Computer Networks: A Systems
Approach

Release Version 6.1

Peterson and Davie

Nov 26, 2019

TABLE OF CONTENTS

Foundation 5
1.1 Applications o e e e e e e e e e e e e 6
1.2 Requirements o v v v vttt e e e e e e e e e 9
1.3 Architecture e e e e 21
1.4 Software e e e e e 31
1.5 Performance e 37
Direct Links 47
2.1 Technology Landscape e e e e e e 48
2.2 Encoding e e e e e e 51
23 Framing. e e e e e e e e 54
2.4 ErrorDetection e e e e e e e 59
2.5 Reliable Transmission 0 i i e e e e 65
2.6 Multi-Access Networks e e 77
2.7 Wireless Networks e e e 83
2.8 Access Networks e e e e e 95
Internetworking 103
3.1 Switching Basics e e 104
3.2 Switched Ethernet 116
33 Internet (IP) e e e 125
34 ROULNG . . . o o o e e e e 151
3.5 Implementation oL e e e e 169
Advanced Internetworking 179
4.1 GlobalInternet e e e e e e e 180
42 TP Version 6 e e e e e 190
43 Multicast e e e e e e e 200
4.4 Multiprotocol Label Switching L 210
4.5 Routing Among Mobile Devices e 221
End-to-End Protocols 229
5.1 Simple Demultiplexor (UDP) e 230
5.2 Reliable Byte Stream (TCP) e 233
53 RemoteProcedure Call e 260
5.4 Transport for Real-Time (RTP) 276

Congestion Control

6.1 Issuesin Resource Allocation e
6.2 Queuing Disciplines L e e e e e e e
6.3 TCP Congestion Control e
6.4 Advanced Congestion Control e
6.5 Qualityof Service
End-to-End Data

7.1 Presentation Formatting e e e
7.2 MultimediaData e e e
Network Security

8.1 Trustand Threats e e
8.2 Cryptographic Building Blocks e
8.3 Key Predistribution
8.4 Authentication Protocols L e e e
85 Example Systems e
Applications

9.1 Traditional Applications v v i i e e e e e e e
9.2 Multimedia Applications e
9.3 Infrastructure Applications e e e e
9.4 Overlay Networks e

287
288
296
301
311
323

341
342
355

373
374
375
383
389
395

PREFACE

It has been nearly ten years since the Sth Edition of Computer Networks: A Systems Approach was published.
Much has changed in that time, most notably, the explosion of the cloud and smartphone apps onto the
scene. In many ways, this is reminiscent of the dramatic affect the Web was having on the Internet when we
published the 1st Edition of the book in 1996.

The 6th Edition adapts to the times, but keeps the Systems Approach as its north star. In broad strokes, we
update and improve this new edition in four main ways:

We refresh the examples to reflect the current state of the world. This includes deleting anachronisms
(e.g., dial-up modem), using popular applications (e.g., Netflix, Spotify) to motivate the problems
being addressed, and updating the numbers to represent the state-of-the-art technology (e.g., 10-Gbps
Ethernet).

We connect the dots between the original research that led to the development of technologies like
multicast, real-time video streaming, and quality-of-service, and the now-familar cloud applications
like GoToMeeting, Netflix, and Spotify. This is in keeping with our emphasis on the design process
and not just the end result, which is especially important today since so much the Internet is primarily
available in proprietary commercial services.

We place the Internet in the broader context of the Cloud, and just as importantly, in the context of
the commerial forces that are shaping the Cloud. This has minimal impact on the technical details
presented throughout the book, but it is discussed in a new Perspective section at the end of each
chapter. We hope one side-effect of this discussion is to foster an appreciation for the Internet’s
continuous evolution, and the opportunity for innovation this represents.

We distill the important principles of network design in a series of Key Takeaways throughout the
book. Each takeaway is a concise statement of either a general system design rule or a fundamental
networking concept, drawing on the examples presented in the surrounding text. Pedagogically, these
takeaways correspond to the high-level learning objectives for the book.

More specifically, the 6th Edition includes the following major changes:

New Perspective Section in Chapter 1 introduces the recurring Cloudification theme.

New Section 2.8 describes the Access Network, including Passive Optical Networks (PON) and 5G’s
Radio Access Networks (RAN).

Refactored topics across Sections 3.1 (Switching Basics) and 3.2 (Switched Ethernet), including ex-
panded coverage of VLANS.

Computer Networks: A Systems Approach, Release Version 6.1

*» Section 3.5 updated to include descriptions of White-Box Switches and Software-Defined Networks
(SDN).

* New Perspective Section in Chapter 3 describes VXLANs and the role of overlays in the Cloud.
* Refactored topics across Sections 4.1 (Global Internet) and 4.2 (IP Version 6).

* New Perspective Section in Chapter 4 describes how the Cloud impacts the Internet’s structure.
* Section 5.2 expanded to include a discussion of QUIC.

* Section 5.3 expanded to include a description of gRPC.

* Sections 6.3 and 6.4 updated to include descriptions of TCP CUBIC, DCTCP, and BBR.

* Section 6.4 expanded to include a description of Active Queue Management (AQM).

* Section 7.1 expanded to include a desciption of Protocol Buffers.

* Section 7.2 expanded to include a desciption of HTTP Adaptive Streaming.

* New Section 8.1 introduces the duality of Threats and Trust.

» Refactored topics across Sections 8.3 (Key Predistribution) and 8.2 (Authentication Protocols).

* New Perspective Section in Chapter 8 describes Decentralized Identity Management and the role of
Blockchains.

* Section 9.1 updated to include a description of HTTP/2, along with a discussion of REST, gRPC, and
Cloud Services.

* Section 9.3 expaned to include a description of modern Network Management Systems including the
use of OpenConfig and gNMI.

Organization

To construct a networking course around the material in this book, it can be helpful to understand the overall
organization, which can be characterized as having three major parts:

* Conceptual and foundational material, that is, the big ideas at the heart of networking.
* Core protocols and algorithms that illustrate how the foundational ideas are put to practice.
* Advanced material that might or might not fit in any single semester course.

This characterization can be applied at the Chapter level: Chapter 1 is foundational, Chapters 2, 3, 5, and 9
are core, and Chapters 4, 6, 7, and 8 cover more advanced topics.

This characterization can also be applied at the Section level, where roughly speaking, each Chapter ad-
vances from basic concepts to specific technology to advanced techniques. For example, Chapter 3 starts
by introducing the basics of switched networks (3.1), then covers the specifics of Switched Ethernet and the
IP Internet (3.2-3.4), and concludes with an optional discusion of SDN (3.5). Similarly, Chapter 6 starts
with foundational ideas (6.1-6.2), then explores TCP congestion control (6.3), and concludes with optional
advanced material (6.4-6.5).

2 TABLE OF CONTENTS

Computer Networks: A Systems Approach, Release Version 6.1

Acknowledgements

We would like to acknowledge the following people for their help with new content:
* Larry Brakmo: TCP Congestion Control
* Carmelo Cascone: White-Box Switches
* Charles Chan: White-Box Switches
* Jude Nelson: Decentralized Identity
* Oguz Sunay: Cellular Networks
* Thomas Vachuska: Network Management
Along with the following individuals (github users) for their various contributions and bug fixes:

¢ Mohammed Al-Ameen
* Andy Bavier

e Manuel Berfelde

* Chris Goldsworthy

¢ John Hartman

* Diego Lopez Le6n

e Matteo Scandolo

¢ Mike Wawrzoniak

* (spacewander)

* Arnaud (arvdrpoo)

* Desmond (kingdido999)
¢ Guo (ZJUGuoShuai)

e Hellman (eshellman)

e Xtao (vertextao)

* Mike Appelman

* Seth (springbov)

Finally, we would like to thank the following reviewers for their many helpful comments and suggestions.
Their impact was significant.

* Mark J. Indelicato, Rochester Institute of Technology
* Michael Yonshik Choi, Illinois Institute of Technology
 Sarvesh Kulkarni, Villanova University

* Alexander L. Wijesinha, Towson University

Larry & Bruce
November 2019

TABLE OF CONTENTS 3

Computer Networks: A Systems Approach, Release Version 6.1

4 TABLE OF CONTENTS

CHAPTER
ONE

FOUNDATION

I must create a System, or be enslav’d by another Man’s; I will not Reason and Compare: my
business is to Create.

—William Blake

Problem: Building a Network

Suppose you want to build a computer network, one that has the potential to grow to global proportions and
to support applications as diverse as teleconferencing, video on demand, electronic commerce, distributed
computing, and digital libraries. What available technologies would serve as the underlying building blocks,
and what kind of software architecture would you design to integrate these building blocks into an effec-
tive communication service? Answering this question is the overriding goal of this book—to describe the
available building materials and then to show how they can be used to construct a network from the ground

up.

Before we can understand how to design a computer network, we should first agree on exactly what a
computer network is. At one time, the term network meant the set of serial lines used to attach dumb
terminals to mainframe computers. Other important networks include the voice telephone network and the
cable TV network used to disseminate video signals. The main things these networks have in common are
that they are specialized to handle one particular kind of data (keystrokes, voice, or video) and they typically
connect to special-purpose devices (terminals, hand receivers, and television sets).

What distinguishes a computer network from these other types of networks? Probably the most important
characteristic of a computer network is its generality. Computer networks are built primarily from general-
purpose programmable hardware, and they are not optimized for a particular application like making phone
calls or delivering television signals. Instead, they are able to carry many different types of data, and they
support a wide, and ever growing, range of applications. Today’s computer networks have pretty much
taken over the functions previously performed by single-use networks. This chapter looks at some typical
applications of computer networks and discusses the requirements that a network designer who wishes to
support such applications must be aware of.

Once we understand the requirements, how do we proceed? Fortunately, we will not be building the first
network. Others, most notably the community of researchers responsible for the Internet, have gone before
us. We will use the wealth of experience generated from the Internet to guide our design. This experience
is embodied in a network architecture that identifies the available hardware and software components and
shows how they can be arranged to form a complete network system.

Computer Networks: A Systems Approach, Release Version 6.1

In addition to understanding how networks are built, it is increasingly important to understand how they are
operated or managed and how network applications are developed. Almost all of us now have computer
networks in our homes, offices, and in some cases in our cars, so operating networks is no longer a matter
only for a few specialists. And with the proliferation of smartphones, many more of this generation are
developing networked applications than in the past. So we need to consider networks from these multiple
perspectives: builders, operators, application developers.

To start us on the road toward understanding how to build, operate, and program a network, this chapter
does four things. First, it explores the requirements that different applications and different communities
of people place on the network. Second, it introduces the idea of a network architecture, which lays the
foundation for the rest of the book. Third, it introduces some of the key elements in the implementation
of computer networks. Finally, it identifies the key metrics that are used to evaluate the performance of
computer networks.

1.1 Applications

Most people know the Internet through its applications: the World Wide Web, email, social media, streaming
music or movies, videoconferencing, instant messaging, file-sharing, to name just a few examples. That is
to say, we interact with the Internet as users of the network. Internet users represent the largest class of
people who interact with the Internet in some way, but there are several other important constituencies.

There is the group of people who create the applications—a group that has greatly expanded in recent years
as powerful programming platforms and new devices such as smartphones have created new opportunities
to develop applications quickly and to bring them to a large market.

Then there are those who operate or manage networks—mostly a behind-the-scenes job, but a critical one
and often a very complex one. With the prevalence of home networks, more and more people are also
becoming, if only in a small way, network operators.

Finally, there are those who design and build the devices and protocols that collectively make up the Internet.
That final constituency is the traditional target of networking textbooks such as this one and will continue
to be our main focus. However, throughout this book we will also consider the perspectives of application
developers and network operators.

Considering these perspectives will enable us to better understand the diverse requirements that a network
must meet. Application developers will also be able to make applications that work better if they understand
how the underlying technology works and interacts with the applications. So, before we start figuring out
how to build a network, let’s look more closely at the types of applications that today’s networks support.

1.1.1 Classes of Applications

The World Wide Web is the Internet application that catapulted the Internet from a somewhat obscure tool
used mostly by scientists and engineers to the mainstream phenomenon that it is today. The Web itself has
become such a powerful platform that many people confuse it with the Internet, and it’s a bit of a stretch to
say that the Web is a single application.

In its basic form, the Web presents an intuitively simple interface. Users view pages full of textual and
graphical objects and click on objects that they want to learn more about, and a corresponding new page
appears. Most people are also aware that just under the covers each selectable object on a page is bound to

6 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

an identifier for the next page or object to be viewed. This identifier, called a Uniform Resource Locator
(URL), provides a way of identifying all the possible objects that can be viewed from your web browser.
For example,

http://www.cs.princeton.edu/llp/index.html

is the URL for a page providing information about one of this book’s authors: the string ht t p indicates that
the Hypertext Transfer Protocol (HTTP) should be used to download the page, www.cs.princeton.
edu is the name of the machine that serves the page, and /11p/index.html uniquely identifies Larry’s
home page at this site.

What most web users are not aware of, however, is that by clicking on just one such URL over a dozen
messages may be exchanged over the Internet, and many more than that if the web page is complicated with
lots of embedded objects. This message exchange includes up to six messages to translate the server name
(www.cs.princeton.edu) into its Internet Protocol (IP) address (128.112.136.35), three mes-
sages to set up a Transmission Control Protocol (TCP) connection between your browser and this server,
four messages for your browser to send the HTTP “GET” request and the server to respond with the re-
quested page (and for each side to acknowledge receipt of that message), and four messages to tear down
the TCP connection. Of course, this does not include the millions of messages exchanged by Internet nodes
throughout the day, just to let each other know that they exist and are ready to serve web pages, translate
names to addresses, and forward messages toward their ultimate destination.

Another widespread application class of the Internet is the delivery of “streaming” audio and video. Services
such as video on demand and Internet radio use this technology. While we frequently start at a website to
initiate a streaming session, the delivery of audio and video has some important differences from fetching a
simple web page of text and images. For example, you often don’t want to download an entire video file—a
process that might take a few minutes—before watching the first scene. Streaming audio and video implies
a more timely transfer of messages from sender to receiver, and the receiver displays the video or plays the
audio pretty much as it arrives.

Note that the difference between streaming applications and the more traditional delivery of text, graphics,
and images is that humans consume audio and video streams in a continuous manner, and discontinuity—in
the form of skipped sounds or stalled video—is not acceptable. By contrast, a regular (non-streaming) page
can be delivered and read in bits and pieces. This difference affects how the network supports these different
classes of applications.

A subtly different application class is real-time audio and video. These applications have considerably
tighter timing constraints than streaming applications. When using a voice-over-IP application such as
Skype or a videoconferencing application, the interactions among the participants must be timely. When a
person at one end gestures, then that action must be displayed at the other end as quickly as possible.'

When one person tries to interrupt another, the interrupted person needs to hear that as soon as possible and
decide whether to allow the interruption or to keep talking over the interrupter. Too much delay in this sort
of environment makes the system unusable. Contrast this with video on demand where, if it takes several
seconds from the time the user starts the video until the first image is displayed, the service is still deemed
satisfactory. Also, interactive applications usually entail audio and/or video flows in both directions, while
a streaming application is most likely sending video or audio in only one direction.

Videoconferencing tools that run over the Internet have been around now since the early 1990s but have

! Not quite “as soon as possible”... Human factors research indicates 300 ms is a reasonable upper bound for how much
round-trip delay can be tolerated in a telephone call before humans complain, and a 100-ms delay sounds very good.

1.1. Applications 7

Computer Networks: A Systems Approach, Release Version 6.1

000 Cisco WebEx Meeting Center - PDSe

Cisco,
WEDEX Meeting No. 203 034 752 | Attendee ID: 3

¥ jii Panicipant
| & 0%

| ©® | Bruce Davie (Host)
® & lLamy .

YouTube.com

cnn.com

Netflix.com

Access Technology (e.g., FIOS, WiFi, WiMax, Cellular...)

Figure 1.1.: A multimedia application including videoconferencing.

8 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

achieved widespread use in the last few years, with several commercial products on the market. An example
of one such system is shown in Figure 1.1. Just as downloading a web page involves a bit more than meets
the eye, so too with video applications. Fitting the video content into a relatively low bandwidth network,
for example, or making sure that the video and audio remain in sync and arrive in time for a good user
experience are all problems that network and protocol designers have to worry about. We’ll look at these
and many other issues related to multimedia applications later in the book.

Although they are just two examples, downloading pages from the web and participating in a videoconfer-
ence demonstrate the diversity of applications that can be built on top of the Internet and hint at the com-
plexity of the Internet’s design. Later in the book we will develop a more complete taxonomy of application
types to help guide our discussion of key design decisions as we seek to build, operate, and use networks
that such a wide range of applications. The book concludes by revisiting these two specific applications, as
well as several others that illustrate the breadth of what is possible on today’s Internet.

For now, this quick look at a few typical applications will suffice to enable us to start looking at the problems
that must be addressed if we are to build a network that supports such application diversity.

1.2 Requirements

We have established an ambitious goal for ourselves: to understand how to build a computer network from
the ground up. Our approach to accomplishing this goal will be to start from first principles and then ask
the kinds of questions we would naturally ask if building an actual network. At each step, we will use
today’s protocols to illustrate various design choices available to us, but we will not accept these existing
artifacts as gospel. Instead, we will be asking (and answering) the question of why networks are designed
the way they are. While it is tempting to settle for just understanding the way it’s done today, it is important
to recognize the underlying concepts because networks are constantly changing as technology evolves and
new applications are invented. It is our experience that once you understand the fundamental ideas, any new
protocol that you are confronted with will be relatively easy to digest.

1.2.1 Stakeholders

As we noted above, a student of networks can take several perspectives. When we wrote the first edition of
this book, the majority of the population had no Internet access at all, and those who did obtained it while
at work, at a university, or by a dial-up modem at home. The set of popular applications could be counted
on one’s fingers. Thus, like most books at the time, ours focused on the perspective of someone who would
design networking equipment and protocols. We continue to focus on this perspective, and our hope is that
after reading this book you will know how to design the networking equipment and protocols of the future.

However, we also want to cover the perspectives of two additional stakeholders: those who develop net-
worked applications and those who manage or operate networks. Let’s consider how these three stakeholders
might list their requirements for a network:

* An application programmer would list the services that his or her application needs: for example,
a guarantee that each message the application sends will be delivered without error within a certain
amount of time or the ability to switch gracefully among different connections to the network as the
user moves around.

1.2. Requirements 9

Computer Networks: A Systems Approach, Release Version 6.1

* A network operator would list the characteristics of a system that is easy to administer and manage:
for example, in which faults can be easily isolated, new devices can be added to the network and
configured correctly, and it is easy to account for usage.

* A network designer would list the properties of a cost-effective design: for example, that network
resources are efficiently utilized and fairly allocated to different users. Issues of performance are also
likely to be important.

This section attempts to distill the requirements of different stakeholders into a high-level introduction to the
major considerations that drive network design and, in doing so, identify the challenges addressed through-
out the rest of this book.

1.2.2 Scalable Connectivity

Starting with the obvious, a network must provide connectivity among a set of computers. Sometimes it is
enough to build a limited network that connects only a few select machines. In fact, for reasons of privacy
and security, many private (corporate) networks have the explicit goal of limiting the set of machines that are
connected. In contrast, other networks (of which the Internet is the prime example) are designed to grow in
a way that allows them the potential to connect all the computers in the world. A system that is designed to
support growth to an arbitrarily large size is said to scale. Using the Internet as a model, this book addresses
the challenge of scalability.

To understand the requirements of connectivity more fully, we need to take a closer look at how computers
are connected in a network. Connectivity occurs at many different levels. At the lowest level, a network can
consist of two or more computers directly connected by some physical medium, such as a coaxial cable or
an optical fiber. We call such a physical medium a /ink, and we often refer to the computers it connects as
nodes. (Sometimes a node is a more specialized piece of hardware rather than a computer, but we overlook
that distinction for the purposes of this discussion.) As illustrated in Figure 1.2, physical links are sometimes
limited to a pair of nodes (such a link is said to be point-to-point), while in other cases more than two nodes
may share a single physical link (such a link is said to be multiple-access). Wireless links, such as those
provided by cellular networks and Wi-Fi networks, are an important class of multiple-access links. It is
always the case that multiple-access links are limited in size, in terms of both the geographical distance they
can cover and the number of nodes they can connect. For this reason, they often implement the so-called
last mile, connecting end users to the rest of the network.

If computer networks were limited to situations in which all nodes are directly connected to each other
over a common physical medium, then either networks would be very limited in the number of computers
they could connect, or the number of wires coming out of the back of each node would quickly become
both unmanageable and very expensive. Fortunately, connectivity between two nodes does not necessarily
imply a direct physical connection between them—indirect connectivity may be achieved among a set of
cooperating nodes. Consider the following two examples of how a collection of computers can be indirectly
connected.

Figure 1.3 shows a pair of shows a set of nodes, each of which is attached to one or more point-to-point
links. Those nodes that are attached to at least two links run software that forwards data received on one
link out on another. If organized in a systematic way, these forwarding nodes form a switched network.
There are numerous types of switched networks, of which the two most common are circuit switched and
packet switched. The former is most notably employed by the telephone system, while the latter is used for
the overwhelming majority of computer networks and will be the focus of this book. (Circuit switching is,

10 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

p— —

/

}

\.
U — —

35nsss o

o

]
8
L

Figure 1.2.: Direct links: (a) point-to-point; (b) multiple-access.

however, making a bit of a comeback in the optical networking realm, which turns out to be important as
demand for network capacity constantly grows.) The important feature of packet-switched networks is that
the nodes in such a network send discrete blocks of data to each other. Think of these blocks of data as
corresponding to some piece of application data such as a file, a piece of email, or an image. We call each
block of data either a packet or a message, and for now we use these terms interchangeably.

Packet-switched networks typically use a strategy called store-and-forward. As the name suggests, each
node in a store-and-forward network first receives a complete packet over some link, stores the packet in
its internal memory, and then forwards the complete packet to the next node. In contrast, a circuit-switched
network first establishes a dedicated circuit across a sequence of links and then allows the source node to
send a stream of bits across this circuit to a destination node. The major reason for using packet switching
rather than circuit switching in a computer network is efficiency, discussed in the next subsection.

The cloud in Figure 1.3 distinguishes between the nodes on the inside that implement the network (they
are commonly called switches, and their primary function is to store and forward packets) and the nodes
on the outside of the cloud that use the network (they are traditionally called hosts, and they support users
and run application programs). Also note that the cloud is one of the most important icons of computer
networking. In general, we use a cloud to denote any type of network, whether it is a single point-to-point
link, a multiple-access link, or a switched network. Thus, whenever you see a cloud used in a figure, you
can think of it as a placeholder for any of the networking technologies covered in this book. '

A second way in which a set of computers can be indirectly connected is shown in Figure 1.4. In this
situation, a set of independent networks (clouds) are interconnected to form an internetwork, or internet for
short. We adopt the Internet’s convention of referring to a generic internetwork of networks as a lowercase
i internet, and the TCP/IP Internet we all use every day as the capital I Internet. A node that is connected
to two or more networks is commonly called a router or gateway, and it plays much the same role as a
switch—it forwards messages from one network to another. Note that an internet can itself be viewed as
another kind of network, which means that an internet can be built from a set of internets. Thus, we can
recursively build arbitrarily large networks by interconnecting clouds to form larger clouds. It can reasonably
be argued that this idea of interconnecting widely differing networks was the fundamental innovation of the

! The use of clouds to represent networks predates the term cloud computing by at least a couple of decades, but there an
increasingly rich connection between these two usages, which we explore in the Perspective discussion at the end of each chapter.

1.2. Requirements 11

Computer Networks: A Systems Approach, Release Version 6.1

Figure 1.3.: Switched network.

12 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

Figure 1.4.: Interconnection of networks.

1.2. Requirements

13

Computer Networks: A Systems Approach, Release Version 6.1

Internet and that the successful growth of the Internet to global size and billions of nodes was the result of
some very good design decisions by the early Internet architects, which we will discuss later.

Just because a set of hosts are directly or indirectly connected to each other does not mean that we have
succeeded in providing host-to-host connectivity. The final requirement is that each node must be able to
say which of the other nodes on the network it wants to communicate with. This is done by assigning an
address to each node. An address is a byte string that identifies a node; that is, the network can use a node’s
address to distinguish it from the other nodes connected to the network. When a source node wants the
network to deliver a message to a certain destination node, it specifies the address of the destination node.
If the sending and receiving nodes are not directly connected, then the switches and routers of the network
use this address to decide how to forward the message toward the destination. The process of determining
systematically how to forward messages toward the destination node based on its address is called routing.

This brief introduction to addressing and routing has presumed that the source node wants to send a message
to a single destination node (unicast). While this is the most common scenario, it is also possible that the
source node might want to broadcast a message to all the nodes on the network. Or, a source node might
want to send a message to some subset of the other nodes but not all of them, a situation called multicast.
Thus, in addition to node-specific addresses, another requirement of a network is that it supports multicast
and broadcast addresses.

Key Takeaway

The main idea to take away from this discussion is that we can define a network recursively as consisting of
two or more nodes connected by a physical link, or as two or more networks connected by a node. In other
words, a network can be constructed from a nesting of networks, where at the bottom level, the network is
implemented by some physical medium. Among the key challenges in providing network connectivity are
the definition of an address for each node that is reachable on the network (be it logical or physical), and the
use of such addresses to forward messages toward the appropriate destination node(s). [Next]

1.2.3 Cost-Effective Resource Sharing

As stated above, this book focuses on packet-switched networks. This section explains the key requirement
of computer networks—efficiency—that leads us to packet switching as the strategy of choice.

Given a collection of nodes indirectly connected by a nesting of networks, it is possible for any pair of
hosts to send messages to each other across a sequence of links and nodes. Of course, we want to do more
than support just one pair of communicating hosts—we want to provide all pairs of hosts with the ability to
exchange messages. The question, then, is how do all the hosts that want to communicate share the network,
especially if they want to use it at the same time? And, as if that problem isn’t hard enough, how do several
hosts share the same /ink when they all want to use it at the same time?

To understand how hosts share a network, we need to introduce a fundamental concept, multiplexing, which
means that a system resource is shared among multiple users. At an intuitive level, multiplexing can be
explained by analogy to a timesharing computer system, where a single physical processor is shared (multi-
plexed) among multiple jobs, each of which believes it has its own private processor. Similarly, data being
sent by multiple users can be multiplexed over the physical links that make up a network.

To see how this might work, consider the simple network illustrated in Figure 1.5, where the three hosts on

14 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

the left side of the network (senders S1-S3) are sending data to the three hosts on the right (receivers R1-R3)
by sharing a switched network that contains only one physical link. (For simplicity, assume that host S1
is sending data to host R1, and so on.) In this situation, three flows of data—corresponding to the three
pairs of hosts—are multiplexed onto a single physical link by switch 1 and then demultiplexed back into
separate flows by switch 2. Note that we are being intentionally vague about exactly what a “flow of data”
corresponds to. For the purposes of this discussion, assume that each host on the left has a large supply of
data that it wants to send to its counterpart on the right.

P

S1
—= —
- - -
S2 Switch 1 Switch 2 R2
S3 R3

Figure 1.5.: Multiplexing multiple logical flows over a single physical link.

There are several different methods for multiplexing multiple flows onto one physical link. One common
method is synchronous time-division multiplexing (STDM). The idea of STDM is to divide time into equal-
sized quanta and, in a round-robin fashion, give each flow a chance to send its data over the physical link. In
other words, during time quantum 1, data from S1 to R1 is transmitted; during time quantum 2, data from
S2 to R2 is transmitted; in quantum 3, S3 sends data to R3. At this point, the first flow (S1 to R1) gets to
go again, and the process repeats. Another method is frequency-division multiplexing (FDM). The idea of
FDM is to transmit each flow over the physical link at a different frequency, much the same way that the
signals for different TV stations are transmitted at a different frequency over the airwaves or on a coaxial
cable TV link.

Although simple to understand, both STDM and FDM are limited in two ways. First, if one of the flows
(host pairs) does not have any data to send, its share of the physical link—that is, its time quantum or its
frequency—remains idle, even if one of the other flows has data to transmit. For example, S3 had to wait
its turn behind S1 and S2 in the previous paragraph, even if S1 and S2 had nothing to send. For computer
communication, the amount of time that a link is idle can be very large—for example, consider the amount
of time you spend reading a web page (leaving the link idle) compared to the time you spend fetching the
page. Second, both STDM and FDM are limited to situations in which the maximum number of flows is
fixed and known ahead of time. It is not practical to resize the quantum or to add additional quanta in the
case of STDM or to add new frequencies in the case of FDM.

The form of multiplexing that addresses these shortcomings, and of which we make most use in this book,
is called statistical multiplexing. Although the name is not all that helpful for understanding the concept,
statistical multiplexing is really quite simple, with two key ideas. First, it is like STDM in that the physical

1.2. Requirements 15

Computer Networks: A Systems Approach, Release Version 6.1

link is shared over time—first data from one flow is transmitted over the physical link, then data from another
flow is transmitted, and so on. Unlike STDM, however, data is transmitted from each flow on demand rather
than during a predetermined time slot. Thus, if only one flow has data to send, it gets to transmit that data
without waiting for its quantum to come around and thus without having to watch the quanta assigned to the
other flows go by unused. It is this avoidance of idle time that gives packet switching its efficiency.

As defined so far, however, statistical multiplexing has no mechanism to ensure that all the flows eventually
get their turn to transmit over the physical link. That is, once a flow begins sending data, we need some
way to limit the transmission, so that the other flows can have a turn. To account for this need, statistical
multiplexing defines an upper bound on the size of the block of data that each flow is permitted to transmit
at a given time. This limited-size block of data is typically referred to as a packet, to distinguish it from the
arbitrarily large message that an application program might want to transmit. Because a packet-switched
network limits the maximum size of packets, a host may not be able to send a complete message in one
packet. The source may need to fragment the message into several packets, with the receiver reassembling
the packets back into the original message.

=
\\%ﬁ

.I_UI_H == =-

-o/

e

Figure 1.6.: A switch multiplexing packets from multiple sources onto one shared link.

In other words, each flow sends a sequence of packets over the physical link, with a decision made on a
packet-by-packet basis as to which flow’s packet to send next. Notice that, if only one flow has data to send,
then it can send a sequence of packets back-to-back; however, should more than one of the flows have data
to send, then their packets are interleaved on the link. Figure 1.6 depicts a switch multiplexing packets from
multiple sources onto a single shared link.

The decision as to which packet to send next on a shared link can be made in a number of different ways.
For example, in a network consisting of switches interconnected by links such as the one in Figure 1.5, the
decision would be made by the switch that transmits packets onto the shared link. (As we will see later, not
all packet-switched networks actually involve switches, and they may use other mechanisms to determine
whose packet goes onto the link next.) Each switch in a packet-switched network makes this decision
independently, on a packet-by-packet basis. One of the issues that faces a network designer is how to make

16 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

this decision in a fair manner. For example, a switch could be designed to service packets on a first-in,
first-out (FIFO) basis. Another approach would be to transmit the packets from each of the different flows
that are currently sending data through the switch in a round-robin manner. This might be done to ensure
that certain flows receive a particular share of the link’s bandwidth or that they never have their packets
delayed in the switch for more than a certain length of time. A network that attempts to allocate bandwidth
to particular flows is sometimes said to support quality of service (QoS).

Also, notice in Figure 1.6 that since the switch has to multiplex three incoming packet streams onto one
outgoing link, it is possible that the switch will receive packets faster than the shared link can accommodate.
In this case, the switch is forced to buffer these packets in its memory. Should a switch receive packets faster
than it can send them for an extended period of time, then the switch will eventually run out of buffer space,
and some packets will have to be dropped. When a switch is operating in this state, it is said to be congested.

Key Takeaway

The bottom line is that statistical multiplexing defines a cost-effective way for multiple users (e.g., host-
to-host flows of data) to share network resources (links and nodes) in a fine-grained manner. It defines the
packet as the granularity with which the links of the network are allocated to different flows, with each switch
able to schedule the use of the physical links it is connected to on a per-packet basis. Fairly allocating link
capacity to different flows and dealing with congestion when it occurs are the key challenges of statistical
multiplexing. [Next]

1.2.4 Support for Common Services

The previous discussion focused on the challenges involved in providing cost-effective connectivity among
a group of hosts, but it is overly simplistic to view a computer network as simply delivering packets among
a collection of computers. It is more accurate to think of a network as providing the means for a set of
application processes that are distributed over those computers to communicate. In other words, the next
requirement of a computer network is that the application programs running on the hosts connected to the
network must be able to communicate in a meaningful way. From the application developer’s perspective,
the network needs to make his or her life easier.

