropriate.
For example, an adversary could delay your order to buy stock from an auspicious time to a time when

8.4. Authentication Protocols 389

Computer Networks: A Systems Approach, Release Version 6.1

you would not have wanted to buy. Although this message would in a sense be the original, it wouldn’t
be timely. So we also need to ensure timeliness. Originality and timeliness may be considered aspects of
integrity. Ensuring them will in most cases require a nontrivial, back-and-forth protocol.

The second problem we have not yet solved is how to establish a session key. A session key is a secret-key
cipher key generated on the fly and used for just one session. This too involves a nontrivial protocol.

What these two issues have in common is authentication. If a message is not original and timely, then from
a practical standpoint we want to consider it as not being authentic, not being from whom it claims to be.
And, obviously, when you are arranging to share a new session key with someone, you want to know you
are sharing it with the right person. Usually, authentication protocols establish a session key at the same
time, so that at the end of the protocol Alice and Bob have authenticated each other and they have a new
secret key to use. Without a new session key, the protocol would just authenticate Alice and Bob at one point
in time; a session key allows them to efficiently authenticate subsequent messages. Generally, session key
establishment protocols perform authentication. A notable exception is Diffie-Hellman, as described below,
so the terms authentication protocol and session key establishment protocol are almost synonymous.

There is a core set of techniques used to ensure originality and timeliness in authentication protocols. We
describe those techniques before moving on to particular protocols.

8.4.1 Originality and Timeliness Techniques

We have seen that authenticators alone do not enable us to detect messages that are not original or timely.
One approach is to include a timestamp in the message. Obviously the timestamp itself must be tamper-
proof, so it must be covered by the authenticator. The primary drawback to timestamps is that they require
distributed clock synchronization. Since our system would then depend on synchronization, the clock syn-
chronization itself would need to be defended against security threats, in addition to the usual challenges of
clock synchronization. Another issue is that distributed clocks are synchronized to only a certain degree—a
certain margin of error. Thus, the timing integrity provided by timestamps is only as good as the degree of
synchronization.

Another approach is to include a nonce—a random number used only once—in the message. Participants
can then detect replay attacks by checking whether a nonce has been used previously. Unfortunately, this
requires keeping track of past nonces, of which a great many could accumulate. One solution is to combine
the use of timestamps and nonces, so that nonces are required to be unique only within a certain span of
time. That makes ensuring uniqueness of nonces manageable while requiring only loose synchronization of
clocks.

Another solution to the shortcomings of timestamps and nonces is to use one or both of them in a challenge-
response protocol. Suppose we use a timestamp. In a challenge-response protocol, Alice sends Bob a
timestamp, challenging Bob to encrypt it in a response message (if they share a secret key) or digitally sign
it in a response message (if Bob has a public key, as in Figure 8.8). The encrypted timestamp is like an
authenticator that additionally proves timeliness. Alice can easily check the timeliness of the timestamp in
a response from Bob since that timestamp comes from Alice’s own clock—no distributed clock synchro-
nization needed. Suppose instead that the protocol uses nonces. Then Alice need only keep track of those
nonces for which responses are currently outstanding and haven’t been outstanding too long; any purported
response with an unrecognized nonce must be bogus.

The beauty of challenge-response, which might otherwise seem excessively complex, is that it combines
timeliness and authentication; after all, only Bob (and possibly Alice, if it’s a secret-key cipher) knows the

390 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

Figure 8.8.: A challenge-response protocol.

key necessary to encrypt the never before seen timestamp or nonce. Timestamps or nonces are used in most
of the authentication protocols that follow.

8.4.2 Public-Key Authentication Protocols

In the following discussion, we assume that Alice and Bob’s public keys have been predistributed to each
other via some means such as a PKI. We mean this to include the case where Alice includes her certificate
in her first message to Bob, and the case where Bob searches for a certificate about Alice when he receives
her first message.

This first protocol (Figure 8.9) relies on Alice and Bob’s clocks being synchronized. Alice sends Bob a
message with a timestamp and her identity in plaintext plus her digital signature. Bob uses the digital
signature to authenticate the message and the timestamp to verify its freshness. Bob sends back a message
with a timestamp and his identity in plaintext, as well as a new session key encrypted (for confidentiality)
using Alice’s public key, all digitally signed. Alice can verify the authenticity and freshness of the message,
so she knows she can trust the new session key. To deal with imperfect clock synchronization, the timestamps
could be augmented with nonces.

The second protocol (Figure 8.10) is similar but does not rely on clock synchronization. In this protocol,
Alice again sends Bob a digitally signed message with a timestamp and her identity. Because their clocks
aren’t synchronized, Bob cannot be sure that the message is fresh. Bob sends back a digitally signed message
with Alice’s original timestamp, his own new timestamp, and his identity. Alice can verify the freshness of
Bob’s reply by comparing her current time against the timestamp that originated with her. She then sends
Bob a digitally signed message with his original timestamp and a new session key encrypted using Bob’s
public key. Bob can verify the freshness of the message because the timestamp came from his clock, so he
knows he can trust the new session key. The timestamps essentially serve as convenient nonces, and indeed
this protocol could use nonces instead.

8.4. Authentication Protocols 391

Computer Networks: A Systems Approach, Release Version 6.1

Figure 8.9.: A public-key authentication protocol that depends on synchronization.

8.4.3 Secret-Key Authentication Protocols

Only in fairly small systems is it practical to predistribute secret keys to every pair of entities. We focus here
on larger systems, where each entity would have its own master key shared only with a Key Distribution
Center (KDC). In this case, secret-key-based authentication protocols involve three parties: Alice, Bob, and
a KDC. The end product of the authentication protocol is a session key shared between Alice and Bob that
they will use to communicate directly, without involving the KDC.

The Needham-Schroeder authentication protocol is illustrated in Figure 8.11. Note that the KDC doesn’t
actually authenticate Alice’s initial message and doesn’t communicate with Bob at all. Instead, the KDC
uses its knowledge of Alice’s and Bob’s master keys to construct a reply that would be useless to anyone
other than Alice (because only Alice can decrypt it) and contains the necessary ingredients for Alice and
Bob to perform the rest of the authentication protocol themselves.

The nonce in the first two messages is to assure Alice that the KDC’s reply is fresh. The second and third
messages include the new session key and Alice’s identifier, encrypted together using Bob’s master key.
It is a sort of secret-key version of a public-key certificate; it is in effect a signed statement by the KDC
(because the KDC is the only entity besides Bob who knows Bob’s master key) that the enclosed session
key is owned by Alice and Bob. Although the nonce in the last two messages is intended to assure Bob that
the third message was fresh, there is a flaw in this reasoning.

392 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

Figure 8.10.: A public-key authentication protocol that does not depend on synchronization. Alice checks
her own timestamp against her own clock, and likewise for Bob.

8.4. Authentication Protocols 393

Computer Networks: A Systems Approach, Release Version 6.1

Figure 8.11.: The Needham-Schroeder authentication protocol.

394 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

Kerberos

Kerberos is an authentication system based on the Needham-Schroeder protocol and specialized for
client/server environments. Originally developed at MIT, it has been standardized by the IETF and is avail-
able as both open source and commercial products. We will focus here on some of Kerberos’s interesting
innovations.

Kerberos clients are generally human users, and users authenticate themselves using passwords. Alice’s
master key, shared with the KDC, is derived from her password—if you know the password, you can com-
pute the key. Kerberos assumes anyone can physically access any client machine; therefore, it is important
to minimize the exposure of Alice’s password or master key not just in the network but also on any machine
where she logs in. Kerberos takes advantage of Needham-Schroeder to accomplish this. In Needham-
Schroeder, the only time Alice needs to use her password is when decrypting the reply from the KDC.
Kerberos client-side software waits until the KDC’s reply arrives, prompts Alice to enter her password,
computes the master key and decrypts the KDC’s reply, and then erases all information about the password
and master key to minimize its exposure. Also note that the only sign a user sees of Kerberos is when the
user is prompted for a password.

In Needham-Schroeder, the KDC’s reply to Alice plays two roles: It gives her the means to prove her
identity (only Alice can decrypt the reply), and it gives her a sort of secret-key certificate or “ticket” to
present to Bob—the session key and Alice’s identifier, encrypted with Bob’s master key. In Kerberos,
those two functions—and the KDC itself, in effect—are split up (Figure 8.12). A trusted server called an
Authentication Server (AS) plays the first KDC role of providing Alice with something she can use to prove
her identity—not to Bob this time, but to a second trusted server called a Ticket Granting Server (TGS). The
TGS plays the second KDC role, replying to Alice with a ticket she can present to Bob. The attraction of
this scheme is that if Alice needs to communicate with several servers, not just Bob, then she can get tickets
for each of them from the TGS without going back to the AS.

In the client/server application domain for which Kerberos is intended, it is reasonable to assume a de-
gree of clock synchronization. This allows Kerberos to use timestamps and lifespans instead of Needham-
Shroeder’s nonces, and thereby eliminate the Needham-Schroeder security weakness. Kerberos supports a
choice of hash functions and secret-key ciphers, allowing it to keep pace with the state-of-the-art in crypto-
graphic algorithms.

8.5 Example Systems

We have now seen many of the components required to provide one or two aspects of security. These com-
ponents include cryptographic algorithms, key predistribution mechanisms, and authentication protocols. In
this section, we examine some complete systems that use these components.

These systems can be roughly categorized by the protocol layer at which they operate. Systems that operate
at the application layer include Pretty Good Privacy (PGP), which provides electronic mail security, and
Secure Shell (SSH), a secure remote login facility. At the transport layer, there is the IETF’s Transport
Layer Security (TLS) standard and the older protocol from which it derives, Secure Socket Layer (SSL).
The IPsec (IP Security) protocols, as their name implies, operate at the IP (network) layer. 802.11i provides
security at the link layer of wireless networks. This section describes the salient features of each of these
approaches.

8.5. Example Systems 395

Computer Networks: A Systems Approach, Release Version 6.1

Figure 8.12.: Kerberos authentication.

396 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

You might reasonably wonder why security has to be provided at so many different layers. One reason is
that different threats require different defensive measures, and this often translates into securing a different
protocol layer. For example, if your main concern is with a person in the building next door snooping on
your traffic as it flows between your laptop and your 802.11 access point, then you probably want security
at the link layer. However, if you want to be really sure you are connected to your bank’s website and
preventing all the data that you send to the bank from being read by curious employees of some Internet
service provider, then something that extends all the way from your machine to the bank’s server—like the
transport layer—may be the right place to secure the traffic. As is often the case, there is no one-size-fits-all
solution.

The security systems described below have the ability to vary which cryptographic algorithms they use. The
idea of making a security system algorithm independent is a very good one, because you never know when
your favorite cryptographic algorithm might be proved to be insufficiently strong for your purposes. It would
be nice if you could quickly change to a new algorithm without having to change the protocol specification
or implementation. Note the analogy to being able to change keys without changing the algorithm; if one of
your cryptographic algorithms turns out to be flawed, it would be great if your entire security architecture
didn’t need an immediate redesign.

8.5.1 Pretty Good Privacy (PGP)

Pretty Good Privacy (PGP) is a widely used approach to providing security for electronic mail. It provides
authentication, confidentiality, data integrity, and nonrepudiation. Originally devised by Phil Zimmerman,
it has evolved into an IETF standard known as OpenPGP. As we saw in a previous section, PGP is notable
for using a “web of trust” model for distribution of keys rather than a tree-like hierarchy.

PGP’s confidentiality and receiver authentication depend on the receiver of an email message having a public
key that is known to the sender. To provide sender authentication and nonrepudiation, the sender must have
a public key that is known by the receiver. These public keys are predistributed using certificates and a web-
of-trust PKI. PGP supports RSA and DSS for public key certificates. These certificates may additionally
specify which cryptographic algorithms are supported or preferred by the key’s owner. The certificates
provide bindings between email addresses and public keys.

Consider the following example of PGP being used to provide both sender authentication and confidentiality.
Suppose Alice has a message to email to Bob. Alice’s PGP application goes through the steps illustrated in
Figure 8.13. First, the message is digitally signed by Alice; MD5, SHA-1, and the SHA-2 family are among
the hashes that may be used in the digital signature. Her PGP application then generates a new session key
for just this one message; AES and 3DES are among the supported secret-key ciphers. The digitally signed
message is encrypted using the session key, then the session key itself is encrypted using Bob’s public key
and appended to the message. Alice’s PGP application reminds her of the level of trust she had previously
assigned to Bob’s public key, based on the number of certificates she has for Bob and the trustworthiness
of the individuals who signed the certificates. Finally, not for security but because email messages have
to be sent in ASCII, a base64 encoding is applied to the message to convert it to an ASCII-compatible
representation. Upon receiving the PGP message in an email, Bob’s PGP application reverses this process
step-by-step to obtain the original plaintext message and confirm Alice’s digital signature—and reminds
Bob of the level of trust he has in Alice’s public key.

Email has particular characteristics that allow PGP to embed an adequate authentication protocol in this one-
message data transmission protocol, avoiding the need for any prior message exchange (and sidestepping
some of the complexities described in the previous section). Alice’s digital signature suffices to authenticate

8.5. Example Systems 397

Computer Networks: A Systems Approach, Release Version 6.1

Figure 8.13.: PGP’s steps to prepare a message for emailing from Alice to Bob.

398 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

her. Although there is no proof that the message is timely, legitimate email isn’t guaranteed to be timely
either. There is also no proof that the message is original, but Bob is an email user and probably a fault-
tolerant human who can recover from duplicate emails (which, again, are not out of the question under
normal operation anyway). Alice can be sure that only Bob could read the message because the session key
was encrypted with his public key. Although this protocol doesn’t prove to Alice that Bob is actually there
and received the email, an authenticated email from Bob back to Alice could do this.

The preceding discussion gives a good example of why application-layer security mechanisms can be help-
ful. Only with a full knowledge of how the application works can you make the right choices about which
attacks to defend against (like forged email) versus which to ignore (like delayed or replayed email).

8.5.2 Secure Shell (SSH)

The Secure Shell (SSH) protocol is used to provide a remote login service, replacing the less secure Telnet
used in the early days of the Internet. (SSH can also be used to remotely execute commands and transfer
files, but we will focus first on how SSH supports remote login.) SSH is most often used to provide strong
client/server authentication/message integrity—where the SSH client runs on the user’s desktop machine
and the SSH server runs on some remote machine that the user wants to log into—but it also supports
confidentiality. Telnet provides none of these capabilities. Note that “SSH” is often used to refer to both the
SSH protocol and applications that use it; you need to figure out which from the context.

To better appreciate the importance of SSH on today’s Internet, consider a couple of the scenarios where it is
used. Telecommuters, for example, often subscribe to ISPs that offer high-speed fiber-to-the-home, and they
use these ISPs (plus some chain of other ISPs) to reach machines operated by their employer. This means
that when a telecommuter logs into a machine inside his employer’s data center, both the passwords and all
the data sent or received potentially passes through any number of untrusted networks. SSH provides a way
to encrypt the data sent over these connections and to improve the strength of the authentication mechanism
used to log in. (A similar situation occurs when said employee connects to work using the public Wi-Fi at
Starbucks.) Another usage of SSH is remote login to a router, perhaps to change its configuration or read
its log files; clearly, a network administrator wants to be sure that he can log into a router securely and that
unauthorized parties can neither log in nor intercept the commands sent to the router or output sent back to
the administrator.

The latest version of SSH, version 2, consists of three protocols:

• SSH-TRANS, a transport layer protocol

• SSH-AUTH, an authentication protocol

• SSH-CONN, a connection protocol

We focus on the first two, which are involved in remote login. We briefly discuss the purpose of SSH-CONN
at the end of the section.

SSH-TRANS provides an encrypted channel between the client and server machines. It runs on top of a TCP
connection. Any time a user uses an SSH application to log into a remote machine, the first step is to set up
an SSH-TRANS channel between those two machines. The two machines establish this secure channel by
first having the client authenticate the server using RSA. Once authenticated, the client and server establish
a session key that they will use to encrypt any data sent over the channel. This high-level description
skims over several details, including the fact that the SSH-TRANS protocol includes a negotiation of the

8.5. Example Systems 399

Computer Networks: A Systems Approach, Release Version 6.1

encryption algorithm the two sides are going to use. For example, AES is commonly selected. Also, SSH-
TRANS includes a message integrity check of all data exchanged over the channel.

The one issue we can’t skim over is how the client came to possess the server’s public key that it needs
to authenticate the server. Strange as it may sound, the server tells the client its public key at connection
time. The first time a client connects to a particular server, the SSH application warns the user that it has
never talked to this machine before and asks if the user wants to continue. Although it is a risky thing to do,
because SSH is effectively not able to authenticate the server, users often say “yes” to this question. The SSH
application then remembers the server’s public key, and the next time the user connects to that same machine
it compares this saved key with the one the server responds with. If they are the same, SSH authenticates
the server. If they are different, however, the SSH application again warns the user that something is amiss,
and the user is then given an opportunity to abort the connection. Alternatively, the prudent user can learn
the server’s public key through some out-of-band mechanism, save it on the client machine, and thus never
take the “first time” risk.

Once the SSH-TRANS channel exists, the next step is for the user to actually log into the machine, or more
specifically, authenticate himself or herself to the server. SSH allows three different mechanisms for doing
this. First, since the two machines are communicating over a secure channel, it is OK for the user to simply
send his or her password to the server. This is not a safe thing to do when using Telnet since the password
would be sent in the clear, but in the case of SSH the password is encrypted in the SSH-TRANS channel.
The second mechanism uses public-key encryption. This requires that the user has already placed his or her
public key on the server. The third mechanism, called host-based authentication, basically says that any
user claiming to be so-and-so from a certain set of trusted hosts is automatically believed to be that same
user on the server. Host-based authentication requires that the client host authenticate itself to the server
when they first connect; standard SSH-TRANS only authenticates the server by default.

The main thing you should take away from this discussion is that SSH is a fairly straightforward application
of the protocols and algorithms we have seen throughout this chapter. However, what sometimes makes
SSH a challenge to understand is all the keys a user has to create and manage, where the exact interface is
operating system dependent. For example, the OpenSSH package that runs on most Unix machines supports
a command that can be used to create public/private key pairs. These keys are then stored in various files
in directory in the user’s home directory. For example, file ~/.ssh/known_hosts records the keys for
all the hosts the user has logged into, file ~/.ssh/authorized_keys contains the public keys needed
to authenticate the user when he or she logs into this machine (i.e., they are used on the server side), and
file contains the private keys needed to authenticate the user on remote machines (i.e., they are used on the
client side).

Finally, SSH has proven so useful as a system for securing remote login, it has been extended to also support
other applications, such as sending and receiving email. The idea is to run these applications over a secure
“SSH tunnel.” This capability is called port forwarding, and it uses the SSH-CONN protocol. The idea is
illustrated in Figure 8.14, where we see a client on host A indirectly communicating with a server on host
B by forwarding its traffic through an SSH connection. The mechanism is called port forwarding because
when messages arrive at the well-known SSH port on the server, SSH first decrypts the contents and then
“forwards” the data to the actual port at which the server is listening. This is just another sort of tunnel,
which in this case happens to provide confidentiality and authentication. It’s possible to provide a form of
virtual private network (VPN) using SSH tunnels in this way.

400 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

Figure 8.14.: Using SSH port forwarding to secure other TCP-based applications.

8.5.3 Transport Layer Security (TLS, SSL, HTTPS)

To understand the design goals and requirements for the Transport Layer Security (TLS) standard and the
Secure Socket Layer (SSL) on which TLS is based, it is helpful to consider one of the main problems that
they are intended to solve. As the World Wide Web became popular and commercial enterprises began
to take an interest in it, it became clear that some level of security would be necessary for transactions
on the Web. The canonical example of this is making purchases by credit card. There are several issues
of concern when sending your credit card information to a computer on the Web. First, you might worry
that the information would be intercepted in transit and subsequently used to make unauthorized purchases.
You might also worry about the details of a transaction being modified, such as changing the purchase
amount. And you would certainly like to know that the computer to which you are sending your credit
card information is in fact one belonging to the vendor in question and not some other party. Thus, we
immediately see a need for confidentiality, integrity, and authentication in Web transactions. The first widely
used solution to this problem was SSL, originally developed by Netscape and subsequently the basis for the
IETF’s TLS standard.

The designers of SSL and TLS recognized that these problems were not specific to Web transactions (i.e.,
those using HTTP) and instead built a general-purpose protocol that sits between an application protocol
such as HTTP and a transport protocol such as TCP. The reason for calling this “transport layer security” is
that, from the application’s perspective, this protocol layer looks just like a normal transport protocol except
for the fact that it is secure. That is, the sender can open connections and deliver bytes for transmission,
and the secure transport layer will get them to the receiver with the necessary confidentiality, integrity, and
authentication. By running the secure transport layer on top of TCP, all of the normal features of TCP
(reliability, flow control, congestion control, etc.) are also provided to the application. This arrangement of
protocol layers is depicted in Figure 8.15.

When HTTP is used in this way, it is known as HTTPS (Secure HTTP). In fact, HTTP itself is unchanged.
It simply delivers data to and accepts data from the SSL/TLS layer rather than TCP. For convenience, a
default TCP port has been assigned to HTTPS (443). That is, if you try to connect to a server on TCP port
443, you will likely find yourself talking to the SSL/TLS protocol, which will pass your data through to
HTTP provided all goes well with authentication and decryption. Although standalone implementations of
SSL/TLS are available, it is more common for an implementation to be bundled with applications that need
it, primarily web browsers.

In the remainder of our discussion of transport layer security, we focus on TLS. Although SSL and TLS

8.5. Example Systems 401

Computer Networks: A Systems Approach, Release Version 6.1

Figure 8.15.: Secure transport layer inserted between application and TCP layers.

are unfortunately not interoperable, they differ in only minor ways, so nearly all of this description of TLS
applies to SSL.

Handshake Protocol

A pair of TLS participants negotiate at runtime which cryptography to use. The participants negotiate a
choice of:

• Data integrity hash (MD5, SHA-1, etc.), used to implement HMACs

• secret-key cipher for confidentiality (among the possibilities are DES, 3DES, and AES)

• Session key establishment approach (among the possibilities are Diffie-Hellman, and public-key au-
thentication protocols using DSS)

Interestingly, the participants may also negotiate the use of a compression algorithm, not because this offers
any security benefits, but because it’s easy to do when you’re negotiating all this other stuff and you’ve
already decided to do some expensive per-byte operations on the data.

In TLS, the confidentiality cipher uses two keys, one for each direction, and similarly two initialization
vectors. The HMACs are likewise keyed with different keys for the two participants. Thus, regardless of the
choice of cipher and hash, a TLS session requires effectively six keys. TLS derives all of them from a single
shared master secret. The master secret is a 384-bit (48-byte) value that in turn is derived in part from the
“session key” that results from TLS’s session key establishment protocol.

The part of TLS that negotiates the choices and establishes the shared master secret is called the handshake
protocol. (Actual data transfer is performed by TLS’s record protocol.) The handshake protocol is at heart
a session key establishment protocol, with a master secret instead of a session key. Since TLS supports a
choice of approaches to session key establishment, these call for correspondingly different protocol variants.
Furthermore, the handshake protocol supports a choice between mutual authentication of both participants,
authentication of just one participant (this is the most common case, such as authenticating a website but not
a user), or no authentication at all (anonymous Diffie-Hellman). Thus, the handshake protocol knits together
several session key establishment protocols into a single protocol.

Figure 8.16 shows the handshake protocol at a high level. The client initially sends a list of the combinations
of cryptographic algorithms that it supports, in decreasing order of preference. The server responds, giving
the single combination of cryptographic algorithms it selected from those listed by the client. These mes-

402 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

sages also contain a client nonce and a server nonce, respectively, that will be incorporated in generating the
master secret later.

At this point, the negotiation phase is complete. The server now sends additional messages based on the
negotiated session key establishment protocol. That could involve sending a public-key certificate or a set
of Diffie-Hellman parameters. If the server requires authentication of the client, it sends a separate message
indicating that. The client then responds with its part of the negotiated key exchange protocol.

Now the client and server each have the information necessary to generate the master secret. The “session
key” that they exchanged is not in fact a key, but instead what TLS calls a pre-master secret. The master
secret is computed (using a published algorithm) from this pre-master secret, the client nonce, and the server
nonce. Using the keys derived from the master secret, the client then sends a message that includes a hash
of all the preceding handshake messages, to which the server responds with a similar message. This enables
them to detect any discrepancies between the handshake messages they sent and received, such as would
result, for example, if a man in the middle modified the initial unencrypted client message to weaken its
choices of cryptographic algorithms.

Record Protocol

Within a session established by the handshake protocol, TLS’s record protocol adds confidentiality and
integrity to the underlying transport service. Messages handed down from the application layer are:

1. Fragmented or coalesced into blocks of a convenient size for the following steps

2. Optionally compressed

3. Integrity-protected using an HMAC

4. Encrypted using a secret-key cipher

5. Passed to the transport layer (normally TCP) for transmission

The record protocol uses an HMAC as an authenticator. The HMAC uses whichever hash algorithm (MD5,
SHA-1, etc.) was negotiated by the participants. The client and server have different keys to use when
computing HMACs, making them even harder to break. Furthermore, each record protocol message is
assigned a sequence number, which is included when the HMAC is computed—even though the sequence
number is never explicit in the message. This implicit sequence number prevents replays or reorderings of
messages. This is needed because, although TCP can deliver sequential, unduplicated messages to the layer
above it under normal assumptions, those assumptions do not include an adversary that can intercept TCP
messages, modify messages, or send bogus ones. On the other hand, it is TCP’s delivery guarantees that
make it possible for TLS to rely on a legitimate TLS message having the next implicit sequence number in
order.

Another interesting feature of the TLS protocol is the ability to resume a session. To understand the original
motivation for this, it is helpful to understand how HTTP originally mades use of TCP connections. (The
details of HTTP are presented in the next chapter.) Each HTTP operation, such as getting a page from a
server, required a new TCP connection to be opened. Retrieving a single page with a number of embedded
graphical objects might take many TCP connections. Opening a TCP connection requires a three-way
handshake before data transmission can start. Once the TCP connection is ready to accept data, the client
would then need to start the TLS handshake protocol, taking at least another two round-trip times (and

8.5. Example Systems 403

Computer Networks: A Systems Approach, Release Version 6.1

Figure 8.16.: Handshake protocol to establish TLS session.

404 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

consuming some amount of processing resources and network bandwidth) before actual application data
could be sent. The resumption capability of TLS was designed to alleviate this problem.

The idea of session resumption is to optimize away the handshake in those cases where the client and the
server have already established some shared state in the past. The client simply includes the session ID from
a previously established session in its initial handshake message. If the server finds that it still has state
for that session, and the resumption option was negotiated when that session was originally created, then
the server can reply to the client with an indication of success, and data transmission can begin using the
algorithms and parameters previously negotiated. If the session ID does not match any session state cached
at the server, or if resumption was not allowed for the session, then the server will fall back to the normal
handshake process.

The reason the preceeding discussion emphasized the original motivation is that having to do a TCP hand-
shake for every embedded object in a web page led to so much overhead, independent of TLS, that HTTP
was eventually optimized to support persistent connections (also discussed in the next chapter). Because
optimizing HTTP mitigated the value of session resumption in TLS (plus the realization that reusing the
same session IDs and master secret key in a series of resumed sessions is a security risk), TLS changed its
approach to resumption in the latest version (1.3).

In TLS 1.3, the client sends an opaque, server-encrypted session ticket to the server upon resumption. This
ticket contains all the information required to resume the session. The same master secret is used across
handshakes, but the default behavior is to perform a session key exchange upon resumption.

Key Takeaway

We call attention to this change in TLS because it illustrates the challenge of knowing which layer should
solve a given problem. In isolation, session resumption as implemented in the earlier version of TLS seems
like a good idea, but it needs to be considered in the context of the dominate use case, which is HTTP. Once
the overhead of doing multiple TCP connections was addressed by HTTP, the equation for how resumption
should be implemented by TLS changed. The bigger lesson is that we need to avoid rigid thinking about the
right layer to implement a given function—the answer changes over time as the network evolves—where a
holistic/cross-layer analysis is required to get the design right. [Next]

8.5.4 IP Security (IPsec)

Probably the most ambitious of all the efforts to integrate security into the Internet happens at the IP layer.
Support for IPsec, as the architecture is called, is optional in IPv4 but mandatory in IPv6.

IPsec is really a framework (as opposed to a single protocol or system) for providing all the security services
discussed throughout this chapter. IPsec provides three degrees of freedom. First, it is highly modular,
allowing users (or more likely, system administrators) to select from a variety of cryptographic algorithms
and specialized security protocols. Second, IPsec allows users to select from a large menu of security
properties, including access control, integrity, authentication, originality, and confidentiality. Third, IPsec
can be used to protect narrow streams (e.g., packets belonging to a particular TCP connection being sent
between a pair of hosts) or wide streams (e.g., all packets flowing between a pair of routers).

When viewed from a high level, IPsec consists of two parts. The first part is a pair of protocols that im-
plement the available security services. They are the Authentication Header (AH), which provides access

8.5. Example Systems 405

Computer Networks: A Systems Approach, Release Version 6.1

control, connectionless message integrity, authentication, and antireplay protection, and the Encapsulating
Security Payload (ESP), which supports these same services, plus confidentiality. AH is rarely used so we
focus on ESP here. The second part is support for key management, which fits under an umbrella protocol
known as the Internet Security Association and Key Management Protocol (ISAKMP).

The abstraction that binds these two pieces together is the security association (SA). An SA is a simplex
(one-way) connection with one or more of the available security properties. Securing a bidirectional com-
munication between a pair of hosts—corresponding to a TCP connection, for example—requires two SAs,
one in each direction. Although IP is a connectionless protocol, security depends on connection state in-
formation such as keys and sequence numbers. When created, an SA is assigned an ID number called a
security parameters index (SPI) by the receiving machine. A combination of this SPI and the destination IP
addresses uniquely identifies an SA. An ESP header includes the SPI so the receiving host can determine
which SA an incoming packet belongs to and, hence, what algorithms and keys to apply to the packet.

SAs are established, negotiated, modified, and deleted using ISAKMP. It defines packet formats for ex-
changing key generation and authentication data. These formats aren’t terribly interesting because they
provide a framework only—the exact form of the keys and authentication data depends on the key gener-
ation technique, the cipher, and the authentication mechanism that is used. Moreover, ISAKMP does not
specify a particular key exchange protocol, although it does suggest the Internet Key Exchange (IKE) as one
possibility, and IKE v2 is what is used in practice.

ESP is the protocol used to securely transport data over an established SA. In IPv4, the ESP header follows
the IP header; in IPv6, it is an extension header. Its format uses both a header and a trailer, as shown in
Figure 8.17. The SPI field lets the receiving host identify the security association to which the packet
belongs. The SeqNum field protects against replay attacks. The packet’s PayloadData contains the data
described by the NextHdr field. If confidentiality is selected, then the data is encrypted using whatever
cipher was associated with the SA. The PadLength field records how much padding was added to the data;
padding is sometimes necessary because, for example, the cipher requires the plaintext to be a multiple of a
certain number of bytes or to ensure that the resulting ciphertext terminates on a 4-byte boundary. Finally,
the AuthenticationData carries the authenticator.

Figure 8.17.: IPSec’s ESP format.

IPsec supports a tunnel mode as well as the more straightforward transport mode. Each SA operates in one
or the other mode. In a transport mode SA, ESP’s payload data is simply a message for a higher layer such
as UDP or TCP. In this mode, IPsec acts as an intermediate protocol layer, much like SSL/TLS does between

406 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

TCP and a higher layer. When an ESP message is received, its payload is passed to the higher level protocol.

In a tunnel mode SA, however, ESP’s payload data is itself an IP packet, as in Figure 8.18. The source and
destination of this inner IP packet may be different from those of the outer IP packet. When an ESP message
is received, its payload is forwarded on as a normal IP packet. The most common way to use the ESP is to
build an “IPsec tunnel” between two routers, typically firewalls. For example, a corporation wanting to link
two sites using the Internet could open a pair of tunnel-mode SAs between a router at one site and a router
at the other site. An IP packet outgoing from one site would, at the outgoing router, become the payload of
an ESP message sent to the other site’s router. The receiving router would unwrap the payload IP packet
and forward it on to its true destination.

Figure 8.18.: An IP packet with a nested IP packet encapsulated using ESP in tunnel mode. Note that the
inner and outer packets have different addresses.

These tunnels may also be configured to use ESP with confidentiality and authentication, thus preventing
unauthorized access to the data that traverses this virtual link and ensuring that no spurious data is received
at the far end of the tunnel. Furthermore, tunnels can provide traffic confidentiality, since multiplexing
multiple flows through a single tunnel obscures information about how much traffic is flowing between
particular endpoints. A network of such tunnels can be used to implement an entire virtual private network.
Hosts communicating over a VPN need not even be aware that it exists.

8.5.5 Wireless Security (802.11i)

Wireless links are particularly exposed to security threats due to the lack of any physical security on the
medium. While the convenience of 802.11 has prompted widespread acceptance of the technology, lack of
security has been a recurring problem. For example, it is all too easy for an employee of a corporation to
connect an 802.11 access point to the corporate network. Since radio waves pass through most walls, if the
access point lacks the correct security measures, an attacker can now gain access to the corporate network
from outside the building. Similarly, a computer with a wireless network adaptor inside the building could
connect to an access point outside the building, potentially exposing it to attack, not to mention the rest of
the corporate network if that same computer has, say, an Ethernet connection as well.

Consequently, there has been considerable work on securing Wi-Fi links. Somewhat surprisingly, one of the
early security techniques developed for 802.11, known as Wired Equivalent Privacy (WEP), turned out to
be seriously flawed and quite easily breakable.

The IEEE 802.11i standard provides authentication, message integrity, and confidentiality to 802.11 (Wi-Fi)
at the link layer. WPA3 (Wi-Fi Protected Access 3) is often used as a synonym for 802.11i, although it is
technically a trademark of the Wi-Fi Alliance that certifies product compliance with 802.11i.

For backward compatibility, 802.11i includes definitions of first-generation security algorithms—including
WEP—that are now known to have major security flaws. We will focus here on 802.11i’s newer, stronger
algorithms.

8.5. Example Systems 407

Computer Networks: A Systems Approach, Release Version 6.1

802.11i authentication supports two modes. In either mode, the end result of successful authentication is a
shared Pairwise Master Key. Personal mode, also known as Pre-Shared Key (PSK) mode, provides weaker
security but is more convenient and economical for situations like a home 802.11 network. The wireless
device and the Access Point (AP) are preconfigured with a shared passphrase—essentially a very long
password—from which the Pairwise Master Key is cryptographically derived.

802.11i’s stronger authentication mode is based on the IEEE 802.1X framework for controlling access to a
LAN, which uses an Authentication Server (AS) as in Figure 8.19. The AS and AP must be connected by a
secure channel and could even be implemented as a single box, but they are logically separate. The AP for-
wards authentication messages between the wireless device and the AS. The protocol used for authentication
is called the Extensible Authentication Protocol (EAP). EAP is designed to support multiple authentication
methods—smart cards, Kerberos, one-time passwords, public key authentication, and so on—as well as both
one-sided and mutual authentication. So EAP is better thought of as an authentication framework than a pro-
tocol. Specific EAP-compliant protocols, of which there are many, are called EAP methods. For example,
EAP-TLS is an EAP method based on TLS authentication.

Figure 8.19.: Use of an Authentication Server in 802.11i.

802.11i does not place any restrictions on what the EAP method can use as a basis for authentication. It
does, however, require an EAP method that performs mutual authentication, because not only do we want
to prevent an adversary from accessing the network via our AP, we also want to prevent an adversary from
fooling our wireless devices with a bogus, malicious AP. The end result of a successful authentication is a
Pairwise Master Key shared between the wireless device and the AS, which the AS then conveys to the AP.

One of the main differences between the stronger AS-based mode and the weaker personal mode is that the
former readily supports a unique key per client. This in turn makes it easier to change the set of clients that
can authenticate themselves (e.g., to revoke access to one client) without needing to change the secret stored
in every client.

408 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

With a Pairwise Master Key in hand, the wireless device and the AP execute a session key establishment
protocol called the 4-way handshake to establish a Pairwise Transient Key. This Pairwise Transient Key is
really a collection of keys that includes a session key called a Temporal Key. This session key is used by the
protocol, called CCMP, that provides 802.11i’s data confidentiality and integrity.

CCMP stands for CTR (Counter Mode) with CBC-MAC (Cipher-Block Chaining with Message Authentica-
tion Code) Protocol. CCMP uses AES in counter mode to encrypt for confidentiality. Recall that in counter
mode encryption successive values of a counter are incorporated into the encryption of successive blocks of
plaintext.

CCMP uses a Message Authentication Code (MAC) as an authenticator. The MAC algorithm is based on
CBC, even though CCMP doesn’t use CBC in the confidentiality encryption. In effect, CBC is performed
without transmitting any of the CBC-encrypted blocks, solely so that the last CBC-encrypted block can be
used as a MAC (only its first 8 bytes are actually used). The role of initialization vector is played by a
specially constructed first block that includes a 48-bit packet number—a sequence number. (The packet
number is also incorporated in the confidentiality encryption and serves to expose replay attacks.) The
MAC is subsequently encrypted along with the plaintext in order to prevent birthday attacks, which depend
on finding different messages with the same authenticator.

8.5.6 Firewalls

Whereas much of this chapter has focused on the uses of cryptography to provide such security features as
authentication and confidentiality, there is a whole set of security issues that are not readily addressed by
cryptographic means. For example, worms and viruses spread by exploiting bugs in operating systems and
application programs (and sometimes human gullibility as well), and no amount of cryptography can help
you if your machine has unpatched vulnerabilities. So other approaches are often used to keep out various
forms of potentially harmful traffic. Firewalls are one of the most common ways to do this.

A firewall is a system that typically sits at some point of connectivity between a site it protects and the
rest of the network, as illustrated in Figure 8.20. It is usually implemented as an “appliance” or part of a
router, although a “personal firewall” may be implemented on an end-user machine. Firewall-based security
depends on the firewall being the only connectivity to the site from outside; there should be no way to
bypass the firewall via other gateways, wireless connections, or dial-up connections. The wall metaphor is
somewhat misleading in the context of networks since a great deal of traffic passes through a firewall. One
way to think of a firewall is that by default it blocks traffic unless that traffic is specifically allowed to pass
through. For example, it might filter out all incoming messages except those addresses to a particular set of
IP addresses or to particular TCP port numbers.

In effect, a firewall divides a network into a more-trusted zone internal to the firewall and a less-trusted zone
external to the firewall. This is useful if you do not want external users to access a particular host or service
within your site. Much of the complexity comes from the fact that you want to allow different kinds of
access to different external users, ranging from the general public, to business partners, to remotely located
members of your organization. A firewall may also impose restrictions on outgoing traffic to prevent certain
attacks and to limit losses if an adversary succeeds in getting access inside the firewall.

The location of a firewall also often happens to be the dividing line between globally addressable regions
and those that use local addresses. Hence, Network Address Translation (NAT) functionality and firewall
functionality often are found in the same device, even though they are logically separate.

Firewalls may be used to create multiple zones of trust, such as a hierarchy of increasingly trusted zones. A

8.5. Example Systems 409

Computer Networks: A Systems Approach, Release Version 6.1

Figure 8.20.: A firewall filters packets flowing between a site and the rest of the Internet.

common arrangement involves three zones of trust: the internal network, the DMZ (“demilitarized zone”);
and the rest of the Internet. The DMZ is used to hold services such as DNS and email servers that need to
be accessible to the outside. Both the internal network and the outside world can access the DMZ, but hosts
in the DMZ cannot access the internal network; therefore, an adversary who succeeds in compromising a
host in the exposed DMZ still cannot access the internal network. The DMZ can be periodically restored to
a clean state.

Firewalls filter based on IP, TCP, and UDP information, among other things. They are configured with a
table of addresses that characterize the packets they will, and will not, forward. By addresses, we mean
more than just the destination’s IP address, although that is one possibility. Generally, each entry in the table
is a 4-tuple: It gives the IP address and TCP (or UDP) port number for both the source and destination.

For example, a firewall might be configured to filter out (not forward) all packets that match the following
description:

(192.12.13.14, 1234, 128.7.6.5, 80)

This pattern says to discard all packets from port 1234 on host 192.12.13.14 addressed to port 80 on host
128.7.6.5. (Port 80 is the well-known TCP port for HTTP.) Of course, it’s often not practical to name every
source host whose packets you want to filter, so the patterns can include wildcards. For example,

(*, *, 128.7.6.5, 80)

says to filter out all packets addressed to port 80 on 128.7.6.5, regardless of what source host or port sent
the packet. Notice that address patterns like these require the firewall to make forwarding/filtering decisions
based on level 4 port numbers, in addition to level 3 host addresses. It is for this reason that network layer
firewalls are sometimes called level 4 switches.

In the preceding discussion, the firewall forwards everything except where specifically instructed to filter out
certain kinds of packets. A firewall could also filter out everything unless explicitly instructed to forward it,
or use a mix of the two strategies. For example, instead of blocking access to port 80 on host 128.7.6.5, the
firewall might be instructed to only allow access to port 25 (the SMTP mail port) on a particular mail server,

410 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

such as

(*, *, 128.19.20.21, 25)

but to block all other traffic. Experience has shown that firewalls are very frequently configured incorrectly,
allowing unsafe access. Part of the problem is that filtering rules can overlap in complex ways, making it
hard for a system administrator to correctly express the intended filtering. A design principle that maximizes
security is to configure a firewall to discard all packets other than those that are explicitly allowed. Of
course, this means that some valid applications might be accidentally disabled; presumably users of those
applications eventually notice and ask the system administrator to make the appropriate change.

Many client/server applications dynamically assign a port to the client. If a client inside a firewall initiates
access to an external server, the server’s response would be addressed to the dynamically assigned port.
This poses a problem: How can a firewall be configured to allow an arbitrary server’s response packet but
disallow a similar packet for which there was no client request? This is not possible with a stateless firewall,
which evaluates each packet in isolation. It requires a stateful firewall, which keeps track of the state of each
connection. An incoming packet addressed to a dynamically assigned port would then be allowed only if it
is a valid response in the current state of a connection on that port.

Modern firewalls also understand and filter based on many specific application-level protocols such as HTTP,
Telnet, or FTP. They use information specific to that protocol, such as URLs in the case of HTTP, to decide
whether to discard a message.

Strengths and Weaknesses of Firewalls

At best, a firewall protects a network from undesired access from the rest of the Internet; it cannot provide
security to legitimate communication between the inside and the outside of the firewall. In contrast, the
cryptography-based security mechanisms described in this chapter are capable of providing secure commu-
nication between any participants anywhere. This being the case, why are firewalls so common? One reason
is that firewalls can be deployed unilaterally, using mature commercial products, while cryptography-based
security requires support at both endpoints of the communication. A more fundamental reason for the dom-
inance of firewalls is that they encapsulate security in a centralized place, in effect factoring security out of
the rest of the network. A system administrator can manage the firewall to provide security, freeing the users
and applications inside the firewall from security concerns—at least some kinds of security concerns.

Unfortunately, firewalls have serious limitations. Since a firewall does not restrict communication between
hosts that are inside the firewall, the adversary who does manage to run code internal to a site can access all
local hosts. How might an adversary get inside the firewall? The adversary could be a disgruntled employee
with legitimate access, or the adversary’s software could be hidden in some software installed from a CD or
downloaded from the Web. It might be possible to bypass the firewall by using wireless communication or
dial-up connections.

Another problem is that any parties granted access through your firewall, such as business partners or exter-
nally located employees, become a security vulnerability. If their security is not as good as yours, then an
adversary could penetrate your security by penetrating their security.

On of the most serious problems for firewalls is their vulnerability to the exploitation of bugs in machines
inside the firewall. Such bugs are discovered regularly, so a system administrator has to constantly monitor
announcements of them. Administrators frequently fail to do so, since firewall security breaches routinely
exploit security flaws that have been known for some time and have straightforward solutions.

8.5. Example Systems 411

Computer Networks: A Systems Approach, Release Version 6.1

Malware (for “malicious software”) is the term for software that is designed to act on a computer in ways
concealed from and unwanted by the computer’s user. Viruses, worms, and spyware are common types of
malware. (Virus is sometimes used synonymously with malware, but we will use it in the narrower sense in
which it refers to only a particular kind of malware.) Malware code need not be natively executable object
code; it could as well be interpreted code such as a script or an executable macro such as those used by
Microsoft Word.

Viruses and worms are characterized by the ability to make and spread copies of themselves; the difference
between them is that a worm is a complete program that replicates itself, while a virus is a bit of code
that is inserted (and inserts copies of itself) into another piece of software or a file, so that it is executed
as part of the execution of that piece of software or as a result of opening the file. Viruses and worms
typically cause problems such as consuming network bandwidth as mere side effects of attempting to spread
copies of themselves. Even worse, they can also deliberately damage a system or undermine its security
in various ways. They could, for example, install a backdoor—software that allows remote access to the
system without the normal authentication. This could lead to a firewall exposing a service that should be
providing its own authentication procedures but has been undermined by a backdoor.

Spyware is software that, without authorization, collects and transmits private information about a computer
system or its users. Usually spyware is secretly embedded in an otherwise useful program and is spread
by users deliberately installing copies. The problem for firewalls is that the transmission of the private
information looks like legitimate communication.

A natural question to ask is whether firewalls (or cryptographic security) could keep malware out of a sys-
tem in the first place. Most malware is indeed transmitted via networks, although it may also be transmitted
via portable storage devices such as CDs and memory sticks. Certainly this is one argument in favor of the
“block everything not explicitly allowed” approach taken by many administrators in their firewall configu-
rations.

One approach that is used to detect malware is to search for segments of code from known malware, some-
times called a signature. This approach has its own challenges, as cleverly designed malware can tweak
its representation in various ways. There is also a potential impact on network performance to perform
such detailed inspection of data entering a network. Cryptographic security cannot eliminate the problem
either, although it does provide a means to authenticate the originator of a piece of software and detect any
tampering, such as when a virus inserts a copy of itself.

Related to firewalls are systems known as intrusion detection systems (IDS) and intrusion prevention systems
(IPS). These systems try to look for anomalous activity, such as an unusually large amount of traffic targeting
a given host or port number, for example, and generate alarms for network managers or perhaps even take
direct action to limit a possible attack. While there are commercial products in this space today, it is still a
developing field.

Perspective: Blockchain and a Decentralized Internet

Probably without giving it much thought, users have invested enormous trust in the applications they use,
especially those like Facebook and Google that not only store their personal photos and videos, but also
manage their identity (i.e., provide Single Sign On for other web applications). This is troubling to many
people, which has sparked interest in decentralized platforms, systems for which users do not have to trust
a third-party. Such systems often build on top of a cryptocurrency like Bitcoin, not for its monetary value,
but because cryptocurrency is itself based on a decentralized technology (called a blockchain) that no single

412 Chapter 8. Network Security

Computer Networks: A Systems Approach, Release Version 6.1

organization controls. It’s easy to be distracted by all the hype, but a blockchain is essentially a decentralized
log (ledger) that anyone can write a “fact” to, and later prove to the world that that fact was recorded.

Blockstack is an open source implementation of a decentralized platform, including the blockchain, but
more interestingly, it has been used to implement a self-sovereign identity service for Internet applications.
A self-sovereign identity service is a type of identity service that is administratively decentralized: it has
no distinct service operator, and no single principal can control who can create an identity and who cannot.
Blockstack uses a commodity public blockchain to build a replicated identity database log. When this
database log is replayed by a Blockstack node, it produces the same view of all identities in the system as
every other Blockstack node reading the same view of the underlying blockchain. Anyone can register an
identity in Blockstack by appending to the blockchain.

Instead of requiring users to place trust in a distinct set of identity providers, Blockstack’s identity protocol
instead asks users to trust that the majority of the decision-making nodes in the blockchain (called miners)
will preserve the order of writes (called transactions). The underlying blockchain provides a cryptocurrency
to incentivize miners to do this. Under normal operation, miners stand to earn the most cryptocurrency by
participating honestly. This allows Blockstack’s database log to remain secure against tampering without a
distinct service operator. An adversary who wishes to tamper with the log must compete against the majority
of miners to produce an alternative transaction history in the underlying blockchain that the blockchain peer
network will accept as the canonical write history.

The protocol for reading and appending to the Blockstack identity database log operates at a logical layer
above the blockchain. Blockchain transactions are data frames for identity database log entries. A client
appends to the identity database log by sending a blockchain transaction that embeds the database log entry,
and a client reads the log back by extracting the log entries from blockchain transactions in the blockchain-
given order. This makes it possible to implement the database log “on top” of any blockchain.

Identities in Blockstack are distinguished by user-chosen names. Blockstack’s identity protocol binds a
name to a public key and to some routing state (described below). It ensures that names are globally unique
by assigning them on a first-come first-serve basis.

Names are registered in a two-step process—one to bind the client’s public key to the salted hash of the
name, and one to reveal the name itself. The two-step process is necessary to prevent front-running—only
the client that signed the name hash may reveal the name, and only the client that calculated the salted hash
can reveal the preimage. Once a name is registered, only the owner of the name’s private key can transfer or
revoke the name, or update its routing state.

Each name in Blockstack has an associated piece of routing state that contains one or more URLs that point
to where the user’s identity information can be found online. This data is too big and expensive to store on
the blockchain directly, so instead Blockstack implements a layer of indirection: the hash of the routing state
is written to the identity database log, and Blockstack peers implement a gossip network for disseminating
and authenticating the routing state. Each peer maintains a full copy of the routing state.

Putting it all together, Figure 8.21 shows how resolving a name to its corresponding identity state works.
Given a name, a client first queries a Blockstack peer for the corresponding public key and routing state
(Step 1). Once it has the routing state, the client obtains the identity data by resolving the URL(s) contained
within it and authenticates the identity information by verifying that it is signed by the name’s public key
(Step 2).

Broader Perspective

8.5. Example Systems 413

Computer Networks: A Systems Approach, Release Version 6.1

Figure 8.21.: Decentralized identity management built on a blockchain foundation.

To continue reading about the cloudification of the Internet, see Perspective: The Cloud is the New Internet.

To learn more about Blockstack and decentralizing the Internet, we recommend: Blockstack: A New Internet
for Decentralized Applications, October 2017.

414 Chapter 8. Network Security

https://blockstack.org/whitepaper.pdf
https://blockstack.org/whitepaper.pdf

CHAPTER

NINE

APPLICATIONS

Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the
beginning.

—Winston Churchill

Problem: Applications Need Their Own Protocols

We started this book by talking about application programs—everything from web browsers to videocon-
ferencing tools—that people want to run over computer networks. In the intervening chapters, we have
developed, one building block at a time, the networking infrastructure needed to make such applications
possible. We have now come full circle, back to network applications. These applications are part network
protocol (in the sense that they exchange messages with their peers on other machines) and part traditional
application program (in the sense that they interact with the windowing system, the file system, and ulti-
mately the user). This chapter explores some popular network applications available today.

Looking at applications drives home the systems approach that we have emphasized throughout this book.
That is, the best way to build effective networked applications is to understand the building blocks that a
network can provide and how those blocks can interact with each other. Thus, for example, a particular
networked application might need to make use of a reliable transport protocol, authentication and privacy
mechanisms, and resource allocation capabilities of the underlying network. Applications often work best
when the application developer knows how to make the best use of these facilities (and there are also plenty
of counter-examples of applications making poor use of available networking capabilities). Applications
typically need their own protocols, too, in many cases using the same principles that we have seen in our
prior examination of lower layer protocols. Thus, our focus in this chapter is on how to put together the ideas
and techniques already described to build effective networked applications. Said another way, if you ever
imagine yourself writing a network application, then you will by definition also become a protocol designer
(and implementer).