When two application programs need to communicate with each other, a lot of complicated things must
happen beyond simply sending a message from one host to another. One option would be for application
designers to build all that complicated functionality into each application program. However, since many
applications need common services, it is much more logical to implement those common services once and
then to let the application designer build the application using those services. The challenge for a network
designer is to identify the right set of common services. The goal is to hide the complexity of the network
from the application without overly constraining the application designer.

Intuitively, we view the network as providing logical channels over which application-level processes can
communicate with each other; each channel provides the set of services required by that application. In other
words, just as we use a cloud to abstractly represent connectivity among a set of computers, we now think
of a channel as connecting one process to another. Figure 1.7 shows a pair of application-level processes
communicating over a logical channel that is, in turn, implemented on top of a cloud that connects a set
of hosts. We can think of the channel as being like a pipe connecting two applications, so that a sending
application can put data in one end and expect that data to be delivered by the network to the application at

1.2. Requirements 17

Computer Networks: A Systems Approach, Release Version 6.1

Host

Host
ﬁ Application

Host

Application

//-\ 3% T
\.
Host Host

Figure 1.7.: Processes communicating over an abstract channel.

the other end of the pipe.

Like any abstraction, logical process-to-process channels are implemented on top of a collection of physical
host-to-host channels. This is the essense of layering, the cornerstone of network architectures discussed in
the next section.

The challenge is to recognize what functionality the channels should provide to application programs. For
example, does the application require a guarantee that messages sent over the channel are delivered, or is it
acceptable if some messages fail to arrive? Is it necessary that messages arrive at the recipient process in the
same order in which they are sent, or does the recipient not care about the order in which messages arrive?
Does the network need to ensure that no third parties are able to eavesdrop on the channel, or is privacy not
a concern? In general, a network provides a variety of different types of channels, with each application
selecting the type that best meets its needs. The rest of this section illustrates the thinking involved in
defining useful channels.

Identify Common Communication Patterns

Designing abstract channels involves first understanding the communication needs of a representative collec-
tion of applications, then extracting their common communication requirements, and finally incorporating
the functionality that meets these requirements in the network.

One of the earliest applications supported on any network is a file access program like the File Transfer
Protocol (FTP) or Network File System (NFS). Although many details vary—for example, whether whole
files are transferred across the network or only single blocks of the file are read/written at a given time—the
communication component of remote file access is characterized by a pair of processes, one that requests

18 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

that a file be read or written and a second process that honors this request. The process that requests access
to the file is called the client, and the process that supports access to the file is called the server.

Reading a file involves the client sending a small request message to a server and the server responding with
a large message that contains the data in the file. Writing works in the opposite way—the client sends a
large message containing the data to be written to the server, and the server responds with a small message
confirming that the write to disk has taken place.

A digital library is a more sophisticated application than file transfer, but it requires similar communication
services. For example, the Association for Computing Machinery (ACM) operates a large digital library of
computer science literature at

http://portal.acm.org/dl.cfm

This library has a wide range of searching and browsing features to help users find the articles they want,
but ultimately much of what it does is respond to user requests for files, such as electronic copies of journal
articles.

Using file access, a digital library, and the two video applications described in the introduction (videocon-
ferencing and video on demand) as a representative sample, we might decide to provide the following two
types of channels: request/reply channels and message stream channels. The request/reply channel would
be used by the file transfer and digital library applications. It would guarantee that every message sent by
one side is received by the other side and that only one copy of each message is delivered. The request/reply
channel might also protect the privacy and integrity of the data that flows over it, so that unauthorized parties
cannot read or modify the data being exchanged between the client and server processes.

The message stream channel could be used by both the video on demand and videoconferencing applica-
tions, provided it is parameterized to support both one-way and two-way traffic and to support different delay
properties. The message stream channel might not need to guarantee that all messages are delivered, since
a video application can operate adequately even if some video frames are not received. It would, however,
need to ensure that those messages that are delivered arrive in the same order in which they were sent, to
avoid displaying frames out of sequence. Like the request/reply channel, the message stream channel might
want to ensure the privacy and integrity of the video data. Finally, the message stream channel might need
to support multicast, so that multiple parties can participate in the teleconference or view the video.

While it is common for a network designer to strive for the smallest number of abstract channel types that
can serve the largest number of applications, there is a danger in trying to get away with too few channel
abstractions. Simply stated, if you have a hammer, then everything looks like a nail. For example, if
all you have are message stream and request/reply channels, then it is tempting to use them for the next
application that comes along, even if neither type provides exactly the semantics needed by the application.
Thus, network designers will probably be inventing new types of channels—and adding options to existing
channels—for as long as application programmers are inventing new applications.

Also note that independent of exactly what functionality a given channel provides, there is the question of
where that functionality is implemented. In many cases, it is easiest to view the host-to-host connectivity
of the underlying network as simply providing a bit pipe, with any high-level communication semantics
provided at the end hosts. The advantage of this approach is that it keeps the switches in the middle of the
network as simple as possible—they simply forward packets—but it requires the end hosts to take on much
of the burden of supporting semantically rich process-to-process channels. The alternative is to push addi-
tional functionality onto the switches, thereby allowing the end hosts to be “dumb” devices (e.g., telephone
handsets). We will see this question of how various network services are partitioned between the packet

1.2. Requirements 19

Computer Networks: A Systems Approach, Release Version 6.1

switches and the end hosts (devices) as a recurring issue in network design.

Reliable Message Delivery

As suggested by the examples just considered, reliable message delivery is one of the most important func-
tions that a network can provide. It is difficult to determine how to provide this reliability, however, without
first understanding how networks can fail. The first thing to recognize is that computer networks do not exist
in a perfect world. Machines crash and later are rebooted, fibers are cut, electrical interference corrupts bits
in the data being transmitted, switches run out of buffer space, and, as if these sorts of physical problems
aren’t enough to worry about, the software that manages the hardware may contain bugs and sometimes
forwards packets into oblivion. Thus, a major requirement of a network is to recover from certain kinds of
failures, so that application programs don’t have to deal with them or even be aware of them.

There are three general classes of failure that network designers have to worry about. First, as a packet is
transmitted over a physical link, bit errors may be introduced into the data; that is, a 1 is turned into a 0
or vice versa. Sometimes single bits are corrupted, but more often than not a burst error occurs—several
consecutive bits are corrupted. Bit errors typically occur because outside forces, such as lightning strikes,
power surges, and microwave ovens, interfere with the transmission of data. The good news is that such bit
errors are fairly rare, affecting on average only one out of every 10° to 107 bits on a typical copper-based
cable and one out of every 10'2 to 10'* bits on a typical optical fiber. As we will see, there are techniques
that detect these bit errors with high probability. Once detected, it is sometimes possible to correct for
such errors—if we know which bit or bits are corrupted, we can simply flip them—while in other cases the
damage is so bad that it is necessary to discard the entire packet. In such a case, the sender may be expected
to retransmit the packet.

The second class of failure is at the packet, rather than the bit, level; that is, a complete packet is lost by the
network. One reason this can happen is that the packet contains an uncorrectable bit error and therefore has
to be discarded. A more likely reason, however, is that one of the nodes that has to handle the packet—for
example, a switch that is forwarding it from one link to another—is so overloaded that it has no place
to store the packet and therefore is forced to drop it. This is the problem of congestion just discussed.
Less commonly, the software running on one of the nodes that handles the packet makes a mistake. For
example, it might incorrectly forward a packet out on the wrong link, so that the packet never finds its
way to the ultimate destination. As we will see, one of the main difficulties in dealing with lost packets is
distinguishing between a packet that is indeed lost and one that is merely late in arriving at the destination.

The third class of failure is at the node and link level; that is, a physical link is cut, or the computer it is
connected to crashes. This can be caused by software that crashes, a power failure, or a reckless backhoe
operator. Failures due to misconfiguration of a network device are also common. While any of these failures
can eventually be corrected, they can have a dramatic effect on the network for an extended period of
time. However, they need not totally disable the network. In a packet-switched network, for example, it is
sometimes possible to route around a failed node or link. One of the difficulties in dealing with this third
class of failure is distinguishing between a failed computer and one that is merely slow or, in the case of a
link, between one that has been cut and one that is very flaky and therefore introducing a high number of bit
errors.

Key Takeaway

The key idea to take away from this discussion is that defining useful channels involves both understanding

20 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

the applications’ requirements and recognizing the limitations of the underlying technology. The challenge
is to fill in the gap between what the application expects and what the underlying technology can provide.
This is sometimes called the semantic gap. [Next]

1.2.5 Manageability

A final requirement, which seems to be neglected or left till last all too often (as we do here), is that networks
need to be managed. Managing a network includes upgrading equipment as the network grows to carry
more traffic or reach more users, troubleshooting the network when things go wrong or performance isn’t as
desired, and adding new features in support of new applications. Network management has historically been
a human-intensive aspect of networking, and while it is ulikely we’ll get people entirely out of the loop, it is
increasingly being addressed by automation and self-healing designs.

This requirement is partly related to the issue of scalability discussed above—as the Internet has scaled up
to support billions of users and at least hundreds of millions of hosts, the challenges of keeping the whole
thing running correctly and correctly configuring new devices as they are added have become increasingly
problematic. Configuring a single router in a network is often a task for a trained expert; configuring
thousands of routers and figuring out why a network of such a size is not behaving as expected can become
a task beyond any single human. This is why automation is becoming so important.

One way to make a network easier to manage is to avoid change. Once the network is working, simply do
not touch it! This mindset exposes the fundamental tension between stability and feature velocity: the rate
at which new capabilities are introduced into the network. Favoring stability is the approach the telecommu-
nications industry (not to mention University system administrators and corporate IT departments) adopted
for many years, making it one of the most slow moving and risk averse industries you will find anywhere.
But the recent explosion of the cloud has changed that dynamic, making it necessary to bring stability and
feature velocity more into balance. The impact of the cloud on the network is a topic that comes up over
and over throughout the book, and one we pay particular attention to in the Perspectives section at the end
of each chapter. For now, suffice it to say that managing a rapidly evolving network is arguably the central
challenge in networking today.

1.3 Architecture

The previous section established a pretty substantial set of requirements for network design—a computer
network must provide general, cost-effective, fair, and robust connectivity among a large number of com-
puters. As if this weren’t enough, networks do not remain fixed at any single point in time but must evolve
to accommodate changes in both the underlying technologies upon which they are based as well as changes
in the demands placed on them by application programs. Furthermore, networks must be manageable by
humans of varying levels of skill. Designing a network to meet these requirements is no small task.

To help deal with this complexity, network designers have developed general blueprints—usually called
network architectures—that guide the design and implementation of networks. This section defines more
carefully what we mean by a network architecture by introducing the central ideas that are common to
all network architectures. It also introduces two of the most widely referenced architectures—the OSI (or
7-layer) architecture and the Internet architecture.

1.3. Architecture 21

Computer Networks: A Systems Approach, Release Version 6.1

1.3.1 Layering and Protocols

Abstraction—the hiding of implementation details behind a well-defined interface—is the fundamental tool
used by system designers to manage complexity. The idea of an abstraction is to define a model that can
capture some important aspect of the system, encapsulate this model in an object that provides an interface
that can be manipulated by other components of the system, and hide the details of how the object is imple-
mented from the users of the object. The challenge is to identify abstractions that simultaneously provide
a service that proves useful in a large number of situations and that can be efficiently implemented in the
underlying system. This is exactly what we were doing when we introduced the idea of a channel in the
previous section: we were providing an abstraction for applications that hides the complexity of the network
from application writers.

Application programs

Process-to-process channels

Host-to-host connectivity

Hardware

Figure 1.8.: Example of a layered network system.

Abstractions naturally lead to layering, especially in network systems. The general idea is that you start
with the services offered by the underlying hardware and then add a sequence of layers, each providing
a higher (more abstract) level of service. The services provided at the high layers are implemented in
terms of the services provided by the low layers. Drawing on the discussion of requirements given in the
previous section, for example, we might imagine a simple network as having two layers of abstraction
sandwiched between the application program and the underlying hardware, as illustrated in Figure 1.8. The
layer immediately above the hardware in this case might provide host-to-host connectivity, abstracting away
the fact that there may be an arbitrarily complex network topology between any two hosts. The next layer
up builds on the available host-to-host communication service and provides support for process-to-process
channels, abstracting away the fact that the network occasionally loses messages, for example.

Layering provides two useful features. First, it decomposes the problem of building a network into more
manageable components. Rather than implementing a monolithic piece of software that does everything you
will ever want, you can implement several layers, each of which solves one part of the problem. Second, it
provides a more modular design. If you decide that you want to add some new service, you may only need
to modify the functionality at one layer, reusing the functions provided at all the other layers.

Thinking of a system as a linear sequence of layers is an oversimplification, however. Many times there
are multiple abstractions provided at any given level of the system, each providing a different service to the
higher layers but building on the same low-level abstractions. To see this, consider the two types of channels
discussed in the previous section. One provides a request/reply service and one supports a message stream
service. These two channels might be alternative offerings at some level of a multilevel networking system,
as illustrated in Figure 1.9.

Using this discussion of layering as a foundation, we are now ready to discuss the architecture of a net-

22 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

Application programs

Request/reply Message stream
channel channel

Host-to-host connectivity

Hardware

Figure 1.9.: Layered system with alternative abstractions available at a given layer.

work more precisely. For starters, the abstract objects that make up the layers of a network system are
called protocols. That is, a protocol provides a communication service that higher-level objects (such as
application processes, or perhaps higher-level protocols) use to exchange messages. For example, we could
imagine a network that supports a request/reply protocol and a message stream protocol, corresponding to
the request/reply and message stream channels discussed above.

Each protocol defines two different interfaces. First, it defines a service interface to the other objects on the
same computer that want to use its communication services. This service interface defines the operations that
local objects can perform on the protocol. For example, a request/reply protocol would support operations
by which an application can send and receive messages. An implementation of the HTTP protocol could
support an operation to fetch a page of hypertext from a remote server. An application such as a web browser
would invoke such an operation whenever the browser needs to obtain a new page (e.g., when the user clicks
on a link in the currently displayed page).

Second, a protocol defines a peer interface to its counterpart (peer) on another machine. This second in-
terface defines the form and meaning of messages exchanged between protocol peers to implement the
communication service. This would determine the way in which a request/reply protocol on one machine
communicates with its peer on another machine. In the case of HTTP, for example, the protocol specification
defines in detail how a GET command is formatted, what arguments can be used with the command, and
how a web server should respond when it receives such a command.

To summarize, a protocol defines a communication service that it exports locally (the service interface),
along with a set of rules governing the messages that the protocol exchanges with its peer(s) to implement
this service (the peer interface). This situation is illustrated in Figure 1.10.

Except at the hardware level, where peers directly communicate with each other over a physical medium,
peer-to-peer communication is indirect—each protocol communicates with its peer by passing messages to
some lower-level protocol, which in turn delivers the message to its peer. In addition, there are potentially
more than one protocol at any given level, each providing a different communication service. We therefore
represent the suite of protocols that make up a network system with a profocol graph. The nodes of the
graph correspond to protocols, and the edges represent a depends on relation. For example, Figure 1.11
illustrates a protocol graph for the hypothetical layered system we have been discussing—protocols RRP
(Request/Reply Protocol) and MSP (Message Stream Protocol) implement two different types of process-
to-process channels, and both depend on the Host-to-Host Protocol (HHP) which provides a host-to-host
connectivity service.

In this example, suppose that the file access program on host 1 wants to send a message to its peer on
host 2 using the communication service offered by RRP. In this case, the file application asks RRP to send

1.3. Architecture 23

Computer Networks: A Systems Approach, Release Version 6.1

Host 1 Host 2
High-level High-level
object object
A . A
Service Service
' interface interface '
Protocol |- = Protocol
Peer-to-peer
interface

Figure 1.10.: Service interfaces and peer interfaces.

Host 1 Host 2
File Et')?:f‘; Video File Et')?gf‘; Video
application application application application application application
RRP MSP RRP MSP
HHP HHP

Figure 1.11.: Example of a protocol graph.

24 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

the message on its behalf. To communicate with its peer, RRP invokes the services of HHP, which in turn
transmits the message to its peer on the other machine. Once the message has arrived at the instance of HHP
on host 2, HHP passes the message up to RRP, which in turn delivers the message to the file application. In
this particular case, the application is said to employ the services of the protocol stack RRP/HHP.

Note that the term protocol is used in two different ways. Sometimes it refers to the abstract interfaces—that
is, the operations defined by the service interface and the form and meaning of messages exchanged between
peers, and sometimes it refers to the module that actually implements these two interfaces. To distinguish
between the interfaces and the module that implements these interfaces, we generally refer to the former as
a protocol specification. Specifications are generally expressed using a combination of prose, pseudocode,
state transition diagrams, pictures of packet formats, and other abstract notations. It should be the case that
a given protocol can be implemented in different ways by different programmers, as long as each adheres to
the specification. The challenge is ensuring that two different implementations of the same specification can
successfully exchange messages. Two or more protocol modules that do accurately implement a protocol
specification are said to interoperate with each other.

We can imagine many different protocols and protocol graphs that satisfy the communication requirements
of a collection of applications. Fortunately, there exist standardization bodies, such as the Internet Engi-
neering Task Force (IETF) and the International Standards Organization (ISO), that establish policies for
a particular protocol graph. We call the set of rules governing the form and content of a protocol graph
a network architecture. Although beyond the scope of this book, standardization bodies have established
well-defined procedures for introducing, validating, and finally approving protocols in their respective ar-
chitectures. We briefly describe the architectures defined by the IETF and ISO shortly, but first there are two
additional things we need to explain about the mechanics of protocol layering.

1.3.2 Encapsulation

Consider what happens in when one of the application programs sends a message to its peer by passing
the message to RRP. From RRP’s perspective, the message it is given by the application is an uninterpreted
string of bytes. RRP does not care that these bytes represent an array of integers, an email message, a digital
image, or whatever; it is simply charged with sending them to its peer. However, RRP must communicate
control information to its peer, instructing it how to handle the message when it is received. RRP does
this by attaching a header to the message. Generally speaking, a header is a small data structure—from a
few bytes to a few dozen bytes—that is used among peers to communicate with each other. As the name
suggests, headers are usually attached to the front of a message. In some cases, however, this peer-to-peer
control information is sent at the end of the message, in which case it is called a trailer. The exact format
for the header attached by RRP is defined by its protocol specification. The rest of the message—that is, the
data being transmitted on behalf of the application—is called the message’s body or payload. We say that
the application’s data is encapsulated in the new message created by RRP.

This process of encapsulation is then repeated at each level of the protocol graph; for example, HHP encap-
sulates RRP’s message by attaching a header of its own. If we now assume that HHP sends the message
to its peer over some network, then when the message arrives at the destination host, it is processed in the
opposite order: HHP first interprets the HHP header at the front of the message (i.e., takes whatever action
is appropriate given the contents of the header) and passes the body of the message (but not the HHP header)
up to RRP, which takes whatever action is indicated by the RRP header that its peer attached and passes the
body of the message (but not the RRP header) up to the application program. The message passed up from
RRP to the application on host 2 is exactly the same message as the application passed down to RRP on

1.3. Architecture 25

Computer Networks: A Systems Approach, Release Version 6.1

Host 1

program

Application

\

RRP

\

HHP

| HHP | RRP | Data |

Host 2

Application
program

A

Figure 1.12.: High-level messages are encapsulated inside of low-level messages.

26

Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

host 1; the application does not see any of the headers that have been attached to it to implement the lower-
level communication services. This whole process is illustrated in Figure 1.12. Note that in this example,
nodes in the network (e.g., switches and routers) may inspect the HHP header at the front of the message.

Note that when we say a low-level protocol does not interpret the message it is given by some high-level
protocol, we mean that it does not know how to extract any meaning from the data contained in the message.
It is sometimes the case, however, that the low-level protocol applies some simple transformation to the
data it is given, such as to compress or encrypt it. In this case, the protocol is transforming the entire body
of the message, including both the original application’s data and all the headers attached to that data by
higher-level protocols.

1.3.3 Multiplexing and Demultiplexing

Recall that a fundamental idea of packet switching is to multiplex multiple flows of data over a single
physical link. This same idea applies up and down the protocol graph, not just to switching nodes. In Figure
1.11, for example, we can think of RRP as implementing a logical communication channel, with messages
from two different applications multiplexed over this channel at the source host and then demultiplexed back
to the appropriate application at the destination host.

Practically speaking, this simply means that the header that RRP attaches to its messages contains an identi-
fier that records the application to which the message belongs. We call this identifier RRP’s demultiplexing
key, or demux key for short. At the source host, RRP includes the appropriate demux key in its header. When
the message is delivered to RRP on the destination host, it strips its header, examines the demux key, and
demultiplexes the message to the correct application.

RRP is not unique in its support for multiplexing; nearly every protocol implements this mechanism. For
example, HHP has its own demux key to determine which messages to pass up to RRP and which to pass
up to MSP. However, there is no uniform agreement among protocols—even those within a single network
architecture—on exactly what constitutes a demux key. Some protocols use an 8-bit field (meaning they
can support only 256 high-level protocols), and others use 16- or 32-bit fields. Also, some protocols have a
single demultiplexing field in their header, while others have a pair of demultiplexing fields. In the former
case, the same demux key is used on both sides of the communication, while in the latter case each side
uses a different key to identify the high-level protocol (or application program) to which the message is to
be delivered.

1.3.4 7-Layer OSI Model

The ISO was one of the first organizations to formally define a common way to connect computers. Their
architecture, called the Open Systems Interconnection (OSI) architecture and illustrated in Figure 1.13, de-
fines a partitioning of network functionality into seven layers, where one or more protocols implement the
functionality assigned to a given layer. In this sense, the schematic given in is not a protocol graph, per se,
but rather a reference model for a protocol graph. It is often referred to as the 7-layer model. While there
is no OSI-based network running today, the terminology it defined is still widely used, so it is still worth a
cursory look.

Starting at the bottom and working up, the physical layer handles the transmission of raw bits over a com-
munications link. The data link layer then collects a stream of bits into a larger aggregate called a frame.
Network adaptors, along with device drivers running in the node’s operating system, typically implement

1.3. Architecture 27

Computer Networks: A Systems Approach, Release Version 6.1

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

End host

Application

Presentation

Session

Transport

Network

Data link

Network Network
Data link Data link
Physical Physical

Physical

One or more nodes
within the network

Figure 1.13.: The OSI 7-layer model.

28

Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

the data link level. This means that frames, not raw bits, are actually delivered to hosts. The network layer
handles routing among nodes within a packet-switched network. At this layer, the unit of data exchanged
among nodes is typically called a packet rather than a frame, although they are fundamentally the same
thing. The lower three layers are implemented on all network nodes, including switches within the network
and hosts connected to the exterior of the network. The transport layer then implements what we have up to
this point been calling a process-to-process channel. Here, the unit of data exchanged is commonly called a
message rather than a packet or a frame. The transport layer and higher layers typically run only on the end
hosts and not on the intermediate switches or routers.

Skipping ahead to the top (seventh) layer and working our way back down, we find the application layer.
Application layer protocols include things like the Hypertext Transfer Protocol (HTTP), which is the basis
of the World Wide Web and is what enables web browsers to request pages from web servers. Below that,
the presentation layer is concerned with the format of data exchanged between peers—for example, whether
an integer is 16, 32, or 64 bits long, whether the most significant byte is transmitted first or last, or how a
video stream is formatted. Finally, the session layer provides a name space that is used to tie together the
potentially different transport streams that are part of a single application. For example, it might manage an
audio stream and a video stream that are being combined in a teleconferencing application.

1.3.5 Internet Architecture

The Internet architecture, which is also sometimes called the TCP/IP architecture after its two main proto-
cols, is depicted in Figure 1.14. An alternative representation is given in Figure 1.15. The Internet archi-
tecture evolved out of experiences with an earlier packet-switched network called the ARPANET. Both the
Internet and the ARPANET were funded by the Advanced Research Projects Agency (ARPA), one of the re-
search and development funding agencies of the U.S. Department of Defense. The Internet and ARPANET
were around before the OSI architecture, and the experience gained from building them was a major influ-
ence on the OSI reference model.

FTP HTTP DNS TFTP
/
TCP UDP
IP
/
NET, NET,| ... | NET,

Figure 1.14.: Internet protocol graph.

While the 7-layer OSI model can, with some imagination, be applied to the Internet, a simpler stack is
often used instead. At the lowest level is a wide variety of network protocols, denoted NET, NET», and
so on. In practice, these protocols are implemented by a combination of hardware (e.g., a network adaptor)
and software (e.g., a network device driver). For example, you might find Ethernet or wireless protocols
(such as the 802.11 Wi-Fi standards) at this layer. (These protocols in turn may actually involve several

1.3. Architecture 29

Computer Networks: A Systems Approach, Release Version 6.1

Application

TCP | UDP

IP
Subnetwork

Figure 1.15.: Alternative view of the Internet architecture. The “subnetwork” layer was historically referred
to as the “network” layer and is now often referred to as “Layer 2” (influenced by the OSI model).

sublayers, but the Internet architecture does not presume anything about them.) The next layer consists
of a single protocol—the Internet Protocol (IP). This is the protocol that supports the interconnection of
multiple networking technologies into a single, logical internetwork. The layer on top of IP contains two
main protocols—the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). TCP
and UDP provide alternative logical channels to application programs: TCP provides a reliable byte-stream
channel, and UDP provides an unreliable datagram delivery channel (datagram may be thought of as a
synonym for message). In the language of the Internet, TCP and UDP are sometimes called end-to-end
protocols, although it is equally correct to refer to them as transport protocols.

Running above the transport layer is a range of application protocols, such as HTTP, FTP, Telnet (remote
login), and the Simple Mail Transfer Protocol (SMTP), that enable the interoperation of popular applications.
To understand the difference between an application layer protocol and an application, think of all the
different World Wide Web browsers that are or have been available (e.g., Firefox, Chrome, Safari, Netscape,
Mosaic, Internet Explorer). There is a similarly large number of different implementations of web servers.
The reason that you can use any one of these application programs to access a particular site on the Web is
that they all conform to the same application layer protocol: HTTP. Confusingly, the same term sometimes
applies to both an application and the application layer protocol that it uses (e.g., FTP is often used as the
name of an application that implements the FTP protocol).

Most people who work actively in the networking field are familiar with both the Internet architecture and the
7-layer OSI architecture, and there is general agreement on how the layers map between architectures. The
Internet’s application layer is considered to be at layer 7, its transport layer is layer 4, the IP (internetworking
or just network) layer is layer 3, and the link or subnet layer below IP is layer 2.

IETF and Standardization

Although we call it the “Internet architecture” rather than the “IETF architecture,” it’s fair to say that
the IETF is the primary standardization body responsible for its definition, as well as the specification of
many of its protocols, such as TCP, UDP, IP, DNS, and BGP. But the Internet architecture also embraces
many protocols defined by other organizations, including IEEE’s 802.11 ethernet and Wi-Fi standards,
W3C’s HTTP/HTML web specifications, 3GPP’s 4G and 5G cellular networks standards, and ITU-T’s
H.232 video encoding standards, to name a few.

In addition to defining architectures and specifying protocols, there are yet other organizations that sup-
port the larger goal of interoperability. One example is the IANA (Internet Assigned Numbers Authority),

30 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

which as its name impies, is responsible for handing out the unique identifiers needed to make the proto-
cols work. TANA, in turn, is a department within the ICANN (Internt Corporation for Assigned Names

and Numbers), a non-profit organization that’s responsible for the overall stewardship of the Internet.

The Internet architecture has three features that are worth highlighting. First, as best illustrated by Figure
1.15, the Internet architecture does not imply strict layering. The application is free to bypass the defined
transport layers and to directly use IP or one of the underlying networks. In fact, programmers are free to
define new channel abstractions or applications that run on top of any of the existing protocols.

Second, if you look closely at the protocol graph in Figure 1.14, you will notice an hourglass shape—wide
at the top, narrow in the middle, and wide at the bottom. This shape actually reflects the central philosophy
of the architecture. That is, IP serves as the focal point for the architecture—it defines a common method
for exchanging packets among a wide collection of networks. Above IP there can be arbitrarily many
transport protocols, each offering a different channel abstraction to application programs. Thus, the issue of
delivering messages from host to host is completely separated from the issue of providing a useful process-
to-process communication service. Below IP, the architecture allows for arbitrarily many different network
technologies, ranging from Ethernet to wireless to single point-to-point links.

A final attribute of the Internet architecture (or more accurately, of the IETF culture) is that in order for a
new protocol to be officially included in the architecture, there must be both a protocol specification and at
least one (and preferably two) representative implementations of the specification. The existence of working
implementations is required for standards to be adopted by the IETF. This cultural assumption of the design
community helps to ensure that the architecture’s protocols can be efficiently implemented. Perhaps the
value the Internet culture places on working software is best exemplified by a quote on T-shirts commonly
worn at IETF meetings:

We reject kings, presidents, and voting. We believe in rough consensus and running code.

(David Clark)

Key Takeaway

Of these three attributes of the Internet architecture, the hourglass design philosophy is important enough
to bear repeating. The hourglass’s narrow waist represents a minimal and carefully chosen set of global ca-
pabilities that allows both higher-level applications and lower-level communication technologies to coexist,
share capabilities, and evolve rapidly. The narrow-waisted model is critical to the Internet’s ability to adapt
to new user demands and changing technologies. [Next/

1.4 Software

Network architectures and protocol specifications are essential things, but a good blueprint is not enough
to explain the phenomenal success of the Internet: The number of computers connected to the Internet has
grown exponentially for over three decades (although precise numbers are hard to come by). The number of
users of the Internet was estimated to be around 4.1 billion by the end of 2018—roughly half of the world’s
population.

What explains the success of the Internet? There are certainly many contributing factors (including a good
architecture), but one thing that has made the Internet such a runaway success is the fact that so much of

1.4. Software 31

Computer Networks: A Systems Approach, Release Version 6.1

its functionality is provided by software running on general-purpose computers. The significance of this is
that new functionality can be added readily with “just a small matter of programming.” As a result, new
applications and services have been showing up at an incredible pace.

A related factor is the massive increase in computing power available in commodity machines. Although
computer networks have always been capable in principle of transporting any kind of information, such as
digital voice samples, digitized images, and so on, this potential was not particularly interesting if the com-
puters sending and receiving that data were too slow to do anything useful with the information. Virtually
all of today’s computers are capable of playing back digitized audio and video at a speed and resolution that
are quite usable.

In the years since the first edition of this book appeared, the writing of networked applications has become
a mainstream activity and not a job just for a few specialists. Many factors have played into this, including
better tools to make the job easier and the opening up of new markets such as applications for smartphones.

The point to note is that knowing how to implement network software is an essential part of understanding
computer networks, and while the odds are you will not be tasked to implement a low-level protocol like IP,
there is a good chance you will find reason to implement an application-level protocol—the elusive “killer
app’ that will lead to unimaginable fame and fortune. To get you started, this section introduces some of the
issues involved in implementing a network application on top of the Internet. Typically, such programs are
simultaneously an application (i.e., designed to interact with users) and a protocol (i.e., communicates with
peers across the network).

1.4.1 Application Programming Interface (Sockets)

The place to start when implementing a network application is the interface exported by the network. Since
most network protocols are in software (especially those high in the protocol stack), and nearly all computer
systems implement their network protocols as part of the operating system, when we refer to the interface
“exported by the network,” we are generally referring to the interface that the OS provides to its networking
subsystem. This interface is often called the network application programming interface (API).

Although each operating system is free to define its own network API (and most have), over time certain of
these APIs have become widely supported; that is, they have been ported to operating systems other than
their native system. This is what has happened with the socket interface originally provided by the Berkeley
distribution of Unix, which is now supported in virtually all popular operating systems, and is the foundation
of language-specific interfaces, such as the Java or Python socket library. We use Linux and C for all code
examples in this book, Linux because it is open source and C because it remains the language of choice
for network internals. (C also has the advantage of exposing all the low-level details, which is helpful in
understanding the underlying ideas.)

Sockets Enabled Application Explosion

It is hard to overstate the importance of the Socket API. It defines the demarcation point between the
applications running on top of the Internet, and the details of how the Internet is implemented. As a con-
sequence of Sockets providing a well-defined and stable interface, writing Internet applications exploded
into a multi-billion dollar industry. Starting from the humble beginnings of the client/server paradigm
and a handful of simple application programs like email, file transfer, and remote login, everyone now has
access to an never-ending supply of cloud applications from their smartphones.

32 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

This section lays the foundation by revisiting the simplicity of a client program opening a socket so it can
exchange messages with a server program, but today a rich software ecosystem is layered on top of the
Socket API. This layer includes a plethora of cloud-based tools that lower the barrier for implementing
scalable applications. We return to the interplay between the cloud and the network in every chapter,
starting with the Perspective section at the end of Chapter 1.

Before describing the socket interface, it is important to keep two concerns separate in your mind. Each
protocol provides a certain set of services, and the API provides a syntax by which those services can be
invoked on a particular computer system. The implementation is then responsible for mapping the tangible
set of operations and objects defined by the API onto the abstract set of services defined by the protocol. If
you have done a good job of defining the interface, then it will be possible to use the syntax of the interface to
invoke the services of many different protocols. Such generality was certainly a goal of the socket interface,
although it’s far from perfect.

The main abstraction of the socket interface, not surprisingly, is the socket. A good way to think of a socket
is as the point where a local application process attaches to the network. The interface defines operations
for creating a socket, attaching the socket to the network, sending/receiving messages through the socket,
and closing the socket. To simplify the discussion, we will limit ourselves to showing how sockets are used
with TCP.

The first step is to create a socket, which is done with the following operation:

int socket (int domain, int type, int protocol);

The reason that this operation takes three arguments is that the socket interface was designed to be general
enough to support any underlying protocol suite. Specifically, the domain argument specifies the protocol
Jfamily that is going to be used: PF_INET denotes the Internet family, PF_UNIX denotes the Unix pipe
facility, and PF_PACKET denotes direct access to the network interface (i.e., it bypasses the TCP/IP protocol
stack). The type argument indicates the semantics of the communication. SOCK_STREAM is used to
denote a byte stream. SOCK_DGRAM is an alternative that denotes a message-oriented service, such as that
provided by UDP. The protocol argument identifies the specific protocol that is going to be used. In our
case, this argument is UNSPEC because the combination of PF_INET and SOCK_STREAM implies TCP.
Finally, the return value from socket is a handle for the newly created socket—that is, an identifier by
which we can refer to the socket in the future. It is given as an argument to subsequent operations on this
socket.

The next step depends on whether you are a client or a server. On a server machine, the application process
performs a passive open—the server says that it is prepared to accept connections, but it does not actually
establish a connection. The server does this by invoking the following three operations:

int bind(int socket, struct sockaddr *address, int addr_len);
int listen(int socket, int backlog);
int accept (int socket, struct sockaddr xaddress, int xaddr_len);

The bind operation, as its name suggests, binds the newly created socket to the specified address.
This is the network address of the local participant—the server. Note that, when used with the Internet
protocols, address is a data structure that includes both the IP address of the server and a TCP port
number. Ports are used to indirectly identify processes. They are a form of demux keys. The port number is
usually some well-known number specific to the service being offered; for example, web servers commonly
accept connections on port 80.

1.4. Software 33

Computer Networks: A Systems Approach, Release Version 6.1

The 1isten operation then defines how many connections can be pending on the specified socket. Fi-
nally, the accept operation carries out the passive open. It is a blocking operation that does not return
until a remote participant has established a connection, and when it does complete it returns a new socket
that corresponds to this just-established connection, and the address argument contains the remote par-
ticipant’s address. Note that when accept returns, the original socket that was given as an argument still
exists and still corresponds to the passive open; it is used in future invocations of accept.

On the client machine, the application process performs an active open; that is, it says who it wants to
communicate with by invoking the following single operation:

int connect (int socket, struct sockaddr xaddress, int addr_len);

This operation does not return until TCP has successfully established a connection, at which time the ap-
plication is free to begin sending data. In this case, address contains the remote participant’s address. In
practice, the client usually specifies only the remote participant’s address and lets the system fill in the local
information. Whereas a server usually listens for messages on a well-known port, a client typically does not
care which port it uses for itself; the OS simply selects an unused one.

Once a connection is established, the application processes invoke the following two operations to send and
receive data:

int send(int socket, char smessage, int msg_len, int flags);
int recv(int socket, char xbuffer, int buf_len, int flags);

The first operation sends the given message over the specified socket, while the second operation re-
ceives a message from the specified socket into the given buf fer. Both operations take a set of f1ags
that control certain details of the operation.

1.4.2 Example Application

We now show the implementation of a simple client/server program that uses the socket interface to send
messages over a TCP connection. The program also uses other Linux networking utilities, which we intro-
duce as we go. Our application allows a user on one machine to type in and send text to a user on another
machine. It is a simplified version of the Linux talk program, which is similar to the program at the core
of instant messaging applications.

Client

We start with the client side, which takes the name of the remote machine as an argument. It calls the Linux
utility to translate this name into the remote host’s IP address. The next step is to construct the address data
structure (s1in) expected by the socket interface. Notice that this data structure specifies that we’ll be using
the socket to connect to the Internet (AF__INET). In our example, we use TCP port 5432 as the well-known
server port; this happens to be a port that has not been assigned to any other Internet service. The final step
in setting up the connection is to call socket and connect. Once the operation returns, the connection
is established and the client program enters its main loop, which reads text from standard input and sends it
over the socket.

34 Chapter 1. Foundation

Computer Networks

: A Systems Approach, Release Version 6.1

<stdio.h>
<sys/types.h>
<sys/socket.h>
<netinet/in.h>
<netdb.h>

#include
#include
#include
#include
#include

#define SERVER_PORT 5432
#define MAX_LINE 256

int

main (int argc,

{

char * argv|[])

FILE »fp;

struct hostent xhp;
struct sockaddr_in sin;
char +host;

char buf [MAX_LINE];

int s;

int len;

if) A
argv([l];

(argc==
host
}
else {
fprintf (stderr,
exit (1)

"usage: simplex-talk

14

host\n");

/% translate host name into peer's IP address */

hp = gethostbyname (host) ;

if (lhp) {
fprintf (stderr, "simplex-talk: unknown host: %s\n", host);
exit (1) ;

/* build address data structure x/
bzero((char +)&sin, sizeof(sin));
sin.sin_family AF_INET;

bcopy (hp->h_addr,
sin.sin_port htons (SERVER_PORT) ;

/% active open #*/
if ((s socket (PF_INET,
perror ("simplex—-talk:
exit (1)
}
if
{
perror ("simplex—-talk:
close(s);
exit (1);

SOCK_STREAM,
socket");

0

14
(connect (s, (struct sockaddr «*)é&sin,

connect") ;

(char «)&sin.sin_addr,

hp->h_length);

)) < 0)

{

sizeof (sin)) < 0)

(continues on next page)

1.4. Software

35

Computer Networks: A Systems Approach, Release Version 6.1

(continued from previous page)

/+* main loop: get and send lines of text x/
while (fgets(buf, sizeof (buf), stdin)) {
buf [MAX_LINE-1] = '\0';
len = strlen(buf) + 1;
send (s, buf, len, 0);

Server

The server is equally simple. It first constructs the address data structure by filling in its own port number
(SERVER_PORT). By not specifying an IP address, the application program is willing to accept connections
on any of the local host’s IP addresses. Next, the server performs the preliminary steps involved in a
passive open; it creates the socket, binds it to the local address, and sets the maximum number of pending
connections to be allowed. Finally, the main loop waits for a remote host to try to connect, and when one
does, it receives and prints out the characters that arrive on the connection.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#define SERVER_PORT 5432
#define MAX _PENDING 5
#define MAX_ LINE 256

int

main ()

{
struct sockaddr_in sin;
char buf [MAX_LINE];
int buf_len, addr_len;
int s, new_s;

/* build address data structure #*/
bzero((char +)&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr INADDR_ANY;
sin.sin_port = htons (SERVER_PORT) ;

/* setup passive open x/
if ((s = socket (PF_INET, SOCK_STREAM, 0)) < 0) {
perror ("simplex-talk: socket");

exit (1) ;

}

if ((bind (s, (struct sockaddr «)&sin, sizeof(sin))) < 0) {
perror ("simplex-talk: bind");
exit (1);

(continues on next page)

36 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

(continued from previous page)

}

listen (s,

MAX_PENDING) ;

/+ walt for connection, then receive and print text #*/
while (1) {
if ((new_s = accept (s, (struct sockaddr =*)é&sin, &addr_len)) < 0) {
perror ("simplex—-talk: accept");
exit (1);
}
while (buf_len = recv(new_s, buf, sizeof (buf), 0))
fputs (buf, stdout);

close (new_s) ;

1.5 Performance

Up to this point, we have focused primarily on the functional aspects of networks. Like any computer
system, however, computer networks are also expected to perform well. This is because the effectiveness of
computations distributed over the network often depends directly on the efficiency with which the network
delivers the computation’s data. While the old programming adage “first get it right and then make it fast”
remains true, in networking it is often necessary to “design for performance.” It is therefore important to
understand the various factors that impact network performance.

1.5.1 Bandwidth and Latency

Network performance is measured in two fundamental ways: bandwidth (also called throughput) and latency
(also called delay). The bandwidth of a network is given by the number of bits that can be transmitted over
the network in a certain period of time. For example, a network might have a bandwidth of 10 million
bits/second (Mbps), meaning that it is able to deliver 10 million bits every second. It is sometimes useful to
think of bandwidth in terms of how long it takes to transmit each bit of data. On a 10-Mbps network, for
example, it takes 0.1 microsecond (us) to transmit each bit.

Bandwidth and throughput are subtly different terms. First of all, bandwidth is literally a measure of the
width of a frequency band. For example, legacy voice-grade telephone lines supported a frequency band
ranging from 300 to 3300 Hz; it was said to have a bandwidth of 3300 Hz - 300 Hz = 3000 Hz. If you see
the word bandwidth used in a situation in which it is being measured in hertz, then it probably refers to the
range of signals that can be accommodated.

When we talk about the bandwidth of a communication link, we normally refer to the number of bits per
second that can be transmitted on the link. This is also sometimes called the data rate. We might say that
the bandwidth of an Ethernet link is 10 Mbps. A useful distinction can also be made, however, between
the maximum data rate that is available on the link and the number of bits per second that we can actually
transmit over the link in practice. We tend to use the word throughput to refer to the measured performance
of a system. Thus, because of various inefficiencies of implementation, a pair of nodes connected by a
link with a bandwidth of 10 Mbps might achieve a throughput of only 2 Mbps. This would mean that an
application on one host could send data to the other host at 2 Mbps.

1.5. Performance 37

Computer Networks: A Systems Approach, Release Version 6.1

Finally, we often talk about the bandwidth requirements of an application. This is the number of bits per
second that it needs to transmit over the network to perform acceptably. For some applications, this might
be “whatever I can get”; for others, it might be some fixed number (preferably not more than the available
link bandwidth); and for others, it might be a number that varies with time. We will provide more on this
topic later in this section.

While you can talk about the bandwidth of the network as a whole, sometimes you want to be more precise,
focusing, for example, on the bandwidth of a single physical link or of a logical process-to-process channel.
At the physical level, bandwidth is constantly improving, with no end in sight. Intuitively, if you think
of a second of time as a distance you could measure with a ruler and bandwidth as how many bits fit in
that distance, then you can think of each bit as a pulse of some width. For example, each bit on a 1-
Mbps link is 1 us wide, while each bit on a 2-Mbps link is 0.5 us wide, as illustrated in Figure 1.16. The
more sophisticated the transmitting and receiving technology, the narrower each bit can become and, thus,
the higher the bandwidth. For logical process-to-process channels, bandwidth is also influenced by other
factors, including how many times the software that implements the channel has to handle, and possibly
transform, each bit of data.

(a)

1 second

1 second

Figure 1.16.: Bits transmitted at a particular bandwidth can be regarded as having some width: (a) bits
transmitted at 1 Mbps (each bit is 1 microsecond wide); (b) bits transmitted at 2 Mbps (each bit is 0.5
microseconds wide).

The second performance metric, latency, corresponds to how long it takes a message to travel from one end
of a network to the other. (As with bandwidth, we could be focused on the latency of a single link or an
end-to-end channel.) Latency is measured strictly in terms of time. For example, a transcontinental network
might have a latency of 24 milliseconds (ms); that is, it takes a message 24 ms to travel from one coast of
North America to the other. There are many situations in which it is more important to know how long it
takes to send a message from one end of a network to the other and back, rather than the one-way latency.
We call this the round-trip time (RTT) of the network.

We often think of latency as having three components. First, there is the speed-of-light propagation delay.
This delay occurs because nothing, including a bit on a wire, can travel faster than the speed of light. If
you know the distance between two points, you can calculate the speed-of-light latency, although you have
to be careful because light travels across different media at different speeds: It travels at 3.0 x 10% m/s in a
vacuum, 2.3 x 108 m/s in a copper cable, and 2.0 x 10® m/s in an optical fiber. Second, there is the amount
of time it takes to transmit a unit of data. This is a function of the network bandwidth and the size of the
packet in which the data is carried. Third, there may be queuing delays inside the network, since packet
switches generally need to store packets for some time before forwarding them on an outbound link. So, we
could define the total latency as

38 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

Latency = Propagation + Transmit + Queue
Propagation = Distance/SpeedOfLight
Transmit = Size/Bandwidth

where Distance is the length of the wire over which the data will travel, SpeedOfLight is the effective
speed of light over that wire, Size is the size of the packet, and Bandwidth is the bandwidth at which
the packet is transmitted. Note that if the message contains only one bit and we are talking about a single
link (as opposed to a whole network), then the Transmit and Queue terms are not relevant, and latency
corresponds to the propagation delay only.

Bandwidth and latency combine to define the performance characteristics of a given link or channel. Their
relative importance, however, depends on the application. For some applications, latency dominates band-
width. For example, a client that sends a 1-byte message to a server and receives a 1-byte message in
return is latency bound. Assuming that no serious computation is involved in preparing the response, the
application will perform much differently on a transcontinental channel with a 100-ms RTT than it will on
an across-the-room channel with a 1-ms RTT. Whether the channel is 1 Mbps or 100 Mbps is relatively
insignificant, however, since the former implies that the time to transmit a byte (Transimt) is 8 us and the
latter implies Transmit = 0.08 us.

In contrast, consider a digital library program that is being asked to fetch a 25-megabyte (MB) image—the
more bandwidth that is available, the faster it will be able to return the image to the user. Here, the bandwidth
of the channel dominates performance. To see this, suppose that the channel has a bandwidth of 10 Mbps.
It will take 20 seconds to transmit the image (25 x 10® x 8-bits / (10 x 10® Mbps = 20 seconds), making it
relatively unimportant if the image is on the other side of a 1-ms channel or a 100-ms channel; the difference
between a 20.001-second response time and a 20.1-second response time is negligible.

Figure 1.17 gives you a sense of how latency or bandwidth can dominate performance in different circum-
stances. The graph shows how long it takes to move objects of various sizes (1 byte, 2 KB, 1 MB) across
networks with RTTs ranging from 1 to 100 ms and link speeds of either 1.5 or 10 Mbps. We use logarithmic
scales to show relative performance. For a 1-byte object (say, a keystroke), latency remains almost exactly
equal to the RTT, so that you cannot distinguish between a 1.5-Mbps network and a 10-Mbps network. For
a 2-KB object (say, an email message), the link speed makes quite a difference on a 1-ms RTT network but
a negligible difference on a 100-ms RTT network. And for a 1-MB object (say, a digital image), the RTT
makes no difference—it is the link speed that dominates performance across the full range of RTT.

Note that throughout this book we use the terms latency and delay in a generic way to denote how long
it takes to perform a particular function, such as delivering a message or moving an object. When we are
referring to the specific amount of time it takes a signal to propagate from one end of a link to another, we
use the term propagation delay. Also, we make it clear in the context of the discussion whether we are
referring to the one-way latency or the round-trip time.

As an aside, computers are becoming so fast that when we connect them to networks, it is sometimes useful
to think, at least figuratively, in terms of instructions per mile. Consider what happens when a computer that
is able to execute 100 billion instructions per second sends a message out on a channel with a 100-ms RTT.
(To make the math easier, assume that the message covers a distance of 5000 miles.) If that computer sits idle
the full 100 ms waiting for a reply message, then it has forfeited the ability to execute 10 billion instructions,
or 2 million instructions per mile. It had better have been worth going over the network to justify this waste.

1.5. Performance 39

Computer Networks: A Systems Approach, Release Version 6.1

10,000
5000 -
2000 -
1000 A
__ 500
£
~ 1-MB object, 1.5-Mbps link
& 200 4 _ _
5 1-MB object, 10-Mbps link
c 100 P 2-KB object, 1.5-Mbps link — — —
s
D z.’ 2-KB object, 10-Mbps link
S 50- . oy
8 4 1-byte object, 1.5-Mbps link --- ---
| e
o P 1-byte object, 10-Mbps link
o 20 _ _ - /s yt] p
10 - o
5 4 p
2
1 T .
10 100
RTT (ms)
Figure 1.17.: Perceived latency (response time) versus round-trip time for various object sizes and link
speeds.
40 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

1.5.2 Delay x Bandwidth Product

It is also useful to talk about the product of these two metrics, often called the delay x bandwidth product.
Intuitively, if we think of a channel between a pair of processes as a hollow pipe (see Figure 1.18), where
the latency corresponds to the length of the pipe and the bandwidth gives the diameter of the pipe, then the
delay x bandwidth product gives the volume of the pipe—the maximum number of bits that could be in
transit through the pipe at any given instant. Said another way, if latency (measured in time) corresponds
to the length of the pipe, then given the width of each bit (also measured in time) you can calculate how
many bits fit in the pipe. For example, a transcontinental channel with a one-way latency of 50 ms and a
bandwidth of 45 Mbps is able to hold

50 x 10 3sec x 45 x 100 bits/sec = 2.25 x 10° bits

or approximately 280 KB of data. In other words, this example channel (pipe) holds as many bytes as the
memory of a personal computer from the early 1980s could hold.

Delay

el |

Figure 1.18.: Network as a pipe.

The delay x bandwidth product is important to know when constructing high-performance networks because
it corresponds to how many bits the sender must transmit before the first bit arrives at the receiver. If the
sender is expecting the receiver to somehow signal that bits are starting to arrive, and it takes another channel
latency for this signal to propagate back to the sender, then the sender can send up one RTT X bandwidth
worth of data before hearing from the receiver that all is well. The bits in the pipe are said to be “in
flight,” which means that if the receiver tells the sender to stop transmitting it might receive up to one RTT
x bandwidth’s worth of data before the sender manages to respond. In our example above, that amount
corresponds to 5.5 x 10% bits (671 KB) of data. On the other hand, if the sender does not fill the pipe—i.e.,
does not send a whole RTT x bandwidth product’s worth of data before it stops to wait for a signal—the
sender will not fully utilize the network.

Note that most of the time we are interested in the RTT scenario, which we simply refer to as the delay x
bandwidth product, without explicitly saying that “delay” is the RTT (i.e., multiply the one-way delay by
two). Usually, whether the “delay” in delay x bandwidth means one-way latency or RTT is made clear by
the context. Table 1.1 shows some examples of RTT x bandwidth products for some typical network links.

Table 1.1.: Example delay x bandwidth products.

Link Type Bandwidth | One-Way Distance | RTT RTT x Bandwidth
Wireless LAN 54 Mbps 50 m 0.33 us | 18 bits

Satellite 1 Gbps 35,000 km 230 ms | 230 Mb
Cross-country fiber | 10 Gbps 4,000 km 40ms | 400 Mb

1.5. Performance 41

Computer Networks: A Systems Approach, Release Version 6.1

1.5.3 High-Speed Networks

The seeming continual increase in bandwidth causes network designers to start thinking about what happens
in the limit or, stated another way, what is the impact on network design of having infinite bandwidth
available.

Although high-speed networks bring a dramatic change in the bandwidth available to applications, in many
respects their impact on how we think about networking comes in what does not change as bandwidth in-
creases: the speed of light. To quote Scotty from Star Trek, ‘““Ye cannae change the laws of physics.” In other
words, “high speed” does not mean that latency improves at the same rate as bandwidth; the transcontinental
RTT of a 1-Gbps link is the same 100 ms as it is for a 1-Mbps link.

To appreciate the significance of ever-increasing bandwidth in the face of fixed latency, consider what is
required to transmit a 1-MB file over a 1-Mbps network versus over a 1-Gbps network, both of which have
an RTT of 100 ms. In the case of the 1-Mbps network, it takes 80 round-trip times to transmit the file;
during each RTT, 1.25% of the file is sent. In contrast, the same 1-MB file doesn’t even come close to filling
1 RTT’s worth of the 1-Gbps link, which has a delay x bandwidth product of 12.5 MB.

Figure 1.19 illustrates the difference between the two networks. In effect, the 1-MB file looks like a stream
of data that needs to be transmitted across a 1-Mbps network, while it looks like a single packet on a 1-Gbps
network. To help drive this point home, consider that a 1-MB file is to a 1-Gbps network what a 1-KB packet
is to a 1-Mbps network.

1 MB of data=80 pipes-full

)
)
)

)

)
— ’ 1-Mbps cross-country link
aQ —=(] }—

1-Gbps cross-country link

1MB of data=1/12 pipe-full

Figure 1.19.: Relationship between bandwidth and latency. A 1-MB file would fill the 1-Mbps link 80 times
but only fill 1/12th of a 1-Gbps link.

Another way to think about the situation is that more data can be transmitted during each RTT on a high-
speed network, so much so that a single RTT becomes a significant amount of time. Thus, while you
wouldn’t think twice about the difference between a file transfer taking 101 RTTs rather than 100 RTTs (a
relative difference of only 1%), suddenly the difference between 1 RTT and 2 RTTs is significant—a 100%
increase. In other words, latency, rather than throughput, starts to dominate our thinking about network
design.

Perhaps the best way to understand the relationship between throughput and latency is to return to basics.

42 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

The effective end-to-end throughput that can be achieved over a network is given by the simple relationship
Throughput = TransferSize / TransferTime

where TransferTime includes not only the elements of one-way identified earlier in this section, but also any
additional time spent requesting or setting up the transfer. Generally, we represent this relationship as

TransferTime = RTT + 1/Bandwidth x TransferSize

We use in this calculation to account for a request message being sent across the network and the data being
sent back. For example, consider a situation where a user wants to fetch a 1-MB file across a 1-Gbps with a
round-trip time of 100 ms. This includes both the transmit time for 1 MB (1 / 1 Gbps x 1 MB = 8 ms) and
the 100-ms RTT, for a total transfer time of 108 ms. This means that the effective throughput will be

1 MB /108 ms = 74.1 Mbps

not 1 Gbps. Clearly, transferring a larger amount of data will help improve the effective throughput, where
in the limit an infinitely large transfer size will cause the effective throughput to approach the network
bandwidth. On the other hand, having to endure more than 1 RTT—for example, to retransmit missing
packets—will hurt the effective throughput for any transfer of finite size and will be most noticeable for
small transfers.

1.5.4 Application Performance Needs

The discussion in this section has taken a network-centric view of performance; that is, we have talked
in terms of what a given link or channel will support. The unstated assumption has been that application
programs have simple needs—they want as much bandwidth as the network can provide. This is certainly
true of the aforementioned digital library program that is retrieving a 250-MB image; the more bandwidth
that is available, the faster the program will be able to return the image to the user.

However, some applications are able to state an upper limit on how much bandwidth they need. Video
applications are a prime example. Suppose one wants to stream a video that is one quarter the size of a
standard TV screen; that is, it has a resolution of 352 by 240 pixels. If each pixel is represented by 24 bits of
information, as would be the case for 24-bit color, then the size of each frame would be (352 x 240 x 24) / 8
=247.5 KB If the application needs to support a frame rate of 30 frames per second, then it might request a
throughput rate of 75 Mbps. The ability of the network to provide more bandwidth is of no interest to such
an application because it has only so much data to transmit in a given period of time.

Unfortunately, the situation is not as simple as this example suggests. Because the difference between any
two adjacent frames in a video stream is often small, it is possible to compress the video by transmitting
only the differences between adjacent frames. Each frame can also be compressed because not all the detail
in a picture is readily perceived by a human eye. The compressed video does not flow at a constant rate,
but varies with time according to factors such as the amount of action and detail in the picture and the
compression algorithm being used. Therefore, it is possible to say what the average bandwidth requirement
will be, but the instantaneous rate may be more or less.

The key issue is the time interval over which the average is computed. Suppose that this example video
application can be compressed down to the point that it needs only 2 Mbps, on average. If it transmits 1
megabit in a 1-second interval and 3 megabits in the following 1-second interval, then over the 2-second
interval it is transmitting at an average rate of 2 Mbps; however, this will be of little consolation to a channel

1.5. Performance 43

Computer Networks: A Systems Approach, Release Version 6.1

that was engineered to support no more than 2 megabits in any one second. Clearly, just knowing the average
bandwidth needs of an application will not always suffice.

Generally, however, it is possible to put an upper bound on how large a burst an application like this is
likely to transmit. A burst might be described by some peak rate that is maintained for some period of time.
Alternatively, it could be described as the number of bytes that can be sent at the peak rate before reverting
to the average rate or some lower rate. If this peak rate is higher than the available channel capacity, then the
excess data will have to be buffered somewhere, to be transmitted later. Knowing how big of a burst might
be sent allows the network designer to allocate sufficient buffer capacity to hold the burst.

Analogous to the way an application’s bandwidth needs can be something other than “all it can get,” an
application’s delay requirements may be more complex than simply “as little delay as possible.” In the case
of delay, it sometimes doesn’t matter so much whether the one-way latency of the network is 100 ms or
500 ms as how much the latency varies from packet to packet. The variation in latency is called jitter.

Consider the situation in which the source sends a packet once every 33 ms, as would be the case for a
video application transmitting frames 30 times a second. If the packets arrive at the destination spaced out
exactly 33 ms apart, then we can deduce that the delay experienced by each packet in the network was
exactly the same. If the spacing between when packets arrive at the destination—sometimes called the
inter-packet gap—is variable, however, then the delay experienced by the sequence of packets must have
also been variable, and the network is said to have introduced jitter into the packet stream, as shown in
Figure 1.20. Such variation is generally not introduced in a single physical link, but it can happen when
packets experience different queuing delays in a multihop packet-switched network. This queuing delay
corresponds to the component of latency defined earlier in this section, which varies with time.

Interpacket gap

4] [3] [2] [+ E 3l [2][1
Packet Network Racket
source sink

Figure 1.20.: Network-induced jitter.

To understand the relevance of jitter, suppose that the packets being transmitted over the network contain
video frames, and in order to display these frames on the screen the receiver needs to receive a new one
every 33 ms. If a frame arrives early, then it can simply be saved by the receiver until it is time to display
it. Unfortunately, if a frame arrives late, then the receiver will not have the frame it needs in time to update
the screen, and the video quality will suffer; it will not be smooth. Note that it is not necessary to eliminate
jitter, only to know how bad it is. The reason for this is that if the receiver knows the upper and lower bounds
on the latency that a packet can experience, it can delay the time at which it starts playing back the video
(i.e., displays the first frame) long enough to ensure that in the future it will always have a frame to display
when it needs it. The receiver delays the frame, effectively smoothing out the jitter, by storing it in a buffer.

Perspective: Feature Velocity

This chapter introduces some of the stakeholders in computer networks—network designers, application
developers, end users, and network operators—to help motivate the technical requirements that shape how

44 Chapter 1. Foundation

Computer Networks: A Systems Approach, Release Version 6.1

networks are designed and built. This presumes all design decisions are purely technical, but of course, that’s
usually not the case. Many other factors, from market forces, to government policy, to ethical considerations,
also influence how networks are designed and built.

Of these, the marketplace is the most influential, and corresponds to the interplay between network oper-
ators (e.g., AT&T, Comcast, Verizon, DT, NTT, China Unicom), network equipment venders (e.g., Cisco,
Juniper, Ericsson, Nokia, Huawei, NEC), application and service providers (e.g., Facebook, Google, Ama-
zon, Microsoft, Apple, Netflix, Spotify), and of course, subscribers and customers (i.e., individuals, but also
enterprises and businesses). The lines between these players are not always crisp, with many companies
playing multiple roles. The most notable example of this are the large cloud providers, who (a) build their
own networking equipment using commodity components, (b) deploy and operate their own networks, and
(c) provide end-user services and applications on top of their networks.

When you account for these other factors in the technical design process, you realize there are a couple of
implicit assumptions in the textbook version of the story that need to be reevaluated. One is that designing
a network is a one-time activity. Build it once and use it forever (modulo hardware upgrades so users can
enjoy the benefits of the latest performance improvements). A second is that the job of building the network
is largely divorced from the job of operating the network. Neither of these assumptions is quite right.

The network’s design is clearly evolving, and we have documented these changes with each new edition of
the textbook over the years. Doing that on a timeline measured in years has historically been good enough,
but anyone that has downloaded and used the latest smartphone app knows how glacially slow anything
measured in years is by today’s standards. Designing for evolution has to be part of the decision making
process.

On the second point, the companies that build networks are almost always the same ones that operate them.
They are collectively known as network operators, and they include the companies listed above. But if we
again look to the cloud for inspiration, we see that develop-and-operate isn’t true just at the company level,
but it is also how the fastest moving cloud companies organize their engineering teams: around the DevOps
model. (If you are unfamiliar with DevOps, we recommend you read Site Reliability Engineering: How
Google Runs Production Systems to see how it is practiced.)

What this all means is that computer networks are now in the midst of a major transformation, with network
operators trying to simultaneously accelerate the pace of innovation (sometimes known as feature velocity)
and yet continue to offer a reliable service (preserve stability). And they are increasingly doing this by
adopting the best practices of cloud providers, which can be summarized as having two major themes:
(1) take advantage of commodity hardware and move all intelligence into software, and (2) adopt agile
engineering processes that break down barriers between development and operations.

This transformation is sometimes called the “cloudification” or “softwarization” of the network, and while
the Internet has always had a robust software ecosystem, it has historically been limited to the applications
running on top of the network (e.g., using the Socket API described in Section 1.4). What’s changed is
that today these same cloud-inspired engineering practices are being applied to the internals of the network.
This new approach, known as Software Defined Networks (SDN), is a game changer, not so much in terms
of how we address the fundamental technical challenges of framing, routing, fragmentation/reassembly,
packet scheduling, congestion control, security, and so on, but in terms of how rapidly the network evolves
to support new features.

This transformation is so important that we take it up again in the Perspective section at the end of each
chapter. As these discussions will explore, what happens in the networking industry is partly about tech-
nology, but also partly about many other non-technical factors, all of which is a testament to how deeply

1.5. Performance 45

Computer Networks: A Systems Approach, Release Version 6.1

embedded the Internet is in our lives.

Broader Perspective
To continue reading about the cloudification of the Internet, see Perspective: Race to the Edge.

To learn more about DevOps, we recommend: Site Reliability Engineering: How Google Runs Production
Systems, 2016.

46 Chapter 1. Foundation

https://www.amazon.com/Site-Reliability-Engineering-Production-Systems/dp/149192912X/ref=pd_bxgy_14_img_2/131-5109792-2268338?_encoding=UTF8&pd_rd_i=149192912X&pd_rd_r=4b77155f-234d-11e9-944e-278ce23a35b5&pd_rd_w=qIfxg&pd_rd_wg=12dE2&pf_rd_p=6725dbd6-9917-451d-beba-16af7874e407&pf_rd_r=5GN656H9VEG4WEVGB728&psc=1&refRID=5GN656H9VEG4WEVGB728
https://www.amazon.com/Site-Reliability-Engineering-Production-Systems/dp/149192912X/ref=pd_bxgy_14_img_2/131-5109792-2268338?_encoding=UTF8&pd_rd_i=149192912X&pd_rd_r=4b77155f-234d-11e9-944e-278ce23a35b5&pd_rd_w=qIfxg&pd_rd_wg=12dE2&pf_rd_p=6725dbd6-9917-451d-beba-16af7874e407&pf_rd_r=5GN656H9VEG4WEVGB728&psc=1&refRID=5GN656H9VEG4WEVGB728

CHAPTER
TWO

DIRECT LINKS

It is a mistake to look too far ahead. Only one link in the chain of destiny can be handled at a
time.