We proceed by examining a variety of familiar, and not so familiar, network applications. These range
from exchanging email and surfing the Web, to integrating applications across businesses, to multimedia
applications like videoconferencing, to managing a set of network elements, to emerging peer-to-peer and
content distribution networks. This list is by no means exhaustive, but it does serve to illustrate many of the
key principles of designing and building applications. Applications need to pick and choose the appropriate
building blocks that are available at other layers either inside the network or in the host protocol stacks
and then augment those underlying services to provide the precise communication service required by the
application.

415

Computer Networks: A Systems Approach, Release Version 6.1

9.1 Traditional Applications

We begin our discussion of applications by focusing on two of the most popular—the World Wide Web and
email. Broadly speaking, both of these applications use the request/reply paradigm—users send requests to
servers, which then respond accordingly. We refer to these as “traditional” applications because they typify
the sort of applications that have existed since the early days of computer networks (although the Web is a
lot newer than email but has its roots in file transfers that predated it). By contrast, later sections will look
at a class of applications that have become popular more recently: streaming applications (e.g., multimedia
applications like video and audio) and various overlay-based applications. (Note that there is a bit of a
blurring between these classes, as you can of course get access to streaming multimedia data over the Web,
but for now we’ll focus on the general usage of the Web to request pages, images, etc.)

Before taking a close look at each of these applications, there are three general points that we need to make.
The first is that it is important to distinguish between application programs and application protocols. For
example, the HyperText Transport Protocol (HTTP) is an application protocol that is used to retrieve Web
pages from remote servers. Many different application programs—that is, web clients like Internet Explorer,
Chrome, Firefox, and Safari—provide users with a different look and feel, but all of them use the same
HTTP protocol to communicate with web servers over the Internet. Indeed, it is the fact that the protocol is
published and standardized that enables application programs developed by many different companies and
individuals to interoperate. That is how so many browsers are able to interoperate with all the web servers
(of which there are also many varieties).

This section looks at two very widely used, standardized application protocols:

• Simple Mail Transfer Protocol (SMTP) is used to exchange electronic mail.

• HyperText Transport Protocol (HTTP) is used to communicate between web browsers and web
servers.

Second, we observe that many application layer protocols, including HTTP and SMTP, have a companion
protocol that specifies the format of the data that can be exchanged. This is one reason WHY these protocols
are relatively simple: Much of the complexity is managed in this companion standard. For example, SMTP is
a protocol for exchanging electronic mail messages, but RFC 822 and Multipurpose Internet Mail Extensions
(MIME) define the format of email messages. Similarly, HTTP is a protocol for fetching Web pages, but
HyperText Markup Language (HTML) is a companion specification that defines the basic form of those
pages.

Finally, since the application protocols described in this section follow the same request/reply communica-
tion pattern, you might expect that they would be built on top of a Remote Procedure Call (RPC) transport
protocol. This is not the case, however, as they are instead implemented on top of TCP. In effect, each proto-
col reinvents a simple RPC-like mechanism on top of a reliable transport protocol (TCP). We say “simple”
because each protocol is not designed to support arbitrary remote procedure calls of the sort discussed in an
earlier chapter, but is instead designed to send and respond to a specific set of request messages. Interest-
ingly, the approach taken by HTTP has proven quite powerful, which has led to it being adopted widely by
the Web Services architecture, with general RPC mechanisms built on top of HTTP rather than the other way
around. More on this topic at the end of this section.

416 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

9.1.1 Electronic Mail (SMTP, MIME, IMAP)

Email is one of the oldest network applications. After all, what could be more natural than wanting to send
a message to the user at the other end of a cross-country link you just managed to get running? It’s the
20th century’s version of “Mr. Watson, come here. . . I want to see you.” Surprisingly, the pioneers of the
ARPANET had not really envisioned email as a key application when the network was created—remote
access to computing resources was the main design goal—but it turned out to be the Internet’s original killer
app.

As noted above, it is important (1) to distinguish the user interface (i.e., your mail reader) from the un-
derlying message transfer protocols (such as SMTP or IMAP), and (2) to distinguish between this transfer
protocol and a companion standard (RFC 822 and MIME) that defines the format of the messages being
exchanged. We start by looking at the message format.

Message Format

RFC 822 defines messages to have two parts: a header and a body. Both parts are represented in ASCII
text. Originally, the body was assumed to be simple text. This is still the case, although RFC 822 has been
augmented by MIME to allow the message body to carry all sorts of data. This data is still represented as
ASCII text, but because it may be an encoded version of, say, a JPEG image, it’s not necessarily readable
by human users. More on MIME in a moment.

The message header is a series of <CRLF>-terminated lines. (<CRLF> stands for carriage-return plus line-
feed, which are a pair of ASCII control characters often used to indicate the end of a line of text.) The header
is separated from the message body by a blank line. Each header line contains a type and value separated
by a colon. Many of these header lines are familiar to users, since they are asked to fill them out when they
compose an email message; for example, the header identifies the message recipient, and the header says
something about the purpose of the message. Other headers are filled in by the underlying mail delivery
system. Examples include (when the message was transmitted), (what user sent the message), and (each
mail server that handled this message). There are, of course, many other header lines; the interested reader
is referred to RFC 822.

RFC 822 was extended in 1993 (and updated quite a few times since then) to allow email messages to carry
many different types of data: audio, video, images, PDF documents, and so on. MIME consists of three
basic pieces. The first piece is a collection of header lines that augment the original set defined by RFC 822.
These header lines describe, in various ways, the data being carried in the message body. They include (the
version of MIME being used), (a human-readable description of what’s in the message, analogous to the
line), (the type of data contained in the message), and (how the data in the message body is encoded).

The second piece is definitions for a set of content types (and subtypes). For example, MIME defines two
different still image types, denoted and , each with the obvious meaning. As another example, refers to
simple text you might find in a vanilla 822-style message, while denotes a message that contains “marked
up” text (text using special fonts, italics, etc.). As a third example, MIME defines an application
type, where the subtypes correspond to the output of different application programs (e.g., application/
postscript and application/msword).

MIME also defines a multipart type that says how a message carrying more than one data type is struc-
tured. This is like a programming language that defines both base types (e.g., integers and floats) and
compound types (e.g., structures and arrays). One possible multipart subtype is mixed, which says

9.1. Traditional Applications 417

Computer Networks: A Systems Approach, Release Version 6.1

that the message contains a set of independent data pieces in a specified order. Each piece then has its own
header line that describes the type of that piece.

The third piece is a way to encode the various data types so they can be shipped in an ASCII email message.
The problem is that, for some data types (a JPEG image, for example), any given 8-bit byte in the image
might contain one of 256 different values. Only a subset of these values are valid ASCII characters. It is
important that email messages contain only ASCII, because they might pass through a number of interme-
diate systems (gateways, as described below) that assume all email is ASCII and would corrupt the message
if it contained non-ASCII characters. To address this issue, MIME uses a straightforward encoding of bi-
nary data into the ASCII character set. The encoding is called base64. The idea is to map every three
bytes of the original binary data into four ASCII characters. This is done by grouping the binary data into
24-bit units and breaking each such unit into four 6-bit pieces. Each 6-bit piece maps onto one of 64 valid
ASCII characters; for example, 0 maps onto A, 1 maps onto B, and so on. If you look at a message that has
been encoded using the base64 encoding scheme, you’ll notice only the 52 upper- and lowercase letters, the
10 digits 0 through 9, and the special characters + and /. These are the first 64 values in the ASCII character
set.

As one aside, so as to make reading mail as painless as possible for those who still insist on using text-only
mail readers, a MIME message that consists of regular text only can be encoded using 7-bit ASCII. There’s
also a readable encoding for mostly ASCII data.

Putting this all together, a message that contains some plain text, a JPEG image, and a PostScript file would
look something like this:

MIME-Version: 1.0
Content-Type: multipart/mixed;
boundary="-------417CA6E2DE4ABCAFBC5"
From: Alice Smith <Alice@cisco.com>
To: Bob@cs.Princeton.edu
Subject: promised material
Date: Mon, 07 Sep 1998 19:45:19 -0400

---------417CA6E2DE4ABCAFBC5
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

Bob,

Here is the jpeg image and draft report I promised.

--Alice

---------417CA6E2DE4ABCAFBC5
Content-Type: image/jpeg
Content-Transfer-Encoding: base64
... unreadable encoding of a jpeg figure
---------417CA6E2DE4ABCAFBC5
Content-Type: application/postscript; name="draft.ps"
Content-Transfer-Encoding: 7bit
... readable encoding of a PostScript document

In this example, the line in the message header says that this message contains various pieces, each denoted

418 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

by a character string that does not appear in the data itself. Each piece then has its own and lines.

Message Transfer

For many years, the majority of email was moved from host to host using only SMTP. While SMTP con-
tinues to play a central role, it is now just one email protocol of several, Internet Message Access Protocol
(IMAP) and Post Office Protocol (POP) being two other important protocols for retrieving mail messages.
We’ll begin our discussion by looking at SMTP, and move on to IMAP below.

To place SMTP in the right context, we need to identify the key players. First, users interact with a mail
reader when they compose, file, search, and read their email. Countless mail readers are available, just like
there are many web browsers to choose from. In the early days of the Internet, users typically logged into the
machine on which their mailbox resided, and the mail reader they invoked was a local application program
that extracted messages from the file system. Today, of course, users remotely access their mailbox from
their laptop or smartphone; they do not first log into the host that stores their mail (a mail server). A second
mail transfer protocol, such as POP or IMAP, is used to remotely download email from a mail server to the
user’s device.

Second, there is a mail daemon (or process) running on each host that holds a mailbox. You can think of
this process, also called a message transfer agent (MTA), as playing the role of a post office: Users (or their
mail readers) give the daemon messages they want to send to other users, the daemon uses SMTP running
over TCP to transmit the message to a daemon running on another machine, and the daemon puts incoming
messages into the user’s mailbox (where that user’s mail reader can later find them). Since SMTP is a
protocol that anyone could implement, in theory there could be many different implementations of the mail
daemon. It turns out, though, that there are only a few popular implementations, with the old sendmail
program from Berkeley Unix and postfix being the most widespread.

Figure 9.1.: Sequence of mail gateways store and forward email messages.

While it is certainly possible that the MTA on a sender’s machine establishes an SMTP/TCP connection to
the MTA on the recipient’s mail server, in many cases the mail traverses one or more mail gateways on its
route from the sender’s host to the receiver’s host. Like the end hosts, these gateways also run a message
transfer agent process. It’s not an accident that these intermediate nodes are called gateways since their job
is to store and forward email messages, much like an “IP gateway” (which we have referred to as a router)

9.1. Traditional Applications 419

Computer Networks: A Systems Approach, Release Version 6.1

stores and forwards IP datagrams. The only difference is that a mail gateway typically buffers messages on
disk and is willing to try retransmitting them to the next machine for several days, while an IP router buffers
datagrams in memory and is only willing to retry transmitting them for a fraction of a second. Figure 9.1
illustrates a two-hop path from the sender to the receiver.

Why, you might ask, are mail gateways necessary? Why can’t the sender’s host send the message to the
receiver’s host? One reason is that the recipient does not want to include the specific host on which he
or she reads email in his or her address. Another is scale: In large organizations, it’s often the case that
a number of different machines hold the mailboxes for the organization. For example, mail delivered to
bob@cs.princeton.edu is first sent to a mail gateway in the CS Department at Princeton (that is,
to the host named cs.princeton.edu), and then forwarded—involving a second connection—to the
specific machine on which Bob has a mailbox. The forwarding gateway maintains a database that maps
users into the machine on which their mailbox resides; the sender need not be aware of this specific name.
(The list of header lines in the message will help you trace the mail gateways that a given message traversed.)
Yet another reason, particularly true in the early days of email, is that the machine that hosts any given user’s
mailbox may not always be up or reachable, in which case the mail gateway holds the message until it can
be delivered.

Independent of how many mail gateways are in the path, an independent SMTP connection is used between
each host to move the message closer to the recipient. Each SMTP session involves a dialog between the
two mail daemons, with one acting as the client and the other acting as the server. Multiple messages might
be transferred between the two hosts during a single session. Since RFC 822 defines messages using ASCII
as the base representation, it should come as no surprise to learn that SMTP is also ASCII based. This means
it is possible for a human at a keyboard to pretend to be an SMTP client program.

SMTP is best understood by a simple example. The following is an exchange between sending host cs.
princeton.edu and receiving host cisco.com . In this case, user Bob at Princeton is trying to send
mail to users Alice and Tom at Cisco. Extra blank lines have been added to make the dialog more readable.

HELO cs.princeton.edu
250 Hello daemon@mail.cs.princeton.edu [128.12.169.24]

MAIL FROM:<Bob@cs.princeton.edu>
250 OK

RCPT TO:<Alice@cisco.com>
250 OK

RCPT TO:<Tom@cisco.com>
550 No such user here

DATA
354 Start mail input; end with <CRLF>.<CRLF>
Blah blah blah...
...etc. etc. etc.
<CRLF>.<CRLF>
250 OK

QUIT
221 Closing connection

As you can see, SMTP involves a sequence of exchanges between the client and the server. In each exchange,

420 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

the client posts a command (e.g., QUIT) and the server responds with a code (e.g., 221). The server also
returns a human-readable explanation for the code (e.g.,). In this particular example, the client first identifies
itself to the server with the HELO command. It gives its domain name as an argument. The server verifies
that this name corresponds to the IP address being used by the TCP connection; you’ll notice the server
states this IP address back to the client. The client then asks the server if it is willing to accept mail for
two different users; the server responds by saying “yes” to one and “no” to the other. Then the client sends
the message, which is terminated by a line with a single period (“.”) on it. Finally, the client terminates the
connection.

There are, of course, many other commands and return codes. For example, the server can respond to a
client’s RCPT command with a 251 code, which indicates that the user does not have a mailbox on this
host, but that the server promises to forward the message onto another mail daemon. In other words, the
host is functioning as a mail gateway. As another example, the client can issue a VRFY operation to verify a
user’s email address, but without actually sending a message to the user.

The only other point of interest is the arguments to the MAIL and RCPT operations; for example,
FROM:<Bob@cs.princeton.edu> and TO:<Alice@cisco.com>, respectively. These look a lot
like 822 header fields, and in some sense they are. What actually happens is that the mail daemon parses
the message to extract the information it needs to run SMTP. The information it extracts is said to form
an envelope for the message. The SMTP client uses this envelope to parameterize its exchange with the
SMTP server. One historical note: The reason sendmail became so popular is that no one wanted to
reimplement this message parsing function. While today’s email addresses look pretty tame (e.g., Bob@cs.
princeton.edu), this was not always the case. In the days before everyone was connected to the Internet,
it was not uncommon to see email addresses of the form user%host@site!neighbor.

Mail Reader

The final step is for the user to actually retrieve his or her messages from the mailbox, read them, reply to
them, and possibly save a copy for future reference. The user performs all these actions by interacting with
a mail reader. As pointed out earlier, this reader was originally just a program running on the same machine
as the user’s mailbox, in which case it could simply read and write the file that implements the mailbox.
This was the common case in the pre-laptop era. Today, most often the user accesses his or her mailbox
from a remote machine using yet another protocol, such as POP or IMAP. It is beyond the scope of this book
to discuss the user interface aspects of the mail reader, but it is definitely within our scope to talk about the
access protocol. We consider IMAP, in particular.

IMAP is similar to SMTP in many ways. It is a client/server protocol running over TCP, where the client
(running on the user’s desktop machine) issues commands in the form of <CRLF>-terminated ASCII text
lines and the mail server (running on the machine that maintains the user’s mailbox) responds in kind. The
exchange begins with the client authenticating him- or herself and identifying the mailbox he or she wants
to access. This can be represented by the simple state transition diagram shown in Figure 9.2. In this
diagram, LOGIN and LOGOUT are example commands that the client can issue, while OK is one possible
server response. Other common commands include and EXPUNGE, with the obvious meanings. Additional
server responses include NO (client does not have permission to perform that operation) and BAD (command
is ill formed).

When the user asks to FETCH a message, the server returns it in MIME format and the mail reader decodes
it. In addition to the message itself, IMAP also defines a set of message attributes that are exchanged as part
of other commands, independent of transferring the message itself. Message attributes include information

9.1. Traditional Applications 421

Computer Networks: A Systems Approach, Release Version 6.1

Figure 9.2.: IMAP state transition diagram.

422 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

like the size of the message and, more interestingly, various flags associated with the message (e.g., and
Recent). These flags are used to keep the client and server synchronized; that is, when the user deletes
a message in the mail reader, the client needs to report this fact to the mail server. Later, should the user
decide to expunge all deleted messages, the client issues an EXPUNGE command to the server, which knows
to actually remove all earlier deleted messages from the mailbox.

Finally, note that when the user replies to a message, or sends a new message, the mail reader does not
forward the message from the client to the mail server using IMAP, but it instead uses SMTP. This means
that the user’s mail server is effectively the first mail gateway traversed along the path from the desktop to
the recipient’s mailbox.

9.1.2 World Wide Web (HTTP)

The World Wide Web has been so successful and has made the Internet accessible to so many people that
sometimes it seems to be synonymous with the Internet. In fact, the design of the system that became
the Web started around 1989, long after the Internet had become a widely deployed system. The original
goal of the Web was to find a way to organize and retrieve information, drawing on ideas about hyper-
text—interlinked documents—that had been around since at least the 1960s.1 The core idea of hypertext is
that one document can link to another document, and the protocol (HTTP) and document language (HTML)
were designed to meet that goal.

One helpful way to think of the Web is as a set of cooperating clients and servers, all of whom speak the same
language: HTTP. Most people are exposed to the Web through a graphical client program or web browser
like Safari, Chrome, Firefox, or Internet Explorer. Figure 9.3 shows the Safari browser in use, displaying a
page of information from Princeton University.

Clearly, if you want to organize information into a system of linked documents or objects, you need to be
able to retrieve one document to get started. Hence, any web browser has a function that allows the user
to obtain an object by opening a URL. Uniform Resource Locators (URLs) are so familiar to most of us
by now that it’s easy to forget that they haven’t been around forever. They provide information that allows
objects on the Web to be located, and they look like the following:

http://www.cs.princeton.edu/index.html

If you opened that particular URL, your web browser would open a TCP connection to the web server at a
machine called www.cs.princeton.edu and immediately retrieve and display the file called index.
html. Most files on the Web contain images and text, and many have other objects such as audio and video
clips, pieces of code, etc. They also frequently include URLs that point to other files that may be located on
other machines, which is the core of the “hypertext” part of HTTP and HTML. A web browser has some way
in which you can recognize URLs (often by highlighting or underlining some text) and then you can ask the
browser to open them. These embedded URLs are called hypertext links. When you ask your web browser
to open one of these embedded URLs (e.g., by pointing and clicking on it with a mouse), it will open a new
connection and retrieve and display a new file. This is called following a link. It thus becomes very easy to
hop from one machine to another around the network, following links to all sorts of information. Once you
have a means to embed a link in a document and allow a user to follow that link to get another document,
you have the basis of a hypertext system.

1 A short history of the Web provided by the World Wide Web consortium traces its roots to a 1945 article describing links
between microfiche documents.

9.1. Traditional Applications 423

Computer Networks: A Systems Approach, Release Version 6.1

Figure 9.3.: The Safari web browser.

When you ask your browser to view a page, your browser (the client) fetches the page from the server
using HTTP running over TCP. Like SMTP, HTTP is a text-oriented protocol. At its core, HTTP is a
request/response protocol, where every message has the general form

START_LINE <CRLF>
MESSAGE_HEADER <CRLF>
<CRLF>
MESSAGE_BODY <CRLF>

where, as before, <CRLF> stands for carriage-return+line-feed. The first line (START_LINE) indicates
whether this is a request message or a response message. In effect, it identifies the “remote procedure” to be
executed (in the case of a request message), or the status of the request (in the case of a response message).
The next set of lines specifies a collection of options and parameters that qualify the request or response.
There are zero or more of these MESSAGE_HEADER lines—the set is terminated by a blank line—each of
which looks like a header line in an email message. HTTP defines many possible header types, some of
which pertain to request messages, some to response messages, and some to the data carried in the message
body. Instead of giving the full set of possible header types, though, we just give a handful of representative
examples. Finally, after the blank line comes the contents of the requested message (MESSAGE_BODY);
this part of the message is where a server would place the requested page when responding to a request, and
it is typically empty for request messages.

Why does HTTP run over TCP? The designers didn’t have to do it that way, but TCP does provide a pretty
good match to what HTTP needs, particularly by providing reliable delivery (who wants a Web page with
missing data?), flow control, and congestion control. However, as we’ll see below, there are a few issues that
can arise from building a request/response protocol on top of TCP, especially if you ignore the subtleties of
the interactions between the application and transport layer protocols.

424 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

Request Messages

The first line of an HTTP request message specifies three things: the operation to be performed, the Web
page the operation should be performed on, and the version of HTTP being used. Although HTTP defines
a wide assortment of possible request operations—including write operations that allow a Web page to be
posted on a server—the two most common operations are GET (fetch the specified Web page) and HEAD
(fetch status information about the specified Web page). The former is obviously used when your browser
wants to retrieve and display a Web page. The latter is used to test the validity of a hypertext link or to
see if a particular page has been modified since the browser last fetched it. The full set of operations is
summarized in Table 9.1. As innocent as it sounds, the POST command enables much mischief (including
spam) on the Internet.

Table 9.1.: HTTP Request Operations.
Operation Description
OPTIONS Request information about available options
GET Retrieve document identified in URL
HEAD Retrieve metainformation about document identified in URL
POST Give information (e.g., annotation) to server
PUT Store document under specified URL
DELETE Delete specified URL
TRACE Loopback request message
CONNECT For use by proxies

For example, the START_LINE

GET http://www.cs.princeton.edu/index.html
HTTP/1.1

says that the client wants the server on host to return the page named . This particular example uses
an absolute URL. It is also possible to use a relative identifier and specify the host name in one of the
MESSAGE_HEADER lines; for example,

GET index.html HTTP/1.1
Host: www.cs.princeton.edu

Here, Host is one of the possible MESSAGE_HEADER fields. One of the more interesting of these is ,
which gives the client a way to conditionally request a Web page—the server returns the page only if it has
been modified since the time specified in that header line.

Response Messages

Like request messages, response messages begin with a single START_LINE. In this case, the line specifies
the version of HTTP being used, a three-digit code indicating whether or not the request was successful, and
a text string giving the reason for the response. For example, the START_LINE

HTTP/1.1 202 Accepted

9.1. Traditional Applications 425

Computer Networks: A Systems Approach, Release Version 6.1

indicates that the server was able to satisfy the request, while

HTTP/1.1 404 Not Found

indicates that it was not able to satisfy the request because the page was not found. There are five general
types of response codes, with the first digit of the code indicating its type. Table 9.2 summarizes the five
types of codes.

Table 9.2.: Five Types of HTTP Result Codes.
Code Type Example Reasons
1xx Informational request received, continuing process
2xx Success action successfully received, understood, and accepted
3xx Redirection further action must be taken to complete the request
4xx Client Error request contains bad syntax or cannot be fulfilled
5xx Server Error server failed to fulfill an apparently valid request

As with the unexpected consequences of the POST request message, it is sometimes surprising how various
response messages are used in practice. For example, request redirection (specifically code 302) turns out
to be a powerful mechanism that plays a big role in Content Distribution Networks (CDNs) by redirecting
requests to a nearby cache.

Also similar to request messages, response messages can contain one or more MESSAGE_HEADER lines.
These lines relay additional information back to the client. For example, the Location header line speci-
fies that the requested URL is available at another location. Thus, if the Princeton CS Department Web page
had moved from to , for example, then the server at the original address might respond with

HTTP/1.1 301 Moved Permanently
Location: http://www.princeton.edu/cs/index.html

In the common case, the response message will also carry the requested page. This page is an HTML
document, but since it may carry nontextual data (e.g., a GIF image), it is encoded using MIME (see the
previous section). Certain of the MESSAGE_HEADER lines give attributes of the page contents, including
(number of bytes in the contents), Expires (time at which the contents are considered stale), and (time at
which the contents were last modified at the server).

Uniform Resource Identifiers

The URLs that HTTP uses as addresses are one type of Uniform Resource Identifier (URI). A URI is a
character string that identifies a resource, where a resource can be anything that has identity, such as a
document, an image, or a service.

The format of URIs allows various more specialized kinds of resource identifiers to be incorporated into the
URI space of identifiers. The first part of a URI is a scheme that names a particular way of identifying a
certain kind of resource, such as mailto for email addresses or file for file names. The second part of a
URI, separated from the first part by a colon, is the scheme-specific part. It is a resource identifier consistent
with the scheme in the first part, as in the URIs mailto:santa@northpole.org and file:///C:/
foo.html.

426 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

A resource doesn’t have to be retrievable or accessible. We saw an example of this in an earlier chap-
ter—extensible markup language (XML) namespaces are identified by URIs that look an awful lot like
URLs, but strictly speaking they are not locators because they don’t tell you how to locate something; they
just provide a globally unique identifier for the namespace. There is no requirement that you can retrieve
anything at the URI given as the target namespace of an XML document. We’ll see another example of a
URI that is not a URL in a later section.

TCP Connections

The original version of HTTP (1.0) established a separate TCP connection for each data item retrieved from
the server. It’s not too hard to see how this was a very inefficient mechanism: connection setup and teardown
messages had to be exchanged between the client and server even if all the client wanted to do was verify
that it had the most recent copy of a page. Thus, retrieving a page that included some text and a dozen icons
or other small graphics would result in 13 separate TCP connections being established and closed. Figure
9.4 shows the sequence of events for fetching a page that has just a single embedded object. Colored lines
indicate TCP messages, while black lines indicate the HTTP requests and responses. (Some of the TCP
ACKs are not shown to avoid cluttering the picture.) You can see two round trip times are spent setting up
TCP connections while another two (at least) are spent getting the page and image. As well as the latency
impact, there is also processing cost on the server to handle the extra TCP connection establishment and
termination.