—Winston Churchill

Problem: Connecting to a Network

In Chapter 1 we saw that networks consist of links interconnecting nodes. One of the fundamental problems
we face is how to connect two nodes together. We also introduced the “cloud” abstraction to represent a
network without revealing all of its internal complexities. So we also need to address the similar problem
of connecting a host to a cloud. This, in effect, is the problem every Internet Service Provider (ISP) faces
when it wants to connect a new customer to its network.

Whether we want to construct a trivial two-node network with one link or connect the one-billionth host to an
existing network like the Internet, we need to address a common set of issues. First, we need some physical
medium over which to make the connection. The medium may be a length of wire, a piece of optical fiber,
or some less tangible medium (such as air) through which electromagnetic radiation (e.g., radio waves) can
be transmitted. It may cover a small area (e.g., an office building) or a wide area (e.g., transcontinental).

Connecting two nodes with a suitable medium is only the first step, however. Five additional problems
must be addressed before the nodes can successfully exchange packets, and once addressed, we will have
provided Layer 2 (L2) connectivity (using terminology from the OSI architecture).

The first is encoding bits onto the transmission medium so that they can be understood by a receiving node.
Second is the matter of delineating the sequence of bits transmitted over the link into complete messages
that can be delivered to the end node. This is the framing problem, and the messages delivered to the end
hosts are often called frames (or sometimes packets). Third, because frames are sometimes corrupted during
transmission, it is necessary to detect these errors and take the appropriate action; this is the error detection
problem. The fourth issue is making a link appear reliable in spite of the fact that it corrupts frames from
time to time. Finally, in those cases where the link is shared by multiple hosts—as is often the case with
wireless links, for example—it is necessary to mediate access to this link. This is the media access control
problem.

Although these five issues—encoding, framing, error detection, reliable delivery, and access mediation—can
be discussed in the abstract, they are very real problems that are addressed in different ways by different
networking technologies. This chapter considers these issues in the context of specific network technolo-
gies: point-to-point fiber links (for which SONET is the prevalent example); Carrier Sense Multiple Access

47

Computer Networks: A Systems Approach, Release Version 6.1

(CSMA) networks (of which classical Ethernet and Wi-Fi are the most famous examples); fiber-to-the home
(for which PON is the dominant standard); and mobile wireless (where 4G is rapidly morphing into 5G).

The goal of this chapter is simultaneously to survey the available link-level technology and to explore these
five fundamental issues. We will examine what it takes to make a wide variety of different physical media
and link technologies useful as building blocks for the construction of robust, scalable networks.

2.1 Technology Landscape

Before diving into the challenges outlined in the problem statement at the beginning of this chapter, it is
helpful to first get a lay of the land, which includes a wide array of link technologies. This is due, in part, to
the diverse circumstances under which users are trying to connect their devices.

At one end of the spectrum, network operators that build global networks must deal with links that span
hundreds or thousands of kilometers connecting refrigerator-sized routers. At the other end of the spectrum,
a typical user encounters links mostly as a way to connect a computer to the existing Internet. Sometimes
this link will be a wireless (Wi-Fi) link in a coffee shop; sometimes it’s an Ethernet link in an office building
or university; sometimes it is a smartphone connected to a cellular network; for an increasingly large slice
of the population it is a fiber optic link provided by an ISP; and many others use some sort of copper wire
or cable to connect. Fortunately, there are many common strategies used on these seemingly disparate types
of links so that they can all be made reliable and useful to higher layers in the protocol stack. This chapter
examines those strategies.

Internet service
Hosts provider (ISP)

Rest of the
Internet

Peering
point

Router

Access technology (e.g., Fiber, Cable, Wi-Fi, Cellular...)
Figure 2.1.: An end-user’s view of the Internet.

Figure 2.1 illustrates various types of links that might be found in today’s Internet. On the left, we see
a variety of end-user devices ranging from smartphones to tablets to full-fledged computers connected by
various means to an ISP. While those links might use different technologies, they all look the same in this
picture—a straight line connecting a device to a router. There are links that connect routers together inside

48 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

the ISP, as well as links that connect the ISP to the “rest of the Internet,” which consists of lots of other ISPs
and the hosts to which they connect.

These links all look alike not just because we’re not very good artists but because part of the role of a
network architecture is to provide a common abstraction of something as complex and diverse as a link. The
idea is that your laptop or smartphone doesn’t have to care what sort of link it is connected to—the only
thing that matters is that it has a link to the Internet. Similarly, a router doesn’t have to care what sort of link
connects it to other routers—it can send a packet on the link with a pretty good expectation that the packet
will reach the other end of the link.

How do we make all these different types of links look sufficiently alike to end users and routers? Essentially,
we have to deal with all the physical limitations and shortcomings of links that exist in the real world. We
sketched out some of these issues in the opening problem statement for this chapter, but before we can
discuss these, we need to first introduce some simple physics. All of these links are made of some physical
material that can propagate signals, such as radio waves or other sorts of electromagnetic radiation, but what
we really want to do is send bits. In the later sections of this chapter, we’ll look at how to encode bits
for transmission on a physical medium, followed by the other issues mentioned above. By the end of this
chapter, we’ll understand how to send complete packets over just about any sort of link, no matter what
physical medium is involved.

One way to characterize links, then, is by the medium they use—typically, copper wire in some form, such as
twisted pair (some Ethernets and landline phones) and coaxial (cable); optical fiber, which is used for both
fiber-to-the-home and many long-distance links in the Internet’s backbone; or air/free space for wireless
links.

Another important link characteristic is the frequency, measured in hertz, with which the electromagnetic
waves oscillate. The distance between a pair of adjacent maxima or minima of a wave, typically measured in
meters, is called the wave’s wavelength. Since all electromagnetic waves travel at the speed of light (which in
turn depends on the medium), that speed divided by the wave’s frequency is equal to its wavelength. We have
already seen the example of a voice-grade telephone line, which carries continuous electromagnetic signals
ranging between 300 Hz and 3300 Hz; a 300-Hz wave traveling through copper would have a wavelength of

SpeedOfLightInCopper / Frequency
=2/3 x 3 x 10%/300
= 667 x 10° meters

Generally, electromagnetic waves span a much wider range of frequencies, ranging from radio waves, to
infrared light, to visible light, to x-rays and gamma rays. Figure 2.2 depicts the electromagnetic spectrum
and shows which media are commonly used to carry which frequency bands.

What Figure 2.2 doesn’t show is where the cellular network fits in. This is a bit complicated because the
specific frequency bands that are licensed for cellular networks vary around the world, and even further com-
plicated by the fact that network operators often simultaneously support both old/legacy technologies and
new/next-generation technologies, each of which occupies a different frequency band. The high-level sum-
mary is that traditional cellular technologies range from 700-MHz to 2400-MHz, with new mid-spectrum
allocations now happening at 6-GHz, and millimeter-wave (mmWave) allocations opening above 24-GHz.
This mmWave band is likely to become an important part of the 5G mobile network.

So far we understand a link to be a physical medium carrying signals in the form of electromagnetic waves.
Such links provide the foundation for transmitting all sorts of information, including the kind of data we

2.1. Technology Landscape 49

Computer Networks: A Systems Approach, Release Version 6.1

f(Hz) 10° 102 10* 105 108 10" 102 10™ 10' 10'® 1020 1022 102

Radio Microwave | Infrared uv X-ray Gamma ray

104 10 108 10”7 108 10° 10 10" 10'2 10 10™ 10" 1076
T S S e o s S S

Satellite Fiber optics
- -
‘ Coax N
AM FM Terrestrial microwave
- - -

TV

Figure 2.2.: Electromagnetic spectrum.

are interested in transmitting—binary data (1s and Os). We say that the binary data is encoded in the signal.
The problem of encoding binary data onto electromagnetic signals is a complex topic. To help make the
topic more manageable, we can think of it as being divided into two layers. The lower layer is concerned
with modulation—varying the frequency, amplitude, or phase of the signal to effect the transmission of
information. A simple example of modulation is to vary the power (amplitude) of a single wavelength.
Intuitively, this is equivalent to turning a light on and off. Because the issue of modulation is secondary
to our discussion of links as a building block for computer networks, we simply assume that it is possible
to transmit a pair of distinguishable signals—think of them as a “high” signal and a “low” signal—and we
consider only the upper layer, which is concerned with the much simpler problem of encoding binary data
onto these two signals. The next section discusses such encodings.

Another way to classify links is in terms of how they are used. Various economic and deployment issues tend
to influence where different link types are found. Most consumers interact with the Internet either through
wireless networks (which they encounter in coffee shops, airports, universities, etc.) or through so-called
last-mile links (or alternatively, access networks) provided by an ISP, as illustrated in Figure 2.1. These
link types are summarized in Table 2.1. They typically are chosen because they are cost-effective ways of
reaching millions of consumers. DSL (Digital Subscriber Line), for example, is an older technology that was
deployed over the existing twisted pair copper wires that already existed for plain old telephone services;
G.Fast is a copper-based technology typically used within multi-dwelling apartment buildings, and PON
(Passive Optical Network) is a newer technology that is commonly used to connect homes and businesses
over recently deployed fiber.

Table 2.1.: Common services available for the last-mile connection
to your home.

Service Bandwidth
DSL (copper) up to 100 Mbps
G.Fast (copper) | up to 1 Gbps
PON (optical) up to 10 Gbps

And of course there is also the mobile or cellular network (also referred to as 4G, but which is rapidly
evolving into 5G) that connects our mobile devices to the Internet. This technology can also serve as the

50 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

sole Internet connection into our homes or offices, but comes with the added benefit of allowing us to
maintain Internet connectivity while moving from place to place.

These example technologies are common options for the last-mile connection to your home or business, but
they are not sufficient for building a complete network from scratch. To do that, you’ll also need some long-
distance backbone links to interconnect cities. Modern backbone links are almost exclusively fiber today,
and they typically use a technology called SONET (Synchronous Optical Network), which was originally
developed to meet the demanding management requirements of telephone carriers.

Finally, in addition to last-mile, backbone, and mobile links, there are the links that you find inside a building
or a campus—generally referred to as local area networks (LANs). Ethernet, and its wireless cousin Wi-Fi,
are the dominant technologies in this space.

This survey of link types is by no means exhaustive, but it should have given you a taste of the diversity
of link types that exist and some of the reasons for that diversity. In the coming sections, we will see how
networking protocols can take advantage of that diversity and present a consistent view of the network to
higher layers in spite of all the low-level complexity and economic factors.

2.2 Encoding

The first step in turning nodes and links into usable building blocks is to understand how to connect them in
such a way that bits can be transmitted from one node to the other. As mentioned in the preceding section,
signals propagate over physical links. The task, therefore, is to encode the binary data that the source node
wants to send into the signals that the links are able to carry and then to decode the signal back into the
corresponding binary data at the receiving node. We ignore the details of modulation and assume we are
working with two discrete signals: high and low. In practice, these signals might correspond to two different
voltages on a copper-based link, two different power levels on an optical link, or two different amplitudes
on a radio transmission.

Most of the functions discussed in this chapter are performed by a network adaptor—a piece of hardware
that connects a node to a link. The network adaptor contains a signalling component that actually encodes
bits into signals at the sending node and decodes signals into bits at the receiving node. Thus, as illustrated
in Figure 2.3, signals travel over a link between two signalling components, and bits flow between network
adaptors.

Signalling component

I ‘/,/ Signal >~.
Node Adaptor = Adaptor Node
I . Bits o
= =

Figure 2.3.: Signals travel between signalling components; bits flow between adaptors.

Let’s return to the problem of encoding bits onto signals. The obvious thing to do is to map the data value 1
onto the high signal and the data value 0 onto the low signal. This is exactly the mapping used by an encoding
scheme called, cryptically enough, non-return to zero (NRZ). For example, Figure 2.4 schematically depicts
the NRZ-encoded signal (bottom) that corresponds to the transmission of a particular sequence of bits (top).

2.2. Encoding 51

Computer Networks: A Systems Approach, Release Version 6.1

Bis 0 01 0111101000010

Figure 2.4.: NRZ encoding of a bit stream.

The problem with NRZ is that a sequence of several consecutive 1s means that the signal stays high on the
link for an extended period of time; similarly, several consecutive Os means that the signal stays low for a
long time. There are two fundamental problems caused by long strings of 1s or Os. The first is that it leads
to a situation known as baseline wander. Specifically, the receiver keeps an average of the signal it has
seen so far and then uses this average to distinguish between low and high signals. Whenever the signal is
significantly lower than this average, the receiver concludes that it has just seen a 0; likewise, a signal that
is significantly higher than the average is interpreted to be a 1. The problem, of course, is that too many
consecutive 1s or Os cause this average to change, making it more difficult to detect a significant change in
the signal.

The second problem is that frequent transitions from high to low and vice versa are necessary to enable
clock recovery. Intuitively, the clock recovery problem is that both the encoding and decoding processes are
driven by a clock—every clock cycle the sender transmits a bit and the receiver recovers a bit. The sender’s
and the receiver’s clocks have to be precisely synchronized in order for the receiver to recover the same bits
the sender transmits. If the receiver’s clock is even slightly faster or slower than the sender’s clock, then it
does not correctly decode the signal. You could imagine sending the clock to the receiver over a separate
wire, but this is typically avoided because it makes the cost of cabling twice as high. So, instead, the receiver
derives the clock from the received signal—the clock recovery process. Whenever the signal changes, such
as on a transition from 1 to 0 or from O to 1, then the receiver knows it is at a clock cycle boundary, and it
can resynchronize itself. However, a long period of time without such a transition leads to clock drift. Thus,
clock recovery depends on having lots of transitions in the signal, no matter what data is being sent.

One approach that addresses this problem, called non-return to zero inverted (NRZI), has the sender make
a transition from the current signal to encode a 1 and stay at the current signal to encode a 0. This solves
the problem of consecutive 1s, but obviously does nothing for consecutive Os. NRZI is illustrated in Figure
2.5. An alternative, called Manchester encoding, does a more explicit job of merging the clock with the
signal by transmitting the exclusive OR of the NRZ-encoded data and the clock. (Think of the local clock
as an internal signal that alternates from low to high; a low/high pair is considered one clock cycle.) The
Manchester encoding is also illustrated in Figure 2.5. Observe that the Manchester encoding results in 0
being encoded as a low-to-high transition and 1 being encoded as a high-to-low transition. Because both Os
and 1s result in a transition to the signal, the clock can be effectively recovered at the receiver. (There is also
a variant of the Manchester encoding, called Differential Manchester, in which a 1 is encoded with the first
half of the signal equal to the last half of the previous bit’s signal and a 0 is encoded with the first half of the
signal opposite to the last half of the previous bit’s signal.)

The problem with the Manchester encoding scheme is that it doubles the rate at which signal transitions are
made on the link, which means that the receiver has half the time to detect each pulse of the signal. The rate
at which the signal changes is called the link’s baud rate. In the case of the Manchester encoding, the bit
rate is half the baud rate, so the encoding is considered only 50% efficient. Keep in mind that if the receiver
had been able to keep up with the faster baud rate required by the Manchester encoding in Figure 2.5, then
both NRZ and NRZI could have been able to transmit twice as many bits in the same time period.

52 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

Bis 0 01 0111101000010
| I

Figure 2.5.: Different encoding strategies.

Note that bit rate isn’t necessarily less than or equal to the baud rate, as the Manchester encoding suggests.
If the modulation scheme is able to utilize (and recognize) four different signals, as opposed to just two
(e.g., “high” and “low”), then it is possible to encode two bits into each clock interval, resulting in a bit
rate that is twice the baud rate. Similarly, being able to modulate among eight different signals means being
able to transmit three bits per clock interval. In general, it is important to keep in mind we have over-
simplified modulation, which is much more sophisticated than transmitting “high” and “low” signals. It is
not uncommon to vary a combination of a signal’s phase and amplitude, making it possible to encode 16 or
even 64 different patterns (often dalled symbols) during each clock interval. QAM (Quadrature Amplitude
Modulation) is widely used example of such a modulation scheme.

A final encoding that we consider, called 4B/5B, attempts to address the inefficiency of the Manchester
encoding without suffering from the problem of having extended durations of high or low signals. The idea
of 4B/5B is to insert extra bits into the bit stream so as to break up long sequences of Os or 1s. Specifically,
every 4 bits of actual data are encoded in a 5-bit code that is then transmitted to the receiver; hence, the
name 4B/5B. The 5-bit codes are selected in such a way that each one has no more than one leading 0 and
no more than two trailing Os. Thus, when sent back-to-back, no pair of 5-bit codes results in more than three
consecutive Os being transmitted. The resulting 5-bit codes are then transmitted using the NRZI encoding,
which explains why the code is only concerned about consecutive 0s—NRZI already solves the problem of
consecutive 1s. Note that the 4B/5B encoding results in 80% efficiency.

2.2. Encoding 53

Computer Networks: A Systems Approach, Release Version 6.1

Table 2.2.: 4B/5B encoding.

4-bit Data Symbol | 5-bit Code
0000 11110
0001 01001
0010 10100
0011 10101
0100 01010
0101 01011
0110 01110
0111 01111
1000 10010
1001 10011
1010 10110
1011 10111
1100 11010
1101 11011
1110 11100
1111 11101

Table 2.2 gives the 5-bit codes that correspond to each of the 16 possible 4-bit data symbols. Notice that
since 5 bits are enough to encode 32 different codes, and we are using only 16 of these for data, there are
16 codes left over that we can use for other purposes. Of these, code 11111 is used when the line is idle,
code 00000 corresponds to when the line is dead, and 00100 is interpreted to mean halt. Of the remaining
13 codes, 7 of them are not valid because they violate the “one leading 0, two trailing Os,” rule, and the other
6 represent various control symbols. Some of the framing protocols described later in this chapter make use
of these control symbols.

2.3 Framing

Now that we have seen how to transmit a sequence of bits over a point-to-point link—from adaptor to adap-
tor—let’s consider the scenario in Figure 2.6. Recall from Chapter 1 that we are focusing on packet-switched
networks, which means that blocks of data (called frames at this level), not bit streams, are exchanged be-
tween nodes. It is the network adaptor that enables the nodes to exchange frames. When node A wishes to
transmit a frame to node B, it tells its adaptor to transmit a frame from the node’s memory. This results in
a sequence of bits being sent over the link. The adaptor on node B then collects together the sequence of
bits arriving on the link and deposits the corresponding frame in B’s memory. Recognizing exactly what set
of bits constitutes a frame—that is, determining where the frame begins and ends—is the central challenge
faced by the adaptor.

There are several ways to address the framing problem. This section uses three different protocols to illus-
trate the various points in the design space. Note that while we discuss framing in the context of point-to-
point links, the problem is a fundamental one that must also be addressed in multiple-access networks like
Ethernet and Wi-Fi.

54 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

I Bits
Node A | Adaptor Adaptor | Node B

Frames

Figure 2.6.: Bits flow between adaptors, frames between hosts.

2.3.1 Byte-Oriented Protocols (PPP)

One of the oldest approaches to framing—it has its roots in connecting terminals to mainframes—is to view
each frame as a collection of bytes (characters) rather than a collection of bits. Early examples of such byte-
oriented protocols are the Binary Synchronous Communication (BISYNC) protocol developed by IBM in
the late 1960s, and the Digital Data Communication Message Protocol (DDCMP) used in Digital Equipment
Corporation’s DECNET. (Once upon a time, large computer companies like IBM and DEC also built private
networks for their customers.) The widely used Point-to-Point Protocol (PPP) is a recent example of this
approach.

At a high level, there are two approaches to byte-oriented framing. The first is to use special characters
known as sentinel characters to indicate where frames start and end. The idea is to denote the beginning
of a frame by sending a special SYN (synchronization) character. The data portion of the frame is then
sometimes contained between two more special characters: STX (start of text) and ETX (end of text).
BISYNC used this approach. The problem with the sentinel approach, of course, is that one of the special
characters might appear in the data portion of the frame. The standard way to overcome this problem by
“escaping” the character by preceding it with a DLE (data-link-escape) character whenever it appears in the
body of a frame; the DLE character is also escaped (by preceding it with an extra DLE) in the frame body.
(C programmers may notice that this is analogous to the way a quotation mark is escaped by the backslash
when it occurs inside a string.) This approach is often called character stuffing because extra characters are
inserted in the data portion of the frame.

The alternative to detecting the end of a frame with a sentinel value is to include the number of bytes in the
frame at the beginning of the frame, in the frame header. DDCMP used this approach. One danger with
this approach is that a transmission error could corrupt the count field, in which case the end of the frame
would not be correctly detected. (A similar problem exists with the sentinel-based approach if the ETX field
becomes corrupted.) Should this happen, the receiver will accumulate as many bytes as the bad count field
indicates and then use the error detection field to determine that the frame is bad. This is sometimes called
a framing error. The receiver will then wait until it sees the next SYN character to start collecting the bytes
that make up the next frame. It is therefore possible that a framing error will cause back-to-back frames to
be incorrectly received.

The Point-to-Point Protocol (PPP), which is commonly used to carry Internet Protocol packets over various
sorts of point-to-point links, uses sentinels and character stuffing. The format for a PPP frame is given in
Figure 2.7.

This figure is the first of many that you will see in this book that are used to illustrate frame or packet

2.3. Framing 55

Computer Networks: A Systems Approach, Release Version 6.1

8 8 8 16 16 8

Flag | Address | Control | Protocol | Payload % Checksum | Flag

Figure 2.7.: PPP frame format.

formats, so a few words of explanation are in order. We show a packet as a sequence of labeled fields.
Above each field is a number indicating the length of that field in bits. Note that the packets are transmitted
beginning with the leftmost field.

The special start-of-text character, denoted as the Flag fieldis 01111110. The Address and Control
fields usually contain default values and so are uninteresting. The (Protocol) field is used for demultiplexing;
it identifies the high-level protocol, such as IP. The frame payload size can be negotiated, but it is 1500 bytes
by default. The Checksum field is either 2 (by default) or 4 bytes long. Note that despite its common name,
this field is actually a CRC and not a checksum (as described in the next section).

The PPP frame format is unusual in that several of the field sizes are negotiated rather than fixed. This
negotiation is conducted by a protocol called the Link Control Protocol (LCP). PPP and LCP work in
tandem: LCP sends control messages encapsulated in PPP frames—such messages are denoted by an LCP
identifier in the PPP (Protocol) field—and then turns around and changes PPP’s frame format based on the
information contained in those control messages. LCP is also involved in establishing a link between two
peers when both sides detect that communication over the link is possible (e.g., when each optical receiver
detects an incoming signal from the fiber to which it connects).

2.3.2 Bit-Oriented Protocols (HDLC)

Unlike byte-oriented protocols, a bit-oriented protocol is not concerned with byte boundaries—it simply
views the frame as a collection of bits. These bits might come from some character set, such as ASCII;
they might be pixel values in an image; or they could be instructions and operands from an executable file.
The Synchronous Data Link Control (SDLC) protocol developed by IBM is an example of a bit-oriented
protocol; SDLC was later standardized by the ISO as the High-Level Data Link Control (HDLC) protocol.
In the following discussion, we use HDLC as an example; its frame format is given in Figure 2.8.

HDLC denotes both the beginning and the end of a frame with the distinguished bit sequence 01111110.
This sequence is also transmitted during any times that the link is idle so that the sender and receiver can
keep their clocks synchronized. In this way, both protocols essentially use the sentinel approach. Because
this sequence might appear anywhere in the body of the frame—in fact, the bits 01111110 might cross byte
boundaries—bit-oriented protocols use the analog of the DLE character, a technique known as bit stuffing.

8 16 16 8
Beginning Header Body %ﬁ CRC Ending
sequence sequence

Figure 2.8.: HDLC frame format.

Bit stuffing in the HDLC protocol works as follows. On the sending side, any time five consecutive 1s
have been transmitted from the body of the message (i.e., excluding when the sender is trying to transmit the
distinguished 01111110 sequence), the sender inserts a 0 before transmitting the next bit. On the receiving

56 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

side, should five consecutive 1s arrive, the receiver makes its decision based on the next bit it sees (i.e., the
bit following the five 1s). If the next bit is a 0, it must have been stuffed, and so the receiver removes it. If
the next bit is a 1, then one of two things is true: Either this is the end-of-frame marker or an error has been
introduced into the bit stream. By looking at the next bit, the receiver can distinguish between these two
cases. If it sees a O (i.e., the last 8 bits it has looked at are 01111110), then it is the end-of-frame marker;
if it sees a 1 (i.e., the last 8 bits it has looked at are 01111111), then there must have been an error and the
whole frame is discarded. In the latter case, the receiver has to wait for the next 01111110 before it can
start receiving again, and, as a consequence, there is the potential that the receiver will fail to receive two
consecutive frames. Obviously, there are still ways that framing errors can go undetected, such as when an
entire spurious end-of-frame pattern is generated by errors, but these failures are relatively unlikely. Robust
ways of detecting errors are discussed in a later section.

An interesting characteristic of bit stuffing, as well as character stuffing, is that the size of a frame is de-
pendent on the data that is being sent in the payload of the frame. It is in fact not possible to make all
frames exactly the same size, given that the data that might be carried in any frame is arbitrary. (To convince
yourself of this, consider what happens if the last byte of a frame’s body is the ETX character.) A form of
framing that ensures that all frames are the same size is described in the next subsection.

2.3.3 Clock-Based Framing (SONET)

A third approach to framing is exemplified by the Synchronous Optical Network (SONET) standard. For
lack of a widely accepted generic term, we refer to this approach simply as clock-based framing. SONET
was first proposed by Bell Communications Research (Bellcore), and then developed under the American
National Standards Institute (ANSI) for digital transmission over optical fiber; it has since been adopted by
the ITU-T. SONET has been for many years the dominant standard for long-distance transmission of data
over optical networks.

An important point to make about SONET before we go any further is that the full specification is substan-
tially larger than this book. Thus, the following discussion will necessarily cover only the high points of the
standard. Also, SONET addresses both the framing problem and the encoding problem. It also addresses
a problem that is very important for phone companies—the multiplexing of several low-speed links onto
one high-speed link. (In fact, much of SONET’s design reflects the fact that phone companies have to be
concerned with multiplexing large numbers of the 64-kbps channels that traditionally are used for telephone
calls.) We begin with SONET’s approach to framing and discuss the other issues following.

As with the previously discussed framing schemes, a SONET frame has some special information that tells
the receiver where the frame starts and ends; however, that is about as far as the similarities go. Notably,
no bit stuffing is used, so that a frame’s length does not depend on the data being sent. So the question to
ask is “How does the receiver know where each frame starts and ends?” We consider this question for the
lowest-speed SONET link, which is known as STS-1 and runs at 51.84 Mbps. An STS-1 frame is shown
in Figure 2.9. It is arranged as 9 rows of 90 bytes each, and the first 3 bytes of each row are overhead,
with the rest being available for data that is being transmitted over the link. The first 2 bytes of the frame
contain a special bit pattern, and it is these bytes that enable the receiver to determine where the frame starts.
However, since bit stuffing is not used, there is no reason why this pattern will not occasionally turn up in the
payload portion of the frame. To guard against this, the receiver looks for the special bit pattern consistently,
hoping to see it appearing once every 810 bytes, since each frame is 9 x 90 = 810 bytes long. When the
special pattern turns up in the right place enough times, the receiver concludes that it is in sync and can then
interpret the frame correctly.

2.3. Framing 57

Computer Networks: A Systems Approach, Release Version 6.1

\

Overhead |- Payload

9 rows

Y

90 columns

A

Figure 2.9.: A SONET STS-1 frame.

One of the things we are not describing due to the complexity of SONET is the detailed use of all the other
overhead bytes. Part of this complexity can be attributed to the fact that SONET runs across the carrier’s
optical network, not just over a single link. (Recall that we are glossing over the fact that the carriers
implement a network, and we are instead focusing on the fact that we can lease a SONET link from them
and then use this link to build our own packet-switched network.) Additional complexity comes from the
fact that SONET provides a considerably richer set of services than just data transfer. For example, 64 kbps
of a SONET link’s capacity is set aside for a voice channel that is used for maintenance.

The overhead bytes of a SONET frame are encoded using NRZ, the simple encoding described in the pre-
vious section where 1s are high and Os are low. However, to ensure that there are plenty of transitions to
allow the receiver to recover the sender’s clock, the payload bytes are scrambled. This is done by calculating
the exclusive OR (XOR) of the data to be transmitted and by the use of a well-known bit pattern. The bit
pattern, which is 127 bits long, has plenty of transitions from 1 to 0, so that XORing it with the transmitted
data is likely to yield a signal with enough transitions to enable clock recovery.

SONET supports the multiplexing of multiple low-speed links in the following way. A given SONET link
runs at one of a finite set of possible rates, ranging from 51.84 Mbps (STS-1) to 39,813,120 Mbps (STS-
768).! Note that all of these rates are integer multiples of STS-1. The significance for framing is that a
single SONET frame can contain subframes for multiple lower-rate channels. A second related feature is
that each frame is 125 ps long. This means that at STS-1 rates, a SONET frame is 810 bytes long, while
at STS-3 rates, each SONET frame is 2430 bytes long. Notice the synergy between these two features: 3 x
810 = 2430, meaning that three STS-1 frames fit exactly in a single STS-3 frame.

Intuitively, the STS-N frame can be thought of as consisting of N STS-1 frames, where the bytes from these
frames are interleaved; that is, a byte from the first frame is transmitted, then a byte from the second frame
is transmitted, and so on. The reason for interleaving the bytes from each STS-N frame is to ensure that the
bytes in each STS-1 frame are evenly paced; that is, bytes show up at the receiver at a smooth 51 Mbps,
rather than all bunched up during one particular 1/N*" of the 125-us interval.

Although it is accurate to view an STS-N signal as being used to multiplex N STS-1 frames, the payload

! STS stands for Synchronous Transport Signal, which is how SONET talks about frames. There is a parallel term—Oprical
Carrier (OC)—that is used to talk about the underlying optical signal that carries SONET frames. We say these two terms are
parallel because STS-3 and OC-3, to use a concrete example, both imply a transmission rate of 155.52 Mbps. Since we’re focused
on framing here, we will stick with STS, but it is more likely that you will hear someone refer to an optical link by its “OC” name.

58 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

S STS-1 I S STS-1 I S STS- I

Hdr STS-3c

Figure 2.10.: Three STS-1 frames multiplexed onto one STS-3c frame.

from these STS-1 frames can be linked together to form a larger STS-N payload; such a link is denoted STS-
Nc (for concatenated). One of the fields in the overhead is used for this purpose. Figure 2.10 schematically
depicts concatenation in the case of three STS-1 frames being concatenated into a single STS-3c frame. The
significance of a SONET link being designated as STS-3c rather than STS-3 is that, in the former case, the
user of the link can view it as a single 155.25-Mbps pipe, whereas an STS-3 should really be viewed as three
51.84-Mbps links that happen to share a fiber.

N

<+— 87 columns ———

Frame O

9 rows

Frame 1 _//

Figure 2.11.: SONET frames out of phase.

Finally, the preceding description of SONET is overly simplistic in that it assumes that the payload for each
frame is completely contained within the frame. (Why wouldn’t it be?) In fact, we should view the STS-1
frame just described as simply a placeholder for the frame, where the actual payload may float across frame
boundaries. This situation is illustrated in Figure 2.11. Here we see both the STS-1 payload floating across
two STS-1 frames and the payload shifted some number of bytes to the right and, therefore, wrapped around.
One of the fields in the frame overhead points to the beginning of the payload. The value of this capability
is that it simplifies the task of synchronizing the clocks used throughout the carriers’ networks, which is
something that carriers spend a lot of their time worrying about.

2.4 Error Detection

As discussed in Chapter 1, bit errors are sometimes introduced into frames. This happens, for example,
because of electrical interference or thermal noise. Although errors are rare, especially on optical links,
some mechanism is needed to detect these errors so that corrective action can be taken. Otherwise, the end

2.4. Error Detection 59

Computer Networks: A Systems Approach, Release Version 6.1

user is left wondering why the C program that successfully compiled just a moment ago now suddenly has
a syntax error in it, when all that happened in the interim is that it was copied across a network file system.

There is a long history of techniques for dealing with bit errors in computer systems, dating back to at
least the 1940s. Hamming and Reed-Solomon codes are two notable examples that were developed for
use in punch card readers, when storing data on magnetic disks, and in early core memories. This section
describes some of the error detection techniques most commonly used in networking.

Detecting errors is only one part of the problem. The other part is correcting errors once detected. Two
basic approaches can be taken when the recipient of a message detects an error. One is to notify the sender
that the message was corrupted so that the sender can retransmit a copy of the message. If bit errors are
rare, then in all probability the retransmitted copy will be error free. Alternatively, some types of error
detection algorithms allow the recipient to reconstruct the correct message even after it has been corrupted;
such algorithms rely on error-correcting codes, discussed below.

One of the most common techniques for detecting transmission errors is a technique known as the cyclic
redundancy check (CRC). It is used in nearly all the link-level protocols discussed in this chapter. This
section outlines the basic CRC algorithm, but before discussing that approach, we first describe the simpler
checksum scheme used by several Internet protocols.

The basic idea behind any error detection scheme is to add redundant information to a frame that can be used
to determine if errors have been introduced. In the extreme, we could imagine transmitting two complete
copies of the data. If the two copies are identical at the receiver, then it is probably the case that both are
correct. If they differ, then an error was introduced into one (or both) of them, and they must be discarded.
This is a rather poor error detection scheme for two reasons. First, it sends n redundant bits for an n-bit
message. Second, many errors will go undetected—any error that happens to corrupt the same bit positions
in the first and second copies of the message. In general, the goal of error detecting codes is to provide a
high probability of detecting errors combined with a relatively low number of redundant bits.

Fortunately, we can do a lot better than this simple scheme. In general, we can provide quite strong error
detection capability while sending only k£ redundant bits for an n-bit message, where k is much smaller than
n. On an Ethernet, for example, a frame carrying up to 12,000 bits (1500 bytes) of data requires only a
32-bit CRC code, or as it is commonly expressed, uses CRC-32. Such a code will catch the overwhelming
majority of errors, as we will see below.

We say that the extra bits we send are redundant because they add no new information to the message.
Instead, they are derived directly from the original message using some well-defined algorithm. Both the
sender and the receiver know exactly what that algorithm is. The sender applies the algorithm to the message
to generate the redundant bits. It then transmits both the message and those few extra bits. When the receiver
applies the same algorithm to the received message, it should (in the absence of errors) come up with the
same result as the sender. It compares the result with the one sent to it by the sender. If they match, it can
conclude (with high likelihood) that no errors were introduced in the message during transmission. If they
do not match, it can be sure that either the message or the redundant bits were corrupted, and it must take
appropriate action—that is, discarding the message or correcting it if that is possible.

One note on the terminology for these extra bits. In general, they are referred to as error-detecting codes. In
specific cases, when the algorithm to create the code is based on addition, they may be called a checksum.
We will see that the Internet checksum is appropriately named: It is an error check that uses a summing
algorithm. Unfortunately, the word checksum is often used imprecisely to mean any form of error-detecting
code, including CRCs. This can be confusing, so we urge you to use the word checksum only to apply to
codes that actually do use addition and to use error-detecting code to refer to the general class of codes

60 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

described in this section.

2.4.1 Internet Checksum Algorithm

Our first approach to error detection is exemplified by the Internet checksum. Although it is not used at the
link level, it nevertheless provides the same sort of functionality as CRCs, so we discuss it here.

The idea behind the Internet checksum is very simple—you add up all the words that are transmitted and
then transmit the result of that sum. The result is the checksum. The receiver performs the same calculation
on the received data and compares the result with the received checksum. If any transmitted data, including
the checksum itself, is corrupted, then the results will not match, so the receiver knows that an error occurred.

You can imagine many different variations on the basic idea of a checksum. The exact scheme used by the
Internet protocols works as follows. Consider the data being checksummed as a sequence of 16-bit integers.
Add them together using 16-bit ones’ complement arithmetic (explained below) and then take the ones’
complement of the result. That 16-bit number is the checksum.

In ones’ complement arithmetic, a negative integer (-x) is represented as the complement of x; that is,
each bit of x is inverted. When adding numbers in ones’ complement arithmetic, a carryout from the most
significant bit needs to be added to the result. Consider, for example, the addition of -5 and -3 in ones’
complement arithmetic on 4-bit integers: +5 is 0101, so -5 is 1010; +3 is 0011, so -3 is 1100. If we add
1010 and 1100, ignoring the carry, we get 0110. In ones’ complement arithmetic, the fact that this operation
caused a carry from the most significant bit causes us to increment the result, giving 0111, which is the ones’
complement representation of -8 (obtained by inverting the bits in 1000), as we would expect.

The following routine gives a straightforward implementation of the Internet’s checksum algorithm. The
count argument gives the length of buf measured in 16-bit units. The routine assumes that buf has
already been padded with Os to a 16-bit boundary.

u_short
cksum (u_short +buf, int count)

{

register u_long sum = 0;

while (count—-)
{
sum += *buf++;
if (sum & OxFFFF0000)
{
/* carry occurred, so wrap around #*/
sum &= OxFFFF;
sum++;

}
return ~ (sum & OxXFFFF);

This code ensures that the calculation uses ones’ complement arithmetic rather than the twos’ complement
that is used in most machines. Note the 1 f statement inside the while loop. If there is a carry into the top
16 bits of sum, then we increment sum just as in the previous example.

2.4. Error Detection 61

Computer Networks: A Systems Approach, Release Version 6.1

Compared to our repetition code, this algorithm scores well for using a small number of redundant
bits—only 16 for a message of any length—but it does not score extremely well for strength of error detec-
tion. For example, a pair of single-bit errors, one of which increments a word and one of which decrements
another word by the same amount, will go undetected. The reason for using an algorithm like this in spite of
its relatively weak protection against errors (compared to a CRC, for example) is simple: This algorithm is
much easier to implement in software. Experience has suggested that a checksum of this form was adequate,
but one reason it is adequate is that this checksum is the last line of defense in an end-to-end protocol. The
majority of errors are picked up by stronger error detection algorithms, such as CRCs, at the link level.

2.4.2 Cyclic Redundancy Check

It should be clear by now that a major goal in designing error detection algorithms is to maximize the
probability of detecting errors using only a small number of redundant bits. Cyclic redundancy checks use
some fairly powerful mathematics to achieve this goal. For example, a 32-bit CRC gives strong protection
against common bit errors in messages that are thousands of bytes long. The theoretical foundation of the
cyclic redundancy check is rooted in a branch of mathematics called finite fields. While this may sound
daunting, the basic ideas can be easily understood.

To start, think of an (n+1)-bit message as being represented by an n degree polynomial, that is, a polynomial
whose highest-order term is z". The message is represented by a polynomial by using the value of each bit
in the message as the coefficient for each term in the polynomial, starting with the most significant bit to
represent the highest-order term. For example, an 8-bit message consisting of the bits 10011010 corresponds
to the polynomial

M(z)=1xz)+ (0xx%)+ (0xz%) + (1 xzb)+ (1 x23)+ (0x2?) + (1 x z') + (0 x 29)

M(z) =" +2* +2° + 2
We can thus think of a sender and a receiver as exchanging polynomials with each other.

For the purposes of calculating a CRC, a sender and receiver have to agree on a divisor polynomial, C'(x).
C(x) is a polynomial of degree k. For example, suppose C(x) = x34x2+41. In this case, k = 3. The answer
to the question “Where did C'(x) come from?” is, in most practical cases, “You look it up in a book.” In fact,
the choice of C'(x) has a significant impact on what types of errors can be reliably detected, as we discuss
below. There are a handful of divisor polynomials that are very good choices for various environments, and
the exact choice is normally made as part of the protocol design. For example, the Ethernet standard uses a
well-known polynomial of degree 32.

When a sender wishes to transmit a message M (z) that is n+1 bits long, what is actually sent is the (n+1)-bit
message plus k bits. We call the complete transmitted message, including the redundant bits, P(x). What
we are going to do is contrive to make the polynomial representing P(x) exactly divisible by C'(x); we
explain how this is achieved below. If P(x) is transmitted over a link and there are no errors introduced
during transmission, then the receiver should be able to divide P(x) by C(x) exactly, leaving a remainder of
zero. On the other hand, if some error is introduced into P(z) during transmission, then in all likelihood the
received polynomial will no longer be exactly divisible by C'(x), and thus the receiver will obtain a nonzero
remainder implying that an error has occurred.

It will help to understand the following if you know a little about polynomial arithmetic; it is just slightly
different from normal integer arithmetic. We are dealing with a special class of polynomial arithmetic here,
where coefficients may be only one or zero, and operations on the coefficients are performed using modulo 2

62 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

arithmetic. This is referred to as “polynomial arithmetic modulo 2.” Since this is a networking book, not a
mathematics text, let’s focus on the key properties of this type of arithmetic for our purposes (which we ask
you to accept on faith):

* Any polynomial B(x) can be divided by a divisor polynomial C'(x) if B(x) is of higher degree than
C(z).

* Any polynomial B(z) can be divided once by a divisor polynomial C'(z) if B(z) is of the same degree
as C(x).

* The remainder obtained when B(x) is divided by C'(x) is obtained by performing the exclusive OR
(XOR) operation on each pair of matching coefficients.

For example, the polynomial 2 + 1 can be divided by 3 + x? + 1 (because they are both of degree 3) and
the remainder would be 0 x 2% + 1 x 22 + 0 x 2! + 0 x 2% = 22 (obtained by XORing the coefficients of
each term). In terms of messages, we could say that 1001 can be divided by 1101 and leaves a remainder of
0100. You should be able to see that the remainder is just the bitwise exclusive OR of the two messages.

Now that we know the basic rules for dividing polynomials, we are able to do long division, which is
necessary to deal with longer messages. An example appears below.

Recall that we wanted to create a polynomial for transmission that is derived from the original message
M (z), is k bits longer than M (x), and is exactly divisible by C'(x). We can do this in the following way:

1. Multiply M (z) by 2*; that is, add k zeros at the end of the message. Call this zero-extended message
T(z).

2. Divide T'(z) by C(x) and find the remainder.
3. Subtract the remainder from 7'(x).

It should be obvious that what is left at this point is a message that is exactly divisible by C'(x). We may
also note that the resulting message consists of M (z) followed by the remainder obtained in step 2, because
when we subtracted the remainder (which can be no more than k bits long), we were just XORing it with
the k zeros added in step 1. This part will become clearer with an example.

Consider the message 27 + 2% + z3 + 2!, or 10011010. We begin by multiplying by 3, since our divisor
polynomial is of degree 3. This gives 10011010000. We divide this by C'(x), which corresponds to 1101
in this case. Figure 2.12 shows the polynomial long-division operation. Given the rules of polynomial
arithmetic described above, the long-division operation proceeds much as it would if we were dividing
integers. Thus, in the first step of our example, we see that the divisor 1101 divides once into the first four
bits of the message (1001), since they are of the same degree, and leaves a remainder of 100 (1101 XOR
1001). The next step is to bring down a digit from the message polynomial until we get another polynomial
with the same degree as C(x), in this case 1001. We calculate the remainder again (100) and continue
until the calculation is complete. Note that the “result” of the long division, which appears at the top of the
calculation, is not really of much interest—it is the remainder at the end that matters.

You can see from the very bottom of Figure 2.12 that the remainder of the example calculation is 101. So
we know that 10011010000 minus 101 would be exactly divisible by C'(x), and this is what we send. The
minus operation in polynomial arithmetic is the logical XOR operation, so we actually send 10011010101.
As noted above, this turns out to be just the original message with the remainder from the long division
calculation appended to it. The recipient divides the received polynomial by C'(z) and, if the result is 0,
concludes that there were no errors. If the result is nonzero, it may be necessary to discard the corrupted

2.4. Error Detection 63

Computer Networks: A Systems Approach, Release Version 6.1

message; with some codes, it may be possible to correct a small error (e.g., if the error affected only one
bit). A code that enables error correction is called an error-correcting code (ECC).

11111001

Generator — 1101)}(1)8] 1010000 =— Message

1001
1101

1000
1101V

1011
1101"

1100
11013 44

1000
1101

101 «— Remainder

Figure 2.12.: CRC calculation using polynomial long division.

Now we will consider the question of where the polynomial C'(z) comes from. Intuitively, the idea is to
select this polynomial so that it is very unlikely to divide evenly into a message that has errors introduced
into it. If the transmitted message is P(x), we may think of the introduction of errors as the addition of
another polynomial E(x), so the recipient sees P(x) + E(z). The only way that an error could slip by
undetected would be if the received message could be evenly divided by C(z), and since we know that
P(z) can be evenly divided by C(z), this could only happen if E(x) can be divided evenly by C(x). The
trick is to pick C'(x) so that this is very unlikely for common types of errors.

One common type of error is a single-bit error, which can be expressed as F(x) = x* when it affects bit
position i. If we select C(x) such that thefirst and the last term (that is, the 2* and 2° terms) are nonzero,
then we already have a two-term polynomial that cannot divide evenly into the one term E(x). Such a C(z)
can, therefore, detect all single-bit errors. In general, it is possible to prove that the following types of errors
can be detected by a C'(x) with the stated properties:

* All single-bit errors, as long as the z* and x° terms have nonzero coefficients
* All double-bit errors, as long as C'(z) has a factor with at least three terms
* Any odd number of errors, as long as C'(x) contains the factor (x + 1)

We have mentioned that it is possible to use codes that not only detect the presence of errors but also enable
errors to be corrected. Since the details of such codes require yet more complex mathematics than that
required to understand CRCs, we will not dwell on them here. However, it is worth considering the merits
of correction versus detection.

At first glance, it would seem that correction is always better, since with detection we are forced to throw
away the message and, in general, ask for another copy to be transmitted. This uses up bandwidth and may
introduce latency while waiting for the retransmission. However, there is a downside to correction, as it
generally requires a greater number of redundant bits to send an error-correcting code that is as strong (that

64 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

is, able to cope with the same range of errors) as a code that only detects errors. Thus, while error detection
requires more bits to be sent when errors occur, error correction requires more bits to be sent all the time.
As a result, error correction tends to be most useful when (1) errors are quite probable, as they may be, for
example, in a wireless environment, or (2) the cost of retransmission is too high, for example, because of
the latency involved retransmitting a packet over a satellite link.

The use of error-correcting codes in networking is sometimes referred to as forward error correction (FEC)
because the correction of errors is handled “in advance” by sending extra information, rather than waiting
for errors to happen and dealing with them later by retransmission. FEC is commonly used in wireless
networks such as 802.11.

* Any “burst” error (i.e., sequence of consecutive errored bits) for which the length of the burst is less
than k bits (Most burst errors of length greater than £ bits can also be detected.)

Six versions of C'(x) are widely used in link-level protocols. For example, Ethernet uses CRC-32, which is
defined as follows:

Finally, we note that the CRC algorithm, while seemingly complex, is easily implemented in hardware
using a k-bit shift register and XOR gates. The number of bits in the shift register equals the degree of the
generator polynomial (k). Figure 2.13 shows the hardware that would be used for the generator 23 + 22 4 1
from our previous example. The message is shifted in from the left, beginning with the most significant bit
and ending with the string of k zeros that is attached to the message, just as in the long division example.
When all the bits have been shifted in and appropriately XORed, the register contains the remainder—that
is, the CRC (most significant bit on the right). The position of the XOR gates is determined as follows: If
the bits in the shift register are labeled O through k& — 1, left to right, then put an XOR gate in front of bit n
if there is a term x” in the generator polynomial. Thus, we see an XOR gate in front of positions 0 and 2 for
the generator 23 4 z2 + 20,

Message

1

X XOR gate x?

AL
Y

\i

)
A
N

/
D
4

Figure 2.13.: CRC calculation using shift register.

2.5 Reliable Transmission

As we saw in the previous section, frames are sometimes corrupted while in transit, with an error code like
CRC used to detect such errors. While some error codes are strong enough also to correct errors, in practice
the overhead is typically too large to handle the range of bit and burst errors that can be introduced on a
network link. Even when error-correcting codes are used (e.g., on wireless links) some errors will be too
severe to be corrected. As a result, some corrupt frames must be discarded. A link-level protocol that wants
to deliver frames reliably must somehow recover from these discarded (lost) frames.

2.5. Reliable Transmission 65

Computer Networks: A Systems Approach, Release Version 6.1

It’s worth noting that reliability is a function that may be provided at the link level, but many modern
link technologies omit this function. Furthermore, reliable delivery is frequently provided at higher levels,
including both transport and sometimes, the application layer. Exactly where it should be provided is a
matter of some debate and depends on many factors. We describe the basics of reliable delivery here, since
the principles are common across layers, but you should be aware that we’re not just talking about a link-
layer function.

Reliable delivery is usually accomplished using a combination of two fundamental mecha-
nisms—acknowledgments and timeouts. An acknowledgment (ACK for short) is a small control frame
that a protocol sends back to its peer saying that it has received an earlier frame. By control frame we mean
a header without any data, although a protocol can piggyback an ACK on a data frame it just happens to be
sending in the opposite direction. The receipt of an acknowledgment indicates to the sender of the original
frame that its frame was successfully delivered. If the sender does not receive an acknowledgment after
a reasonable amount of time, then it retransmits the original frame. This action of waiting a reasonable
amount of time is called a timeout.

The general strategy of using acknowledgments and timeouts to implement reliable delivery is sometimes
called automatic repeat request (abbreviated ARQ). This section describes three different ARQ algorithms
using generic language; that is, we do not give detailed information about a particular protocol’s header
fields.

2.5.1 Stop-and-Wait

The simplest ARQ scheme is the stop-and-wait algorithm. The idea of stop-and-wait is straightforward:
After transmitting one frame, the sender waits for an acknowledgment before transmitting the next frame. If
the acknowledgment does not arrive after a certain period of time, the sender times out and retransmits the
original frame.

Figure 2.14 illustrates timelines for four different scenarios that result from this basic algorithm. The sending
side is represented on the left, the receiving side is depicted on the right, and time flows from top to bottom.
Figure 2.14(a) shows the situation in which the ACK is received before the timer expires; (b) and (c) show
the situation in which the original frame and the ACK, respectively, are lost; and (d) shows the situation
in which the timeout fires too soon. Recall that by “lost” we mean that the frame was corrupted while in
transit, that this corruption was detected by an error code on the receiver, and that the frame was subsequently
discarded.

The packet timelines shown in this section are examples of a frequently used tool in teaching, explaining, and
designing protocols. They are useful because they capture visually the behavior over time of a distributed
system—something that can be quite hard to analyze. When designing a protocol, you often have to be
prepared for the unexpected—a system crashes, a message gets lost, or something that you expected to
happen quickly turns out to take a long time. These sorts of diagrams can often help us understand what
might go wrong in such cases and thus help a protocol designer be prepared for every eventuality.

There is one important subtlety in the stop-and-wait algorithm. Suppose the sender sends a frame and the
receiver acknowledges it, but the acknowledgment is either lost or delayed in arriving. This situation is
illustrated in timelines (c) and (d) of Figure 2.14. In both cases, the sender times out and retransmits the
original frame, but the receiver will think that it is the next frame, since it correctly received and acknowl-
edged the first frame. This has the potential to cause duplicate copies of a frame to be delivered. To address
this problem, the header for a stop-and-wait protocol usually includes a 1-bit sequence number—that is, the

66 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

(a) Sender Receiver (c) Sender Receiver
W‘ _Fra\
5 5
o) o]
o @ @
£ £ cK E cK
[= s = s
_W
5
3
E K
= PO
ender eceiver ender eceiver
(b) Send Recei (d) Send Recei
B Fr ame < Fr ame
E = pCK
|_ —
_ <] Frame
= £ =
Mme 3
5 S
3 = pcK
E cK —

Figure 2.14.: Timeline showing four different scenarios for the stop-and-wait algorithm. (a) The ACK is

received before the timer expires; (b) the original frame is lost; (c) the ACK is lost; (d) the timeout fires too
soon.

2.5. Reliable Transmission 67

Computer Networks: A Systems Approach, Release Version 6.1

sequence number can take on the values 0 and 1—and the sequence numbers used for each frame alternate,
as illustrated in Figure 2.15. Thus, when the sender retransmits frame 0, the receiver can determine that it is
seeing a second copy of frame O rather than the first copy of frame 1 and therefore can ignore it (the receiver
still acknowledges it, in case the first ACK was lost).

Sender Receiver
rame B
pck®
rame p

pck?

rame 0

aCK @

Ny

Figure 2.15.: Timeline for stop-and-wait with 1-bit sequence number.

The main shortcoming of the stop-and-wait algorithm is that it allows the sender to have only one outstanding
frame on the link at a time, and this may be far below the link’s capacity. Consider, for example, a 1.5-Mbps
link with a 45-ms round-trip time. This link has a delay x bandwidth product of 67.5 Kb, or approximately
8 KB. Since the sender can send only one frame per RTT, and assuming a frame size of 1 KB, this implies a
maximum sending rate of

Bits-Per-Frame / Time-Per-Frame = 1024 x 8 / 0.045 = 182 kbps

or about one-eighth of the link’s capacity. To use the link fully, then, we’d like the sender to be able to
transmit up to eight frames before having to wait for an acknowledgment.

Key Takeaway

The significance of the delay x bandwidth product is that it represents the amount of data that could be in
transit. We would like to be able to send this much data without waiting for the first acknowledgment. The
principle at work here is often referred to as keeping the pipe full. The algorithms presented in the following
two subsections do exactly this. [Next]

2.5.2 Sliding Window

Consider again the scenario in which the link has a delay x bandwidth product of 8 KB and frames are 1 KB
in size. We would like the sender to be ready to transmit the ninth frame at pretty much the same moment

68 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

that the ACK for the first frame arrives. The algorithm that allows us to do this is called sliding window, and
an illustrative timeline is given in Figure 2.16.

Sender Receiver

Time

Figure 2.16.: Timeline for the sliding window algorithm.

The Sliding Window Algorithm

The sliding window algorithm works as follows. First, the sender assigns a sequence number, denoted
SegNum, to each frame. For now, let’s ignore the fact that SegNum is implemented by a finite-size header
field and instead assume that it can grow infinitely large. The sender maintains three variables: The send
window size, denoted SWS, gives the upper bound on the number of outstanding (unacknowledged) frames
that the sender can transmit; LAR denotes the sequence number of the last acknowledgment received; and
LFS denotes the sequence number of the last frame sent. The sender also maintains the following invariant:

LFS - LAR <= SWS

This situation is illustrated in Figure 2.17.

<SWS

} }

LAR LFS
Figure 2.17.: Sliding window on sender.

When an acknowledgment arrives, the sender moves LAR to the right, thereby allowing the sender to transmit
another frame. Also, the sender associates a timer with each frame it transmits, and it retransmits the frame
should the timer expire before an ACK is received. Notice that the sender has to be willing to buffer up to
SWS frames since it must be prepared to retransmit them until they are acknowledged.

The receiver maintains the following three variables: The receive window size, denoted RWS, gives the upper
bound on the number of out-of-order frames that the receiver is willing to accept; LAF denotes the sequence
number of the largest acceptable frame; and LFR denotes the sequence number of the last frame received.
The receiver also maintains the following invariant:

2.5. Reliable Transmission 69

Computer Networks: A Systems Approach, Release Version 6.1

LAF - LFR <= RWS

This situation is illustrated in Figure 2.18.

<RWS

} }

LFR LAF
Figure 2.18.: Sliding window on receiver.

When a frame with sequence number SegNum arrives, the receiver takes the following action. If SegNum
<= LFRor SegNum > LAF, then the frame is outside the receiver’s window and it is discarded. If LFR
< SegNum <= LAF, then the frame is within the receiver’s window and it is accepted. Now the receiver
needs to decide whether or not to send an ACK. Let SeqNumToAck denote the largest sequence number not
yet acknowledged, such that all frames with sequence numbers less than or equal to SegNumToAck have
been received. The receiver acknowledges the receipt of SegNumToAck, even if higher numbered packets
have been received. This acknowledgment is said to be cumulative. It then sets LFR = SegNumToAck
and adjusts LAF = LFR + RWS.

For example, suppose LFR = 5 (i.e., the last ACK the receiver sent was for sequence number 5), and RWS
= 4. This implies that LAF = 9. Should frames 7 and 8 arrive, they will be buffered because they are
within the receiver’s window. However, no ACK needs to be sent since frame 6 has yet to arrive. Frames 7
and 8 are said to have arrived out of order. (Technically, the receiver could resend an ACK for frame 5 when
frames 7 and 8 arrive.) Should frame 6 then arrive—perhaps it is late because it was lost the first time and
had to be retransmitted, or perhaps it was simply delayed—the receiver acknowledges frame 8, bumps LFR
to 8, and sets LAF to 12.! If frame 6 was in fact lost, then a timeout will have occurred at the sender, causing
it to retransmit frame 6.

‘We observe that when a timeout occurs, the amount of data in transit decreases, since the sender is unable to
advance its window until frame 6 is acknowledged. This means that when packet losses occur, this scheme
is no longer keeping the pipe full. The longer it takes to notice that a packet loss has occurred, the more
severe this problem becomes.

Notice that, in this example, the receiver could have sent a negative acknowledgment (NAK) for frame 6 as
soon as frame 7 arrived. However, this is unnecessary since the sender’s timeout mechanism is sufficient to
catch this situation, and sending NAKs adds additional complexity to the receiver. Also, as we mentioned,
it would have been legitimate to send additional acknowledgments of frame 5 when frames 7 and 8 arrived;
in some cases, a sender can use duplicate ACKs as a clue that a frame was lost. Both approaches help to
improve performance by allowing early detection of packet losses.

Yet another variation on this scheme would be to use selective acknowledgments. That is, the receiver could
acknowledge exactly those frames it has received rather than just the highest numbered frame received in
order. So, in the above example, the receiver could acknowledge the receipt of frames 7 and 8. Giving more
information to the sender makes it potentially easier for the sender to keep the pipe full but adds complexity
to the implementation.

! While it’s unlikely that a packet could be delayed or arrive out-of-order on a point-to-point link, this same algorithm is used
on multi-hop connections where such delays are possible.

70 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

The sending window size is selected according to how many frames we want to have outstanding on the
link at a given time; SWS is easy to compute for a given delay x bandwidth product. On the other hand,
the receiver can set RWS to whatever it wants. Two common settings are RWS = 1, which implies that the
receiver will not buffer any frames that arrive out of order, and RWS = SWS, which implies that the receiver
can buffer any of the frames the sender transmits. It makes no sense to set RWS > SWS since it’s impossible
for more than SWS frames to arrive out of order.

Finite Sequence Numbers and Sliding Window

We now return to the one simplification we introduced into the algorithm—our assumption that sequence
numbers can grow infinitely large. In practice, of course, a frame’s sequence number is specified in a header
field of some finite size. For example, a 3-bit field means that there are eight possible sequence numbers,
0..7. This makes it necessary to reuse sequence numbers or, stated another way, sequence numbers wrap
around. This introduces the problem of being able to distinguish between different incarnations of the same
sequence numbers, which implies that the number of possible sequence numbers must be larger than the
number of outstanding frames allowed. For example, stop-and-wait allowed one outstanding frame at a time
and had two distinct sequence numbers.

Suppose we have one more number in our space of sequence numbers than we have potentially outstanding
frames; that is, SWS <= MaxSegNum - 1, where MaxSegNum is the number of available sequence
numbers. Is this sufficient? The answer depends on RWS. If RWS = 1, then MaxSegNum >= SWS + 1
is sufficient. If RWS is equal to SWS, then having a MaxSegNum just one greater than the sending window
size is not good enough. To see this, consider the situation in which we have the eight sequence numbers 0
through 7,and SWS = RWS = 7. Suppose the sender transmits frames 0..6, they are successfully received,
but the ACKs are lost. The receiver is now expecting frames 7, 0..5, but the sender times out and sends
frames 0..6. Unfortunately, the receiver is expecting the second incarnation of frames 0..5 but gets the first
incarnation of these frames. This is exactly the situation we wanted to avoid.

It turns out that the sending window size can be no more than half as big as the number of available sequence
numbers when RWS = SWS, or stated more precisely,

SWS < (MaxSegNum + 1)/ 2

Intuitively, what this is saying is that the sliding window protocol alternates between the two halves of
the sequence number space, just as stop-and-wait alternates between sequence numbers 0 and 1. The only
difference is that it continually slides between the two halves rather than discretely alternating between
them.

Note that this rule is specific to the situation where RWS = SWS. We leave it as an exercise to determine the
more general rule that works for arbitrary values of RWS and SWS. Also note that the relationship between
the window size and the sequence number space depends on an assumption that is so obvious that it is easy
to overlook, namely that frames are not reordered in transit. This cannot happen on a direct point-to-point
link since there is no way for one frame to overtake another during transmission. However, we will see the
sliding window algorithm used in a different environments, and we will need to devise another rule.

2.5. Reliable Transmission 71

Computer Networks: A Systems Approach, Release Version 6.1

Implementation of Sliding Window

The following routines illustrate how we might implement the sending and receiving sides of the sliding
window algorithm. The routines are taken from a working protocol named, appropriately enough, Sliding
Window Protocol (SWP). So as not to concern ourselves with the adjacent protocols in the protocol graph,
we denote the protocol sitting above SWP as the high-level protocol (HLP) and the protocol sitting below
SWP as the link-level protocol (LLP).

We start by defining a pair of data structures. First, the frame header is very simple: It contains a sequence
number (SegNum) and an acknowledgment number (AckNum). It also contains a F1ags field that indicates
whether the frame is an ACK or carries data.

typedef u_char SwpSeqno;

typedef struct ({

SwpSegno SegNum; /% sequence number of this frame #*/

SwpSeqno AckNum; /% ack of received frame */

u_char Flags; /* up to 8 bits worth of flags */
} SwpHdr;

Next, the state of the sliding window algorithm has the following structure. For the sending side of the pro-
tocol, this state includes variables LAR and LF'S, as described earlier in this section, as well as a queue that
holds frames that have been transmitted but not yet acknowledged (sendQ). The sending state also includes
a counting semaphore called sendiWindowNotFull. We will see how this is used below, but generally
a semaphore is a synchronization primitive that supports semWait and semSignal operations. Every
invocation of semSignal increments the semaphore by 1, and every invocation of semWa it decrements
s by 1, with the calling process blocked (suspended) should decrementing the semaphore cause its value to
become less than 0. A process that is blocked during its call to semWait will be allowed to resume as soon
as enough semSignal operations have been performed to raise the value of the semaphore above 0.

For the receiving side of the protocol, the state includes the variable NFE. This is the next frame expected,
the frame with a sequence number one more that the last frame received (LFR), described earlier in this
section. There is also a queue that holds frames that have been received out of order (recvQ). Finally,
although not shown, the sender and receiver sliding window sizes are defined by constants SWS and RWS,
respectively.

typedef struct ({
/+ sender side state: x*/

SwpSeqno LAR; /+ seqno of last ACK received */
SwpSeqno LFS; /* last frame sent */
Semaphore sendWindowNotFull;
SwpHdr hdr; /* pre-initialized header =/
struct sendQ _slot {
Event timeout; /* event associated with send-timeout #*/
Msg msqg;

} sendQ [SWS];

/* receiver side state: x/

SwpSegno NFE; /* seqno of next frame expected #*/
struct recvQ_slot {
int received; /# is msg valid? =*/

(continues on next page)

72 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

(continued from previous page)

Msg msg;
} recvQ[RWS];
} SwpState;

The sending side of SWP is implemented by procedure sendSWP. This routine is rather simple. First,
semWait causes this process to block on a semaphore until it is OK to send another frame. Once allowed to
proceed, sendSWP sets the sequence number in the frame’s header, saves a copy of the frame in the transmit
queue (sendQ), schedules a timeout event to handle the case in which the frame is not acknowledged, and
sends the frame to the next-lower-level protocol, which we denote as LINK.

One detail worth noting is the call to store_swp_hdr just before the call to msgAddHdr. This routine
translates the C structure that holds the SWP header (state->hdr) into a byte string that can be safely
attached to the front of the message (hbuf). This routine (not shown) must translate each integer field in
the header into network byte order and remove any padding that the compiler has added to the C structure.
The issue of byte order is a non-trivial issue, but for now it is enough to assume that this routine places the
most significant bit of a multiword integer in the byte with the highest address.