To overcome this situation, HTTP version 1.1 introduced persistent connections—the client and server can
exchange multiple request/response messages over the same TCP connection. Persistent connections have
many advantages. First, they obviously eliminate the connection setup overhead, thereby reducing the load
on the server, the load on the network caused by the additional TCP packets, and the delay perceived by the
user. Second, because a client can send multiple request messages down a single TCP connection, TCP’s
congestion window mechanism is able to operate more efficiently. This is because it’s not necessary to
go through the slow start phase for each page. Figure 9.5 shows the transaction from Figure 9.4 using a
persistent connection in the case where the connection is already open (presumably due to some prior access
of the same server).

Persistent connections do not come without a price, however. The problem is that neither the client nor
server necessarily knows how long to keep a particular TCP connection open. This is especially critical on
the server, which might be asked to keep connections opened on behalf of thousands of clients. The solution
is that the server must time out and close a connection if it has received no requests on the connection for a
period of time. Also, both the client and server must watch to see if the other side has elected to close the
connection, and they must use that information as a signal that they should close their side of the connection
as well. (Recall that both sides must close a TCP connection before it is fully terminated.) Concerns about
this added complexity may be one reason why persistent connections were not used from the outset, but
today it is widely accepted that the benefits of persistent connections more than offset the drawbacks.

While 1.1 is still widely supported, a new version (2.0) was formally approved by the IETF in 2015. Known
as HTTP/2, the new version is backwards compatible with 1.1 (i.e,. it adopts the same syntax for header
fields, status codes, and URIs), but it adds two new features.

The first is to make it easier for web servers to minify the information they send back to web browsers. If
you look closely at the makeup of the HTML in a typical web page, you will find a plethora of references to
other bits-and-pieces (e.g., images, scripts, style files) that the browser needs to render the page. Rather than
force the client to request these bits-and-pieces (technically known as resources) in subsequent requests,

9.1. Traditional Applications 427

Computer Networks: A Systems Approach, Release Version 6.1

Figure 9.4.: HTTP 1.0 behavior.

428 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

Figure 9.5.: HTTP 1.1 behavior with persistent connections.

HTTP/2 provides a means for the server to bundle the required resources and proactively push them to the
client without incurring the round-trip delay of forcing the client to request them. This feature is coupled
with a compression mechanism that reduces the number of bytes that need to be pushed. The whole goal is
to minimize the latency an end-user experiences from the moment they click on a hyperlink until the selected
page is fully rendered.

The second big advance of HTTP/2 is to multiplex several requests on a single TCP connection. This
goes beyond what version 1.1 supports—allowing a sequence of requests to reuse a TCP connection—by
permitting these requests to overlap with each other. The way HTTP/2 does this should sound familiar:
it defines a channel abstraction (technically, the channels are called streams), permits multiple concurrent
streams to be active at a given time (each labeled with a unique stream id), and limits each stream to one
active request/reply exchange at a time.

Caching

An important implementation strategy that makes the web more usable is to cache Web pages. Caching
has many benefits. From the client’s perspective, a page that can be retrieved from a nearby cache can
be displayed much more quickly than if it has to be fetched from across the world. From the server’s
perspective, having a cache intercept and satisfy a request reduces the load on the server.

Caching can be implemented in many different places. For example, a user’s browser can cache recently
accessed pages and simply display the cached copy if the user visits the same page again. As another
example, a site can support a single site-wide cache. This allows users to take advantage of pages previously
downloaded by other users. Closer to the middle of the Internet, Internet Service Providers (ISPs) can cache
pages.2 Note that, in the second case, the users within the site most likely know what machine is caching

2 There are quite a few issues with this sort of caching, ranging from the technical to the regulatory. One example of a technical
challenge is the effect of asymmetric paths, when the request to the server and the response to the client do not follow the same
sequence of router hops.

9.1. Traditional Applications 429

Computer Networks: A Systems Approach, Release Version 6.1

pages on behalf of the site, and they configure their browsers to connect directly to the caching host. This
node is sometimes called a proxy. In contrast, the sites that connect to the ISP are probably not aware that
the ISP is caching pages. It simply happens to be the case that HTTP requests coming out of the various
sites pass through a common ISP router. This router can peek inside the request message and look at the
URL for the requested page. If it has the page in its cache, it returns it. If not, it forwards the request to the
server and watches for the response to fly by in the other direction. When it does, the router saves a copy in
the hope that it can use it to satisfy a future request.

No matter where pages are cached, the ability to cache Web pages is important enough that HTTP has been
designed to make the job easier. The trick is that the cache needs to make sure it is not responding with an
out-of-date version of the page. For example, the server assigns an expiration date (the Expires header
field) to each page it sends back to the client (or to a cache between the server and client). The cache
remembers this date and knows that it need not reverify the page each time it is requested until after that
expiration date has passed. After that time (or if that header field is not set) the cache can use the HEAD
or conditional GET operation (GET with header line) to verify that it has the most recent copy of the page.
More generally, there are a set of cache directives that must be obeyed by all caching mechanisms along the
request/response chain. These directives specify whether or not a document can be cached, how long it can
be cached, how fresh a document must be, and so on. We’ll look at the related issue of CDNs—which are
effectively distributed caches—in a later section.

9.1.3 Web Services

So far we have focused on interactions between a human and a web server. For example, a human uses a
web browser to interact with a server, and the interaction proceeds in response to input from the user (e.g.,
by clicking on links). However, there is increasing demand for direct computer-to-computer interaction.
And, just as the applications described above need protocols, so too do the applications that communicate
directly with each other. We conclude this section by looking at the challenges of building large numbers of
application-to-application protocols and some of the proposed solutions.

Much of the motivation for enabling direct application-to-application communication comes from the busi-
ness world. Historically, interactions between enterprises—businesses or other organizations—have in-
volved some manual steps such as filling out an order form or making a phone call to determine whether
some product is in stock. Even within a single enterprise it is common to have manual steps between soft-
ware systems that cannot interact directly because they were developed independently. Increasingly, such
manual interactions are being replaced with direct application-to-application interaction. An ordering appli-
cation at enterprise A would send a message to an order fulfillment application at enterprise B, which would
respond immediately indicating whether the order can be filled. Perhaps, if the order cannot be filled by
B, the application at A would immediately order from another supplier or solicit bids from a collection of
suppliers.

Here is a simple example of what we are talking about. Suppose you buy a book at an online retailer like
Amazon. Once your book has been shipped, Amazon could send you the tracking number in an email,
and then you could head over to the website for the shipping company—http://www.fedex.com,
perhaps—and track the package. However, you can also track your package directly from the Amazon.com
website. In order to make this happen, Amazon has to be able to send a query to FedEx, in a format that
FedEx understands, interpret the result, and display it in a Web page that perhaps contains other information
about your order. Underlying the user experience of getting all the information about the order served
up at once on the Amazon.com Web page is the fact that Amazon and FedEx had to have a protocol for

430 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

exchanging the information needed to track packages—call it the Package Tracking Protocol. It should be
clear that there are so many potential protocols of this type that we’d better have some tools to simplify the
task of specifying them and building them.

Network applications, even those that cross organization boundaries, are not new—email and web browsing
cross such boundaries. What is new about this problem is the scale. Not scale in the size of the network,
but scale in the number of different kinds of network applications. Both the protocol specifications and
the implementations of those protocols for traditional applications like electronic mail and file transfer have
typically been developed by a small group of networking experts. To enable the vast number of potential
network applications to be developed quickly, it was necessary to come up with some technologies that
simplify and automate the task of application protocol design and implementation.

Two architectures have been advocated as solutions to this problem. Both architectures are called Web Ser-
vices, taking their name from the term for the individual applications that offer a remotely accessible service
to client applications to form network applications. The terms used as informal shorthand to distinguish the
two Web Services architectures are SOAP and REST. We will discuss the technical meanings of those terms
shortly.

The SOAP architecture’s approach to the problem is to make it feasible, at least in theory, to generate pro-
tocols that are customized to each network application. The key elements of the approach are a framework
for protocol specification, software toolkits for automatically generating protocol implementations from the
specifications, and modular partial specifications that can be reused across protocols.

The REST architecture’s approach to the problem is to regard individual Web Services as World Wide
Web resources—identified by URIs and accessed via HTTP. Essentially, the REST architecture is just the
Web architecture. The Web architecture’s strengths include stability and a demonstrated scalability (in the
network-size sense). It could be considered a weakness that HTTP is not well suited to the usual procedural
or operation-oriented style of invoking a remote service. REST advocates argue, however, that rich services
can nonetheless be exposed using a more data-oriented or document-passing style for which HTTP is well
suited.

Custom Application Protocols (WSDL, SOAP)

The architecture informally referred to as SOAP is based on Web Services Description Language (WSDL)
and SOAP.3 Both of these standards are issued by the World Wide Web Consortium (W3C). This is the
architecture that people usually mean when they use the term Web Services without any preceding qualifier.
As these standards are still evolving, our discussion here is effectively a snapshot.

WSDL and SOAP are frameworks for specifying and implementing application protocols and transport
protocols, respectively. They are generally used together, although that is not strictly required. WSDL
is used to specify application-specific details such as what operations are supported, the formats of the
application data to invoke or respond to those operations, and whether an operation involves a response.
SOAP’s role is to make it easy to define a transport protocol with exactly the desired semantics regarding
protocol features such as reliability and security.

Both WSDL and SOAP consist primarily of a protocol specification language. Both languages are based
on XML with an eye toward making specifications accessible to software tools such as stub compilers and
directory services. In a world of many custom protocols, support for automating generation of implemen-
tations is crucial to avoid the effort of manually implementing each protocol. Support software generally

3 Although the name SOAP originated as an acronym, it officially no longer stands for anything.

9.1. Traditional Applications 431

Computer Networks: A Systems Approach, Release Version 6.1

takes the form of toolkits and application servers developed by third-party vendors, which allows developers
of individual Web Services to focus more on the business problem they need to solve (such as tracking the
package purchased by a customer).

Defining Application Protocols

WSDL has chosen a procedural operation model of application protocols. An abstract Web Service inter-
face consists of a set of named operations, each representing a simple interaction between a client and the
Web Service. An operation is analogous to a remotely callable procedure in an RPC system. An example
from W3C’s WSDL Primer is a hotel reservation Web Service with two operations, CheckAvailability and
MakeReservation.

Each operation specifies a Message Exchange Pattern (MEP) that gives the sequence in which the messages
are to be transmitted, including the fault messages to be sent when an error disrupts the message flow.
Several MEPs are predefined, and new custom MEPs can be defined, but it appears that in practice only two
MEPs are being used: In-Only (a single message from client to service) and In-Out (a request from client
and a corresponding reply from service). These patterns should be very familiar, and suggest that the costs
of supporting MEP flexibility perhaps outweigh the benefits.

MEPs are templates that have placeholders instead of specific message types or formats, so part of the
definition of an operation involves specifying which message formats to map into the placeholders in the
pattern. Message formats are not defined at the bit level that is typical of protocols we have discussed. They
are instead defined as an abstract data model using XML. XML Schema provides a set of primitive data
types and ways to define compound data types. Data that conforms to an XML Schema-defined format—its
abstract data model—can be concretely represented using XML, or it can use another representation, such
as the “binary” representation Fast Infoset.

WSDL nicely separates the parts of a protocol that can be specified abstractly—operations, MEPs, abstract
message formats—from the parts that must be concrete. WSDL’s concrete part specifies an underlying
protocol, how MEPs are mapped onto it, and what bit-level representation is used for messages on the wire.
This part of a specification is known as a binding, although it is better described as an implementation, or
a mapping onto an implementation. WSDL has predefined bindings for HTTP and SOAP-based protocols,
with parameters that allow the protocol designer to fine-tune the mapping onto those protocols. There is a
framework for defining new bindings, but SOAP protocols dominate.

A crucial aspect of how WSDL mitigates the problem of specifying large numbers of protocols is through
reuse of what are essentially specification modules. The WSDL specification of a Web Service may be
composed of multiple WSDL documents, and individual WSDL documents may also be used in other Web
Service specifications. This modularity makes it easier to develop a specification and easier to ensure that,
if two specifications are supposed to have some elements that are identical (for example, so that they can
be supported by the same tool), then those elements are indeed identical. This modularity, together with
WSDL’s defaulting rules, also helps keep specifications from becoming overwhelmingly verbose for human
protocol designers.

WSDL modularity should be familiar to anyone who has developed moderately large pieces of software.
A WSDL document need not be a complete specification; it could, for example, define a single message
format. The partial specifications are uniquely identified using XML Namespaces; each WSDL document
specifies the URI of a target namespace, and any new definitions in the document are named in the context
of that namespace. One WSDL document can incorporate components of another by including the second

432 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

document if both share the same target namespace or importing it if the target namespaces differ.

Defining Transport Protocols

Although SOAP is sometimes called a protocol, it is better thought of as a framework for defining pro-
tocols. As the SOAP 1.2 specification explains, “SOAP provides a simple messaging framework whose
core functionality is concerned with providing extensibility.” SOAP uses many of the same strategies as
WSDL, including message formats defined using XML Schema, bindings to underlying protocols, Message
Exchange Patterns, and reusable specification elements identified using XML namespaces.

SOAP is used to define transport protocols with exactly the features needed to support a particular applica-
tion protocol. SOAP aims to make it feasible to define many such protocols by using reusable components.
Each component captures the header information and logic that go into implementing a particular feature.
To define a protocol with a certain set of features, just compose the corresponding components. Let’s look
more closely at this aspect of SOAP.

SOAP 1.2 introduced a feature abstraction, which the specification describes thus:

A SOAP feature is an extension of the SOAP messaging framework. Although SOAP poses
no constraints on the potential scope of such features, example features may include “relia-
bility,” “security,” “correlation,” “routing,” and message exchange patterns (MEPs) such as
request/response, one-way, and peer-to-peer conversations.

A SOAP feature specification must include:

• A URI that identifies the feature

• The state information and processing, abstractly described, that is required at each SOAP node to
implement the feature

• The information to be relayed to the next node

• (If the feature is a MEP) the life cycle and temporal/causal relationships of the messages ex-
changed—for example, responses follow requests and are sent to the originator of the request

Note that this formalization of the concept of a protocol feature is rather low level; it is almost a design.

Given a set of features, there are two strategies for defining a SOAP protocol that will implement them. One
is by layering: binding SOAP to an underlying protocol in such a way as to derive the features. For example,
we could obtain a request/response protocol by binding SOAP to HTTP, with a SOAP request in an HTTP
request and a SOAP reply in an HTTP response. Because this is such a common example, it happens that
SOAP has a predefined binding to HTTP; new bindings may be defined using the SOAP Protocol Binding
Framework.

The second and more flexible way to implement features involves header blocks. A SOAP message consists
of an Envelope, which contains a Header that contains header blocks, and a Body, which contains the
payload destined for the ultimate receiver. This message structure is illustrated in Figure 9.6.

It should be a familiar notion by now that certain header information corresponds to particular features.
A digital signature is used to implement authentication, a sequence number is used for reliability, and a
checksum is used to detect message corruption. A SOAP header block is intended to encapsulate the header
information that corresponds to a particular feature. The correspondence is not always one-to-one since
multiple header blocks could be involved in a single feature, or a single header block could be used in

9.1. Traditional Applications 433

Computer Networks: A Systems Approach, Release Version 6.1

Figure 9.6.: SOAP message structure.

multiple features. A SOAP module is a specification of the syntax and the semantics of one or more header
blocks. Each module is intended to provide one or more features and must declare the features it implements.

The goal behind SOAP modules is to be able to compose a protocol with a set of features by simply including
each of the corresponding module specifications. If your protocol is required to have at-most-once seman-
tics and authentication, include the corresponding modules in your specification. This represents a novel
approach to modularizing protocol services, an alternative to the protocol layering we have seen throughout
this book. It is a bit like flattening a series of protocol layers into a single protocol, but in a structured
way. It remains to be seen how well SOAP features and modules, introduced in version 1.2 of SOAP, will
work in practice. The main weakness of this scheme is that modules may well interfere with each other. A
module specification is required to specify any known interactions with other SOAP modules, but clearly
that doesn’t do much to alleviate the problem. On the other hand, a core set of features and modules that
provides the most important properties may be small enough to be well known and well understood.

Standardizing Web Services Protocols

As we’ve said, WSDL and SOAP aren’t protocols; they are standards for specifying protocols. For differ-
ent enterprises to implement Web Services that interoperate with each other, it is not enough to agree to
use WSDL and SOAP to define their protocols; they must agree on—standardize—specific protocols. For
example, you could imagine that online retailers and shipping companies might like to standardize a pro-
tocol by which they exchange information, along the lines of the simple package tracking example at the
start of this section. This standardization is crucial for tool support as well as interoperability. And, yet,
different network applications in this architecture must necessarily differ in at least the message formats and
operations they use.

This tension between standardization and customization is tackled by establishing partial standards called
profiles. A profile is a set of guidelines that narrow or constrain choices available in WSDL, SOAP, and other
standards that may be referenced in defining a protocol. They may at the same time resolve ambiguities or

434 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

gaps in those standards. In practice, a profile often formalizes an emerging de facto standard.

The broadest and most widely adopted profile is known as the WS-I Basic Profile. It was proposed by the
Web Services Interoperability Organization (WS-I), an industry consortium, while WSDL and SOAP are
specified by the World Wide Web Consortium (W3C). The Basic Profile resolves some of the most basic
choices faced in defining a Web Service. Most notably it requires that WSDL be bound exclusively to SOAP
and SOAP be bound exclusively to HTTP and use the HTTP POST method. It also specifies which versions
of WSDL and SOAP must be used.

The WS-I Basic Security Profile adds security constraints to the Basic Profile by specifying how the SSL/TLS
layer is to be used and requiring conformance to WS-Security (Web Services Security). WS-Security spec-
ifies how to use various existing techniques such as X.509 public key certificates and Kerberos to provide
security features in SOAP protocols.

WS-Security is just the first of a growing suite of SOAP-level standards established by the industry con-
sortium OASIS (Organization for the Advancement of Structured Information Standards). The standards
known collectively as WS-* include WS-Reliability, WS-ReliableMessaging, WS-Coordination, and WS-
AtomicTransaction.

A Generic Application Protocol (REST)

The WSDL/SOAP Web Services architecture is based on the assumption that the best way to integrate
applications across networks is via protocols that are customized to each application. That architecture is
designed to make it practical to specify and implement all those protocols. In contrast, the REST Web
Services architecture is based on the assumption that the best way to integrate applications across networks
is by re-applying the model underlying the World Wide Web architecture. This model, articulated by Web
architect Roy Fielding, is known as REpresentational State Transfer (REST). There is no need for a new
REST architecture for Web Services—the existing Web architecture is sufficient, although a few extensions
are probably necessary. In the Web architecture, individual Web Services are regarded as resources identified
by URIs and accessed via HTTP—a single generic application protocol with a single generic addressing
scheme.

Where WSDL has user-defined operations, REST uses the small set of available HTTP methods, such as
GET and POST (see Table 9.1). So how can these simple methods provide an interface to a rich Web
Service? By employing the REST model, in which the complexity is shifted from the protocol to the
payload. The payload is a representation of the abstract state of a resource. For example, a GET could return
a representation of the current state of the resource, and a POST could send a representation of a desired
state of the resource.

The representation of a resource state is abstract; it need not resemble how the resource is actually imple-
mented by a particular Web Service instance. It is not necessary to transmit a complete resource state in each
message. The size of messages can be reduced by transmitting just the parts of a state that are of interest
(e.g., just the parts that are being modified). And, because Web Services share a single protocol and address
space with other web resources, parts of states can be passed by reference—by URI—even when they are
other Web Services.

This approach is best summarized as a data-oriented or document-passing style, as opposed to a procedural
style. Defining an application protocol in this architecture consists of defining the document structure (i.e.,
the state representation). XML and the lighter-weight JavaScript Object Notation (JSON) are the most
frequently used presentation languages for this state. Interoperability depends on agreement, between a Web

9.1. Traditional Applications 435

Computer Networks: A Systems Approach, Release Version 6.1

Service and its clients, on the state representation. Of course, the same is true in the SOAP architecture; a
Web Service and its client have to be in agreement on payload format. The difference is that in the SOAP
architecture interoperability additionally depends on agreement on the protocol; in the REST architecture,
the protocol is always HTTP, so that source of interoperability problems is eliminated.

One of the selling features of REST is that it leverages the infrastructure that has been deployed to support
the Web. For example, Web proxies can enforce security or cache information. Existing content distribution
networks (CDNs) can be used to support RESTful applications.

In contrast with WSDL/SOAP, the Web has had time for standards to stabilize and to demonstrate that it
scales very well. It also comes with some security in the form of Secure Socket Layer (SSL)/Transport
Layer Security (TLS). The Web and REST may also have an advantage in evolvability. Although the WSDL
and SOAP frameworks are highly flexible with regard to what new features and bindings can go into the
definition of a protocol, that flexibility is irrelevant once the protocol is defined. Standardized protocols
such as HTTP are designed with a provision for being extended in a backward-compatible way. HTTP’s
own extensibility takes the form of headers, new methods, and new content types. Protocol designers using
WSDL/SOAP need to design such extensibility into each of their custom protocols. Of course, the designers
of state representations in a REST architecture also have to design for evolvability.

An area where WSDL/SOAP may have an advantage is in adapting or wrapping previously written, “legacy”
applications to conform to Web Services. This is an important point since most Web Services will be based
on legacy applications for the near future at least. These applications usually have a procedural interface that
maps more easily into WSDL’s operations than REST states. The REST versus WSDL/SOAP competition
may very well hinge on how easy or difficult it turns out to be to devise REST-style interfaces for individual
Web Services. We may find that some Web Services are better served by WSDL/SOAP and others by REST.

The online retailer Amazon, as it happens, was an early adopter (2002) of Web Services. Interestingly,
Amazon made its systems publicly accessible via both of the Web Services architectures, and according to
some reports a substantial majority of developers use the REST interface. Of course, this is just one data
point and may well reflect factors specific to Amazon.

From Web Services to Cloud Services

If Web Services is what we call it when the web server that implements my application sends a request to
the web server that implements your application, then what do we call it when we both put our applications
in the cloud so that they can support scalable workloads? We can call both of them Cloud Services if we
want to, but is that a distinction without a difference? It depends.

Moving a server process from a physical machine running in my machine room into a virtual machine
running in a cloud provider’s datacenter shifts responsibility for keeping the machine running from my
system admin to the cloud provider’s operations team, but the application is still designed according to the
Web Services architecture. On the other hand, if the application is designed from scratch to run on a scalable
cloud platform, for example by adhering to the micro-services architecture, then we say the application is
cloud native. So the important distinction is cloud native versus legacy web services deployed in the cloud.

We briefly saw the micro-services architecture in Chapter 5 when describing gRPC, and although it’s difficult
to definitively declare micro-services superior to web services, the current trend in industry almost certainly
favors the former. More interesting, perhaps, is the ongoing debate about REST+Json versus gRPC+Protbufs
as the preferred RPC mechanism for implementing micro-services. Keeping in mind that both run on top of
HTTP, we leave it as an exercise for the reader to pick a side and defend it.

436 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

9.2 Multimedia Applications

Just like the traditional applications described in the previous section, multimedia applications such as tele-
phony and videoconferencing need their own protocols. Much of the initial experience in designing proto-
cols for multimedia applications came from the MBone tools—applications such as vat and vic that were
developed for use on the MBone, an overlay network that supports IP multicast to enable multiparty con-
ferencing. (More on overlay networks including the MBone in the next section.) Initially, each application
implemented its own protocol (or protocols), but it became apparent that many multimedia applications have
common requirements. This ultimately led to the development of a number of general-purpose protocols for
use by multimedia applications.

We have already seen a number of protocols that multimedia applications use. The Real-Time Transport Pro-
tocol (RTP) provides many of the functions that are common to multimedia applications such as conveying
timing information and identifying the coding schemes and media types of an application.

The Resource Reservation Protocol (RSVP) can be used to request the allocation of resources in the network
so that the desired quality of service (QoS) can be provided to an application. We will see how resource
allocation interacts with other aspects of multimedia applications later in this section.

In addition to these protocols for multimedia transport and resource allocation, many multimedia applica-
tions also need a signalling or session control protocol. For example, suppose that we wanted to be able to
make telephone calls across the Internet (Voice over IP, or VoIP). We would need some mechanism to notify
the intended recipient of such a call that we wanted to talk to her, such as by sending a message to some
multimedia device that would cause it to make a ringing sound. We would also like to be able to support
features like call forwarding, three-way calling, etc. The Session Initiation Protocol (SIP) and H.323 are
examples of protocols that address the issues of session control; we begin our discussion of multimedia
applications by examining these protocols.

9.2.1 Session Control and Call Control (SDP, SIP, H.323)

To understand some of the issues of session control, consider the following problem. Suppose you want to
hold a videoconference at a certain time and make it available to a wide number of participants. Perhaps
you have decided to encode the video stream using the MPEG-2 standard, to use the multicast IP address
224.1.1.1 for transmission of the data, and to send it using RTP over UDP port number 4000. How would
you make all that information available to the intended participants? One way would be to put all that
information in an email and send it out, but ideally there should be a standard format and protocol for
disseminating this sort of information. The IETF has defined protocols for just this purpose. The protocols
that have been defined include

• Session Description Protocol (SDP)

• Session Announcement Protocol (SAP)

• Session Initiation Protocol (SIP)

• Simple Conference Control Protocol (SCCP)

You might think that this is a lot of protocols for a seemingly simple task, but there are many aspects of the
problem and several different situations in which it must be addressed. For example, there is a difference
between announcing the fact that a certain conference session is going to be made available on the MBone

9.2. Multimedia Applications 437

Computer Networks: A Systems Approach, Release Version 6.1

(which would be done using SDP and SAP) and trying to make an Internet phone call to a certain user at a
particular time (which could be done using SDP and SIP). In the former case, you could consider your job
done once you have sent all the session information in a standard format to a well-known multicast address.
In the latter, you would need to locate one or more users, get a message to them announcing your desire to
talk (analogous to ringing their phone), and perhaps negotiate a suitable audio encoding among all parties.
We will look first at SDP, which is common to many applications, then at SIP, which is widely used for a
number of interactive applications such as Internet telephony.

Session Description Protocol (SDP)

The Session Description Protocol (SDP) is a rather general protocol that can be used in a variety of situations
and is typically used in conjunction with one or more other protocols (e.g., SIP). It conveys the following
information:

• The name and purpose of the session

• Start and end times for the session

• The media types (e.g., audio, video) that comprise the session

• Detailed information required to receive the session (e.g., the multicast address to which data will be
sent, the transport protocol to be used, the port numbers, the encoding scheme)

SDP provides this information formatted in ASCII using a sequence of lines of text, each of the form “.” An
example of an SDP message will illustrate the main points.

v=0
o=larry 2890844526 2890842807 IN IP4 128.112.136.10
s=Networking 101
i=A class on computer networking
u=http://www.cs.princeton.edu/
e=larry@cs.princeton.edu
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
m=audio 49170 RTP/AVP 0
m=video 51372 RTP/AVP 31
m=application 32416 udp wb

Note that SDP, like HTML, is fairly easy for a human to read but has strict formatting rules that make it
possible for machines to interpret the data unambiguously. For example, the SDP specification defines all
the possible information types that are allowed to appear, the order in which they must appear, and the
format and reserved words for every type that is defined.

The first thing to notice is that each information type is identified by a single character. For example, the line
tells us that “version” has the value zero; that is, this message is formatted according to version zero of SDP.
The next line provides the “origin” of the session which contains enough information to uniquely identify
the session. larry is a username of the session creator, and is the IP address of his computer. The number
following larry is a session identifier that is chosen to be unique to that machine. This is followed by a
“version” number for the SDP announcement; if the session information was updated by a later message,
the version number would be increased.

438 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

The next three lines (i, s and u) provide the session name, a session description, and a session Uniform
Resource Identifier (URI, as described earlier in this chapter)—information that would be helpful to a user
in deciding whether to participate in this session. Such information could be displayed in the user interface
of a session directory tool that shows current and upcoming events that have been advertised using SDP. The
next line (e=...) contains an email address of a person to contact regarding the session. Figure 9.7 shows
a screen shot of a (now archaic) session directory tool called sdr along with the descriptions of several
sessions that had been announced at the time the picture was taken.

Figure 9.7.: A session directory tool displays information extracted from SDP messages.

Next we get to the technical details that would enable an application program to participate in the session.
The line beginning c=... provides the IP multicast address to which data for this session will be sent; a
user would need to join this multicast group to receive the session. Next we see the start and end times for
the session (encoded as integers according to the Network Time Protocol). Finally, we get to the information
about the media for this session. This session has three media types available—audio, video, and a shared
whiteboard application known as “wb.” For each media type there is one line of information formatted as
follows:

m=<media> <port> <transport> <format>

The media types are self-explanatory, and the port numbers in each case are UDP ports. When we look at
the “transport” field, we can see that the wb application runs directly over UDP, while the audio and video
are transported using “RTP/AVP.” This means that they run over RTP and use the application profile known
as AVP. That application profile defines a number of different encoding schemes for audio and video; we
can see in this case that the audio is using encoding 0 (which is an encoding using an 8-kHz sampling rate
and 8 bits per sample) and the video is using encoding 31, which represents the H.261 encoding scheme.
These “magic numbers” for the encoding schemes are defined in the RFC that defines the AVP profile; it is
also possible to describe nonstandard coding schemes in SDP.

9.2. Multimedia Applications 439

Computer Networks: A Systems Approach, Release Version 6.1

Finally, we see a description of the “wb” media type. All the encoding information for this data is specific
to the wb application, and so it is sufficient just to provide the name of the application in the “format” field.
This is analogous to putting application/wb in a MIME message.

Now that we know how to describe sessions, we can look at how they can be initiated. One way in which
SDP is used is to announce multimedia conferences, by sending SDP messages to a well-known multicast
address. The session directory tool shown in Figure 9.7 would function by joining that multicast group
and displaying information that it gleans from received SDP messages. SDP is also used in the delivery of
entertainment video of IP (often called IPTV) to provide information about the video content on each TV
channel.

SDP also plays an important role in conjunction with the Session Initiation Protocol (SIP). With the
widespread adoption of Voice over IP (i.e., the support of telephony-like applications over IP networks)
and IP-based video conferencing, SIP is now one of the more important members of the Internet protocol
suite.

SIP

SIP is an application layer protocol that bears a certain resemblance to HTTP, being based on a similar
request/response model. However, it is designed with rather different sorts of applications in mind and thus
provides quite different capabilities than HTTP. The capabilities provided by SIP can be grouped into five
categories:

• User location—Determining the correct device with which to communicate to reach a particular user

• User availability—Determining if the user is willing or able to take part in a particular communication
session

• User capabilities—Determining such items as the choice of media and coding scheme to use

• Session setup—Establishing session parameters such as port numbers to be used by the communicat-
ing parties

• Session management—A range of functions including transferring sessions (e.g., to implement “call
forwarding”) and modifying session parameters

Most of these functions are easy enough to understand, but the issue of location bears some further discus-
sion. One important difference between SIP and, say, HTTP, is that SIP is primarily used for human-to-
human communication. Thus, it is important to be able to locate individual users, not just machines. And,
unlike email, it’s not good enough just to locate a server that the user will be checking on at some later
date and dump the message there—we need to know where the user is right now if we want to be able to
communicate with him in real time. This is further complicated by the fact that a user might choose to
communicate using a range of different devices, such as using his desktop PC when he’s in the office and
using a handheld device when traveling. Multiple devices might be active at the same time and might have
widely different capabilities (e.g., an alphanumeric pager and a PC-based video “phone”). Ideally, it should
be possible for other users to be able to locate and communicate with the appropriate device at any time.
Furthermore, the user must be able to have control over when, where, and from whom he receives calls.

To enable a user to exercise the appropriate level of control over his calls, SIP introduces the notion of a
proxy. A SIP proxy can be thought of as a point of contact for a user to which initial requests for communi-
cation with him are sent. Proxies also perform functions on behalf of callers. We can see how proxies work

440 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

best through an example.

Figure 9.8.: Establishing communication through SIP proxies.

Consider the two users in Figure 9.8. The first thing to notice is that each user has a name in the format
user@domain, very much like an email address. When user Bruce wants to initiate a session with Larry,
he sends his initial SIP message to the local proxy for his domain, cisco.com. Among other things, this
initial message contains a SIP URI—these are a form of uniform resource identifier which look like this:

SIP:larry@princeton.edu

A SIP URI provides complete identification of a user, but (unlike a URL) does not provide his location,
since that may change over time. We will see shortly how the location of a user can be determined.

Upon receiving the initial message from Bruce, the proxy looks at the SIP URI and deduces that this message
should be sent to the proxy. For now, we assume that the proxy has access to some database that enables it
to obtain a mapping from the name to the IP address of one or more devices at which Larry currently wishes
to receive messages. The proxy can therefore forward the message on to Larry’s chosen device(s). Sending
the message to more than one device is called forking and may be done either in parallel or in series (e.g.,
send it to his mobile phone if he doesn’t answer the phone at his desk).

The initial message from Bruce to Larry is likely to be a SIP invite message, which looks something like
the following:

INVITE sip:larry@princeton.edu SIP/2.0
Via: SIP/2.0/UDP bsd-pc.cisco.com;branch=z9hG4bK433yte4
To: Larry <sip:larry@princeton.edu>
From: Bruce <sip:bruce@cisco.com>;tag=55123
Call-ID: xy745jj210re3@bsd-pc.cisco.com
CSeq: 271828 INVITE
Contact: <sip:bruce@bsd-pc.cisco.com>
Content-Type: application/sdp
Content-Length: 142

The first line identifies the type of function to be performed (invite); the resource on which to perform
it, the called party (sip:larry@princeton.edu); and the protocol version (2.0). The subsequent
header lines probably look somewhat familiar because of their resemblance to the header lines in an email
message. SIP defines a large number of header fields, only some of which we describe here. Note that the
header in this example identifies the device from which this message originated. The and headers describe
the contents of the message following the header, just as in a MIME-encoded email message. In this case,

9.2. Multimedia Applications 441

Computer Networks: A Systems Approach, Release Version 6.1

the content is an SDP message. That message would describe such things as the type of media (audio, video,
etc.) that Bruce would like to exchange with Larry and other properties of the session such as codec types
that he supports. Note that the field in SIP provides the capability to use any protocol for this purpose,
although SDP is the most common.

Returning to the example, when the invite message arrives at the proxy, not only does the proxy forward
the message on toward princeton.edu, but it also responds to the sender of the invite. Just as in
HTTP, all responses have a response code, and the organization of codes is similar to that for HTTP. In
Figure 9.9 we can see a sequence of SIP messages and responses.

Figure 9.9.: Message flow for a basic SIP session.

The first response message in this figure is the provisional response 100 trying, which indicates that the
message was received without error by the caller’s proxy. Once the invite is delivered to Larry’s phone, it
alerts Larry and responds with a 180 ringing message. The arrival of this message at Bruce’s computer
is a sign that it can generate a “ringtone.” Assuming Larry is willing and able to communicate with Bruce,
he could pick up his phone, causing the message 200 OK to be sent. Bruce’s computer responds with an
ACK, and media (e.g., an RTP-encapsulated audio stream) can now begin to flow between the two parties.
Note that at this point the parties know each others’ addresses, so the ACK can be sent directly, bypassing
the proxies. The proxies are now no longer involved in the call. Note that the media will therefore typically
take a different path through the network than the original signalling messages. Furthermore, even if one
or both of the proxies were to crash at this point, the call could continue on normally. Finally, when one
party wishes to end the session, it sends a BYE message, which elicits a 200 OK response under normal
circumstances.

442 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

There are a few details that we have glossed over. One is the negotiation of session characteristics. Perhaps
Bruce would have liked to communicate using both audio and video but Larry’s phone only supports audio.
Thus, Larry’s phone would send an SDP message in its 200 OK describing the properties of the session that
will be acceptable to Larry and the device, considering the options that were proposed in Bruce’s invite.
In this way, mutually acceptable session parameters are agreed to before the media flow starts.

The other big issue we have glossed over is that of locating the correct device for Larry. First, Bruce’s
computer had to send its invite to the cisco.com proxy. This could have been a configured piece of
information in the computer, or it could have been learned by DHCP. Then the cisco.com proxy had to
find the princeton.ed proxy. This could be done using a special sort of DNS lookup that would return
the IP address of the SIP proxy for the domain. (We’ll discuss how DNS can do this in the next section.)
Finally, the princeton.ed proxy had to find a device on which Larry could be contacted. Typically, a
proxy server has access to a location database that can be populated in several ways. Manual configuration
is one option, but a more flexible option is to use the registration capabilities of SIP.

A user can register with a location service by sending a SIP register message to the “registrar” for
his domain. This message creates a binding between an “address of record” and a “contact address.”
An “address of record” is likely to be a SIP URI that is the well-known address for the user (e.g.,
sip:larry@princeton.edu) and the “contact address” will be the address at which the user can
currently be found (e.g., sip:larry@llp-ph.cs.princeton.edu). This is exactly the binding that
was needed by the proxy princeton.edu in our example.

Note that a user may register at several locations and that multiple users may register at a single device. For
example, one can imagine a group of people walking into a conference room that is equipped with an IP
phone and all of them registering on it so that they can receive calls on that phone.

SIP is a very rich and flexible protocol that can support a wide range of complex calling scenarios as well
as applications that have little or nothing to do with telephony. For example, SIP supports operations that
enable a call to be routed to a “music-on-hold” server or a voicemail server. It is also easy to see how it could
be used for applications like instant messaging, and standardization of SIP extensions for such purposes is
ongoing.

H.323

The International Telecommunication Union (ITU) has also been very active in the call control area, which
is not surprising given its relevance to telephony, the traditional realm of that body. Fortunately, there has
been considerable coordination between the IETF and the ITU in this instance, so that the various protocols
are somewhat interoperable. The major ITU recommendation for multimedia communication over packet
networks is known as H.323, which ties together many other recommendations, including H.225 for call
control. The full set of recommendations covered by H.323 runs to many hundreds of pages, and the protocol
is known for its complexity, so it is only possible to give a brief overview of it here.

H.323 is popular as a protocol for Internet telephony, including video calls, and we consider that class of
application here. A device that originates or terminates calls is known as an H.323 terminal; this might be
a workstation running an Internet telephony application, or it might be a specially designed “appliance”—a
telephone-like device with networking software and an Ethernet port, for example. H.323 terminals can talk
to each other directly, but the calls are frequently mediated by a device known as a gatekeeper. Gatekeepers
perform a number of functions such as translating among the various address formats used for phone calls
and controlling how many calls can be placed at a given time to limit the bandwidth used by the H.323

9.2. Multimedia Applications 443

Computer Networks: A Systems Approach, Release Version 6.1

applications. H.323 also includes the concept of a gateway, which connects the H.323 network to other types
of networks. The most common use of a gateway is to connect an H.323 network to the public switched
telephone network (PSTN) as illustrated in Figure 9.10. This enables a user running an H.323 application
on a computer to talk to a person using a conventional phone on the public telephone network. One useful
function performed by the gatekeeper is to help a terminal find a gateway, perhaps choosing among several
options to find one that is relatively close to the ultimate destination of the call. This is clearly useful in a
world where conventional phones greatly outnumber PC-based phones. When an H.323 terminal makes a
call to an endpoint that is a conventional phone, the gateway becomes the effective endpoint for the H.323
call and is responsible for performing the appropriate translation of both signalling information and the
media stream that need to be carried over the telephone network.

Figure 9.10.: Devices in an H.323 network.

An important part of H.323 is the H.245 protocol, which is used to negotiate the properties of the call,
somewhat analogously to the use of SDP described above. H.245 messages might list a number of different
audio codec standards that it can support; the far endpoint of the call would reply with a list of its own
supported codecs, and the two ends could pick a coding standard that they can both live with. H.245 can
also be used to signal the UDP port numbers that will be used by RTP and Real-Time Control Protocol
(RTCP) for the media stream (or streams—a call might include both audio and video, for example) for this
call. Once this is accomplished, the call can proceed, with RTP being used to transport the media streams
and RTCP carrying the relevant control information.

9.2.2 Resource Allocation for Multimedia Applications

As we have just seen, session control protocols like SIP and H.323 can be used to initiate and control com-
munication in multimedia applications, while RTP provides transport-level functions for the data streams
of the applications. A final piece of the puzzle in getting multimedia applications to work is making sure
that suitable resources are allocated inside the network to ensure that the quality of service needs of the
application are met. We presented a number of methods for resource allocation in an earlier chapter. The
motivation for developing these technologies was largely for the support of multimedia applications. So
how do applications take advantage of the underlying resource allocation capabilities of the network?

It is worth noting that many multimedia applications run successfully over “best-effort” networks, such as

444 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

the public Internet. The wide array of commercial VOIP services (such as Skype) are a testimony to the fact
that you only have to worry about resource allocation when resources are not abundant—and in many parts
of today’s Internet, resource abundance is the norm.

A protocol like RTCP can help applications in best-effort networks, by giving the application detailed in-
formation about the quality of service that is being delivered by the network. Recall that RTCP carries
information about the loss rate and delay characteristics between participants in a multimedia application.
An application can use this information to change its coding scheme—changing to a lower bitrate codec,
for example, when bandwidth is scarce. Note that, while it might be tempting to change to a codec that
sends additional, redundant information when loss rates are high, this is frowned upon; it is analogous to
increasing the window size of TCP in the presence of loss, the exact opposite of what is required to avoid
congestion collapse.

As discussed in an earlier chapter, Differentiated Services (DiffServ) can be used to provide fairly basic
and scalable resource allocation to applications. A multimedia application can set the differentiated services
code point (DSCP) in the IP header of the packets that it generates in an effort to ensure that both the media
and control packets receive appropriate quality of service. For example, it is common to mark voice media
packets as “EF” (expedited forwarding) to cause them to be placed in a low-latency or priority queue in
routers along the path, while the call signalling (e.g., SIP) packets are often marked with some sort of “AF”
(assured forwarding) to enable them to be queued separately from best-effort traffic and thus reduce their
risk of loss.

Of course, it only makes sense to mark the packets inside the sending host or appliance if network devices
such as routers pay attention to the DSCP. In general, routers in the public Internet ignore the DSCP, pro-
viding best-effort service to all packets. However, enterprise or corporate networks have the ability to use
DiffServ for their internal multimedia traffic, and frequently do so. Also, even residential users of the In-
ternet can often improve the quality of VOIP or other multimedia applications just by using DiffServ on the
outbound direction of their Internet connections, as illustrated in Figure 9.11. This is effective because of
the asymmetry of many broadband Internet connections: If the outbound link is substantially slower (i.e.,
more resource constrained) than the inbound, then resource allocation using DiffServ on that link may be
enough to make all the difference in quality for latency- and loss-sensitive applications.

Figure 9.11.: Differentiated Services applied to a VOIP application. DiffServ queueing is applied only on
the upstream link from customer router to ISP.

9.2. Multimedia Applications 445

Computer Networks: A Systems Approach, Release Version 6.1

While DiffServ is appealing for its simplicity, it is clear that it cannot meet the needs of applications under
all conditions. For example, suppose the upstream bandwidth in Figure 9.11 is only 100 kbps, and the
customer attempts to place two VOIP calls, each with a 64-kbps codec. Clearly the upstream link is now
more than 100% loaded, which will lead to large queueing delays and lost packets. No amount of clever
queueing in the customer’s router can fix that.

The characteristics of many multimedia applications are such that, rather than try to squeeze too many calls
into a too-narrow pipe, it would be better to block one call while allowing another to proceed. That is, it
is better to have one person carrying on a conversation successfully while another hears a busy signal than
to have both callers experiencing unacceptable audio quality at the same time. We sometimes refer to such
applications as having a steep utility curve, meaning that the utility (usefulness) of the application drops
rapidly as the quality of service provided by the network degrades. Multimedia applications often have this
property, whereas many traditional applications do not. Email, for example, continues to work quite well
even if delays run into the hours.

Applications with steep utility curves are often well suited to some form of admission control. If you cannot
be sure that sufficient resources will always be available to support the offered load of the applications, then
admission control provides a way to say “no” to some applications while allowing others to get the resources
they need.

We saw one way to do admission control using RSVP in an earlier chapter, and we will return to that shortly,
but multimedia applications that use session control protocols provide some other admission control options.
The key point to observe here is that session control protocols like SIP or H.323 often involve some sort of
message exchange between an endpoint and another entity (SIP proxy or H.323 gatekeeper) at the beginning
of a call or session. This can provide a handy means to say “no” to a new call for which sufficient resources
are not available.

As an example, consider the network in Figure 9.12. Suppose the wide area link from the branch office
to the head office has enough bandwidth to accommodate three VOIP calls simultaneously using 64-kbps
codecs. Each phone already needs to communicate with the local SIP proxy or H.323 gatekeeper when it
begins to place a call, so it is easy enough for the proxy/gatekeeper to send back a message that tells the IP
phone to play a busy signal if that link is already fully loaded. The proxy or gatekeeper can even deal with
the possibility that a particular IP phone might be making multiple calls at the same time and that different
codec speeds might be used. However, this scheme will work only if no other device can overload the link
without first talking to the gatekeeper or proxy. DiffServ queueing can be used to ensure that, for example,
a PC engaged in a file transfer doesn’t interfere with the VOIP calls. But, suppose some VOIP application
that doesn’t first talk to the gatekeeper or proxy is enabled in the remote office. Such an application, if it can
get its packets marked appropriately and in the same queue as the existing VOIP traffic, can clearly drive the
link to the point of overload with no feedback from the proxy or gatekeeper.

Another problem with the approach just described is that it depends on the gatekeeper or proxy having
knowledge of the path that each application will use. In the simple topology of Figure 9.12 this isn’t a big
issue, but in more complex networks it can quickly become unmanageable. We only need to imagine the
case where the remote office has two different connections to the outside world to see that we are asking the
proxy or gatekeeper to understand not just SIP or H.323 but also routing, link failures, and current network
conditions. This can quickly become unmanageable.

We refer to the sort of admission control just described as off-path, in the sense that the device making
admission control decisions does not sit on the data path where resources need to be allocated. The obvious
alternative is on-path admission control, and the standard example of a protocol that does on-path admission
control in IP networks is the Resource Reservation Protocol (RSVP). We saw in an earlier chapter how

446 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

Figure 9.12.: Admission control using session control protocol.

RSVP can be used to ensure that sufficient resources are allocated along a path, and it is straightforward to
use RSVP in applications like those described in this section. The one detail that still needs to be filled in is
how the admission control protocol interacts with the session control protocol.

Coordinating the actions of an admission control (or resource reservation) protocol and a session control
protocol is not rocket science, but it does require some attention to details. As an example, consider a
simple telephone call between two parties. Before you can make a reservation, you need to know how much
bandwidth the call is going to use, which means you need to know what codecs are to be used. That implies
you need to do some of the session control first, to exchange information about the codecs supported by
the two phones. However, you can’t do all the session control first, because you wouldn’t want the phone
to ring before the admission control decision had been made, in case admission control failed. Figure 9.13
illustrates this situation where SIP is used for session control and RSVP is used to make the admission
control decision (successfully in this case).

The main thing to notice here is the interleaving of session control and resource allocation tasks. Solid lines
represent SIP messages, dashed lines represent RSVP messages. Note that SIP messages are transmitted
direction from phone to phone in this example (i.e., we have not shown any SIP proxies), whereas the RSVP
messages are also processed by the routers in the middle as the check for sufficient resources to admit the
call.

We begin with an initial exchange of codec information in the first two SIP messages (recall that SDP
is used to list available codecs, among other things). PRACK is a “provisional acknowledgment.” Once
these messages have been exchanged, RSVP PATH messages, which contain a description of the amount of
resources that will be required, can be sent as the first step in reserving resources in both directions of the
call. Next, RESV messages can be sent back to actually reserve the resources. Once a RESV is received by
the initiating phone, it can send an updated SDP message reporting the fact that resources have been reserved
in one direction. When the called phone has received both that message and the RESV from the other phone,
it can start to ring and tell the other phone that resources are now reserved in both directions (with the SDP
message) and also notify the calling phone that it is ringing. From here on, normal SIP signalling and media
flow, similar to that shown in Figure 9.9, proceeds.

9.2. Multimedia Applications 447

Computer Networks: A Systems Approach, Release Version 6.1

Figure 9.13.: Coordination of SIP signalling and resource reservation.

448 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

Again we see how building applications requires us to understand the interaction between different building
blocks (SIP and RSVP, in this case). The designers of SIP actually made some changes to the protocol to
enable this interleaving of functions between protocols with different jobs, hence our repeated emphasis in
this book on focusing on complete systems rather than just looking at one layer or component in isolation
from the other parts of the system.

9.3 Infrastructure Applications

There are some protocols that are essential to the smooth running of the Internet but that don’t fit neatly into
the strictly layered model. One of these is the Domain Name System (DNS)—not an application that users
normally invoke directly, but rather a service that almost all other applications depend upon. This is because
the name service is used to translate host names into host addresses; the existence of such an application
allows the users of other applications to refer to remote hosts by name rather than by address. In other
words, a name service is usually used by other applications, rather than by humans.

A second critical function is network management, which although not so familiar to the average user, is
performed most often by the people that operate the network on behalf of users. Network management is
widely considered one of the hard problems of networking and continues to be the focus of much innovation.
We’ll look at some of the issues and approaches to the problem below.

9.3.1 Name Service (DNS)

In most of this book, we have been using addresses to identify hosts. While perfectly suited for processing
by routers, addresses are not exactly user friendly. It is for this reason that a unique name is also typically
assigned to each host in a network. Already in this section we have seen application protocols like HTTP
using names such as www.princeton.edu. We now describe how a naming service can be developed
to map user-friendly names into router-friendly addresses. Name services are sometimes called middleware
because they fill a gap between applications and the underlying network.

Host names differ from host addresses in two important ways. First, they are usually of variable length
and mnemonic, thereby making them easier for humans to remember. (In contrast, fixed-length numeric
addresses are easier for routers to process.) Second, names typically contain no information that helps the
network locate (route packets toward) the host. Addresses, in contrast, sometimes have routing information
embedded in them; flat addresses (those not divisible into component parts) are the exception.

Before getting into the details of how hosts are named in a network, we first introduce some basic termi-
nology. First, a name space defines the set of possible names. A name space can be either flat (names are
not divisible into components) or hierarchical (Unix file names are an obvious example). Second, the nam-
ing system maintains a collection of bindings of names to values. The value can be anything we want the
naming system to return when presented with a name; in many cases, it is an address. Finally, a resolution
mechanism is a procedure that, when invoked with a name, returns the corresponding value. A name server
is a specific implementation of a resolution mechanism that is available on a network and that can be queried
by sending it a message.

Because of its large size, the Internet has a particularly well-developed naming system in place—the Domain
Name System (DNS). We therefore use DNS as a framework for discussing the problem of naming hosts.
Note that the Internet did not always use DNS. Early in its history, when there were only a few hundred
hosts on the Internet, a central authority called the Network Information Center (NIC) maintained a flat

9.3. Infrastructure Applications 449

Computer Networks: A Systems Approach, Release Version 6.1

table of name-to-address bindings; this table was called HOSTS.TXT.1 Whenever a site wanted to add a
new host to the Internet, the site administrator sent email to the NIC giving the new host’s name/address
pair. This information was manually entered into the table, the modified table was mailed out to the various
sites every few days, and the system administrator at each site installed the table on every host at the site.
Name resolution was then simply implemented by a procedure that looked up a host’s name in the local
copy of the table and returned the corresponding address.

It should come as no surprise that the approach to naming did not work well as the number of hosts in the
Internet started to grow. Therefore, in the mid-1980s, the Domain Naming System was put into place. DNS
employs a hierarchical namespace rather than a flat name space, and the “table” of bindings that implements
this name space is partitioned into disjoint pieces and distributed throughout the Internet. These subtables
are made available in name servers that can be queried over the network.