Another piece of complexity in this routine is the use of semWait and the sendWindowNotFull
semaphore. sendWindowNotFull is initialized to the size of the sender’s sliding window, SWS (this
initialization is not shown). Each time the sender transmits a frame, the semWait operation decrements
this count and blocks the sender should the count go to 0. Each time an ACK is received, the semSignal
operation invoked in deliverSWP (see below) increments this count, thus unblocking any waiting sender.

static int
sendSWP (SwpState =*state, Msg xframe)
{

struct sendQ_slot =*slot;

hbuf [HLEN] ;

/+ wait for send window to open #*/

semWait (&state—>sendWindowNotFull) ;

state->hdr.SegNum = ++state—->LFS;

slot = &state—->sendQ[state—>hdr.SegNum % SWS];

store_swp_hdr (state—>hdr, hbuf);

msgAddHdr (frame, hbuf, HLEN);

msgSaveCopy (&slot->msg, frame);

slot->timeout = evSchedule (swpTimeout, slot, SWP_SEND_TIMEOUT);
return send(LINK, frame);

Before continuing to the receive side of SWP, we need to reconcile a seeming inconsistency. On the one
hand, we have been saying that a high-level protocol invokes the services of a low-level protocol by calling
the send operation, so we would expect that a protocol that wants to send a message via SWP would call
send (SWP, packet). On the other hand, the procedure that implements SWP’s send operation is called
sendSWP, and its first argument is a state variable (SwpState). What gives? The answer is that the
operating system provides glue code that translates the generic call to send into a protocol-specific call to
sendSWP. This glue code maps the first argument to send (the magic protocol variable SWP) into both a
function pointer to sendSWP and a pointer to the protocol state that SWP needs to do its job. The reason
we have the high-level protocol indirectly invoke the protocol-specific function through the generic function
call is that we want to limit how much information the high-level protocol has coded in it about the low-level

2.5. Reliable Transmission 73

Computer Networks: A Systems Approach, Release Version 6.1

protocol. This makes it easier to change the protocol graph configuration at some time in the future.

Now we move on to SWP’s protocol-specific implementation of the deliver operation, which is given in
procedure deliverSWP. This routine actually handles two different kinds of incoming messages: ACKs
for frames sent earlier from this node and data frames arriving at this node. In a sense, the ACK half of this
routine is the counterpart to the sender side of the algorithm given in sendSWP. A decision as to whether
the incoming message is an ACK or a data frame is made by checking the F1ags field in the header. Note
that this particular implementation does not support piggybacking ACKs on data frames.

When the incoming frame is an ACK, deliverSWP simply finds the slot in the transmit queue (sendQ)
that corresponds to the ACK, cancels the timeout event, and frees the frame saved in that slot. This work
is actually done in a loop since the ACK may be cumulative. The only other thing to notice about this case
is the call to subroutine swpInWindow. This subroutine, which is given below, ensures that the sequence
number for the frame being acknowledged is within the range of ACKSs that the sender currently expects to
receive.

When the incoming frame contains data, deliverSWP first callsmsgStripHdr and load_swp_hdr to
extract the header from the frame. Routine 1oad_swp_hdr is the counterpart to store_swp_hdr dis-
cussed earlier; it translates a byte string into the C data structure that holds the SWP header. deliverSWpP
then calls swpInWindow to make sure the sequence number of the frame is within the range of sequence
numbers that it expects. If it is, the routine loops over the set of consecutive frames it has received and passes
them up to the higher-level protocol by invoking the de1iverHLP routine. It also sends a cumulative ACK
back to the sender, but does so by looping over the receive queue (it does not use the SegNumToAck
variable used in the prose description given earlier in this section).

static int
deliverSWP (SwpState state, Msg *xframe)
{

SwpHdr hdr;

char ~hbuf;

hbuf = msgStripHdr (frame, HLEN) ;

load_swp_hdr (¢hdr, hbuf)

if (hdr->Flags & FLAG_ACK_VALID)

{
/* received an acknowledgment—--do SENDER side */
if (swpInWindow (hdr.AckNum, state->LAR + 1, state->LFS))
{

do
{
struct sendQ_slot =*slot;
slot = &state—->sendQ[++state->LAR % SWS];
evCancel (slot—>timeout) ;
msgDestroy (&slot->msqg) ;
semSignal (&state—->sendWindowNotFull) ;
} while (state->LAR != hdr.AckNum);

if (hdr.Flags & FLAG_HAS_DATA)
{

(continues on next page)

74 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

(continued from previous page)

struct recvQ_slot =xslot;

/* received data packet—--do RECEIVER side */
slot = &state—->recvQ[hdr.SegNum % RWS];
if (!swpInWindow (hdr.SegNum, state->NFE, state->NFE + RWS - 1))
{

/* drop the message */

return SUCCESS;
}
msgSaveCopy (&slot—->msg, frame);
slot->received = TRUE;
if (hdr.SegNum == state->NFE)
{

Msg m;

while (slot->received)
{
deliver (HLP, &slot->msqg);
msgDestroy (&slot->msqg) ;
slot->received = FALSE;
slot = &state—->recvQ[++state->NFE % RWS];
}
/* send ACK: x/
prepare_ack (&ém, state->NFE - 1);
send (LINK, &m);
msgDestroy (&m) ;

}
return SUCCESS;

Finally,swpInWindow is a simple subroutine that checks to see if a given sequence number falls between
some minimum and maximum sequence number.

static bool
swpInWindow (SwpSeqno seqno, SwpSegno min, SwpSegno max)
{

SwpSegno pos, maxpos;

pos = segno - min; /* pos #should* be in range [0..MAX) */
maxpos = max — min + 1; /* maxpos 1s in range [0..MAX] */
return pos < maxpos;

Frame Order and Flow Control

The sliding window protocol is perhaps the best known algorithm in computer networking. What is easily
confused about the algorithm, however, is that it can be used to serve three different roles. The first role is
the one we have been concentrating on in this section—to reliably deliver frames across an unreliable link.
(In general, the algorithm can be used to reliably deliver messages across an unreliable network.) This is the

2.5. Reliable Transmission 75

Computer Networks: A Systems Approach, Release Version 6.1

core function of the algorithm.

The second role that the sliding window algorithm can serve is to preserve the order in which frames are
transmitted. This is easy to do at the receiver—since each frame has a sequence number, the receiver just
makes sure that it does not pass a frame up to the next-higher-level protocol until it has already passed up all
frames with a smaller sequence number. That is, the receiver buffers (i.e., does not pass along) out-of-order
frames. The version of the sliding window algorithm described in this section does preserve frame order,
although we could imagine a variation in which the receiver passes frames to the next protocol without
waiting for all earlier frames to be delivered. A question we should ask ourselves is whether we really
need the sliding window protocol to keep the frames in order at the link level, or whether, instead, this
functionality should be implemented by a protocol higher in the stack.

The third role that the sliding window algorithm sometimes plays is to support flow control—a feedback
mechanism by which the receiver is able to throttle the sender. Such a mechanism is used to keep the
sender from over-running the receiver—that is, from transmitting more data than the receiver is able to
process. This is usually accomplished by augmenting the sliding window protocol so that the receiver not
only acknowledges frames it has received but also informs the sender of how many frames it has room to
receive. The number of frames that the receiver is capable of receiving corresponds to how much free buffer
space it has. As in the case of ordered delivery, we need to make sure that flow control is necessary at the
link Ievel before incorporating it into the sliding window protocol.

Key Takeaway

One important concept to take away from this discussion is the system design principle we call separation of
concerns. That is, you must be careful to distinguish between different functions that are sometimes rolled
together in one mechanism, and you must make sure that each function is necessary and being supported
in the most effective way. In this particular case, reliable delivery, ordered delivery, and flow control are
sometimes combined in a single sliding window protocol, and we should ask ourselves if this is the right
thing to do at the link level. [Next]

2.5.3 Concurrent Logical Channels

The data link protocol used in the original ARPANET provides an interesting alternative to the sliding
window protocol, in that it is able to keep the pipe full while still using the simple stop-and-wait algorithm.
One important consequence of this approach is that the frames sent over a given link are not kept in any
particular order. The protocol also implies nothing about flow control.

The idea underlying the ARPANET protocol, which we refer to as concurrent logical channels, is to multi-
plex several logical channels onto a single point-to-point link and to run the stop-and-wait algorithm on each
of these logical channels. There is no relationship maintained among the frames sent on any of the logical
channels, yet because a different frame can be outstanding on each of the several logical channels the sender
can keep the link full.

More precisely, the sender keeps 3 bits of state for each channel: a boolean, saying whether the channel is
currently busy; the 1-bit sequence number to use the next time a frame is sent on this logical channel; and
the next sequence number to expect on a frame that arrives on this channel. When the node has a frame to
send, it uses the lowest idle channel, and otherwise it behaves just like stop-and-wait.

76 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

In practice, the ARPANET supported 8 logical channels over each ground link and 16 over each satellite
link. In the ground-link case, the header for each frame included a 3-bit channel number and a 1-bit sequence
number, for a total of 4 bits. This is exactly the number of bits the sliding window protocol requires to
support up to 8 outstanding frames on the link when RWS = SWS.

2.6 Multi-Access Networks

Developed in the mid-1970s by researchers at the Xerox Palo Alto Research Center (PARC), the Ethernet
eventually became the dominant local area networking technology, emerging from a pack of competing
technologies. Today, it competes mainly with 802.11 wireless networks but remains extremely popular in
campus networks and data centers. The more general name for the technology behind the Ethernet is Carrier
Sense, Multiple Access with Collision Detect (CSMA/CD).

As indicated by the CSMA name, the Ethernet is a multiple-access network, meaning that a set of nodes
sends and receives frames over a shared link. You can, therefore, think of an Ethernet as being like a bus
that has multiple stations plugged into it. The “carrier sense” in CSMA/CD means that all the nodes can
distinguish between an idle and a busy link, and “collision detect” means that a node listens as it transmits
and can therefore detect when a frame it is transmitting has interfered (collided) with a frame transmitted by
another node.

The Ethernet has its roots in an early packet radio network, called Aloha, developed at the University of
Hawaii to support computer communication across the Hawaiian Islands. Like the Aloha network, the fun-
damental problem faced by the Ethernet is how to mediate access to a shared medium fairly and efficiently
(in Aloha, the medium was the atmosphere, while in the Ethernet the medium was originally a coax cable).
The core idea in both Aloha and the Ethernet is an algorithm that controls when each node can transmit.

Modern Ethernet links are now largely point to point; that is, they connect one host to an Ethernet switch, or
they interconnect switches. As a consequence, the “multiple access” algorithm is not used much in today’s
wired Ethernets, but a variant is now used in wireless networks, such as 802.11 networks (also known as
Wi-Fi). Due to the enormous influence of Ethernet, we chose to describe its classic algorithm here, and
then explain how it has been adapted to Wi-Fi in the next section. We will also discuss Ethernet switches
elsewhere. For now, we’ll focus on how a single Ethernet link works.

Digital Equipment Corporation and Intel Corporation joined Xerox to define a 10-Mbps Ethernet standard in
1978. This standard then formed the basis for IEEE standard 802.3, which additionally defines a much wider
collection of physical media over which an Ethernet can operate, including 100-Mbps, 1-Gbps, 10-Gbps,
40-Gbps, and 100-Gbps versions.

2.6.1 Physical Properties

Ethernet segments were originally implemented using coaxial cable of length up to 500 m. (Modern Ether-
nets use twisted copper pairs, usually a particular type known as “Category 5,” or optical fibers, and in some
cases can be quite a lot longer than 500 m.) This cable was similar to the type used for cable TV. Hosts
connected to an Ethernet segment by tapping into it. A transceiver, a small device directly attached to the
tap, detected when the line was idle and drove the signal when the host was transmitting. It also received
incoming signals. The transceiver, in turn, connected to an Ethernet adaptor, which was plugged into the
host. This configuration is shown in Figure 2.19.

2.6. Multi-Access Networks 77

Computer Networks: A Systems Approach, Release Version 6.1

/ Transceiver

3

Ethernet cable

/ Adaptor

Host

Figure 2.19.: Ethernet transceiver and adaptor.

Multiple Ethernet segments can be joined together by repeaters (or a multi-port variant of a repeater, called
a hub). A repeater is a device that forwards digital signals, much like an amplifier forwards analog signals;
repeaters do not understand bits or frames. No more than four repeaters could be positioned between any
pair of hosts, meaning that a classical Ethernet had a total reach of only 2500 m. For example, using just
two repeaters between any pair of hosts supports a configuration similar to the one illustrated in Figure 2.20;
that is, a segment running down the spine of a building with a segment on each floor.

L1
~ o =
-nm m
777 M-
T
.- s w. =

Figure 2.20.: Ethernet repeater, interconnecting segments to form a larger collision domain.

Any signal placed on the Ethernet by a host is broadcast over the entire network; that is, the signal is prop-
agated in both directions, and repeaters and hubs forward the signal on all outgoing segments. Terminators
attached to the end of each segment absorb the signal and keep it from bouncing back and interfering with

78 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

trailing signals. The original Ethernet specifications used the Manchester encoding scheme described in
an earlier section, while 4B/5B encoding (or the similar 8B/10B) scheme is used today on higher speed
Ethernets.

It is important to understand that whether a given Ethernet spans a single segment, a linear sequence of
segments connected by repeaters, or multiple segments connected in a star configuration, data transmitted
by any one host on that Ethernet reaches all the other hosts. This is the good news. The bad news is that all
these hosts are competing for access to the same link, and, as a consequence, they are said to be in the same
collision domain. The multi-access part of the Ethernet is all about dealing with the competition for the link
that arises in a collision domain.

2.6.2 Access Protocol

We now turn our attention to the algorithm that controls access to a shared Ethernet link. This algorithm is
commonly called the Ethernet’s media access control (MAC). It is typically implemented in hardware on the
network adaptor. We will not describe the hardware per se, but instead focus on the algorithm it implements.
First, however, we describe the Ethernet’s frame format and addresses.

Frame Format

Each Ethernet frame is defined by the format given in Figure 2.21. The 64-bit preamble allows the receiver
to synchronize with the signal; it is a sequence of alternating Os and 1s. Both the source and destination
hosts are identified with a 48-bit address. The packet type field serves as the demultiplexing key; it identifies
to which of possibly many higher-level protocols this frame should be delivered. Each frame contains up to
1500 bytes of data. Minimally, a frame must contain at least 46 bytes of data, even if this means the host has
to pad the frame before transmitting it. The reason for this minimum frame size is that the frame must be
long enough to detect a collision; we discuss this more below. Finally, each frame includes a 32-bit CRC.
Like the HDLC protocol described in an earlier section, the Ethernet is a bit-oriented framing protocol.
Note that from the host’s perspective, an Ethernet frame has a 14-byte header: two 6-byte addresses and a
2-byte type field. The sending adaptor attaches the preamble and CRC before transmitting, and the receiving
adaptor removes them.

64 48 48 16 32
Dest Src
Preamble addr addr Type| Body % CRC

Figure 2.21.: Ethernet frame format.

Addresses

Each host on an Ethernet—in fact, every Ethernet host in the world—has a unique Ethernet address. Techni-
cally, the address belongs to the adaptor, not the host; it is usually burned into ROM. Ethernet addresses are
typically printed in a form humans can read as a sequence of six numbers separated by colons. Each number
corresponds to 1 byte of the 6-byte address and is given by a pair of hexadecimal digits, one for each of the
4-bit nibbles in the byte; leading Os are dropped. For example, 8 :0:2b:e4:b1:2 is the human-readable
representation of Ethernet address

2.6. Multi-Access Networks 79

Computer Networks: A Systems Approach, Release Version 6.1

00001000 00000000 00101011 11100100 10110001 00000010

To ensure that every adaptor gets a unique address, each manufacturer of Ethernet devices is allocated a
different prefix that must be prepended to the address on every adaptor they build. For example, Advanced
Micro Devices has been assigned the 24-bit prefix 080020 (or 8: 0:20). A given manufacturer then makes
sure the address suffixes it produces are unique.

Each frame transmitted on an Ethernet is received by every adaptor connected to that Ethernet. Each adaptor
recognizes those frames addressed to its address and passes only those frames on to the host. (An adaptor
can also be programmed to run in promiscuous mode, in which case it delivers all received frames to the
host, but this is not the normal mode.) In addition to these unicast addresses, an Ethernet address consisting
of all Is is treated as a broadcast address; all adaptors pass frames addressed to the broadcast address up
to the host. Similarly, an address that has the first bit set to 1 but is not the broadcast address is called a
multicast address. A given host can program its adaptor to accept some set of multicast addresses. Multicast
addresses are used to send messages to some subset of the hosts on an Ethernet (e.g., all file servers). To
summarize, an Ethernet adaptor receives all frames and accepts

* Frames addressed to its own address

* Frames addressed to the broadcast address

¢ Frames addressed to a multicast address, if it has been instructed to listen to that address
 All frames, if it has been placed in promiscuous mode

It passes to the host only the frames that it accepts.

Transmitter Algorithm

As we have just seen, the receiver side of the Ethernet protocol is simple; the real smarts are implemented
at the sender’s side. The transmitter algorithm is defined as follows.

When the adaptor has a frame to send and the line is idle, it transmits the frame immediately; there is no
negotiation with the other adaptors. The upper bound of 1500 bytes in the message means that the adaptor
can occupy the line for only a fixed length of time.

When an adaptor has a frame to send and the line is busy, it waits for the line to go idle and then transmits
immediately. (To be more precise, all adaptors wait 9.6 s after the end of one frame before beginning to
transmit the next frame. This is true for both the sender of the first frame as well as those nodes listening
for the line to become idle.) The Ethernet is said to be a [-persistent protocol because an adaptor with
a frame to send transmits with probability 1 whenever a busy line goes idle. In general, a p-persistent
algorithm transmits with probability 0 < p < 1 after a line becomes idle and defers with probability g =
1 - p. The reasoning behind choosing a p</ is that there might be multiple adaptors waiting for the busy
line to become idle, and we don’t want all of them to begin transmitting at the same time. If each adaptor
transmits immediately with a probability of, say, 33%, then up to three adaptors can be waiting to transmit
and the odds are that only one will begin transmitting when the line becomes idle. Despite this reasoning,
an Ethernet adaptor always transmits immediately after noticing that the network has become idle and has
been very effective in doing so.

To complete the story about p-persistent protocols for the case when p</, you might wonder how long a
sender that loses the coin flip (i.e., decides to defer) has to wait before it can transmit. The answer for

80 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

the Aloha network, which originally developed this style of protocol, was to divide time into discrete slots,
with each slot corresponding to the length of time it takes to transmit a full frame. Whenever a node has a
frame to send and it senses an empty (idle) slot, it transmits with probability p and defers until the next slot
with probability ¢ = I - p. If that next slot is also empty, the node again decides to transmit or defer, with
probabilities p and g, respectively. If that next slot is not empty—that is, some other station has decided to
transmit—then the node simply waits for the next idle slot and the algorithm repeats.

Returning to our discussion of the Ethernet, because there is no centralized control it is possible for two
(or more) adaptors to begin transmitting at the same time, either because both found the line to be idle or
because both had been waiting for a busy line to become idle. When this happens, the two (or more) frames
are said to collide on the network. Each sender, because the Ethernet supports collision detection, is able to
determine that a collision is in progress. At the moment an adaptor detects that its frame is colliding with
another, it first makes sure to transmit a 32-bit jamming sequence and then stops the transmission. Thus,
a transmitter will minimally send 96 bits in the case of a collision: 64-bit preamble plus 32-bit jamming
sequence.

One way that an adaptor will send only 96 bits—which is sometimes called a runt frame—is if the two hosts
are close to each other. Had the two hosts been farther apart, they would have had to transmit longer, and
thus send more bits, before detecting the collision. In fact, the worst-case scenario happens when the two
hosts are at opposite ends of the Ethernet. To know for sure that the frame it just sent did not collide with
another frame, the transmitter may need to send as many as 512 bits. Not coincidentally, every Ethernet
frame must be at least 512 bits (64 bytes) long: 14 bytes of header plus 46 bytes of data plus 4 bytes of
CRC.

Why 512 bits? The answer is related to another question you might ask about an Ethernet: Why is its length
limited to only 2500 m? Why not 10 or 1000 km? The answer to both questions has to do with the fact that
the farther apart two nodes are, the longer it takes for a frame sent by one to reach the other, and the network
is vulnerable to a collision during this time.

Figure 2.22 illustrates the worst-case scenario, where hosts A and B are at opposite ends of the network.
Suppose host A begins transmitting a frame at time t, as shown in (a). It takes it one link latency (let’s
denote the latency as d) for the frame to reach host B. Thus, the first bit of A’s frame arrives at B at time
t+d, as shown in (b). Suppose an instant before host A’s frame arrives (i.e., B still sees an idle line), host B
begins to transmit its own frame. B’s frame will immediately collide with A’s frame, and this collision will
be detected by host B (c). Host B will send the 32-bit jamming sequence, as described above. (B’s frame
will be a runt.) Unfortunately, host A will not know that the collision occurred until B’s frame reaches it,
which will happen one link latency later, at time 7+2xd, as shown in (d). Host A must continue to transmit
until this time in order to detect the collision. In other words, host A must transmit for 2xd to be sure that
it detects all possible collisions. Considering that a maximally configured Ethernet is 2500 m long, and that
there may be up to four repeaters between any two hosts, the round-trip delay has been determined to be
51.2 ps, which on a 10-Mbps Ethernet corresponds to 512 bits. The other way to look at this situation is
that we need to limit the Ethernet’s maximum latency to a fairly small value (e.g., 51.2 us) for the access
algorithm to work; hence, an Ethernet’s maximum length must be something on the order of 2500 m.

Once an adaptor has detected a collision and stopped its transmission, it waits a certain amount of time
and tries again. Each time it tries to transmit but fails, the adaptor doubles the amount of time it waits
before trying again. This strategy of doubling the delay interval between each retransmission attempt is a
general technique known as exponential backoff. More precisely, the adaptor first delays either O or 51.2 us,
selected at random. If this effort fails, it then waits 0, 51.2, 102.4, or 153.6 us (selected randomly) before
trying again; this is k x 51.2 for k=0..3. After the third collision, it waits k x 51.2 for k = 0.23 - 1, again

2.6. Multi-Access Networks 81

Computer Networks: A Systems Approach, Release Version 6.1

(a) A

|
| 5y

(b) A
(c)
(d) B

Figure 2.22.: Worst-case scenario: (a) A sends a frame at time t; (b) A’s frame arrives at B at time t+d; (c) B
begins transmitting at time t+d and collides with A’s frame; (d) B’s runt (32-bit) frame arrives at A at time
t+2xd.

82 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

selected at random. In general, the algorithm randomly selects a k£ between 0 and 2" - 1 and waits k x 51.2
us, where n is the number of collisions experienced so far. The adaptor gives up after a given number of
tries and reports a transmit error to the host. Adaptors typically retry up to 16 times, although the backoff
algorithm caps 7 in the above formula at 10.

2.6.3 Longevity of Ethernet

Ethernet has been the dominant local area network technology for over 30 years. Today it is typically
deployed point-to-point rather than tapping into a coax cable, it often runs at speeds of 1 or 10 Gbps rather
than 10 Mbps, and it allows jumbo packets with up to 9000 bytes of data rather than 1500 bytes. But, it
remains backwards compatible with the original standard. This makes it worth saying a few words about
why Ethernets have been so successful, so that we can understand the properties we should emulate with
any technology that tries to replace it.

First, an Ethernet is extremely easy to administer and maintain: There is no routing or configuration tables
to be kept up-to-date, and it is easy to add a new host to the network. It is hard to imagine a simpler
network to administer. Second, it is inexpensive: cable/fiber is relatively cheap, and the only other cost is
the network adaptor on each host. Ethernet became deeply entrenched for these reasons, and any switch-
based approach that aspired to displace it required additional investment in infrastructure (the switches), on
top of the cost of each adaptor. The switch-based variant of Ethernet did eventually succeed in replacing
multi-access Ethernet, but this is primarily because it could be deployed incrementally—with some hosts
connected by point-to-point links to switches while others remained tapped into coax and connected to
repeaters or hubs—all the while retaining the simplicity of network administration.

2.7 Wireless Networks

Wireless technologies differ from wired links in some important ways, while at the same time sharing many
common properties. Like wired links, issues of bit errors are of great concern—typically even more so
due to the unpredictable noise environment of most wireless links. Framing and reliability also have to be
addressed. Unlike wired links, power is a big issue for wireless, especially because wireless links are often
used by small mobile devices (like phones and sensors) that have limited access to power (e.g., a small
battery). Furthermore, you can’t go blasting away at arbitrarily high power with a radio transmitter—there
are concerns about interference with other devices and usually regulations about how much power a device
may emit at any given frequency.

Wireless media are also inherently multi-access; it’s difficult to direct your radio transmission to just a single
receiver or to avoid receiving radio signals from any transmitter with enough power in your neighborhood.
Hence, media access control is a central issue for wireless links. And, because it’s hard to control who
receives your signal when you transmit over the air, issues of eavesdropping may also have to be addressed.

There is a baffling assortment of different wireless technologies, each of which makes different tradeoffs
in various dimensions. One simple way to categorize the different technologies is by the data rates they
provide and how far apart communicating nodes can be. Other important differences include which part of
the electromagnetic spectrum they use (including whether it requires a license) and how much power they
consume. In this section, we discuss two prominent wireless technologies: Wi-Fi (more formally known as
802.11), and Bluetooth. The next section discusses cellular networks in the context of ISP access services.
Table 2.3 gives an overview of these technologies and how they compare to each other.

2.7. Wireless Networks 83

Computer Networks: A Systems Approach, Release Version 6.1

Table 2.3.: Overview of Leading Wireless Technologies.

Bluetooth (802.15.1) | Wi-Fi (802.11) 4G Cellular

Typical link length | 10 m 100 m Tens of kilometers

Typical data rate 2 Mbps (shared) 150-450 Mbps 1-5 Mbps

Typical use Link a peripheral to a | Link a computer to a | Link mobile phone to a
computer wired base wired tower

Wired technology | USB Ethernet PON

analogy

You may recall that bandwidth sometimes means the width of a frequency band in hertz and sometimes the
data rate of a link. Because both these concepts come up in discussions of wireless networks, we’re going to
use bandwidth here in its stricter sense—width of a frequency band—and use the term data rate to describe
the number of bits per second that can be sent over the link, as in Table 2.3.

2.7.1 Basic Issues

Because wireless links all share the same medium, the challenge is to share that medium efficiently, with-
out unduly interfering with each other. Most of this sharing is accomplished by dividing it up along the
dimensions of frequency and space. Exclusive use of a particular frequency in a particular geographic area
may be allocated to an individual entity such as a corporation. It is feasible to limit the area covered by an
electromagnetic signal because such signals weaken, or attenuate, with the distance from their origin. To
reduce the area covered by your signal, reduce the power of your transmitter.

These allocations are typically determined by government agencies, such as the Federal Communications
Commission (FCC) in the United States. Specific bands (frequency ranges) are allocated to certain uses.
Some bands are reserved for government use. Other bands are reserved for uses such as AM radio, FM
radio, television, satellite communication, and cellular phones. Specific frequencies within these bands are
then licensed to individual organizations for use within certain geographical areas. Finally, several frequency
bands are set aside for license-exempt usage—bands in which a license is not needed.

Devices that use license-exempt frequencies are still subject to certain restrictions to make that otherwise
unconstrained sharing work. Most important of these is a limit on transmission power. This limits the range
of a signal, making it less likely to interfere with another signal. For example, a cordless phone (a common
unlicensed device) might have a range of about 100 feet.

One idea that shows up a lot when spectrum is shared among many devices and applications is spread
spectrum. The idea behind spread spectrum is to spread the signal over a wider frequency band, so as
to minimize the impact of interference from other devices. (Spread spectrum was originally designed for
military use, so these “other devices” were often attempting to jam the signal.) For example, frequency
hopping is a spread spectrum technique that involves transmitting the signal over a random sequence of
frequencies; that is, first transmitting at one frequency, then a second, then a third, and so on. The sequence
of frequencies is not truly random but is instead computed algorithmically by a pseudorandom number
generator. The receiver uses the same algorithm as the sender and initializes it with the same seed; hence, it
is able to hop frequencies in sync with the transmitter to correctly receive the frame. This scheme reduces
interference by making it unlikely that two signals would be using the same frequency for more than the
infrequent isolated bit.

84 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

A second spread spectrum technique, called direct sequence, adds redundancy for greater tolerance of in-
terference. Each bit of data is represented by multiple bits in the transmitted signal so that, if some of the
transmitted bits are damaged by interference, there is usually enough redundancy to recover the original bit.
For each bit the sender wants to transmit, it actually sends the exclusive-OR of that bit and n random bits.
As with frequency hopping, the sequence of random bits is generated by a pseudorandom number generator
known to both the sender and the receiver. The transmitted values, known as an n-bit chipping code, spread
the signal across a frequency band that is n times wider than the frame would have otherwise required.
Figure 2.23 gives an example of a 4-bit chipping sequence.

Data stream: 1010

1 m Random sequence: 0100101101011001

Figure 2.23.: Example 4-bit chipping sequence.

Fﬂ

XOR of the two: 1011101110101001

Different parts of the electromagnetic spectrum have different properties, making some better suited to com-
munication, and some less so. For example, some can penetrate buildings and some cannot. Governments
regulate only the prime communication portion: the radio and microwave ranges. As demand for prime
spectrum increases, there is great interest in the spectrum that is becoming available as analog television is
phased out in favor of digital.

In many wireless networks today we observe that there are two different classes of endpoints. One endpoint,
sometimes described as the base station, usually has no mobility but has a wired (or at least high-bandwidth)
connection to the Internet or other networks, as shown in Figure 2.24. The node at the other end of the
link—shown here as a client node—is often mobile and relies on its link to the base station for all of its
communication with other nodes.

Observe that in Figure 2.24 we have used a wavy pair of lines to represent the wireless “link™ abstraction
provided between two devices (e.g., between a base station and one of its client nodes). One of the interesting
aspects of wireless communication is that it naturally supports point-to-multipoint communication, because
radio waves sent by one device can be simultaneously received by many devices. However, it is often useful
to create a point-to-point link abstraction for higher layer protocols, and we will see examples of how this
works later in this section.

Note that in Figure 2.24 communication between non-base (client) nodes is routed via the base station. This
is in spite of the fact that radio waves emitted by one client node may well be received by other client
nodes—the common base station model does not permit direct communication between the client nodes.

This topology implies three qualitatively different levels of mobility. The first level is no mobility, such as
when a receiver must be in a fixed location to receive a directional transmission from the base station. The
second level is mobility within the range of a base, as is the case with Bluetooth. The third level is mobility
between bases, as is the case with cell phones and Wi-Fi.

An alternative topology that is seeing increasing interest is the mesh or ad hoc network. In a wireless mesh,
nodes are peers; that is, there is no special base station node. Messages may be forwarded via a chain of peer
nodes as long as each node is within range of the preceding node. This is illustrated in Figure 2.25. This
allows the wireless portion of a network to extend beyond the limited range of a single radio. From the point

2.7. Wireless Networks 85

Computer Networks: A Systems Approach, Release Version 6.1

Client node

Wired
network

Base station

Key

Client node

Wireless “link”
between 2 nodes

Figure 2.24.: A wireless network using a base station.

of view of competition between technologies, this allows a shorter-range technology to extend its range and
potentially compete with a longer-range technology. Meshes also offer fault tolerance by providing multiple
routes for a message to get from point A to point B. A mesh network can be extended incrementally, with
incremental costs. On the other hand, a mesh network requires non-base nodes to have a certain level of
sophistication in their hardware and software, potentially increasing per-unit costs and power consumption,
a critical consideration for battery-powered devices. Wireless mesh networks are of considerable research
interest, but they are still in their relative infancy compared to networks with base stations. Wireless sensor
networks, another hot emerging technology, often form wireless meshes.

Now that we have covered some of the common wireless issues, let’s take a look at the details of two
common wireless technologies.

2.7.2 802.11/Wi-Fi

Most readers will have used a wireless network based on the IEEE 802.11 standards, often referred to as
Wi-Fi. Wi-Fi is technically a trademark, owned by a trade group called the Wi-Fi Alliance, which certifies
product compliance with 802.11. Like Ethernet, 802.11 is designed for use in a limited geographical area
(homes, office buildings, campuses), and its primary challenge is to mediate access to a shared communica-
tion medium—in this case, signals propagating through space.

86 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

Wireless
transmission

Mobile node

Mobile node

Figure 2.25.: A wireless ad hoc or mesh network.

2.7. Wireless Networks 87

Computer Networks: A Systems Approach, Release Version 6.1

Physical Properties

802.11 defines a number of different physical layers that operate in various frequency bands and provide a
range of different data rates.