What happens in the Internet is that a user presents a host name to an application program (possibly embed-
ded in a compound name such as an email address or URL), and this program engages the naming system
to translate this name into a host address. The application then opens a connection to this host by presenting
some transport protocol (e.g., TCP) with the host’s IP address. This situation is illustrated (in the case of
sending email) in Figure 9.14. While this picture makes the name resolution task look simple enough, there
is a bit more to it, as we shall see.

Figure 9.14.: Names translated into addresses, where the numbers 1 to 5 show the sequence of steps in the
process.

Domain Hierarchy

DNS implements a hierarchical name space for Internet objects. Unlike Unix file names, which are pro-
cessed from left to right with the naming components separated with slashes, DNS names are processed from
right to left and use periods as the separator. (Although they are processed from right to left, humans still

1 Believe it or not, there was also a paper book (like a phone book) published periodically that listed all the machines connected
to the Internet and all the people that had an Internet email account.

450 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

read domain names from left to right.) An example domain name for a host is cicada.cs.princeton.
edu. Notice that we said domain names are used to name Internet “objects.” What we mean by this is that
DNS is not strictly used to map host names into host addresses. It is more accurate to say that DNS maps
domain names into values. For the time being, we assume that these values are IP addresses; we will come
back to this issue later in this section.

Figure 9.15.: Example of a domain hierarchy.

Like the Unix file hierarchy, the DNS hierarchy can be visualized as a tree, where each node in the tree
corresponds to a domain, and the leaves in the tree correspond to the hosts being named. Figure 9.15 gives
an example of a domain hierarchy. Note that we should not assign any semantics to the term domain other
than that it is simply a context in which additional names can be defined.2

There was actually a substantial amount of discussion that took place when the domain name hierarchy was
first being developed as to what conventions would govern the names that were to be handed out near the top
of the hierarchy. Without going into that discussion in any detail, notice that the hierarchy is not very wide at
the first level. There are domains for each country, plus the “big six” domains: .edu, .com, .gov, .mil,
.org, and .net. These six domains were all originally based in the United States (where the Internet
and DNS were invented); for example, only U.S.-accredited educational institutions can register an .edu
domain name. In recent years, the number of top-level domains has been expanded, partly to deal with the
high demand for .com domains names. The newer top-level domains include .biz, .coop, and .info.
There are now over 1200 top-level domains.

Name Servers

The complete domain name hierarchy exists only in the abstract. We now turn our attention to the question
of how this hierarchy is actually implemented. The first step is to partition the hierarchy into subtrees called
zones. Figure 9.16 shows how the hierarchy given in Figure 9.15 might be divided into zones. Each zone
can be thought of as corresponding to some administrative authority that is responsible for that portion
of the hierarchy. For example, the top level of the hierarchy forms a zone that is managed by the Internet
Corporation for Assigned Names and Numbers (ICANN). Below this is a zone that corresponds to Princeton
University. Within this zone, some departments do not want the responsibility of managing the hierarchy

2 Confusingly, the word domain is also used in Internet routing, where it means something different than it does in DNS, being
roughly equivalent to the term autonomous system.

9.3. Infrastructure Applications 451

Computer Networks: A Systems Approach, Release Version 6.1

(and so they remain in the university-level zone), while others, like the Department of Computer Science,
manage their own department-level zone.

Figure 9.16.: Domain hierarchy partitioned into zones.

The relevance of a zone is that it corresponds to the fundamental unit of implementation in DNS—the name
server. Specifically, the information contained in each zone is implemented in two or more name servers.
Each name server, in turn, is a program that can be accessed over the Internet. Clients send queries to name
servers, and name servers respond with the requested information. Sometimes the response contains the
final answer that the client wants, and sometimes the response contains a pointer to another server that the
client should query next. Thus, from an implementation perspective, it is more accurate to think of DNS
as being represented by a hierarchy of name servers rather than by a hierarchy of domains, as illustrated in
Figure 9.17.

Figure 9.17.: Hierarchy of name servers.

Note that each zone is implemented in two or more name servers for the sake of redundancy; that is, the

452 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

information is still available even if one name server fails. On the flip side, a given name server is free to
implement more than one zone.

Each name server implements the zone information as a collection of resource records. In essence, a re-
source record is a name-to-value binding or, more specifically, a 5-tuple that contains the following fields:

(Name, Value, Type, Class, TTL)

The Name and Value fields are exactly what you would expect, while the Type field specifies how the
Value should be interpreted. For example, indicates that the Value is an IP address. Thus, A records
implement the name-to-address mapping we have been assuming. Other record types include:

• NS—The Value field gives the domain name for a host that is running a name server that knows how
to resolve names within the specified domain.

• CNAME—The Value field gives the canonical name for a particular host; it is used to define aliases.

• MX—The Value field gives the domain name for a host that is running a mail server that accepts
messages for the specified domain.

The Class field was included to allow entities other than the NIC to define useful record types. To date,
the only widely used Class is the one used by the Internet; it is denoted IN. Finally, the time-to-live (TTL)
field shows how long this resource record is valid. It is used by servers that cache resource records from
other servers; when the TTL expires, the server must evict the record from its cache.

To better understand how resource records represent the information in the domain hierarchy, consider the
following examples drawn from the domain hierarchy given in Figure 9.15. To simplify the example, we
ignore the TTL field and we give the relevant information for only one of the name servers that implement
each zone.

First, a root name server contains an NS record for each top-level domain (TLD) name server. This identifies
a server that can resolve queries for this part of the DNS hierarchy (.edu and .comin this example). It also
has A records that translates these names into the corresponding IP addresses. Taken together, these two
records effectively implement a pointer from the root name server to one of the TLD servers.

(edu, a3.nstld.com, NS, IN)
(a3.nstld.com, 192.5.6.32, A, IN)
(com, a.gtld-servers.net, NS, IN)
(a.gtld-servers.net, 192.5.6.30, A, IN)
...

Moving our way down the hierarchy by one level, the server has records for domains like this:

(princeton.edu, dns.princeton.edu, NS, IN)
(dns.princeton.edu, 128.112.129.15, A, IN)
...

In this case, we get an NS record and an A record for the name server that is responsible for the
princeton.edu part of the hierarchy. That server might be able to directly resolve some queries (e.g.,
foremail.princeton.edu) while it would redirect others to a server at yet another layer in the hierar-
chy (e.g., for a query about penguins.cs.princeton.edu).

9.3. Infrastructure Applications 453

Computer Networks: A Systems Approach, Release Version 6.1

(email.princeton.edu, 128.112.198.35, A, IN)
(penguins.cs.princeton.edu, dns1.cs.princeton.edu, NS, IN)
(dns1.cs.princeton.edu, 128.112.136.10, A, IN)
...

Finally, a third-level name server, such as the one managed by domain cs.princeton.edu, contains A
records for all of its hosts. It might also define a set of aliases (CNAME records) for each of those hosts.
Aliases are sometimes just convenient (e.g., shorter) names for machines, but they can also be used to
provide a level of indirection. For example,www.cs.princeton.edu is an alias for the host named
coreweb.cs.princeton.edu.This allows the site’s web server to move to another machine without
affecting remote users; they simply continue to use the alias without regard for what machine currently
runs the domain’s web server. The mail exchange (MX) records serve the same purpose for the email ap-
plication—they allow an administrator to change which host receives mail on behalf of the domain without
having to change everyone’s email address.

(penguins.cs.princeton.edu, 128.112.155.166, A, IN)
(www.cs.princeton.edu, coreweb.cs.princeton.edu, CNAME, IN)
coreweb.cs.princeton.edu, 128.112.136.35, A, IN)
(cs.princeton.edu, mail.cs.princeton.edu, MX, IN)
(mail.cs.princeton.edu, 128.112.136.72, A, IN)
...

Note that, although resource records can be defined for virtually any type of object, DNS is typically used
to name hosts (including servers) and sites. It is not used to name individual people or other objects like
files or directories; other naming systems are typically used to identify such objects. For example, X.500
is an ISO naming system designed to make it easier to identify people. It allows you to name a person
by giving a set of attributes: name, title, phone number, postal address, and so on. X.500 proved too
cumbersome—and, in some sense, was usurped by powerful search engines now available on the Web—but
it did eventually evolve into the Lightweight Directory Access Protocol (LDAP). LDAP is a subset of X.500
originally designed as a PC front end to X.500. Today, widely used, mostly at the enterprise level, as a
system for learning information about users.

Name Resolution

Given a hierarchy of name servers, we now consider the issue of how a client engages these servers to resolve
a domain name. To illustrate the basic idea, suppose the client wants to resolve the name penguins.cs.
princeton.edu relative to the set of servers given in the previous subsection. The client could first send
a query containing this name to one of the root servers (as we’ll see below, this rarely happens in practice
but will suffice to illustrate the basic operation for now). The root server, unable to match the entire name,
returns the best match it has—the NS record for edu which points to the TLD server a3.nstld.com. The
server also returns all records that are related to this record, in this case, the A record for a3.nstld.com.
The client, having not received the answer it was after, next sends the same query to the name server at IP
host 192.5.6.32. This server also cannot match the whole name and so returns the NS and corresponding
A records for the princeton.edu domain. Once again, the client sends the same query as before to the
server at IP host 128.112.129.15, and this time gets back the NS record and corresponding A record for
the cs.princeton.edu domain. This time, the server that can fully resolve the query has been reached.
A final query to the server at 128.112.136.10 yields the A record for penguins.cs.princeton.
edu, and the client learns that the corresponding IP address is 128.112.155.166.

454 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

This example still leaves a couple of questions about the resolution process unanswered. The first question
is how did the client locate the root server in the first place, or, put another way, how do you resolve the
name of the server that knows how to resolve names? This is a fundamental problem in any naming system,
and the answer is that the system has to be bootstrapped in some way. In this case, the name-to-address
mapping for one or more root servers is well known; that is, it is published through some means outside the
naming system itself.

In practice, however, not all clients know about the root servers. Instead, the client program running on
each Internet host is initialized with the address of a local name server. For example, all the hosts in the
Department of Computer Science at Princeton know about the server on dns1.cs.princeton.edu.
This local name server, in turn, has resource records for one or more of the root servers, for example:

('root', a.root-servers.net, NS, IN)
(a.root-servers.net, 198.41.0.4, A, IN)

Thus, resolving a name actually involves a client querying the local server, which in turn acts as a client
that queries the remote servers on the original client’s behalf. This results in the client/server interactions
illustrated in Figure 9.18. One advantage of this model is that all the hosts in the Internet do not have to
be kept up-to-date on where the current root servers are located; only the servers have to know about the
root. A second advantage is that the local server gets to see the answers that come back from queries that
are posted by all the local clients. The local server caches these responses and is sometimes able to resolve
future queries without having to go out over the network. The TTL field in the resource records returned by
remote servers indicates how long each record can be safely cached. This caching mechanism can be used
further up the hierarchy as well, reducing the load on the root and TLD servers.

The second question is how the system works when a user submits a partial name (e.g., penguins) rather
than a complete domain name (e.g., penguins.cs.princeton.edu). The answer is that the client
program is configured with the local domain in which the host resides (e.g., cs.princeton.edu), and it
appends this string to any simple names before sending out a query.

Key Takeaway

Just to make sure we are clear, we have now seen three different levels of identifiers—domain names, IP
addresses, and physical network addresses—and the mapping of identifiers at one level into identifiers at
another level happens at different points in the network architecture. First, users specify domain names
when interacting with the application. Second, the application engages DNS to translate this name into
an IP address; it is the IP address that is placed in each datagram, not the domain name. (As an aside, this
translation process involves IP datagrams being sent over the Internet, but these datagrams are addressed to a
host that runs a name server, not to the ultimate destination.) Third, IP does forwarding at each router, which
often means that it maps one IP address into another; that is, it maps the ultimate destination’s address into
the address for the next hop router. Finally, IP engages the Address Resolution Protocol (ARP) to translate
the next hop IP address into the physical address for that machine; the next hop might be the ultimate
destination or it might be an intermediate router. Frames sent over the physical network have these physical
addresses in their headers. [Next]

9.3. Infrastructure Applications 455

Computer Networks: A Systems Approach, Release Version 6.1

Figure 9.18.: Name resolution in practice, where the numbers 1 to 10 show the sequence of steps in the
process.

456 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

9.3.2 Network Management (SNMP, OpenConfig)

A network is a complex system, both in terms of the number of nodes that are involved and in terms of
the suite of protocols that can be running on any one node. Even if you restrict yourself to worrying about
the nodes within a single administrative domain, such as a campus, there might be dozens of routers and
hundreds—or even thousands—of hosts to keep track of. If you think about all the state that is maintained
and manipulated on any one of those nodes—address translation tables, routing tables, TCP connection
state, and so on—then it is easy to become overwhelmed by the prospect of having to manage all of this
information.

It is easy to imagine wanting to know about the state of various protocols on different nodes. For example,
you might want to monitor the number of IP datagram reassemblies that have been aborted, so as to deter-
mine if the timeout that garbage collects partially assembled datagrams needs to be adjusted. As another
example, you might want to keep track of the load on various nodes (i.e., the number of packets sent or
received) so as to determine if new routers or links need to be added to the network. Of course, you also
have to be on the watch for evidence of faulty hardware and misbehaving software.

What we have just described is the problem of network management, an issue that pervades the entire
network architecture. Since the nodes we want to keep track of are distributed, our only real option is to use
the network to manage the network. This means we need a protocol that allows us to read and write various
pieces of state information on different network nodes. The following describes two approaches.

SNMP

A widely used protocol for network management is SNMP (Simple Network Management Protocol). SNMP
is essentially a specialized request/reply protocol that supports two kinds of request messages: GET and
SET. The former is used to retrieve a piece of state from some node, and the latter is used to store a new
piece of state in some node. (SNMP also supports a third operation, GET-NEXT, which we explain below.)
The following discussion focuses on the GET operation, since it is the one most frequently used.

SNMP is used in the obvious way. An operator interacts with a client program that displays information
about the network. This client program usually has a graphical interface. You can think of this interface
as playing the same role as a web browser. Whenever the operator selects a certain piece of information
that he or she wants to see, the client program uses SNMP to request that information from the node in
question. (SNMP runs on top of UDP.) An SNMP server running on that node receives the request, locates
the appropriate piece of information, and returns it to the client program, which then displays it to the user.

There is only one complication to this otherwise simple scenario: Exactly how does the client indicate
which piece of information it wants to retrieve, and, likewise, how does the server know which variable in
memory to read to satisfy the request? The answer is that SNMP depends on a companion specification
called the management information base (MIB). The MIB defines the specific pieces of information—the
MIB variables—that you can retrieve from a network node.

The current version of MIB, called MIB-II, organizes variables into different groups. You will recognize that
most of the groups correspond to one of the protocols described in this book, and nearly all of the variables
defined for each group should look familiar. For example:

• System—General parameters of the system (node) as a whole, including where the node is located,
how long it has been up, and the system’s name

9.3. Infrastructure Applications 457

Computer Networks: A Systems Approach, Release Version 6.1

• Interfaces—Information about all the network interfaces (adaptors) attached to this node, such as
the physical address of each interface and how many packets have been sent and received on each
interface

• Address translation—Information about the Address Resolution Protocol, and in particular, the con-
tents of its address translation table

• IP—Variables related to IP, including its routing table, how many datagrams it has successfully for-
warded, and statistics about datagram reassembly; includes counts of how many times IP drops a
datagram for one reason or another

• TCP—Information about TCP connections, such as the number of passive and active opens, the num-
ber of resets, the number of timeouts, default timeout settings, and so on; per-connection information
persists only as long as the connection exists

• UDP—Information about UDP traffic, including the total number of UDP datagrams that have been
sent and received.

There are also groups for Internet Control Message Protocol (ICMP) and SNMP itself.

Returning to the issue of the client stating exactly what information it wants to retrieve from a node, having
a list of MIB variables is only half the battle. Two problems remain. First, we need a precise syntax for the
client to use to state which of the MIB variables it wants to fetch. Second, we need a precise representation
for the values returned by the server. Both problems are addressed using Abstract Syntax Notation One
(ASN.1).

Consider the second problem first. As we already saw in a previous chapter, ASN.1/Basic Encoding Rules
(BER) defines a representation for different data types, such as integers. The MIB defines the type of each
variable, and then it uses ASN.1/BER to encode the value contained in this variable as it is transmitted over
the network. As far as the first problem is concerned, ASN.1 also defines an object identification scheme.
The MIB uses this identification system to assign a globally unique identifier to each MIB variable. These
identifiers are given in a “dot” notation, not unlike domain names. For example, 1.3.6.1.2.1.4.3 is the unique
ASN.1 identifier for the IP-related MIB variable ipInReceives; this variable counts the number of IP
datagrams that have been received by this node. In this example, the 1.3.6.1.2.1 prefix identifies the MIB
database (remember, ASN.1 object IDs are for all possible objects in the world), the 4 corresponds to the IP
group, and the final 3 denotes the third variable in this group.

Thus, network management works as follows. The SNMP client puts the ASN.1 identifier for the MIB
variable it wants to get into the request message, and it sends this message to the server. The server then
maps this identifier into a local variable (i.e., into a memory location where the value for this variable is
stored), retrieves the current value held in this variable, and uses ASN.1/BER to encode the value it sends
back to the client.

There is one final detail. Many of the MIB variables are either tables or structures. Such compound variables
explain the reason for the SNMP GET-NEXT operation. This operation, when applied to a particular variable
ID, returns the value of that variable plus the ID of the next variable, for example, the next item in the table
or the next field in the structure. This aids the client in “walking through” the elements of a table or structure.

458 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

OpenConfig

SNMP is still widely used and has historically been “the” management protocol for switches and routers,
but there has recently been growing attention paid to more flexible and powerful ways to manage networks.
There isn’t yet complete agreement on an industry-wide standard, but a consensus about the general ap-
proach is starting to emerge. We describe one example, called OpenConfig, that is both getting a lot of
traction and illustrates many of the key ideas that are being pursued.

The general strategy is to automate network management as much as possible, with the goal of getting the
error-prone human out of the loop. This is sometimes called zero-touch management, and it implies two
things have to happen. First, whereas historically operators used tools like SNMP to monitor the network,
but had to log into any misbehaving network device and use a command line interface (CLI) to fix the
problem, zero-touch management implies that we also need to configure the network programmatically.
In other words, network management is equal parts reading status information and writing configuration
information. The goal is to build a closed control loop, although there will always be scenarios where the
operator has to be alerted that manual intervention is required.

Second, whereas historically the operator had to configure each network device individually, all the de-
vices have to be configured in a consistent way if they are going to function correctly as a network. As a
consequence, zero-touch also implies that the operator should be able to declare their network-wide intent,
with the management tool being smart enough to issue the necessary per-device configuration directives in
a globally consistent way.

Figure 9.19.: Operator manages a network through a configuration and management tool, which in turn
programmatically interacts with the underlying network devices (e.g., using gNMI as the transport protocol
and YANG to specify the schema for the data being exchanged).

Figure 9.19 gives a high-level depiction of this idealized approach to network management. We say “ide-
alized” because achieving true zero-touch management is still more aspirational than reality. But progress
is being made. For example, new management tools are starting to leverage standard protocols like HTTP
to monitor and configure network devices. This is a positive step because it gets us out of the business of

9.3. Infrastructure Applications 459

Computer Networks: A Systems Approach, Release Version 6.1

creating yet another request/reply protocol and lets us focus on creating smarter management tools, perhaps
by taking advantage of Machine Learning algorithms to determine if something is amiss.

In the same way HTTP is starting to replace SNMP as the protocol for talking to network devices, there
is a parallel effort to replace the MIB with a new standard for what status information various types of
devices can report, plus what configuration information those same devices are able to respond to. Agreeing
to a single standard for configuration is inherently challenging because every vendor claims their device
is special, unlike any of the devices their competitors sell. (That is to say, the challenge is not entirely
technical.)

The general approach is to allow each device manufacturer to publish a data model that specifies the con-
figuration knobs (and available monitoring data) for its product, and limit standardization to the modeling
language. The leading candidate is YANG, which stands for Yet Another Next Generation, a name chosen
to poke fun at how often a do-over proves necessary. YANG can be viewed as a restricted version of XSD,
which you may recall is a language for defining a schema (model) for XML. That is, YANG defines the
structure of the data. But unlike XSD, YANG is not XML-specific. It can instead be used in conjunction
with different over-the-wire message formats, including XML, but also ProtoBufs and JSON.

What’s important about going in this direction is that the data model that defines the semantics of the
variables available to be read and written in a programmatic form (i.e., it’s not just text in a standards spec-
ification). It’s not a free-for-all with each vendor defining a unique model since the network operators that
buy network hardware have a strong incentive to drive the models for similar devices towards convergence.
YANG makes the process of creating, using, and modifying models more programmable, and hence, adapt-
able to this process.

This is where OpenConfig comes in. It uses YANG as its modeling language, but has also established a
process for driving the industry towards common models. OpenConfig is officially agnostic as to the RPC
mechanism used to communicate with network devices, but one approach it is actively pursuing is called
gNMI (gRPC Network Management Interface). As you might guess from its name, gNMI uses gRPC,
which you may recall, runs on top of HTTP. This means gNMI also adopts ProtoBufs as the way it specifies
the data actually communicated over the HTTP connection. Thus, as depicted in Figure 9.19, gNMI is
intended as a standard management interface for network devices. What’s not standardized is the richness
of the management tool’s ability to automate, or the exact form of the operator-facing interface. Like any
application that is trying to serve a need and support more features than the alternatives, there is still much
room for innovation in tools for network management.

For completeness, we note that NETCONF is another of the post-SNMP protocols for communicating con-
figuration information to network devices. OpenConfig works with NETCONF, but our reading of the tea
leaves points to gNMI as the future.

We conclude by emphasizing that a seachange is underway. While listing SNMP and OpenConfig in the
title to this section suggests they are equivalent, it is more accurate to say that each is “what we call” these
two approaches, but the approaches are quite different. On the one hand, SNMP is really just a transport
protocol, analogous to gNMI in the OpenConfig world. It historically enabled monitoring devices, but had
virtually nothing to say about configuring devices. (The latter has historically required manual intervention.)
On the other hand, OpenConfig is primarily an effort to define a common set of data models for network
devices, roughly similar to the role MIB plays in the SNMP world, except OpenConfig is (1) model-based,
using YANG, and (2) equally focused on monitoring and configuration.

460 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

9.4 Overlay Networks

From its inception, the Internet has adopted a clean model, in which the routers inside the network are
responsible for forwarding packets from source to destination, and application programs run on the hosts
connected to the edges of the network. The client/server paradigm illustrated by the applications discussed
in the first two sections of this chapter certainly adhere to this model.

In the last few years, however, the distinction between packet forwarding and application processing has
become less clear. New applications are being distributed across the Internet, and in many cases these appli-
cations make their own forwarding decisions. These new hybrid applications can sometimes be implemented
by extending traditional routers and switches to support a modest amount of application-specific processing.
For example, so-called level-7 switches sit in front of server clusters and forward HTTP requests to a specific
server based on the requested URL. However, overlay networks are quickly emerging as the mechanism of
choice for introducing new functionality into the Internet.

Figure 9.20.: Overlay network layered on top of a physical network.

You can think of an overlay as a logical network implemented on top of some underlying network. By this
definition, the Internet started out as an overlay network on top of the links provided by the old telephone
network. Figure 9.20 depicts an overlay implemented on top of an underlying network. Each node in the
overlay also exists in the underlying network; it processes and forwards packets in an application-specific
way. The links that connect the overlay nodes are implemented as tunnels through the underlying network.
Multiple overlay networks can exist on top of the same underlying network—each implementing its own
application-specific behavior—and overlays can be nested, one on top of another. For example, all of the
example overlay networks discussed in this section treat today’s Internet as the underlying network.

We have already seen examples of tunneling, for example, to implement virtual private networks (VPNs).

9.4. Overlay Networks 461

Computer Networks: A Systems Approach, Release Version 6.1

Figure 9.21.: Overlay nodes tunnel through physical nodes.

As a brief refresher, the nodes on either end of a tunnel treat the multi-hop path between them as a single
logical link, the nodes that are tunneled through forward packets based on the outer header, never aware that
the end nodes have attached an inner header. Figure 9.21 shows three overlay nodes (A, B, and C) connected
by a pair of tunnels. In this example, overlay node B might make a forwarding decision for packets from
A to C based on the inner header (IHdr), and then attach an outer header (OHdr) that identifies C as the
destination in the underlying network. Nodes A, B, and C are able to interpret both the inner and outer
header, whereas the intermediate routers understand only the outer header. Similarly, A, B, and C have
addresses in both the overlay network and the underlying network, but they are not necessarily the same;
for example, their underlying address might be a 32-bit IP address, while their overlay address might be an
experimental 128-bit address. In fact, the overlay need not use conventional addresses at all but may route
based on URLs, domain names, an XML query, or even the content of the packet.

9.4.1 Routing Overlays

The simplest kind of overlay is one that exists purely to support an alternative routing strategy; no additional
application-level processing is performed at the overlay nodes. You can view a virtual private network (VPN)
as an example of a routing overlay, but one that doesn’t so much define an alternative strategy or algorithm
as it does alternative routing table entries to be processed by the standard IP forwarding algorithm. In this
particular case, the overlay is said to use “IP tunnels,” and the ability to utilize these VPNs is supported in
many commercial routers.

Suppose, however, you wanted to use a routing algorithm that commercial router vendors were not willing
to include in their products. How would you go about doing it? You could simply run your algorithm on
a collection of end hosts, and tunnel through the Internet routers. These hosts would behave like routers in
the overlay network: As hosts they are probably connected to the Internet by only one physical link, but as
a node in the overlay they would be connected to multiple neighbors via tunnels.

Since overlays, almost by definition, are a way to introduce new technologies independent of the stan-
dardization process, there are no standard overlays we can point to as examples. Instead, we illustrate the
general idea of routing overlays by describing several experimental systems that have been built by network
researchers.

462 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

Experimental Versions of IP

Overlays are ideal for deploying experimental versions of IP that you hope will eventually take over the
world. For example, IP multicast started off as an extension to IP and even today is not enabled in many
Internet routers. The MBone (multicast backbone) was an overlay network that implemented IP multicast
on top of the unicast routing provided by the Internet. A number of multimedia conference tools were
developed for and deployed on the Mbone. For example, IETF meetings—which are a week long and attract
thousands of participants—were for many years broadcast over the MBone. (Today, the wide availability of
commercial conferencing tools have replaced the MBone-based approach.)

Like VPNs, the MBone used both IP tunnels and IP addresses, but unlike VPNs, the MBone implemented a
different forwarding algorithm—forwarding packets to all downstream neighbors in the shortest path mul-
ticast tree. As an overlay, multicast-aware routers tunnel through legacy routers, with the hope that one day
there will be no more legacy routers.

The 6-BONE was a similar overlay that was used to incrementally deploy IPv6. Like the MBone, the 6-
BONE used tunnels to forward packets through IPv4 routers. Unlike the MBone, however, 6-BONE nodes
did not simply provide a new interpretation of IPv4’s 32-bit addresses. Instead, they forwarded packets
based on IPv6’s 128-bit address space. The 6-BONE also supported IPv6 multicast. (Today, commercial
routers support IPv6, but again, overlays are a valuable approach while a new technology is being evaluated
and tuned.)

End System Multicast

Although IP multicast is popular with researchers and certain segments of the networking community, its
deployment in the global Internet has been limited at best. In response, multicast-based applications like
videoconferencing have recently turned to an alternative strategy, called end system multicast. The idea of
end system multicast is to accept that IP multicast will never become ubiquitous and to instead let the end
hosts that are participating in a particular multicast-based application implement their own multicast trees.

Before describing how end system multicast works, it is important to first understand that, unlike VPNs
and the MBone, end system multicast assumes that only Internet hosts (as opposed to Internet routers)
participate in the overlay. Moreover, these hosts typically exchange messages with each other through UDP
tunnels rather than IP tunnels, making it easy to implement as regular application programs. This makes it
possible to view the underlying network as a fully connected graph, since every host in the Internet is able
to send a message to every other host. Abstractly, then, end system multicast solves the following problem:
Starting with a fully connected graph representing the Internet, the goal is to find the embedded multicast
tree that spans all the group members.

Note that there is a simpler version of this problem, enabled by the ready availability of cloud-hosted VMs
around the world. The multicast-aware “end systems” can be VMs running at multiple sites. As these sites
are well-known and relatively fixed, it’s possible to construct a static multicast tree in the cloud, and have
the actual end-hosts simply connect to the nearest cloud location. But for the sake of completeness, the
following describes the approach in its full glory.

Since we take the underlying Internet to be fully connected, a naive solution would be to have each source
directly connected to each member of the group. In other words, end system multicast could be imple-
mented by having each node send unicast messages to every group member. To see the problem in doing
this, especially compared to implementing IP multicast in routers, consider the example topology in Figure

9.4. Overlay Networks 463

Computer Networks: A Systems Approach, Release Version 6.1

Figure 9.22.: Alternative multicast trees mapped onto a physical topology.

464 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

9.22. Figure 9.22 depicts an example physical topology, where R1 and R2 are routers connected by a low-
bandwidth transcontinental link; A, B, C, and D are end hosts; and link delays are given as edge weights.
Assuming A wants to send a multicast message to the other three hosts, Figure 9.22 shows how naive unicast
transmission would work. This is clearly undesirable because the same message must traverse the link A-R1
three times, and two copies of the message traverse R1-R2. Figure 9.22 depicts the IP multicast tree con-
structed by the Distance Vector Multicast Routing Protocol (DVMRP). Clearly, this approach eliminates the
redundant messages. Without support from the routers, however, the best one can hope for with end system
multicast is a tree similar to the one shown in Figure 9.22. End system multicast defines an architecture for
constructing this tree.

Figure 9.23.: Multicast tree embedded in an overlay network.

The general approach is to support multiple levels of overlay networks, each of which extracts a subgraph
from the overlay below it, until we have selected the subgraph that the application expects. For end system
multicast, in particular, this happens in two stages: First we construct a simple mesh overlay on top of the
fully connected Internet, and then we select a multicast tree within this mesh. The idea is illustrated in
Figure 9.23, again assuming the four end hosts A, B, C, and D. The first step is the critical one: Once we
have selected a suitable mesh overlay, we simply run a standard multicast routing algorithm (e.g., DVMRP)
on top of it to build the multicast tree. We also have the luxury of ignoring the scalability issue that Internet-
wide multicast faces since the intermediate mesh can be selected to include only those nodes that want to
participate in a particular multicast group.

The key to constructing the intermediate mesh overlay is to select a topology that roughly corresponds to
the physical topology of the underlying Internet, but we have to do this without anyone telling us what the
underlying Internet actually looks like since we are running only on end hosts and not routers. The general
strategy is for the end hosts to measure the roundtrip latency to other nodes and decide to add links to the
mesh only when they like what they see. This works as follows.

First, assuming a mesh already exists, each node exchanges the list of all other nodes it believes is part of the
mesh with its directly connected neighbors. When a node receives such a membership list from a neighbor,
it incorporates that information into its membership list and forwards the resulting list to its neighbors. This
information eventually propagates through the mesh, much as in a distance vector routing protocol.

9.4. Overlay Networks 465

Computer Networks: A Systems Approach, Release Version 6.1

When a host wants to join the multicast overlay, it must know the IP address of at least one other node
already in the overlay. It then sends a “join mesh” message to this node. This connects the new node to the
mesh by an edge to the known node. In general, the new node might send a join message to multiple current
nodes, thereby joining the mesh by multiple links. Once a node is connected to the mesh by a set of links, it
periodically sends “keep alive” messages to its neighbors, letting them know that it still wants to be part of
the group.

When a node leaves the group, it sends a “leave mesh” message to its directly connected neighbors, and
this information is propagated to the other nodes in the mesh via the membership list described above.
Alternatively, a node can fail or just silently decide to quit the group, in which case its neighbors detect
that it is no longer sending “keep alive” messages. Some node departures have little effect on the mesh,
but should a node detect that the mesh has become partitioned due to a departing node, it creates a new
edge to a node in the other partition by sending it a “join mesh” message. Note that multiple neighbors can
simultaneously decide that a partition has occurred in the mesh, leading to multiple cross-partition edges
being added to the mesh.

As described so far, we will end up with a mesh that is a subgraph of the original fully connected Internet,
but it may have suboptimal performance because (1) initial neighbor selection adds random links to the
topology, (2) partition repair might add edges that are essential at the moment but not useful in the long
run, (3) group membership may change due to dynamic joins and departures, and (4) underlying network
conditions may change. What needs to happen is that the system must evaluate the value of each edge,
resulting in new edges being added to the mesh and existing edges being removed over time.

To add new edges, each node i periodically probes some random member j that it is not currently connected
to in the mesh, measures the round-trip latency of edge (i,j), and then evaluates the utility of adding this
edge. If the utility is above a certain threshold, link (i,j) is added to the mesh. Evaluating the utility of
adding edge (i,j) might look something like this:

EvaluateUtility(j)
utility = 0
for each member m not equal to i

CL = current latency to node m along route through mesh
NL = new latency to node m along mesh if edge (i,j) is added}
if (NL < CL) then

utility += (CL - NL)/CL
return utility

Deciding to remove an edge is similar, except each node i computes the cost of each link to current neighbor
j as follows:

EvaluateCost(j)
Cost[i,j] = number of members for which i uses j as next hop
Cost[j,i] = number of members for which j uses i as next hop
return max(Cost[i,j], Cost[j,i])

It then picks the neighbor with the lowest cost, and drops it if the cost falls below a certain threshold.

Finally, since the mesh is maintained using what is essentially a distance vector protocol, it is trivial to run
DVMRP to find an appropriate multicast tree in the mesh. Note that, although it is not possible to prove that
the protocol just described results in the optimum mesh network, thereby allowing DVMRP to select the
best possible multicast tree, both simulation and extensive practical experience suggests that it does a good
job.

466 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

Resilient Overlay Networks

Another function that can be performed by an overlay is to find alternative routes for traditional unicast
applications. Such overlays exploit the observation that the triangle inequality does not hold in the Internet.
Figure 9.24 illustrates what we mean by this. It is not uncommon to find three sites in the Internet—call
them A, B, and C—such that the latency between A and B is greater than the sum of the latencies from A
to C and from C to B. That is, sometimes you would be better off indirectly sending your packets via some
intermediate node than sending them directly to the destination.

Figure 9.24.: The triangle inequality does not necessarily hold in networks.

How can this be? Well, the Border Gateway Protocol (BGP) never promised that it would find the shortest
route between any two sites; it only tries to find some route. To make matters more complex, BGP’s routes
are heavily influenced by policy issues, such as who is paying whom to carry their traffic. This often
happens, for example, at peering points between major backbone ISPs. In short, that the triangle inequality
does not hold in the Internet should not come as a surprise.

How do we exploit this observation? The first step is to realize that there is a fundamental tradeoff between
the scalability and optimality of a routing algorithm. On the one hand, BGP scales to very large networks,
but often does not select the best possible route and is slow to adapt to network outages. On the other hand,
if you were only worried about finding the best route among a handful of sites, you could do a much better
job of monitoring the quality of every path you might use, thereby allowing you to select the best possible
route at any moment in time.

An experimental overlay, called the Resilient Overlay Network (RON), did exactly this. RON scaled to only
a few dozen nodes because it used an N × N strategy of closely monitoring (via active probes) three aspects
of path quality—latency, available bandwidth, and loss probability—between every pair of sites. It was then

9.4. Overlay Networks 467

Computer Networks: A Systems Approach, Release Version 6.1

able to both select the optimal route between any pair of nodes, and rapidly change routes should network
conditions change. Experience showed that RON was able to deliver modest performance improvements
to applications, but more importantly, it recovered from network failures much more quickly. For example,
during one 64-hour period in 2001, an instance of RON running on 12 nodes detected 32 outages lasting over
30 minutes, and it was able to recover from all of them in less than 20 seconds on average. This experiment
also suggested that forwarding data through just one intermediate node is usually sufficient to recover from
Internet failures.

Since RON was not designed to be a scalable approach, it is not possible to use RON to help random host A
communicate with random host B; A and B have to know ahead of time that they are likely to communicate
and then join the same RON. However, RON seems like a good idea in certain settings, such as when
connecting a few dozen corporate sites spread across the Internet or allowing you and 50 of your friends
to establish your own private overlay for the sake of running some application. (Today, this idea is put to
practice with the marketing name Software-Defined WAN, or SD-WAN.) The real question, though, is what
happens when everyone starts to run their own RON. Does the overhead of millions of RONs aggressively
probing paths swamp the network, and does anyone see improved behavior when many RONs compete for
the same paths? These questions are still unanswered.

Key Takeaway

All of these overlays illustrate a concept that is central to computer networks in general: virtualization. That
is, it is possible to build a virtual network from abstract (logical) resources on top of a physical network
constructed from physical resources. Moreover, it is possible to stack these virtualized networks on top
of each other and for multiple virtual network to coexist at the same level. Each virtual network, in turn,
provides new capabilities that are of value to some set of users, applications, or higher-level networks. [Next]

9.4.2 Peer-to-Peer Networks

Music-sharing applications like Napster and KaZaA introduced the term “peer-to-peer” into the popular
vernacular. But what exactly does it mean for a system to be “peer-to-peer”? Certainly in the context of
sharing MP3 files it means not having to download music from a central site, but instead being able to access
music files directly from whoever in the Internet happens to have a copy stored on their computer. More
generally then, we could say that a peer-to-peer network allows a community of users to pool their resources
(content, storage, network bandwidth, disk bandwidth, CPU), thereby providing access to a larger archival
store, larger video/audio conferences, more complex searches and computations, and so on than any one
user could afford individually.

Quite often, attributes like decentralized and self-organizing are mentioned when discussing peer-to-peer
networks, meaning that individual nodes organize themselves into a network without any centralized co-
ordination. If you think about it, terms like these could be used to describe the Internet itself. Ironically,
however, Napster was not a true peer-to-peer system by this definition since it depended on a central registry
of known files, and users had to search this directory to find what machine offered a particular file. It was
only the last step—actually downloading the file—that took place between machines that belong to two
users, but this is little more than a traditional client/server transaction. The only difference is that the server
is owned by someone just like you rather than a large corporation.

So we are back to the original question: What’s interesting about peer-to-peer networks? One answer

468 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

is that both the process of locating an object of interest and the process of downloading that object onto
your local machine happen without your having to contact a centralized authority, and at the same time the
system is able to scale to millions of nodes. A peer-to-peer system that can accomplish these two tasks in
a decentralized manner turns out to be an overlay network, where the nodes are those hosts that are willing
to share objects of interest (e.g., music and other assorted files), and the links (tunnels) connecting these
nodes represent the sequence of machines that you have to visit to track down the object you want. This
description will become clearer after we look at two examples.

Gnutella

Gnutella is an early peer-to-peer network that attempted to distinguish between exchanging music (which
likely violates somebody’s copyright) and the general sharing of files (which must be good since we’ve been
taught to share since the age of two). What’s interesting about Gnutella is that it was one of the first such
systems to not depend on a centralized registry of objects. Instead, Gnutella participants arrange themselves
into an overlay network similar to the one shown in Figure 9.25. That is, each node that runs the Gnutella
software (i.e., implements the Gnutella protocol) knows about some set of other machines that also run the
Gnutella software. The relationship “A and B know each other” corresponds to the edges in this graph.
(We’ll talk about how this graph is formed in a moment.)

Figure 9.25.: Example topology of a gnutella peer-to-peer network.

Whenever the user on a given node wants to find an object, Gnutella sends a QUERY message for the
object—for example, specifying the file’s name—to its neighbors in the graph. If one of the neighbors has
the object, it responds to the node that sent it the query with a QUERY RESPONSE message, specifying
where the object can be downloaded (e.g., an IP address and TCP port number). That node can subsequently
use GET or PUT messages to access the object. If the node cannot resolve the query, it forwards the QUERY
message to each of its neighbors (except the one that sent it the query), and the process repeats. In other
words, Gnutella floods the overlay to locate the desired object. Gnutella sets a TTL on each query so this
flood does not continue indefinitely.

In addition to the TTL and query string, each QUERY message contains a unique query identifier (QID),

9.4. Overlay Networks 469

Computer Networks: A Systems Approach, Release Version 6.1

but it does not contain the identity of the original message source. Instead, each node maintains a record
of the QUERY messages it has seen recently: both the QID and the neighbor that sent it the QUERY. It
uses this history in two ways. First, if it ever receives a QUERY with a QID that matches one it has seen
recently, the node does not forward the QUERY message. This serves to cut off forwarding loops more
quickly than the TTL might have done. Second, whenever the node receives a QUERY RESPONSE from
a downstream neighbor, it knows to forward the response to the upstream neighbor that originally sent it
the QUERY message. In this way, the response works its way back to the original node without any of the
intermediate nodes knowing who wanted to locate this particular object in the first place.

Returning to the question of how the graph evolves, a node certainly has to know about at least one other
node when it joins a Gnutella overlay. The new node is attached to the overlay by at least this one link.
After that, a given node learns about other nodes as the result of QUERY RESPONSE messages, both for
objects it requested and for responses that just happen to pass through it. A node is free to decide which of
the nodes it discovers in this way that it wants to keep as a neighbor. The Gnutella protocol provides PING
and PONG messages by which a node probes whether or not a given neighbor still exists and that neighbor’s
response, respectively.

It should be clear that Gnutella as described here is not a particularly clever protocol, and subsequent systems
have tried to improve upon it. One dimension along which improvements are possible is in how queries are
propagated. Flooding has the nice property that it is guaranteed to find the desired object in the fewest
possible hops, but it does not scale well. It is possible to forward queries randomly, or according to the
probability of success based on past results. A second dimension is to proactively replicate the objects,
since the more copies of a given object there are, the easier it should be to find a copy. Alternatively, one
could develop a completely different strategy, which is the topic we consider next.

Structured Overlays

At the same time file sharing systems started fighting to fill the void left by Napster, the research community
began to explore an alternative design for peer-to-peer networks. We refer to these networks as structured,
to contrast them with the essentially random (unstructured) way in which a Gnutella network evolves. Un-
structured overlays like Gnutella employ trivial overlay construction and maintenance algorithms, but the
best they can offer is unreliable, random search. In contrast, structured overlays are designed to conform to a
particular graph structure that allows reliable and efficient (probabilistically bounded delay) object location,
in return for additional complexity during overlay construction and maintenance.

If you think about what we are trying to do at a high level, there are two questions to consider: (1) How do
we map objects onto nodes, and (2) How do we route a request to the node that is responsible for a given
object? We start with the first question, which has a simple statement: How do we map an object with name
x into the address of some node n that is able to serve that object? While traditional peer-to-peer networks
have no control over which node hosts object x, if we could control how objects get distributed over the
network, we might be able to do a better job of finding those objects at a later time.

A well-known technique for mapping names into an address is to use a hash table, so that

ℎ𝑎𝑠ℎ(𝑥) → 𝑛

implies object x is first placed on node n, and at a later time a client trying to locate x would only have to
perform the hash of x to determine that it is on node n. A hash-based approach has the nice property that
it tends to spread the objects evenly across the set of nodes, but straightforward hashing algorithms suffer

470 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

from a fatal flaw: How many possible values of n should we allow? (In hashing terminology, how many
buckets should there be?) Naively, we could decide that there are, say, 101 possible hash values, and we use
a modulo hash function; that is,

hash(x)
return x % 101

Unfortunately, if there are more than 101 nodes willing to host objects, then we can’t take advantage of all
of them. On the other hand, if we select a number larger than the largest possible number of nodes, then
there will be some values of x that will hash into an address for a node that does not exist. There is also the
not-so-small issue of translating the value returned by the hash function into an actual IP address.

Figure 9.26.: Both nodes and objects map (hash) onto the ID space, where objects are maintained at the
nearest node in this space.

To address these issues, structured peer-to-peer networks use an algorithm known as consistent hashing,
which hashes a set of objects x uniformly across a large ID space. Figure 9.26 visualizes a 128-bit ID space
as a circle, where we use the algorithm to place both objects

ℎ𝑎𝑠ℎ(𝑂𝑏𝑗𝑒𝑐𝑡𝑁𝑎𝑚𝑒) → 𝑂𝑏𝑗𝑖𝑑

and nodes

ℎ𝑎𝑠ℎ(𝐼𝑃𝐴𝑑𝑑𝑟) → 𝑁𝑜𝑑𝑒𝑖𝑑

onto this circle. Since a 128-bit ID space is enormous, it is unlikely that an object will hash to exactly the
same ID as a machine’s IP address hashes to. To account for this unlikelihood, each object is maintained
on the node whose ID is closest, in this 128-bit space, to the object ID. In other words, the idea is to use
a high-quality hash function to map both nodes and objects into the same large, sparse ID space; you then
map objects to nodes by numerical proximity of their respective identifiers. Like ordinary hashing, this
distributes objects fairly evenly across nodes, but, unlike ordinary hashing, only a small number of objects
have to move when a node (hash bucket) joins or leaves.

9.4. Overlay Networks 471

Computer Networks: A Systems Approach, Release Version 6.1

Figure 9.27.: Objects are located by routing through the peer-to-peer overlay network.

We now turn to the second question—how does a user that wants to access object x know which node is
closest in x’s ID in this space? One possible answer is that each node keeps a complete table of node IDs
and their associated IP addresses, but this would not be practical for a large network. The alternative, which
is the approach used by structured peer-to-peer networks, is to route a message to this node! In other words,
if we construct the overlay in a clever way—which is the same as saying that we need to choose entries for
a node’s routing table in a clever way—then we find a node simply by routing toward it. Collectively, this
approach is sometimes called a distributed hash table (DHT), since conceptually, the hash table is distributed
over all the nodes in the network.

Figure 9.27 illustrates what happens for a simple 28-bit ID space. To keep the discussion as concrete as
possible, we consider the approach used by a particular peer-to-peer network called Pastry. Other systems
work in a similar manner.

Suppose you are at the node with id 65a1fc (hex) and you are trying to locate the object with ID d46a1c.
You realize that your ID shares nothing with the object’s, but you know of a node that shares at least the
prefix d. That node is closer than you in the 128-bit ID space, so you forward the message to it. (We do not
give the format of the message being forwarded, but you can think of it as saying “locate object d46a1c.”)
Assuming node d13da3 knows of another node that shares an even longer prefix with the object, it forwards
the message on. This process of moving closer in ID-space continues until you reach a node that knows of
no closer node. This node is, by definition, the one that hosts the object. Keep in mind that as we logically
move through “ID space” the message is actually being forwarded, node to node, through the underlying
Internet.

Each node maintains a both routing table (more below) and the IP addresses of a small set of numerically
larger and smaller node IDs. This is called the node’s leaf set. The relevance of the leaf set is that, once a
message is routed to any node in the same leaf set as the node that hosts the object, that node can directly
forward the message to the ultimate destination. Said another way, the leaf set facilitates correct and efficient
delivery of a message to the numerically closest node, even though multiple nodes may exist that share a
maximal length prefix with the object ID. Moreover, the leaf set makes routing more robust because any of
the nodes in a leaf set can route a message just as well as any other node in the same set. Thus, if one node is
unable to make progress routing a message, one of its neighbors in the leaf set may be able to. In summary,

472 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

the routing procedure is defined as follows:

Route(D)
if D is within range of my leaf set

forward to numerically closest member in leaf set
else

let l = length of shared prefix
let d = value of l-th digit in D's address
if RouteTab[l,d] exists

forward to RouteTab[l,d]
else

forward to known node with at least as long a shared prefix
and numerically closer than this node

The routing table, denoted RouteTab, is a two-dimensional array. It has a row for every hex digit in an ID
(there such 32 digits in a 128-bit ID) and a column for every hex value (there are obviously 16 such values).
Every entry in row i shares a prefix of length i with this node, and within this row the entry in column j has
the hex value j in the i+1-th position. Figure 9.28 shows the first three rows of an example routing table for
node 65a1fcx, where x denotes an unspecified suffix. This figure shows the ID prefix matched by every
entry in the table. It does not show the actual value contained in this entry—the IP address of the next node
to route to.

Figure 9.28.: Example routing table at the node with ID 65alcx

Adding a node to the overlay works much like routing a “locate object message” to an object. The new node
must know of at least one current member. It asks this member to route an “add node message” to the node
numerically closest to the ID of the joining node, as shown in Figure 9.29. It is through this routing process
that the new node learns about other nodes with a shared prefix and is able to begin filling out its routing
table. Over time, as additional nodes join the overlay, existing nodes also have the option of including
information about the newly joined node in their routing tables. They do this when the new node adds a

9.4. Overlay Networks 473

Computer Networks: A Systems Approach, Release Version 6.1

Figure 9.29.: Adding a node to the network.

longer prefix than they currently have in their table. Neighbors in the leaf sets also exchange routing tables
with each other, which means that over time routing information propagates through the overlay.

The reader may have noticed that although structured overlays provide a probabilistic bound on the number
of routing hops required to locate a given object—the number of hops in Pastry is bounded by 𝑙𝑜𝑔16𝑁 ,
where N is the number of nodes in the overlay—each hop may contribute substantial delay. This is because
each intermediate node may be at a random location in the Internet. (In the worst case, each node is on
a different continent!) In fact, in a world-wide overlay network using the algorithm as described above,
the expected delay of each hop is the average delay among all pairs of nodes in the Internet! Fortunately,
one can do much better in practice. The idea is to choose each routing table entry such that it refers to a
nearby node in the underlying physical network, among all nodes with an ID prefix that is appropriate for
the entry. It turns out that doing so achieves end-to-end routing delays that are within a small factor of the
delay between source and destination node.

Finally, the discussion up to this point has focused on the general problem of locating objects in a peer-to-
peer network. Given such a routing infrastructure, it is possible to build different services. For example,
a file sharing service would use file names as object names. To locate a file, you first hash its name into a
corresponding object ID and then route a “locate object message” to this ID. The system might also replicate
each file across multiple nodes to improve availability. Storing multiple copies on the leaf set of the node
to which a given file normally routes would be one way of doing this. Keep in mind that even though these
nodes are neighbors in the ID space, they are likely to be physically distributed across the Internet. Thus,
while a power outage in an entire city might take down physically close replicas of a file in a traditional file
system, one or more replicas would likely survive such a failure in a peer-to-peer network.

Services other than file sharing can also be built on top of distributed hash tables. Consider multicast
applications, for example. Instead of constructing a multicast tree from a mesh, one could construct the tree
from edges in the structured overlay, thereby amortizing the cost of overlay construction and maintenance
across several applications and multicast groups.

474 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

BitTorrent

BitTorrent is a peer-to-peer file sharing protocol devised by Bram Cohen. It is based on replicating the
file or, rather, replicating segments of the file, which are called pieces. Any particular piece can usually be
downloaded from multiple peers, even if only one peer has the entire file. The primary benefit of BitTorrent’s
replication is avoiding the bottleneck of having only one source for a file. This is particularly useful when
you consider that any given computer has a limited speed at which it can serve files over its uplink to the
Internet, often quite a low limit due to the asymmetric nature of most broadband networks. The beauty of
BitTorrent is that replication is a natural side effect of the downloading process: As soon as a peer downloads
a particular piece, it becomes another source for that piece. The more peers downloading pieces of the file,
the more piece replication occurs, distributing the load proportionately, and the more total bandwidth is
available to share the file with others. Pieces are downloaded in random order to avoid a situation where
peers find themselves lacking the same set of pieces.

Each file is shared via its own independent BitTorrent network, called a swarm. (A swarm could potentially
share a set of files, but we describe the single file case for simplicity.) The lifecycle of a typical swarm is
as follows. The swarm starts as a singleton peer with a complete copy of the file. A node that wants to
download the file joins the swarm, becoming its second member, and begins downloading pieces of the file
from the original peer. In doing so, it becomes another source for the pieces it has downloaded, even if it
has not yet downloaded the entire file. (In fact, it is common for peers to leave the swarm once they have
completed their downloads, although they are encouraged to stay longer.) Other nodes join the swarm and
begin downloading pieces from multiple peers, not just the original peer. See Figure 9.30.

Figure 9.30.: Peers in a BitTorrent swarm download from other peers that may not yet have the complete
file.