The original 802.11 standard defined two radio-based physical layers standards, one using frequency hop-
ping (over 79 1-MHz-wide frequency bandwidths) and the other using direct sequence spread spectrum
(with an 11-bit chipping sequence). Both provided data rates in the 2 Mbps range. Subsequently, the phys-
ical layer standard 802.11b was added, and using a variant of direct sequence, supported up to 11 Mbps.
These three standards all operated in the license-exempt 2.4-GHz frequency band of the electromagnetic
spectrum. Then came 802.11a, which delivered up to 54 Mbps using a variant of frequency division mul-
tiplexing called orthogonal frequency division multiplexing (OFDM). 802.11a runs in the license-exempt
5-GHz band. 802.11g followed, and also using OFDM, delivered up to 54 Mbps. 802.11g is backward
compatible with 802.11b (and returns to the 2.4-GHz band).

At the time of writing, many devices support 802.11n or 802.11ac, which typically achieve per-device data
rates of 150 Mbps to 450 Mbps, respectively. This improvement is partly due to the use of multiple antennas
and allowing greater wireless channel bandwidths. The use of multiple antennas is often called MIMO
for multiple-input, multiple-output. The latest emerging standard, 802.11ax, promises another substantial
improvement in throughput, in part by adopting many of the coding and modulation techniques used in the
4G/5G cellular network, which we describe in the next section.

It is common for commercial products to support more than one flavor of 802.11; many base stations support
all five variants (a,b, g, n, and ac). This not only ensures compatibility with any device that supports any one
of the standards but also makes it possible for two such products to choose the highest bandwidth option for
a particular environment.

It is worth noting that while all the 802.11 standards define a maximum bit rate that can be supported, they
mostly support lower bit rates as well (e.g., 802.11a allows for bit rates of 6, 9, 12, 18, 24, 36, 48, and 54
Mbps). At lower bit rates, it is easier to decode transmitted signals in the presence of noise. Different mod-
ulation schemes are used to achieve the various bit rates. In addition, the amount of redundant information
in the form of error-correcting codes is varied. More redundant information means higher resilience to bit
errors at the cost of lowering the effective data rate (since more of the transmitted bits are redundant).

The systems try to pick an optimal bit rate based on the noise environment in which they find themselves;
the algorithms for bit rate selection can be quite complex. Interestingly, the 802.11 standards do not specify
a particular approach but leave the algorithms to the various vendors. The basic approach to picking a
bit rate is to estimate the bit error rate either by directly measuring the signal-to-noise ratio (SNR) at the
physical layer or by estimating the SNR by measuring how often packets are successfully transmitted and
acknowledged. In some approaches, a sender will occasionally probe a higher bit rate by sending one or
more packets at that rate to see if it succeeds.

Collision Avoidance

At first glance, it might seem that a wireless protocol would follow the same algorithm as the Ethernet—wait
until the link becomes idle before transmitting and back off should a collision occur—and, to a first approx-
imation, this is what 802.11 does. The additional complication for wireless is that, while a node on an
Ethernet receives every other node’s transmissions and can transmit and receive at the same time, neither
of these conditions holds for wireless nodes. This makes detection of collisions rather more complex. The

88 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

reason why wireless nodes cannot usually transmit and receive at the same time (on the same frequency) is
that the power generated by the transmitter is much higher than any received is likely to be and so swamps
the receiving circuitry. The reason why a node may not receive transmissions from another node is because
that node may be too far away or blocked by an obstacle. This situation is a bit more complex than it first
appears, as the following discussion will illustrate.

Figure 2.26.: The hidden node problem. Although A and C are hidden from each other, their signals can
collide at B. (B’s reach is not shown.)

Consider the situation depicted in Figure 2.26, where A and C are both within range of B but not each other.
Suppose both A and C want to communicate with B and so they each send it a frame. A and C are unaware
of each other since their signals do not carry that far. These two frames collide with each other at B, but
unlike an Ethernet, neither A nor C is aware of this collision. A and C are said to be hidden nodes with
respect to each other.

Figure 2.27.: The exposed node problem. Although B and C are exposed to each other’s signals, there is no
interference if B transmits to A while C transmits to D. (A and D’s reaches are not shown.)

A related problem, called the exposed node problem, occurs under the circumstances illustrated in Figure
2.27, where each of the four nodes is able to send and receive signals that reach just the nodes to its imme-

2.7. Wireless Networks 89

Computer Networks: A Systems Approach, Release Version 6.1

diate left and right. For example, B can exchange frames with A and C but it cannot reach D, while C can
reach B and D but not A. Suppose B is sending to A. Node C is aware of this communication because it
hears B’s transmission. It would be a mistake, however, for C to conclude that it cannot transmit to anyone
just because it can hear B’s transmission. For example, suppose C wants to transmit to node D. This is not a
problem since C’s transmission to D will not interfere with A’s ability to receive from B. (It would interfere
with A sending to B, but B is transmitting in our example.)

802.11 addresses these problems by using CSMA/CA, where the CA stands for collision avoidance, in
contrast to the collision detection of CSMA/CD used on Ethernets. There are a few pieces to make this
work.

The Carrier Sense part seems simple enough: Before sending a packet, the transmitter checks if it can hear
any other transmissions; if not, it sends. However, because of the hidden node problem, just waiting for
the absence of signals from other transmitters does not guarantee that a collision will not occur from the
perspective of the receiver. For this reason, one part of CSMA/CA is an explicit ACK from the receiver to
the sender. If the packet was successfully decoded and passed its CRC at the receiver, the receiver sends an
ACK back to the sender.

Note that if a collision does occur, it will render the entire packet useless. For this reason, 802.11 adds an
optional mechanism called RTS-CTS (Ready to Send-Clear to Send). This goes some way toward addressing
the hidden node problem. The sender sends an RTS—a short packet—to the intended receiver, and if that
packet is received successfully the receiver responds with another short packet, the CTS. Even though the
RTS may not have been heard by a hidden node, the CTS probably will be. This effectively tells the nodes
within range of the receiver that they should not send anything for a while—the amount of time of the
intended transmission is included in the RTS and CTS packets. After that time plus a small interval has
passed, the carrier can be assumed to be available again, and another node is free to try to send.

Of course, two nodes might detect an idle link and try to transmit an RTS frame at the same time, causing
their RTS frames to collide with each other. The senders realize the collision has happened when they do
not receive the CTS frame after a period of time, in which case they each wait a random amount of time
before trying again. The amount of time a given node delays is defined by an exponential backoff algorithm
very much like that used on the Ethernet.

After a successful RTS-CTS exchange, the sender sends its data packet and, if all goes well, receives an
ACK for that packet. In the absence of a timely ACK, the sender will try again to request usage of the
channel again, using the same process described above. By this time, of course, other nodes may again be
trying to get access to the channel as well.

Distribution System

As described so far, 802.11 would be suitable for a network with a mesh (ad hoc) topology, and development
of an 802.11s standard for mesh networks is nearing completion. At the current time, however, nearly all
802.11 networks use a base-station-oriented topology.

Instead of all nodes being created equal, some nodes are allowed to roam (e.g., your laptop) and some are
connected to a wired network infrastructure. 802.11 calls these base stations access points (APs), and they
are connected to each other by a so-called distribution system. Figure 2.28 illustrates a distribution system
that connects three access points, each of which services the nodes in some region. Each access point
operates on some channel in the appropriate frequency range, and each AP will typically be on a different
channel than its neighbors.

920 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

Distribution system

Figure 2.28.: Access points connected to a distribution system.

The details of the distribution system are not important to this discussion—it could be an Ethernet, for
example. The only important point is that the distribution network operates at the link layer, the same
protocol layer as the wireless links. In other words, it does not depend on any higher-level protocols (such
as the network layer).

Although two nodes can communicate directly with each other if they are within reach of each other, the
idea behind this configuration is that each node associates itself with one access point. For node A to
communicate with node E, for example, A first sends a frame to its access point (AP-1), which forwards
the frame across the distribution system to AP-3, which finally transmits the frame to E. How AP-1 knew
to forward the message to AP-3 is beyond the scope of 802.11; it may have used a bridging protocol. What
802.11 does specify is how nodes select their access points and, more interestingly, how this algorithm
works in light of nodes moving from one cell to another.

The technique for selecting an AP is called scanning and involves the following four steps:
1. The node sends a Probe frame.
2. All APs within reach reply with a Probe Response frame.
3. The node selects one of the access points and sends that AP an Association Request frame.
4. The AP replies with an Association Response frame.

A node engages this protocol whenever it joins the network, as well as when it becomes unhappy with its
current AP. This might happen, for example, because the signal from its current AP has weakened due to
the node moving away from it. Whenever a node acquires a new AP, the new AP notifies the old AP of the
change (this happens in step 4) via the distribution system.

Consider the situation shown in Figure 2.29, where node C moves from the cell serviced by AP-1 to the
cell serviced by AP-2. As it moves, it sends Probe frames, which eventually result in Probe Response
frames from AP-2. At some point, C prefers AP-2 over AP-1, and so it associates itself with that access
point.

2.7. Wireless Networks 91

Computer Networks: A Systems Approach, Release Version 6.1

Distribution system

Figure 2.29.: Node mobility.

The mechanism just described is called active scanning since the node is actively searching for an access
point. APs also periodically send a Beacon frame that advertises the capabilities of the access point; these
include the transmission rates supported by the AP. This is called passive scanning, and a node can change
to this AP based on the Beacon frame simply by sending an Association Request frame back to the
access point.

Frame Format

Most of the 802.11 frame format, which is depicted in Figure 2.30, is exactly what we would expect. The
frame contains the source and destination node addresses, each of which is 48 bits long; up to 2312 bytes of
data; and a 32-bit CRC. The Control field contains three subfields of interest (not shown): a 6-bit Type
field that indicates whether the frame carries data, is an RTS or CTS frame, or is being used by the scanning
algorithm, and a pair of 1-bit fields—called ToDS and FromDS—that are described below.

16 16 48 48 48 16 48 0-18,496 32

Control | Duration | Addr1 | Addr2 | Addr3 | SeqCtrl | Addr4 Payload% CRC

Figure 2.30.: 802.11 frame format.

The peculiar thing about the 802.11 frame format is that it contains four, rather than two, addresses. How
these addresses are interpreted depends on the settings of the ToDS and FromDS bits in the frame’s
Control field. This is to account for the possibility that the frame had to be forwarded across the dis-
tribution system, which would mean that the original sender is not necessarily the same as the most recent
transmitting node. Similar reasoning applies to the destination address. In the simplest case, when one node
is sending directly to another, both the DS bits are 0, Addr1 identifies the target node, and Addr2 identifies
the source node. In the most complex case, both DS bits are set to 1, indicating that the message went from
a wireless node onto the distribution system, and then from the distribution system to another wireless node.

92 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

With both bits set, Addr1 identifies the ultimate destination, Addr?2 identifies the immediate sender (the
one that forwarded the frame from the distribution system to the ultimate destination), Addr 3 identifies the
intermediate destination (the one that accepted the frame from a wireless node and forwarded it across the
distribution system), and Addr4 identifies the original source. In terms of the example given in Figure 2.28,
Addrl corresponds to E, Addr2 identifies AP-3, Addr3 corresponds to AP-1, and Addr4 identifies A.

Security of Wireless Links

One of the fairly obvious problems of wireless links compared to wires or fibers is that you can’t be too
sure where your data has gone. You can probably figure out if it was received by the intended receiver, but
there is no telling how many other receivers might have also picked up your transmission. So, if you are
concerned about the privacy of your data, wireless networks present a challenge.

Even if you are not concerned about data privacy—or perhaps have taken care of it in some other way—you
may be concerned about an unauthorized user injecting data into your network. If nothing else, such a user
might be able to consume resources that you would prefer to consume yourself, such as the finite bandwidth
between your house and your ISP.

For these reasons, wireless networks typically come with some sort of mechanism to control access to both
the link itself and the transmitted data. These mechanisms are often categorized as wireless security. The
widely adopted WPA?2 is described in Chapter 8.

2.7.3 Bluetooth (802.15.1)

Bluetooth fills the niche of very short range communication between mobile phones, PDAs, notebook com-
puters, and other personal or peripheral devices. For example, Bluetooth can be used to connect a mobile
phone to a headset or a notebook computer to a keyboard. Roughly speaking, Bluetooth is a more convenient
alternative to connecting two devices with a wire. In such applications, it is not necessary to provide much
range or bandwidth. This means that Bluetooth radios can use quite low power transmission, since trans-
mission power is one of the main factors affecting bandwidth and range of wireless links. This matches the
target applications for Bluetooth-enabled devices—most of them are battery powered (such as the ubiquitous
phone headset) and hence it is important that they not consume much power.

Bluetooth operates in the license-exempt band at 2.45 GHz. Bluetooth links have typical bandwidths around
1 to 3 Mbps and a range of about 10 m. For this reason, and because the communicating devices typically
belong to one individual or group, Bluetooth is sometimes categorized as a Personal Area Network (PAN).

Bluetooth is specified by an industry consortium called the Bluetooth Special Interest Group. It specifies an
entire suite of protocols, going beyond the link layer to define application protocols, which it calls profiles,
for arange of applications. For example, there is a profile for synchronizing a PDA with a personal computer.
Another profile gives a mobile computer access to a wired LAN in the manner of 802.11, although this was
not Bluetooth’s original goal. The IEEE 802.15.1 standard is based on Bluetooth but excludes the application
protocols.

The basic Bluetooth network configuration, called a piconet, consists of a master device and up to seven
slave devices, as shown in Figure 2.31. Any communication is between the master and a slave; the slaves
do not communicate directly with each other. Because slaves have a simpler role, their Bluetooth hardware
and software can be simpler and cheaper.

2.7. Wireless Networks 93

Computer Networks: A Systems Approach, Release Version 6.1

(p&:;lrak\;ed) B (active)

Figure 2.31.: A Bluetooth piconet.

Since Bluetooth operates in an license-exempt band, it is required to use a spread spectrum technique to deal
with possible interference in the band. It uses frequency-hopping with 79 channels (frequencies), using each
for 625 us at a time. This provides a natural time slot for Bluetooth to use for synchronous time division
multiplexing. A frame takes up 1, 3, or 5 consecutive time slots. Only the master can start to transmit in odd-
numbered slots. A slave can start to transmit in an even-numbered slot—but only in response to a request
from the master during the previous slot, thereby preventing any contention between the slave devices.

A slave device can be parked; that is, it is set to an inactive, low-power state. A parked device cannot
communicate on the piconet; it can only be reactivated by the master. A piconet can have up to 255 parked
devices in addition to its active slave devices.

In the realm of very low-power, short-range communication there are a few other technologies besides
Bluetooth. One of these is ZigBee, devised by the ZigBee alliance and standardized as IEEE 802.15.4. It is
designed for situations where the bandwidth requirements are low and power consumption must be very low
to give very long battery life. It is also intended to be simpler and cheaper than Bluetooth, making it feasible
to incorporate in cheaper devices such as sensors. Sensors are becoming an increasingly important class of
networked device, as technology advances to the point where very cheap small devices can be deployed in
large quantities to monitor things like temperature, humidity, and energy consumption in a building.

94 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

2.8 Access Networks

In addition to the Ethernet and Wi-Fi connections we typically use to connect to the Internet at home, at
work, at school, and in many public spaces, most of us connect to the Internet over an access or broadband
service that we buy from an ISP. This section describes two such technologies: Passive Optical Networks
(PON), commonly referred to as fiber-to-the-home, and Cellular Networks that connect our mobile devices.
In both cases, the networks are multi-access (like Ethernet and Wi-Fi), but as we will see, their approach to
mediating access is quite different.

To set a little more context, ISPs (e.g., Telco or Cable companies) often operate a national backbone, and
connected to the periphery of that backbone are hundreds or thousands of edge sites, each of which serves
a city or neighborhood. These edge sites are commonly called Central Offices in the Telco world and
Head Ends in the cable world, but despite their names implying “centralized” and “root of the hierarchy”
these sites are at the very edge of the ISP’s network; the ISP-side of the last-mile that directly connects to
customers. PON and Cellular access networks are anchored in these facilities.'

2.8.1 Passive Optical Network

PON is the technology most commonly used to deliver fiber-based broadband to homes and businesses.
PON adopts a point-to-multipoint design, which means the network is structured as a tree, with a single
point starting in the ISP’s network and then fanning out to reach up to 1024 homes. PON gets its name
from the fact that the splitters are passive: they forward optical signals downstream and upstream without
actively storing-and-forwarding frames. In this way, they are the optical variant of repeaters used in the
classic Ethernet. Framing then happens at the source in the ISP’s premises, in a device called an Optical
Line Terminal (OLT), and at the end-points in individual homes, in a device called an Optical Network Unit
(ONU).

Figure 2.32 shows an example PON, simplified to depict just one ONU and one OLT. In practice, a Central
Office would include multiple OLTs connecting to thousands of customer homes. For completeness, Figure
2.32 also includes two other details about how the PON is connected to the ISP’s backbone (and hence, to
the rest of the Internet). The Agg Switch aggregates traffic from a set of OLTs, and the BNG (Broadband
Network Gateway) is a piece of Telco equipment that, among many other things, meters Internet traffic for
the sake of billing. As its name implies, the BNG is effectively the gateway between the access network
(everything to the left of the BNG) and the Internet (everything to the right of the BNG).

Because the splitters are passive, PON has to implement some form of multi-access protocol. The approach
it adopts can be summarized as follows. First, upstream and downstream traffic are transmitted on two
different optical wavelengths, so they are completely independent of each other. Downstream traffic starts
at the OLT and the signal is propagated down every link in the PON. As a consequence, every frame reaches
every ONU. This device then looks at a unique identifier in the individual frames sent over the wavelength,
and either keeps the frame (if the identifier is for it) or drops it (if not). Encryption is used to keep ONUs
from eavesdropping on their neighbors’ traffic.

Upstream traffic is then time-division multiplexed on the upstream wavelength, with each ONU periodically
getting a turn to transmit. Because the ONUs are distributed over a fairly wide area (measured in kilometers)
and at different distances from the OLT, it is not practical for them to transmit based on synchronized clocks,

' DSL is the legacy, copper-based counterpart to PON. DSL links are also terminated in Telco Central Offices, but we do not
describe this technology since it is being phased out.

2.8. Access Networks 95

Computer Networks: A Systems Approach, Release Version 6.1

Passive Optical Network (PON)
|

O
. Ag To/From
| E | '
oMU -9 9 oLt Switeh BNG [+t the ISP’s
Backbone
o
Home
|
Central Office

Figure 2.32.: An example PON that connects OLTs in the Central Office to ONUs in homes and businesses.

as in SONET. Instead, the ONT transmits grants to the individual ONUs, giving them a time interval during
which they can transmit. In other words, the single OLT is responsible for centrally implementing the round-
robin sharing of the shared PON. This includes the possibility that the OLT can grant each ONU a different
share of time, effectively implementing different levels of service.

PON is similar to Ethernet in the sense that it defines a sharing algorithm that has evolved over time to
accommodate higher and higher bandwidths. G-PON (Gigabit-PON) is the most widely deployed today,
supporting a bandwidth of 2.25-Gbps. XGS-PON (10 Gigabit-PON) is just now starting to be deployed.

2.8.2 Cellular Network

While cellular telephone technology had its roots in analog voice communication, data services based on
cellular standards are now the norm. Like Wi-Fi, cellular networks transmit data at certain bandwidths in
the radio spectrum. Unlike Wi-Fi, which permits anyone to use a channel at either 2.4 or 5 GHz (all you
have to do is set up a base station, as many of us do in our homes), exclusive use of various frequency bands
have been auctioned off and licensed to service providers, who in turn sell mobile access service to their
subscribers.

The frequency bands that are used for cellular networks vary around the world, and are complicated by the
fact that ISPs often simultaneously support both old/legacy technologies and new/next-generation technolo-
gies, each of which occupies a different frequency band. The high-level summary is that traditional cellular
technologies range from 700-MHz to 2400-MHz, with new mid-spectrum allocations now happening at
6-GHz and millimeter-wave (mmWave) allocations opening above 24-GHz.

Citizens Broadband Radio Service (CBRS)

In addition to the licensed bands, there is also an unlicensed band at 3.5-GHz set aside in North America,
called Citizens Broadband Radio Service (CBRS), that anyone with a cellular radio can use. Similar

96 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

unlicensed bands are being set up in other countries, as well. This opens the door for setting up private
cellular networks, for example, within a University campus, an enterprise, or a manufacturing plant.

To be more precise, the CBRS band allows three tiers of users to share the spectrum: first right of use goes
to the original owners of this spectrum, naval radars and satellite ground stations; followed by priority
users who receive this right over 10MHz bands for three years via regional auctions; and finally the rest of
the population, who can access and utilize a portion of this band as long as they first check with a central
database of registered users.

Like 802.11, cellular technology relies on the use of base stations that are connected to a wired network.
In the case of the cellular network, the base stations are often called Broadband Base Units (BBU), the
mobile devices that connect to them are usually referred to as User Equipment (UE), and the set of BBUs
are anchored at an Evolved Packet Core (EPC) hosted in a Central Office. The wireless network served by
the EPC is often called a Radio Access Network (RAN).

BBU s officially go by another name—Evolved NodeB, often abbreviated eNodeB or eNB—where NodeB
is what the radio unit was called in an early incarnation of cellular networks (and has since evolved). Given
that the cellular world continues to evolve at a rapid pace and eNB’s are soon to be upgraded to gNB’s, we
have decided to use the more generic and less cryptic BBU.

Figure 2.33 depicts one possible configuration of the end-to-end scenario, with a few additional bits of detail.
The EPC has multiple subcomponents, including an MME (Mobility Management Entity), an HSS (Home
Subscriber Server), and an S/PGW (Session/Packet Gateway) pair; the first tracks and manages the move-
ment of UEs throughout the RAN, the second is a database that contains subscriber-related information, and
the Gateway pair processes and forwards packets between the RAN and the Internet (it forms the EPC’s user
plane). We say “one possible configuration” because the cellular standards allow wide variability in how
many S/PGWs a given MME is responsible for, making is possible for a single MME to manage mobility
across a wide geographic area that is served by multiple Central Offices. Finally, while not explicitly spelled
out in Figure 2.33, it is sometimes the case that the ISP’s PON network is used to connect the remote BBUs
back to the Central Office.

The geographic area served by a BBU’s antenna is called a cell. A BBU could serve a single cell or use
multiple directional antennas to serve multiple cells. Cells don’t have crisp boundaries, and they overlap.
Where they overlap, an UE could potentially communicate with multiple BBUs. At any time, however, the
UE is in communication with, and under the control of, just one BBU. As the device begins to leave a cell,
it moves into an area of overlap with one or more other cells. The current BBU senses the weakening signal
from the phone and gives control of the device to whichever base station is receiving the strongest signal
from it. If the device is involved in a call or other network session at the time, the session must be transferred
to the new base station in what is called a handoff. The decision making process for handoffs is under the
purview of the MME, which has historically been a proprietary aspect of the cellular equipment vendors
(although open source MME implementations are now starting to be available).

There have been multiple generations of protocols implementing the cellular network, colloquially known
as 1G, 2G, 3G, and so on. The first two generations supported only voice, with 3G defining the transition to
broadband access, supporting data rates measured in hundreds of kilobits-per-second. Today, the industry
is at 4G (supporting data rates typically measured in the few megabits-per-second) and is in the process of
transitioning to 5G (with the promise of a tenfold increase in data rates).

As of 3G, the generational designation actually corresponds to a standard defined by the 3GPP (3rd Genera-
tion Partnership Project). Even though its name has “3G” in it, the 3GPP continues to define the standard for

2.8. Access Networks 97

Computer Networks: A Systems Approach, Release Version 6.1

Radio Access Network (RAN)
A

I — ™
Cell

W \

=X — sBU EPC

E’ |

o MME —| HS5

E

[= %

g‘ To/F th
ofFrom the

i} SGW — PGW *

= | \ ISP's Backbone

W + BBU

: 1

Central Office

Figure 2.33.: A Radio Access Network (RAN) connecting a set of cellular devices (UEs) to an Evolved
Packet Core (EPC) hosted in a Central Office.

4G and 5G, each of which corresponds to a release of the standard. Release 15, which is now published, is
considered the demarcation point between 4G and 5G. By another name, this sequence of releases and gen-
erations is called LTE, which stands for Long-Term Evolution. The main takeaway is that while standards
are published as a sequence of discrete releases, the industry as a whole has been on a fairly well-defined
evolutionary path known as LTE. This section uses LTE terminology, but highlights the changes coming
with 5G when appropriate.

The main innovation of LTE’s air interface is how it allocates the available radio spectrum to UEs. Unlike
Wi-Fi, which is contention-based, LTE uses a reservation-based strategy. This difference is rooted in each
system’s fundamental assumption about utilization: Wi-Fi assumes a lightly loaded network (and hence
optimistically transmits when the wireless link is idle and backs off if contention is detected), while cellular
networks assume (and strive for) high utilization (and hence explicitly assign different users to different
“shares” of the available radio spectrum).

The state-of-the-art media access mechanism for LTE is called Orthogonal Frequency-Division Multiple
Access (OFDMA). The idea is to multiplex data over a set of 12 orthogonal subcarrier frequencies, each of
which is modulated independently. The “Multiple Access” in OFDMA implies that data can simultaneously
be sent on behalf of multiple users, each on a different subcarrier frequency and for a different duration of
time. The subbands are narrow (e.g., 15kHz), but the coding of user data into OFDMA symbols is designed
to minimize the risk of data loss due to interference between adjacent bands.

The use of OFDMA naturally leads to conceptualizing the radio spectrum as a two-dimensional resource,
as shown in Figure 2.34. The minimal schedulable unit, called a Resource Element (RE), corresponds to a
15kHz-wide band around one subcarrier frequency and the time it takes to transmit one OFDMA symbol.
The number of bits that can be encoded in each symbol depends on the modulation rate, so for example
using Quadrature Amplitude Modulation (QAM), 16-QAM yields 4 bits per symbol and 64-QAM yields 6
bits per symbol.

98 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

Transmission Time Interval (TTI) = 1ms
L

PRE PRB 1
- l I

o
o _12 subcarrie
= = 180 kHz
a
-
L
Resource E

T

e

w

Time (Symbols) lsDF[LMf
ymbo

Figure 2.34.: The available radio spectrum abstractly represented by a 2-D grid of schedulable Resource
Elements.

2.8. Access Networks 99

Computer Networks: A Systems Approach, Release Version 6.1

A scheduler makes allocation decisions at the granularity of blocks of 7x12=84 resource elements, called
a Physical Resource Block (PRB). Figure 2.34 shows two back-to-back PRBs, where UEs are depicted by
different colored blocks. Of course time continues to flow along one axis, and depending on the size of the
licensed frequency band, there may be many more subcarrier slots (and hence PRBs) available along the
other axis, so the scheduler is essentially scheduling a sequence of PRBs for transmission.

The 1ms Transmission Time Interval (TTI) shown in Figure 2.34 corresponds to the time frame in which the
BBU receives feedback from UEs about the quality of the signal they are experiencing. This feedback, called
a Channel Quality Indicator (CQI), essentially reports the observed signal-to-noise ratio, which impacts the
UE’s ability to recover the data bits. The base station then uses this information to adapt how it allocates the
available radio spectrum to the UEs it is serving.

Up to this point, the description of how we schedule the radio spectrum is specific to 4G. The transition
from 4G to 5G introduces additional degrees-of-freedom in how the radio spectrum is scheduled, making it
possible to adapt the cellular network to a more diverse set of devices and applications domains.

Fundamentally, 5G defines a family of waveforms—unlike 4G, which specified only one waveform—each
optimized for a different band in the radio spectrum.” The bands with carrier frequencies below 1GHz are
designed to deliver mobile broadband and massive 10T services with a primary focus on range. Carrier
frequencies between 1GHz-6GHz are designed to offer wider bandwidths, focusing on mobile broadband
and mission-critical applications. Carrier frequencies above 24GHz (mmWaves) are designed to provide
super wide bandwidths over short, line-of-sight coverage.

These different waveforms affect the scheduling and subcarrier intervals (i.e., the “size” of the Resource
Elements just described).

¢ For sub-1GHz bands, 5G allows maximum 50MHz bandwidths. In this case, there are two waveforms:
one with subcarrier spacing of 15kHz and another of 30kHz. (We used 15kHz in the example shown
in Figure 2.34. The corresponding scheduling intervals are 0.5ms and 0.25ms, respectively. (We used
0.5ms in the example shown in Figure 2.34.)

* For 1GHz-6GHz bands, maximum bandwidths go up to 100MHz. Correspondingly, there are three
waveforms with subcarrier spacings of 15kHz, 30kHz and 60kHz, corresponding to scheduling inter-
vals of 0.5ms, 0.25ms and 0.125ms, respectively.

* For millimeter bands, bandwidths may go up to 400MHz. There are two waveforms, with subcarrier
spacings of 60kHz and 120kHz. Both have scheduling intervals of 0.125ms.

This range of options is important because it adds another degree of freedom to the scheduler. In addition
to allocating resource blocks to users, it has the ability to dynamically adjust the size of the resource blocks
by changing the wave form being used in the band it is responsible for scheduling.

Whether 4G or 5G, the scheduling algorithm is a challenging optimization problem, with the objective of
simultaneously (a) maximizing utilization of the available frequency band, and (b) ensuring that every UE
receives the level of service it requires. This algorithm is not specified by 3GPP, but rather, is the proprietary
intellectual property of the BBU vendors.

2 A waveform is the frequency, amplitude, and phase-shift independent property (shape) of a signal. A sine wave is an example
waveform.

100 Chapter 2. Direct Links

Computer Networks: A Systems Approach, Release Version 6.1

Perspective: Race to the Edge

As we start to explore how softwarization is transforming the network, we should recognize that it is the
access network that connects homes, businesses, and mobile users to the Internet that is undergoing the
most radical change. The fiber-to-the-home and cellular networks described in Section 2.8 are currently
constructed from complex hardware appliances (e.g., OLTs, BNGs, BBUs, EPCs). Not only have these
devices historically been closed and proprietary, but the vendors that sell them have typically bundled a
broad and diverse collection of functionality in each. As a consequence, they have become expensive to
build, complicated to operate, and slow to change.

In response, network operators are actively transitioning from these purpose-built appliances to open soft-
ware running on commodity servers, switches, and access devices. This initiative is often called CORD,
which is an acronym for Central Office Re-architected as a Datacenter, and as the name suggests, the idea
is to build the Telco Central Office (or the Cable Head End, resulting in the acronym HERD) using exactly
the same technologies as in the large datacenters that make up the cloud.

The motivation for operators to do this is in part to benefit from the cost savings that come from replacing
purpose-built appliances with commodity hardware, but it is mostly driven by the need to accelerate the
pace of innovation. Their goal is to enable new classes of edge services—e.g., Public Safety, Autonomous
Vehicles, Automated Factories, Internet-of-Things (IoT), Immersive User Interfaces—that benefit from low
latency connectivity to end users, and more importantly, to the increasing number of devices those users
surround themselves with. This results in a multi-tier cloud similar to the one shown in Figure 2.35.

Edge Clouds IXP Clouds Public Clouds

&
Devices

Users %
)

®
-

Access (.o CORD
NET.WCII‘kS{ B J

Figure 2.35.: Emerging multi-tier cloud includes datacenter-based public clouds, IXP-hosted distributed
clouds, and access-based edge clouds, such as CORD. While there are on the order of 150 IXP-hosted
clouds worldwide, we can expect there to be thousands or even tens of thousands of edge clouds.

This is all part of the growing trend to move functionality out of the datacenter and closer to the network
edge, a trend that puts cloud providers and network operators on a collision course. Cloud providers, in
pursuit of low-latency/high-bandwidth applications, are moving out of the datacenter and towards the edge
at the same time network operators are adopting the best practices and technologies of the cloud to the edge
that already exists and implements the access network. It’s impossible to say how this will all play out over

2.8. Access Networks 101

Computer Networks: A Systems Approach, Release Version 6.1

time; both industries have their particular advantages.

On the one hand, cloud providers believe that by saturating metro areas with edge clusters and abstracting
away the access network, they can build an edge presence with low enough latency and high enough band-
width to serve the next generation of edge applications. In this scenario, the access network remains a dumb
bit-pipe, allowing cloud providers to excel at what they do best: run scalable cloud services on commodity
hardware.

On the other hand, network operators believe that by building the next generation access network using cloud
technology, they will be able to co-locate edge applications in the access network. This scenario comes with
built-in advantages: an existing and widely distributed physical footprint, existing operational support, and
native support for both mobility and guaranteed service.