If the file remains in high demand, with a stream of new peers replacing those who leave the swarm, the
swarm could remain active indefinitely; if not, it could shrink back to include only the original peer until
new peers join the swarm.

Now that we have an overview of BitTorrent, we can ask how requests are routed to the peers that have a
given piece. To make requests, a would-be downloader must first join the swarm. It starts by downloading

9.4. Overlay Networks 475

Computer Networks: A Systems Approach, Release Version 6.1

a file containing meta-information about the file and swarm. The file, which may be easily replicated, is
typically downloaded from a web server and discovered by following links from Web pages. It contains:

• The target file’s size

• The piece size

• SHA-1 hash values precomputed from each piece

• The URL of the swarm’s tracker

A tracker is a server that tracks a swarm’s current membership. We’ll see later that BitTorrent can be
extended to eliminate this point of centralization, with its attendant potential for bottleneck or failure.

The would-be downloader then joins the swarm, becoming a peer, by sending a message to the tracker
giving its network address and a peer ID that it has generated randomly for itself. The message also carries
a SHA-1 hash of the main part of the file, which is used as a swarm ID.

Let’s call the new peer P. The tracker replies to P with a partial list of peers giving their IDs and network ad-
dresses, and P establishes connections, over TCP, with some of these peers. Note that P is directly connected
to just a subset of the swarm, although it may decide to contact additional peers or even request more peers
from the tracker. To establish a BitTorrent connection with a particular peer after their TCP connection has
been established, P sends P’s own peer ID and swarm ID, and the peer replies with its peer ID and swarm
ID. If the swarm IDs don’t match, or the reply peer ID is not what P expects, the connection is aborted.

The resulting BitTorrent connection is symmetric: Each end can download from the other. Each end begins
by sending the other a bitmap reporting which pieces it has, so each peer knows the other’s initial state.
Whenever a downloader (D) finishes downloading another piece, it sends a message identifying that piece
to each of its directly connected peers, so those peers can update their internal representation of D’s state.
This, finally, is the answer to the question of how a download request for a piece is routed to a peer that has
the piece, because it means that each peer knows which directly connected peers have the piece. If D needs
a piece that none of its connections has, it could connect to more or different peers (it can get more from the
tracker) or occupy itself with other pieces in hopes that some of its connections will obtain the piece from
their connections.

How are objects—in this case, pieces—mapped onto peer nodes? Of course each peer eventually obtains all
the pieces, so the question is really about which pieces a peer has at a given time before it has all the pieces
or, equivalently, about the order in which a peer downloads pieces. The answer is that they download pieces
in random order, to keep them from having a strict subset or superset of the pieces of any of their peers.

The BitTorrent described so far utilizes a central tracker that constitutes a single point of failure for the
swarm and could potentially be a performance bottleneck. Also, providing a tracker can be a nuisance for
someone who would like to make a file available via BitTorrent. Newer versions of BitTorrent additionally
support “trackerless” swarms that use a DHT-based implementation. BitTorrent client software that is track-
erless capable implements not just a BitTorrent peer but also what we’ll call a peer finder (the BitTorrent
terminology is simply node), which the peer uses to find peers.

Peer finders form their own overlay network, using their own protocol over UDP to implement a DHT.
Furthermore, a peer finder network includes peer finders whose associated peers belong to different swarms.
In other words, while each swarm forms a distinct network of BitTorrent peers, a peer finder network instead
spans swarms.

Peer finders randomly generate their own finder IDs, which are the same size (160 bits) as swarm IDs.
Each finder maintains a modest table containing primarily finders (and their associated peers) whose IDs

476 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

are close to its own, plus some finders whose IDs are more distant. The following algorithm ensures that
finders whose IDs are close to a given swarm ID are likely to know of peers from that swarm; the algorithm
simultaneously provides a way to look them up. When a finder F needs to find peers from a particular
swarm, it sends a request to the finders in its table whose IDs are close to that swarm’s ID. If a contacted
finder knows of any peers for that swarm, it replies with their contact information. Otherwise, it replies with
the contact information of the finders in its table that are close to the swarm, so that F can iteratively query
those finders.

After the search is exhausted, because there are no finders closer to the swarm, F inserts the contact infor-
mation for itself and its associated peer into the finders closest to the swarm. The net effect is that peers for
a particular swarm get entered in the tables of the finders that are close to that swarm.

The above scheme assumes that F is already part of the finder network, that it already knows how to contact
some other finders. This assumption is true for finder installations that have run previously, because they
are supposed to save information about other finders, even across executions. If a swarm uses a tracker, its
peers are able to tell their finders about other finders (in a reversal of the peer and finder roles) because the
BitTorrent peer protocol has been extended to exchange finder contact information. But, how can a newly
installed finder discover other finders? The files for trackerless swarms include contact information for one
or a few finders, instead of a tracker URL, for just that situation.

An unusual aspect of BitTorrent is that it deals head-on with the issue of fairness, or good “network citi-
zenship.” Protocols often depend on the good behavior of individual peers without being able to enforce it.
For example, an unscrupulous Ethernet peer could get better performance by using a backoff algorithm that
is more aggressive than exponential backoff, or an unscrupulous TCP peer could get better performance by
not cooperating in congestion control.

The good behavior that BitTorrent depends on is peers uploading pieces to other peers. Since the typical
BitTorrent user just wants to download the file as quickly as possible, there is a temptation to implement a
peer that tries to download all the pieces while doing as little uploading as possible—this is a bad peer. To
discourage bad behavior, the BitTorrent protocol includes mechanisms that allow peers to reward or punish
each other. If a peer is misbehaving by not nicely uploading to another peer, the second peer can choke the
bad peer: It can decide to stop uploading to the bad peer, at least temporarily, and send it a message saying
so. There is also a message type for telling a peer that it has been unchoked. The choking mechanism is also
used by a peer to limit the number of its active BitTorrent connections, to maintain good TCP performance.
There are many possible choking algorithms, and devising a good one is an art.

9.4.3 Content Distribution Networks

We have already seen how HTTP running over TCP allows web browsers to retrieve pages from web servers.
However, anyone who has waited an eternity for a Web page to return knows that the system is far from
perfect. Considering that the backbone of the Internet is now constructed from 40-Gbps links, it’s not
obvious why this should happen. It is generally agreed that when it comes to downloading Web pages there
are four potential bottlenecks in the system:

• The first mile. The Internet may have high-capacity links in it, but that doesn’t help you download a
Web page any faster when you’re connected by a 1.5Mbps DSL line or a poorly performing wireless
link.

• The last mile. The link that connects the server to the Internet can be overloaded by too many requests,
even if the aggregate bandwidth of that link is quite high.

9.4. Overlay Networks 477

Computer Networks: A Systems Approach, Release Version 6.1

• The server itself. A server has a finite amount of resources (CPU, memory, disk bandwidth, etc.) and
can be overloaded by too many concurrent requests.

• Peering points. The handful of ISPs that collectively implement the backbone of the Internet may
internally have high-bandwidth pipes, but they have little motivation to provide high-capacity connec-
tivity to their peers. If you are connected to ISP A and the server is connected to ISP B, then the page
you request may get dropped at the point where A and B peer with each other.

There’s not a lot anyone except you can do about the first problem, but it is possible to use replication
to address the remaining problems. Systems that do this are often called Content Distribution Networks
(CDNs). Akamai operates what is probably the best-known CDN.

The idea of a CDN is to geographically distribute a collection of server surrogates that cache pages normally
maintained in some set of backend servers. Thus, rather than having millions of users wait forever to contact
when a big news story breaks—such a situation is known as a flash crowd—it is possible to spread this load
across many servers. Moreover, rather than having to traverse multiple ISPs to reach , if these surrogate
servers happen to be spread across all the backbone ISPs, then it should be possible to reach one without
having to cross a peering point. Clearly, maintaining thousands of surrogate servers all over the Internet
is too expensive for any one site that wants to provide better access to its Web pages. Commercial CDNs
provide this service for many sites, thereby amortizing the cost across many customers.

Although we call them surrogate servers, in fact, they can just as correctly be viewed as caches. If they don’t
have a page that has been requested by a client, they ask the backend server for it. In practice, however,
the backend servers proactively replicate their data across the surrogates rather than wait for surrogates to
request it on demand. It’s also the case that only static pages, as opposed to dynamic content, are distributed
across the surrogates. Clients have to go to the backend server for any content that either changes frequently
(e.g., sports scores and stock quotes) or is produced as the result of some computation (e.g., a database
query).

Having a large set of geographically distributed servers does not fully solve the problem. To complete the
picture, CDNs also need to provide a set of redirectors that forward client requests to the most appropriate
server, as shown in Figure 9.31. The primary objective of the redirectors is to select the server for each
request that results in the best response time for the client. A secondary objective is for the system as a
whole to process as many requests per second as the underlying hardware (network links and web servers) is
able to support. The average number of requests that can be satisfied in a given time period—known as the
system throughput—is primarily an issue when the system is under heavy load, such as when a flash crowd
is accessing a small set of pages or a Distributed Denial of Service (DDoS) attacker is targeting a particular
site, as happened to CNN, Yahoo, and several other high-profile sites in February 2000.

CDNs use several factors to decide how to distribute client requests. For example, to minimize response
time, a redirector might select a server based on its network proximity. In contrast, to improve the overall
system throughput, it is desirable to evenly balance the load across a set of servers. Both throughput and
response time are improved if the distribution mechanism takes locality into consideration; that is, it selects
a server that is likely to already have the page being requested in its cache. The exact combination of factors
that should be employed by a CDN is open to debate. This section considers some of the possibilities.

Mechanisms

As described so far, a redirector is just an abstract function, although it sounds like what something a router
might be asked to do since it logically forwards a request message much like a router forwards packets. In

478 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

Figure 9.31.: Components in a Content Distribution Network (CDN).

fact, there are several mechanisms that can be used to implement redirection. Note that for the purpose of
this discussion we assume that each redirector knows the address of every available server. (From here on,
we drop the “surrogate” qualifier and talk simply in terms of a set of servers.) In practice, some form of
out-of-band communication takes place to keep this information up-to-date as servers come and go.

First, redirection could be implemented by augmenting DNS to return different server addresses to clients.
For example, when a client asks to resolve the name , the DNS server could return the IP address of a server
hosting CNN’s Web pages that is known to have the lightest load. Alternatively, for a given set of servers, it
might just return addresses in a round-robin fashion. Note that the granularity of DNS-based redirection is
usually at the level of a site (e.g.,) rather than a specific URL (e.g.,). However, when returning an embedded
link, the server can rewrite the URL, thereby effectively pointing the client at the most appropriate server
for that specific object.

Commercial CDNs essentially use a combination of URL rewriting and DNS-based redirection. For scal-
ability reasons, the high-level DNS server first points to a regional-level DNS server, which replies with
the actual server address. In order to respond to changes quickly, the DNS servers tweak the TTL of the
resource records they return to a very short period, such as 20 seconds. This is necessary so clients don’t
cache results and thus fail to go back to the DNS server for the most recent URL-to-server mapping.

Another possibility is to use the HTTP redirect feature: The client sends a request message to a server,
which responds with a new (better) server that the client should contact for the page. Unfortunately, server-
based redirection incurs an additional round-trip time across the Internet, and, even worse, servers can be
vulnerable to being overloaded by the redirection task itself. Instead, if there is a node close to the client
(e.g., a local Web proxy) that is aware of the available servers, then it can intercept the request message and

9.4. Overlay Networks 479

Computer Networks: A Systems Approach, Release Version 6.1

instruct the client to instead request the page from an appropriate server. In this case, either the redirector
would need to be on a choke point so that all requests leaving the site pass through it, or the client would
have to cooperate by explicitly addressing the proxy (as with a classical, rather than transparent, proxy).

At this point you may be wondering what CDNs have to do with overlay networks, and while viewing a
CDN as an overlay is a bit of a stretch, they do share one very important trait in common. Like an overlay
node, a proxy-based redirector makes an application-level routing decision. Rather than forward a packet
based on an address and its knowledge of the network topology, it forwards HTTP requests based on a URL
and its knowledge of the location and load of a set of servers. Today’s Internet architecture does not support
redirection directly—where by “directly” we mean the client sends the HTTP request to the redirector,
which forwards to the destination—so instead redirection is typically implemented indirectly by having the
redirector return the appropriate destination address and the client contacts the server itself.

Policies

We now consider some example policies that redirectors might use to forward requests. Actually, we have
already suggested one simple policy—round-robin. A similar scheme would be to simply select one of the
available servers at random. Both of these approaches do a good job of spreading the load evenly across the
CDN, but they do not do a particularly good job of lowering the client-perceived response time.

It’s obvious that neither of these two schemes takes network proximity into consideration, but, just as im-
portantly, they also ignore locality. That is, requests for the same URL are forwarded to different servers,
making it less likely that the page will be served from the selected server’s in-memory cache. This forces
the server to retrieve the page from its disk, or possibly even from the backend server. How can a dis-
tributed set of redirectors cause requests for the same page to go to the same server (or small set of servers)
without global coordination? The answer is surprisingly simple: All redirectors use some form of hashing
to deterministically map URLs into a small range of values. The primary benefit of this approach is that
no inter-redirector communication is required to achieve coordinated operation; no matter which redirector
receives a URL, the hashing process produces the same output.

So what makes for a good hashing scheme? The classic modulo hashing scheme—which hashes each URL
modulo the number of servers—is not suitable for this environment. This is because should the number of
servers change, the modulo calculation will result in a diminishing fraction of the pages keeping their same
server assignments. While we do not expect frequent changes in the set of servers, the fact that the addition
of new servers into the set will cause massive reassignment is undesirable.

An alternative is to use the same consistent hashing algorithm discussed in the previous section. Specifically,
each redirector first hashes every server into the unit circle. Then, for each URL that arrives, the redirector
also hashes the URL to a value on the unit circle, and the URL is assigned to the server that lies closest on
the circle to its hash value. If a node fails in this scheme, its load shifts to its neighbors (on the unit circle),
so the addition or removal of a server only causes local changes in request assignments. Note that unlike the
peer-to-peer case, where a message is routed from one node to another in order to find the server whose ID
is closest to the objects, each redirector knows how the set of servers map onto the unit circle, so they can
each, independently, select the “nearest” one.

This strategy can easily be extended to take server load into account. Assume the redirector knows the
current load of each of the available servers. This information may not be perfectly up-to-date, but we can
imagine the redirector simply counting how many times it has forwarded a request to each server in the last
few seconds and using this count as an estimate of that server’s current load. Upon receiving a URL, the

480 Chapter 9. Applications

Computer Networks: A Systems Approach, Release Version 6.1

redirector hashes the URL plus each of the available servers and sorts the resulting values. This sorted list
effectively defines the order in which the redirector will consider the available servers. The redirector then
walks down this list until it finds a server whose load is below some threshold. The benefit of this approach
compared to plain consistent hashing is that server order is different for each URL, so if one server fails its
load is distributed evenly among the other machines. This approach is the basis for the Cache Array Routing
Protocol (CARP) and is shown in pseudocode below.

SelectServer(URL, S)
for each server s in server set S

weight[s] = hash(URL, address[s])
sort weight
for each server s in decreasing order of weight

if Load(s) < threshold then
return s

return server with highest weight

As the load increases, this scheme changes from using only the first server on the sorted list to spreading
requests across several servers. Some pages normally handled by busy servers will also start being handled
by less busy servers. Since this process is based on aggregate server load rather than the popularity of
individual pages, servers hosting some popular pages may find more servers sharing their load than servers
hosting collectively unpopular pages. In the process, some unpopular pages will be replicated in the system
simply because they happen to be primarily hosted on busy servers. At the same time, if some pages become
extremely popular, it is conceivable that all of the servers in the system could be responsible for serving them.

Finally, it is possible to introduce network proximity into the equation in at least two different ways. The first
is to blur the distinction between server load and network proximity by monitoring how long a server takes to
respond to requests and using this measurement as the “server load” parameter in the preceding algorithm.
This strategy tends to prefer loaded servers over distant/heavily loaded servers. A second approach is to
factor proximity into the decision at an earlier stage by limiting the candidate set of servers considered
by the above algorithms (S) to only those that are nearby. The harder problem is deciding which of the
potentially many servers are suitably close. One approach would be to select only those servers that are
available on the same ISP as the client. A slightly more sophisticated approach would be to look at the
map of autonomous systems produced by BGP and select only those servers within some number of hops
from the client as candidate servers. Finding the right balance between network proximity and server cache
locality is a subject of ongoing research.

Perspective: The Cloud is the New Internet

As we saw at the end of Section 9.1, there has been a migration of traditional Internet applications like email
and web servers from machines running on-premises to VMs running in commodity clouds. This corre-
sponds to a shift in terminology (from “Web Services” to “Cloud Services”) and in many of the underlying
technologies being used (from Virtual Machines to Cloud Native micro-services). But the Cloud’s impact
on how network applications are implemented today is even bigger than this migration suggests. It is the
combination of commodity clouds and overlay networks (similar to those described in Section 9.4) that may
eventually have the most impact.

The biggest thing an overlay-based application needs to be effective is a wide footprint, that is, many points-
of-presence around the world. IP routers are widely deployed, so if you have permission to use a set of them

9.4. Overlay Networks 481

Computer Networks: A Systems Approach, Release Version 6.1

as the underlying nodes in your overlay network, then you’re good-to-go. But that’s not going to happen, as
there are exactly zero network operators or enterprise administrators that are willing to let random people
load overlay software onto their routers.

Your next choice might be to crowdsource hosting sites for your overlay software. Depending on the kind-
ness of strangers works if you all share a common goal, like downloading free music, but it’s difficult for
a new overlay application to go viral, and even if it does, making sure there is sufficient capacity at any
given time to carry all the traffic your application generates is often problematic. It sometimes works for
free services, but not any application you might hope to monetize.

If only there were a way to pay someone for the right to load and run your software on servers spread all
over the world. Of course, that’s exactly what commodity clouds like Amazon AWS, Microsoft Azure, and
the Google Cloud Platform provide. To many, the cloud offers a seemingly unlimited number of servers, but
it’s actually just as important—if not more important—where these servers are located. As we discussed at
the end of Chapter 4, they are widely distributed across 150+ well-connected sites.

Suppose, for example, that you want to stream a collection of live video or audio channels to millions of
users, or you want to support thousands of video conferencing sessions, each of which connects a dozen
widely distributed participants. In both cases, you construct an overlay multicast tree (one per video channel
in the first example, and one per conference session in the second example), with the overlay nodes in the
tree located at some combination of those 150 cloud sites. Then you allow the end-users, from their general-
purpose web browsers or purpose-built smartphone apps, connect to the multicast tree(s) of their choice. If
you need to store some of the video/audio content to play at a later time (e.g., to support time shifting) then
you might also buy some storage capacity at some or all of those cloud sites, effectively building your own
Content Distribution Network.

Taking the long view, while the Internet was originally conceived as a pure communication service, with
arbitrary compute-and-storage applications allowed to flourish around the edges, today application software
is for all practical purposes embedded within (distributed across) the network, and it is increasingly difficult
to tell where the Internet stops and the Cloud starts. This blending will only continue to deepen as the cloud
moves closer and closer to the edge (e.g., to thousands of sites where access networks are anchored) and
the economies-of-scale drive the hardware devices used to build Internet/Cloud sites increasingly towards
commonality.

Broader Perspective

To remind yourself of why the cloudification of the Internet is important, see Perspective: Feature Velocity.

482 Chapter 9. Applications

ABOUT THIS BOOK

This site contains source text for Computer Networks: A Systems Approach, now available under terms of the
Creative Commons (CC BY 4.0) license. The community is invited to contribute corrections, improvements,
updates, and new material under the same terms.

Like many open source software projects, this one has been seeded with once restricted content: the 5th
edition of Peterson and Davie, copyrighted by Elsevier. Our hope is that open sourcing this material will
both make it widely available and serve as an attractor for new content: updating what’s already there,
expanding it to cover new topics, and augmenting the text with additional teaching collateral.

We will initially play an editorial role (curating and wordsmithing) for contributions that come back, but our
plan is to share ownership of the project with others committed to its success.

And if you make use of this work, the attribution should include the following information:

Title: Computer Networks: A Systems Approach
Authors: Larry Peterson and Bruce Davie
Copyright: Elsevier, 2012
Source: https://github.com/SystemsApproach
License: CC BY 4.0

Read the Book

An online version of the book is published at https://book.systemsapproach.org. You can also find a PDF
version here.

To track progress and receive notices about new versions, you can follow the project on Facebook and
Twitter. To read a running commentary on how the Internet is evolving, follow the Systems Approach Blog.

Releases and Editions

We release ever-changing open source content rather than publish fixed books, although you can roughly
equate v6.0 with a 6th Edition. Read the Preface to find out what’s new in this version. Note that Morgan

483

https://github.com/SystemsApproach
https://creativecommons.org/licenses/by/4.0
https://github.com/SystemsApproach
https://creativecommons.org/licenses/by/4.0
https://book.systemsapproach.org
https://github.com/SystemsApproach/5G/releases
https://www.facebook.com/Computer-Networks-A-Systems-Approach-110933578952503/
https://twitter.com/SystemsAppr
https://www.systemsapproach.org
preface.html

Computer Networks: A Systems Approach, Release Version 6.1

Kaufmann (Elsevier) plans to publish a 6th edition of their textbook based on a fork of v6.0, but going
forward, open source releases found here will not necessarily stay in sync with any future published editions.

In general, master contains a coherent and internally consistent version of the material. (If it were code, the
book would build and run.) New content under development is checked into branches until it can be merged
into master without breaking self-consistency. The web version of the book available at https://book.
systemsapproach.org is periodically generated from master, and corresponds to a typical maintenance
release, although we do not bother to tag it as such (e.g., 6.0.1).

Minor releases (e.g., v6.1) are tagged whenever there is sufficient new content to justify the effort. This
happens quarterly, give-or-take, and is primarily to create a snapshot so that everyone in a course can know
they are using the same version. The off-line formats (e.g., pdf, epub) are also generated with every minor
release.

Build the Book

The source content is organized as a git repository per chapter, each of which focuses on a major networking
topic (e.g., Internetworking, Congestion Control). A “root” repo (this one) contains the top-level files needed
to assemble a full book.

To build a web-viewable version, you first need to download the source:

mkdir ~/systemsapproach
cd ~/systemsapproach
git clone https://github.com/systemsapproach/book.git
cd book
git submodule init
git submodule update

The build process is stored in the Makefile and requires Python be installed. The Makefile will create
a virtualenv (doc_venv) which installs the documentation generation toolset.

To generate HTML in _build/html, run make html.

To get a live reload in your browser (refreshes on file save), run make reload.

To check the formatting of the book, run make lint.

To see the other available output formats, run make.

How to Contribute

We hope that if you use this material, you are also willing to contribute back to it. If you are new to open
source, you might check out this How to Contribute to Open Source guide. Among other things, you’ll learn
about posting Issues that you’d like to see addressed, and issuing Pull Requests to merge your improvements
back into GitHub.

If you do want to contribute either patches or new material, you will need to sign a Contributor Licensing
Agreement (CLA). You’ll be prompted to sign the CLA the first time you make a pull request.

484 Chapter 9. Applications

https://book.systemsapproach.org
https://book.systemsapproach.org
https://github.com/SystemsApproach/book
https://opensource.guide/how-to-contribute/
https://github.com/SystemsApproach/book/blob/master/CLA.md
https://github.com/SystemsApproach/book/blob/master/CLA.md

Computer Networks: A Systems Approach, Release Version 6.1

The CLA is pretty straightforward: it establishes that (a) you have the right to contribute what you’re con-
tributing, and (b) what you contribute is available to everyone else under the same CC BY terms as the
existing content. The CLA is a little unusual in that it explicitly calls out Elsevier’s rights (which are the
same as everyone’s), but this does signal their intent to continue publishing textbooks based on the material.

You should also familiarize yourself with the guidelines for contributing.

If you’d like to contribute and are looking for something that needs attention, see the current Project Board.
We’d also like to expand the set of topics/chapters beyond the initial set inherited from the 5th edition, so
if you have ideas, we’d love to hear from you. Send email to discuss@systemsapproach.org, or
better yet, join the forum.

Finally, in as much as this is an on-going effort, we will try to record and track our progress. For now, think
of this as a poor-man’s release notes. Additional information about work-in-progress can be found in the
wiki.

Join Us

We hope you’ve gotten value out of Computer Networks: A Systems Approach over the years, and we’re
eager to have you join us in this new venture.

Larry Peterson & Bruce Davie
November 2019

9.4. Overlay Networks 485

https://creativecommons.org/licenses/by/4.0
https://github.com/SystemsApproach/book/blob/master/CONTRIBUTING.rst
https://github.com/orgs/SystemsApproach/projects/
https://groups.google.com/a/systemsapproach.org/forum/#!forum/discuss
https://github.com/SystemsApproach/book/blob/master/status.rst
https://github.com/SystemsApproach/book/wiki

	Foundation
	Applications
	Requirements
	Architecture
	Software
	Performance

	Direct Links
	Technology Landscape
	Encoding
	Framing
	Error Detection
	Reliable Transmission
	Multi-Access Networks
	Wireless Networks
	Access Networks

	Internetworking
	Switching Basics
	Switched Ethernet
	Internet (IP)
	Routing
	Implementation

	Advanced Internetworking
	Global Internet
	IP Version 6
	Multicast
	Multiprotocol Label Switching
	Routing Among Mobile Devices

	End-to-End Protocols
	Simple Demultiplexor (UDP)
	Reliable Byte Stream (TCP)
	Remote Procedure Call
	Transport for Real-Time (RTP)

	Congestion Control
	Issues in Resource Allocation
	Queuing Disciplines
	TCP Congestion Control
	Advanced Congestion Control
	Quality of Service

	End-to-End Data
	Presentation Formatting
	Multimedia Data

	Network Security
	Trust and Threats
	Cryptographic Building Blocks
	Key Predistribution
	Authentication Protocols
	Example Systems

	Applications
	Traditional Applications
	Multimedia Applications
	Infrastructure Applications
	Overlay Networks