While acknowledging both of these possibilities, there is a third outcome that is not only worth considering,
but also worth working towards: the democratization of the network edge. The idea is to make the access-
edge cloud accessible to anyone, and not strictly the domain of incumbent cloud providers or network
operators. There are three reasons to be optimistic about this possibility:

1. Hardware and software for the access network is becoming commoditized and open. This is a key
enabler that we were just talking about. If it helps Telcos and CableCos be agile, then it can provide
the same value to anyone.

2. There is demand. Enterprises in the automotive, factory, and warehouse space increasingly want to
deploy private 5G networks for a variety of physical automation use cases (e.g., a garage where a
remote valet parks your car or a factory floor making use of automation robots).

3. Spectrum is becoming available. 5G is opening up for use in an unlicensed or lightly licensed model
in the US and Germany as two prime examples, with other countries soon to follow. This means 5G
should have around 100-200 MHz of spectrum available for private use.

In short, the access network has historically been the purview of the Telcos, CableCos, and the vendors that
sell them proprietary boxes, but the softwarization and virtualization of the access network opens the door
for anyone (from smart cities to underserved rural areas to apartment complexes to manufacturing plants)
to establish an access-edge cloud and connect it to the public Internet. We expect it to become as easy to
do this as it is today to deploy a WiFi router. Doing so not only brings the access-edge into new (edgier)
environments, but also has the potential to open the access network to developers that instinctively go where
there are opportunities to innovate.

Broader Perspective

To continue reading about the cloudification of the Internet, see Perspective: Virtual Networks All the Way
Down.

To learn more about the transformation taking place in access networks, we recommend: CORD: Central Of-
fice Re-architected as a Datacenter, [IEEE Communications, October 2016 and Democratizing the Network
Edge SIGCOMM CCR, April 2019.

102 Chapter 2. Direct Links

https://wiki.opencord.org/display/CORD/Documentation?preview=/1278027/1966399/PETERSON_CORD.pdf
https://wiki.opencord.org/display/CORD/Documentation?preview=/1278027/1966399/PETERSON_CORD.pdf
https://ccronline.sigcomm.org/2019/democratizing-the-network-edge/
https://ccronline.sigcomm.org/2019/democratizing-the-network-edge/

CHAPTER
THREE

INTERNETWORKING

Nature seems ... to reach many of her ends by long circuitous routes.

—Rudolph Lotze

Problem: Not All Networks are Directly Connected

As we have seen, there are many technologies that can be used to build last-mile links or to connect a modest
number of nodes together, but how do we build networks of global scale? A single Ethernet can interconnect
no more than 1024 hosts; a point-to-point link connects only two. Wireless networks are limited by the range
of their radios. To build a global network, we need a way to interconnect these different types of links and
multi-access networks. The concept of interconnecting different types of networks to build a large, global
network is the core idea of the Internet and is often referred to as internetworking.

We can divide the internetworking problem up into a few subproblems. First of all, we need a way to
interconnect links. Devices that interconnect links of the same type are often called switches, or sometimes
Layer 2 (L2) switches. These devices are the first topic of this chapter. A particularly important class of L2
switches in use today are those used to interconnect Ethernet segments. These switches are also sometimes
called bridges.

The core job of a switch is to take packets that arrive on an input and forward (or switch) them to the right
output so that they will reach their appropriate destination. There are a variety of ways that the switch
can determine the “right” output for a packet, which can be broadly categorized as connectionless and
connection-oriented approaches. These two approaches have both found important application areas over
the years.

Given the enormous diversity of network types, we also need a way to interconnect disparate networks and
links (i.e., deal with heterogeneity). Devices that perform this task, once called gateways, are now mostly
known as routers, or alternatively, Layer 3 (L3) switches. The protocol that was invented to deal with
interconnection of disparate network types, the Internet Protocol (IP), is the topic of our second section.

Once we interconnect a whole lot of links and networks with switches and routers, there are likely to be
many different possible ways to get from one point to another. Finding a suitable path or route through a
network is one of the fundamental problems of networking. Such paths should be efficient (e.g., no longer
than necessary), loop free, and able to respond to the fact that networks are not static—nodes may fail or
reboot, links may break, and new nodes or links may be added. Our third section looks at some of the
algorithms and protocols that have been developed to address these issues.

103

Computer Networks: A Systems Approach, Release Version 6.1

Once we understand the problems of switching and routing, we need some devices to perform those func-
tions. This chapter concludes with some discussion of the ways switches and routers are implemented.
While many packet switches and routers are quite similar to a general-purpose computer, there are many
situations where more specialized designs are used. This is particularly the case at the high end, where there
seems to be a never-ending need for more switching capacity that can handle the ever-increasing traffic load
in the Internet’s core.

3.1 Switching Basics

In the simplest terms, a switch is a mechanism that allows us to interconnect links to form a larger network.
A switch is a multi-input, multi-output device that transfers packets from an input to one or more outputs.
Thus, a switch adds the star topology (see Figure 3.1) to the set of possible network structures. A star
topology has several attractive properties:

* Even though a switch has a fixed number of inputs and outputs, which limits the number of hosts
that can be connected to a single switch, large networks can be built by interconnecting a number of
switches.

* We can connect switches to each other and to hosts using point-to-point links, which typically means
that we can build networks of large geographic scope.

* Adding a new host to the network by connecting it to a switch does not necessarily reduce the perfor-
mance of the network for other hosts already connected.

Figure 3.1.: A switch provides a star topology.

104 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

This last claim cannot be made for the shared-media networks discussed in the last chapter. For example,
it is impossible for two hosts on the same 10-Mbps Ethernet segment to transmit continuously at 10 Mbps
because they share the same transmission medium. Every host on a switched network has its own link to the
switch, so it may be entirely possible for many hosts to transmit at the full link speed (bandwidth), provided
that the switch is designed with enough aggregate capacity. Providing high aggregate throughput is one of
the design goals for a switch; we return to this topic later. In general, switched networks are considered more
scalable (i.e., more capable of growing to large numbers of nodes) than shared-media networks because of
this ability to support many hosts at full speed.

Dense Wavelength Division Multiplexing

Our focus on packet-switched networks obsures the fact that, especially in wide-area networks, the un-
derlying physical transport is all-optical: there are no packets. At this layer, commercially available
DWDM (Dense Wavelength Division Multiplexing) equipment is able to transmit a large numbers of op-
tical wavelengths (colors) down a single fiber. For example, one might send data on 100 or more different
wavelengths, and each wavelength might carry as much as 100 Gbps of data.

Connecting these fibers is an optical device called a ROADM (Reconfigurable Optical Add/Drop Multi-
plexers). A collection of ROADMs (nodes) and fibers (links) form an optical transport network, where
each ROADM is able to forward individual wavelengths along a multi-hop path, creating a logical end-
to-end circuit. From the perspective of a packet-switched network that might be constructed on top of
this optical transport, one wavelength, even it it crosses multiple ROADMSs, appears to be a single point-
to-point link between two switches, over which one might elect to run SONET or 100-Gbps Ethernet as
the framing protocol. The reconfigurability feature of ROADMs means that it is possible to change these
underlying end-to-end wavelengths, effectively creating a new topology at the packet-switching layer.

A switch is connected to a set of links and, for each of these links, runs the appropriate data link protocol
to communicate with the node at the other end of the link. A switch’s primary job is to receive incoming
packets on one of its links and to transmit them on some other link. This function is sometimes referred to
as either switching or forwarding, and in terms of the Open Systems Interconnection (OSI) architecture, it
is the main function of the network layer, otherwise known as Layer 2.

The question, then, is how does the switch decide which output link to place each packet on? The general
answer is that it looks at the header of the packet for an identifier that it uses to make the decision. The
details of how it uses this identifier vary, but there are two common approaches. The first is the datagram
or connectionless approach. The second is the virtual circuit or connection-oriented approach. A third
approach, source routing, is less common than these other two, but it does have some useful applications.

One thing that is common to all networks is that we need to have a way to identify the end nodes. Such
identifiers are usually called addresses. We have already seen examples of addresses, such as the 48-bit
address used for Ethernet. The only requirement for Ethernet addresses is that no two nodes on a network
have the same address. This is accomplished by making sure that all Ethernet cards are assigned a globally
unique identifier. For the following discussion, we assume that each host has a globally unique address.
Later on, we consider other useful properties that an address might have, but global uniqueness is adequate
to get us started.

Another assumption that we need to make is that there is some way to identify the input and output ports of
each switch. There are at least two sensible ways to identify ports: One is to number each port, and the other
is to identify the port by the name of the node (switch or host) to which it leads. For now, we use numbering

3.1. Switching Basics 105

Computer Networks: A Systems Approach, Release Version 6.1

of the ports.

3.1.1 Datagrams

The idea behind datagrams is incredibly simple: You just include in every packet enough information to
enable any switch to decide how to get it to its destination. That is, every packet contains the complete desti-
nation address. Consider the example network illustrated in Figure 3.2, in which the hosts have addresses A,
B, C, and so on. To decide how to forward a packet, a switch consults a forwarding table (sometimes called
a routing table), an example of which is depicted in Table 3.1. This particular table shows the forwarding
information that switch 2 needs to forward datagrams in the example network. It is pretty easy to figure out
such a table when you have a complete map of a simple network like that depicted here; we could imagine
a network operator configuring the tables statically. It is a lot harder to create the forwarding tables in large,
complex networks with dynamically changing topologies and multiple paths between destinations. That
harder problem is known as routing and is the topic of a later section. We can think of routing as a process
that takes place in the background so that, when a data packet turns up, we will have the right information
in the forwarding table to be able to forward, or switch, the packet.

Host D

7-_\\

i Host E
. 0 Switch 1 . Host F
- S/ e Switch 2 e
Host C wite g

. Switch 3 Host B

\.\\
Host H

Figure 3.2.: Datagram forwarding: an example network.

106 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Table 3.1.: Forwarding Table for Switch 2.
Destination | Port

TQmm g QW
OO =N W W O| W

Datagram networks have the following characteristics:

* A host can send a packet anywhere at any time, since any packet that turns up at a switch can be
immediately forwarded (assuming a correctly populated forwarding table). For this reason, datagram
networks are often called connectionless; this contrasts with the connection-oriented networks de-
scribed below, in which some connection state needs to be established before the first data packet is
sent.

* When a host sends a packet, it has no way of knowing if the network is capable of delivering it or if
the destination host is even up and running.

» Each packet is forwarded independently of previous packets that might have been sent to the same
destination. Thus, two successive packets from host A to host B may follow completely different
paths (perhaps because of a change in the forwarding table at some switch in the network).

* A switch or link failure might not have any serious effect on communication if it is possible to find an
alternate route around the failure and to update the forwarding table accordingly.

This last fact is particularly important to the history of datagram networks. One of the important design
goals of the Internet is robustness to failures, and history has shown it to be quite effective at meeting this
goal. Since datagram-based networks are the dominant technology discussed in this book, we postpone
illustrative examples for the following sections, and move on to the two main alternatives.

3.1.2 Virtual Circuit Switching

A second technique for packet switching uses the concept of a virtual circuit (VC). This approach, which is
also referred to as a connection-oriented model, requires setting up a virtual connection from the source host
to the destination host before any data is sent. To understand how this works, consider Figure 3.3, where
host A again wants to send packets to host B. We can think of this as a two-stage process. The first stage is
“connection setup.” The second is data transfer. We consider each in turn.

In the connection setup phase, it is necessary to establish a “connection state” in each of the switches
between the source and destination hosts. The connection state for a single connection consists of an entry
in a “VC table” in each switch through which the connection passes. One entry in the VC table on a single
switch contains:

* A virtual circuit identifier (VCI) that uniquely identifies the connection at this switch and which will
be carried inside the header of the packets that belong to this connection

3.1. Switching Basics 107

Computer Networks: A Systems Approach, Release Version 6.1

Switch 3 .
1 =

Host B

Figure 3.3.: An example of a virtual circuit network.

* An incoming interface on which packets for this VC arrive at the switch
* An outgoing interface in which packets for this VC leave the switch
* A potentially different VCI that will be used for outgoing packets

The semantics of one such entry is as follows: If a packet arrives on the designated incoming interface and
that packet contains the designated VCI value in its header, then that packet should be sent out the specified
outgoing interface with the specified outgoing VCI value having been first placed in its header.

Note that the combination of the VCI of packets as they are received at the switch and the interface on
which they are received uniquely identifies the virtual connection. There may of course be many virtual
connections established in the switch at one time. Also, we observe that the incoming and outgoing VCI
values are generally not the same. Thus, the VCI is not a globally significant identifier for the connection;
rather, it has significance only on a given link (i.e., it has link-local scope).

Whenever a new connection is created, we need to assign a new VCI for that connection on each link that
the connection will traverse. We also need to ensure that the chosen VCI on a given link is not currently in
use on that link by some existing connection.

There are two broad approaches to establishing connection state. One is to have a network administrator
configure the state, in which case the virtual circuit is “permanent.” Of course, it can also be deleted by
the administrator, so a permanent virtual circuit (PVC) might best be thought of as a long-lived or admin-
istratively configured VC. Alternatively, a host can send messages into the network to cause the state to
be established. This is referred to as signalling, and the resulting virtual circuits are said to be switched.
The salient characteristic of a switched virtual circuit (SVC) is that a host may set up and delete such a VC
dynamically without the involvement of a network administrator. Note that an SVC should more accurately
be called a signalled VC, since it is the use of signalling (not switching) that distinguishes an SVC from
aPVC.

Let’s assume that a network administrator wants to manually create a new virtual connection from host A
to host B. First, the administrator needs to identify a path through the network from A to B. In the example
network of Figure 3.3, there is only one such path, but in general, this may not be the case. The administrator
then picks a VCI value that is currently unused on each link for the connection. For the purposes of our
example, let’s suppose that the VCI value 5 is chosen for the link from host A to switch 1, and that 11 is

108 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

chosen for the link from switch 1 to switch 2. In that case, switch 1 needs to have an entry in its VC table
configured as shown in Table 3.2.

Table 3.2.: Example Virtual Circuit Table Entry for Switch 1.

Incoming Interface | Incoming VCI | Outgoing Interface | Outgoing VCI
2 5 1 11

Similarly, suppose that the VCI of 7 is chosen to identify this connection on the link from switch 2 to
switch 3 and that a VCI of 4 is chosen for the link from switch 3 to host B. In that case, switches 2 and 3
need to be configured with VC table entries as shown in Table 3.3 and Table 3.4, respectively. Note that the
“outgoing” VCI value at one switch is the “incoming” VCI value at the next switch.

Table 3.3.: Virtual Circuit Table Entry at Switch 2.

Incoming Interface | Incoming VCI | Outgoing Interface | Outgoing VCI
3 11 2 7

Table 3.4.: Virtual Circuit Table Entry at Switch 3.

Incoming Interface | Incoming VCI | Outgoing Interface | Outgoing VCI
0 7 1 4

L 5T
/ Switch 2 2

Host A

Figure 3.4.: A packet is sent into a virtual circuit network.

Once the VC tables have been set up, the data transfer phase can proceed, as illustrated in Figure 3.4. For
any packet that it wants to send to host B, A puts the VCI value of 5 in the header of the packet and sends
it to switch 1. Switch 1 receives any such packet on interface 2, and it uses the combination of the interface
and the VCI in the packet header to find the appropriate VC table entry. As shown in Table 3.2, the table
entry in this case tells switch 1 to forward the packet out of interface 1 and to put the VCI value 11 in the
header when the packet is sent. Thus, the packet will arrive at switch 2 on interface 3 bearing VCI 11.
Switch 2 looks up interface 3 and VCI 11 in its VC table (as shown in Table 3.3) and sends the packet on
to switch 3 after updating the VCI value in the packet header appropriately, as shown in Figure 3.5. This
process continues until it arrives at host B with the VCI value of 4 in the packet. To host B, this identifies
the packet as having come from host A.

In real networks of reasonable size, the burden of configuring VC tables correctly in a large number of
switches would quickly become excessive using the above procedures. Thus, either a network management

3.1. Switching Basics 109

Computer Networks: A Systems Approach, Release Version 6.1

tool or some sort of signalling (or both) is almost always used, even when setting up “permanent” VCs.
In the case of PVCs, signalling is initiated by the network administrator, while SVCs are usually set up
using signalling by one of the hosts. We consider now how the same VC just described could be set up by
signalling from the host.

Host A

Figure 3.5.: A packet makes its way through a virtual circuit network.

To start the signalling process, host A sends a setup message into the network—that is, to switch 1. The
setup message contains, among other things, the complete destination address of host B. The setup message
needs to get all the way to B to create the necessary connection state in every switch along the way. We can
see that getting the setup message to B is a lot like getting a datagram to B, in that the switches have to know
which output to send the setup message to so that it eventually reaches B. For now, let’s just assume that the
switches know enough about the network topology to figure out how to do that, so that the setup message
flows on to switches 2 and 3 before finally reaching host B.

When switch 1 receives the connection request, in addition to sending it on to switch 2, it creates a new
entry in its virtual circuit table for this new connection. This entry is exactly the same as shown previously
in Table 3.2. The main difference is that now the task of assigning an unused VCI value on the interface
is performed by the switch for that port. In this example, the switch picks the value 5. The virtual circuit
table now has the following information: “When packets arrive on port 2 with identifier 5, send them out on
port 1.” Another issue is that, somehow, host A will need to learn that it should put the VCI value of 5 in
packets that it wants to send to B; we will see how that happens below.

When switch 2 receives the setup message, it performs a similar process; in this example, it picks the value
11 as the incoming VCI value. Similarly, switch 3 picks 7 as the value for its incoming VCI. Each switch
can pick any number it likes, as long as that number is not currently in use for some other connection on that
port of that switch. As noted above, VCls have link-local scope; that is, they have no global significance.

Finally, the setup message arrives as host B. Assuming that B is healthy and willing to accept a connection
from host A, it too allocates an incoming VCI value, in this case 4. This VCI value can be used by B to
identify all packets coming from host A.

Now, to complete the connection, everyone needs to be told what their downstream neighbor is using as the
VCI for this connection. Host B sends an acknowledgment of the connection setup to switch 3 and includes
in that message the VCI that it chose (4). Now switch 3 can complete the virtual circuit table entry for this
connection, since it knows the outgoing value must be 4. Switch 3 sends the acknowledgment on to switch 2,
specifying a VCI of 7. Switch 2 sends the message on to switch 1, specifying a VCI of 11. Finally, switch 1
passes the acknowledgment on to host A, telling it to use the VCI of 5 for this connection.

110 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

At this point, everyone knows all that is necessary to allow traffic to flow from host A to host B. Each switch
has a complete virtual circuit table entry for the connection. Furthermore, host A has a firm acknowledgment
that everything is in place all the way to host B. At this point, the connection table entries are in place in
all three switches just as in the administratively configured example above, but the whole process happened
automatically in response to the signalling message sent from A. The data transfer phase can now begin and
is identical to that used in the PVC case.

When host A no longer wants to send data to host B, it tears down the connection by sending a teardown
message to switch 1. The switch removes the relevant entry from its table and forwards the message on to
the other switches in the path, which similarly delete the appropriate table entries. At this point, if host A
were to send a packet with a VCI of 5 to switch 1, it would be dropped as if the connection had never existed.

There are several things to note about virtual circuit switching:

» Since host A has to wait for the connection request to reach the far side of the network and return
before it can send its first data packet, there is at least one round-trip time (RTT) of delay before data
is sent.

* While the connection request contains the full address for host B (which might be quite large, being
a global identifier on the network), each data packet contains only a small identifier, which is only
unique on one link. Thus, the per-packet overhead caused by the header is reduced relative to the
datagram model. More importantly, the lookup is fast because the virtual circuit number can be
treated as an index into a table rather than as a key that has to be looked up.

* If a switch or a link in a connection fails, the connection is broken and a new one will need to be
established. Also, the old one needs to be torn down to free up table storage space in the switches.

* The issue of how a switch decides which link to forward the connection request on has been glossed
over. In essence, this is the same problem as building up the forwarding table for datagram forward-
ing, which requires some sort of routing algorithm. Routing is described in a later section, and the
algorithms described there are generally applicable to routing setup requests as well as datagrams.

One of the nice aspects of virtual circuits is that by the time the host gets the go-ahead to send data, it knows
quite a lot about the network—for example, that there really is a route to the receiver and that the receiver
is willing and able to receive data. It is also possible to allocate resources to the virtual circuit at the time
it is established. For example, X.25 (an early and now largely obsolete virtual-circuit-based networking
technology) employed the following three-part strategy:

1. Buffers are allocated to each virtual circuit when the circuit is initialized.

2. The sliding window protocol is run between each pair of nodes along the virtual circuit, and this
protocol is augmented with flow control to keep the sending node from over-running the buffers
allocated at the receiving node.

3. The circuit is rejected by a given node if not enough buffers are available at that node when the
connection request message is processed.

In doing these three things, each node is ensured of having the buffers it needs to queue the packets that
arrive on that circuit. This basic strategy is usually called hop-by-hop flow control.

By comparison, a datagram network has no connection establishment phase, and each switch processes
each packet independently, making it less obvious how a datagram network would allocate resources in a
meaningful way. Instead, each arriving packet competes with all other packets for buffer space. If there are
no free buffers, the incoming packet must be discarded. We observe, however, that even in a datagram-based

3.1. Switching Basics 111

Computer Networks: A Systems Approach, Release Version 6.1

network a source host often sends a sequence of packets to the same destination host. It is possible for each
switch to distinguish among the set of packets it currently has queued, based on the source/destination pair,
and thus for the switch to ensure that the packets belonging to each source/destination pair are receiving a
fair share of the switch’s buffers.

In the virtual circuit model, we could imagine providing each circuit with a different quality of service
(Qo0S). In this setting, the term quality of service is usually taken to mean that the network gives the user
some kind of performance-related guarantee, which in turn implies that switches set aside the resources
they need to meet this guarantee. For example, the switches along a given virtual circuit might allocate a
percentage of each outgoing link’s bandwidth to that circuit. As another example, a sequence of switches
might ensure that packets belonging to a particular circuit not be delayed (queued) for more than a certain
amount of time.

There have been a number of successful examples of virtual circuit technologies over the years, notably
X.25, Frame Relay, and Asynchronous Transfer Mode (ATM). With the success of the Internet’s connec-
tionless model, however, none of them enjoys great popularity today. One of the most common applications
of virtual circuits for many years was the construction of virtual private networks (VPNs), a subject dis-
cussed in a later section. Even that application is now mostly supported using Internet-based technologies
today.

Asynchronous Transfer Mode (ATM)

Asynchronous Transfer Mode (ATM) is probably the most well-known virtual circuit-based networking
technology, although it is now well past its peak in terms of deployment. ATM became an important tech-
nology in the 1980s and early 1990s for a variety of reasons, not the least of which is that it was embraced
by the telephone industry, which at that point in time was less active in computer networks (other than as
a supplier of links from which other people built networks). ATM also happened to be in the right place at
the right time, as a high-speed switching technology that appeared on the scene just when shared media like
Ethernet and token rings were starting to look a bit too slow for many users of computer networks. In some
ways ATM was a competing technology with Ethernet switching, and it was seen by many as a competitor
to IP as well.

4 8 16 3 1 8 384 (48 bytes)

GFC VPI VCI Type | CLP |HEC (CRC-8) Payload %ﬂ

Figure 3.6.: ATM cell format at the UNIL.

The approach ATM takes has some interesting properties, which makes it worth examining a bit further.
The picture of the ATM packet format—more commonly called an ATM cell—in Figure 3.6 will illustrate
the main points. We’ll skip the generic flow control (GFC) bits, which never saw much use, and start with
the 24 bits that are labelled VPI (virtual path identifier—S8 bits) and VCI (virtual circuit identifier—16 bits).
If you consider these bits together as a single 24-bit field, they correspond to the virtual circuit identifier
introduced above. The reason for breaking the field into two parts was to allow for a level of hierarchy: All
the circuits with the same VPI could, in some cases, be treated as a group (a virtual path) and could all be
switched together looking only at the VPI, simplifying the work of a switch that could ignore all the VCI
bits and reducing the size of the VC table considerably.

Skipping to the last header byte we find an 8-bit cyclic redundancy check (CRC), known as the header error

112 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

check (HEC). It uses CRC-8 and provides error detection and single-bit error correction capability on the
cell header only. Protecting the cell header is particularly important because an error in the VCI will cause
the cell to be misdelivered.

Probably the most significant thing to notice about the ATM cell, and the reason it is called a cell and
not a packet, is that it comes in only one size: 53 bytes. What was the reason for this? One big reason
was to facilitate the implementation of hardware switches. When ATM was being created in the mid- and
late 1980s, 10-Mbps Ethernet was the cutting-edge technology in terms of speed. To go much faster, most
people thought in terms of hardware. Also, in the telephone world, people think big when they think of
switches—telephone switches often serve tens of thousands of customers. Fixed-length packets turn out to
be a very helpful thing if you want to build fast, highly scalable switches. There are two main reasons for
this:

1. Itis easier to build hardware to do simple jobs, and the job of processing packets is simpler when you
already know how long each one will be.

2. If all packets are the same length, then you can have lots of switching elements all doing much the
same thing in parallel, each of them taking the same time to do its job.

This second reason, the enabling of parallelism, greatly improves the scalability of switch designs. It would
be overstating the case to say that fast parallel hardware switches can only be built using fixed-length cells.
However, it is certainly true that cells ease the task of building such hardware and that there was a lot of
knowledge available about how to build cell switches in hardware at the time the ATM standards were being
defined. As it turns out, this same principle is still applied in many switches and routers today, even if they
deal in variable length packets—they cut those packets into some sort of cell in order to forward them from
input port to output port, but this is all internal to the switch.

There is another good argument in favor of small ATM cells, having to do with end-to-end latency. ATM
was designed to carry both voice phone calls (the dominant use case at the time) and data. Because voice is
low-bandwidth but has strict delay requirements, the last thing you want is for a small voice packet queued
behind a large data packet at a switch. If you force all packets to be small (i.e., cell-sized), then large data
packets can still be supported by reassembling a set of cells into a packet, and you get the benefit of being
able to interleave the forwarding of voice cells and data cells at every switch along the path from source to
destination. This idea of using small cells to improve end-to-end latency is alive and well today in cellular
access networks.

Having decided to use small, fixed-length packets, the next question was what is the right length to fix them
at? If you make them too short, then the amount of header information that needs to be carried around
relative to the amount of data that fits in one cell gets larger, so the percentage of link bandwidth that is
actually used to carry data goes down. Even more seriously, if you build a device that processes cells at
some maximum number of cells per second, then as cells get shorter the total data rate drops in direct
proportion to cell size. An example of such a device might be a network adaptor that reassembles cells into
larger units before handing them up to the host. The performance of such a device depends directly on cell
size. On the other hand, if you make the cells too big, then there is a problem of wasted bandwidth caused
by the need to pad transmitted data to fill a complete cell. If the cell payload size is 48 bytes and you want
to send 1 byte, you’ll need to send 47 bytes of padding. If this happens a lot, then the utilization of the link
will be very low. The combination of relatively high header-to-payload ratio plus the frequency of sending
partially filled cells did actually lead to some noticeable inefficiency in ATM networks that some detractors
called the cell tax.

As it turns out, 48 bytes was picked for the ATM cell payload as a compromise. There were good arguments

3.1. Switching Basics 113

Computer Networks: A Systems Approach, Release Version 6.1

for both larger and smaller cells, and 48 made almost no one happy—a power of two would certainly have
been better for computers to process.

3.1.3 Source Routing

A third approach to switching that uses neither virtual circuits nor conventional datagrams is known as
source routing. The name derives from the fact that all the information about network topology that is
required to switch a packet across the network is provided by the source host.

There are various ways to implement source routing. One would be to assign a number to each output of
each switch and to place that number in the header of the packet. The switching function is then very simple:
For each packet that arrives on an input, the switch would read the port number in the header and transmit
the packet on that output. However, since there will in general be more than one switch in the path between
the sending and the receiving host, the header for the packet needs to contain enough information to allow
every switch in the path to determine which output the packet needs to be placed on. One way to do this
would be to put an ordered list of switch ports in the header and to rotate the list so that the next switch in
the path is always at the front of the list. Figure 3.7 illustrates this idea.

Switch 1

Switch 2

2 Host B

Figure 3.7.: Source routing in a switched network (where the switch reads the rightmost number).

In this example, the packet needs to traverse three switches to get from host A to host B. At switch 1, it
needs to exit on port 1, at the next switch it needs to exit at port 0, and at the third switch it needs to exit at
port 3. Thus, the original header when the packet leaves host A contains the list of ports (3, 0, 1), where we
assume that each switch reads the rightmost element of the list. To make sure that the next switch gets the
appropriate information, each switch rotates the list after it has read its own entry. Thus, the packet header
as it leaves switch 1 enroute to switch 2 is now (1, 3, 0); switch 2 performs another rotation and sends out
a packet with (0, 1, 3) in the header. Although not shown, switch 3 performs yet another rotation, restoring
the header to what it was when host A sent it.

There are several things to note about this approach. First, it assumes that host A knows enough about
the topology of the network to form a header that has all the right directions in it for every switch in the

114 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

path. This is somewhat analogous to the problem of building the forwarding tables in a datagram network
or figuring out where to send a setup packet in a virtual circuit network. In practice, however, it is the first
switch at the ingress to the network (as opposed to the end host connected to that switch) that appends the
source route.

Second, observe that we cannot predict how big the header needs to be, since it must be able to hold one word
of information for every switch on the path. This implies that headers are probably of variable length with
no upper bound, unless we can predict with absolute certainty the maximum number of switches through
which a packet will ever need to pass.

Third, there are some variations on this approach. For example, rather than rotate the header, each switch
could just strip the first element as it uses it. Rotation has an advantage over stripping, however: Host B
gets a copy of the complete header, which may help it figure out how to get back to host A. Yet another
alternative is to have the header carry a pointer to the current “next port” entry, so that each switch just
updates the pointer rather than rotating the header; this may be more efficient to implement. We show these
three approaches in Figure 3.8. In each case, the entry that this switch needs to read is A, and the entry that
the next switch needs to read is B.

Header entering

switch DIC B|A D C|B|A PtrD|C|B A

Header leaving

switch A/D C|B D C|B PtrD|C|B A

(@) (b) (c)

Figure 3.8.: Three ways to handle headers for source routing: (a) rotation; (b) stripping; (c) pointer. The
labels are read right to left.

Source routing can be used in both datagram networks and virtual circuit networks. For example, the Internet
Protocol, which is a datagram protocol, includes a source route option that allows selected packets to be
source routed, while the majority are switched as conventional datagrams. Source routing is also used in
some virtual circuit networks as the means to get the initial setup request along the path from source to
destination.

Source routes are sometimes categorized as strict or loose. In a strict source route, every node along the
path must be specified, whereas a loose source route only specifies a set of nodes to be traversed, without
saying exactly how to get from one node to the next. A loose source route can be thought of as a set of
waypoints rather than a completely specified route. The loose option can be helpful to limit the amount of
information that a source must obtain to create a source route. In any reasonably large network, it is likely
to be hard for a host to get the complete path information it needs to construct correct a strict source route
to any destination. But both types of source routes do find application in certain scenarios, as we will see in
later chapters.

3.1. Switching Basics 115

Computer Networks: A Systems Approach, Release Version 6.1

3.2 Switched Ethernet

Having discussed some of the basic ideas behind switching, we now focus more closely on a specific switch-
ing technology: Switched Ethernet. The switches used to build such networks, which are often referred to
as L2 switches, are widely used in campus and enterprise networks. Historically, they were more commonly
referred to as bridges because they were used to “bridge” ethernet segments to build an extended LAN. But
today most networks deploy Ethernet in a point-to-point configuration, with these links interconneted by L2
switches to form a switched Ethernet.

The following starts with the historical perspective (using bridges to connect a set of Ethernet segments), and
then shifts to the perspective in wide-spread use today (using L2 switches to connect a set of point-to-point
links). But whether we call the device a bridge or a switch—and the network you build an extended LAN or
a switched Ethernet—the two behave in exactly the same way.

To begin, suppose you have a pair of Ethernets that you want to interconnect. One approach you might try
is to put a repeater between them. This would not be a workable solution, however, if doing so exceeded
the physical limitations of the Ethernet. (Recall that no more than two repeaters between any pair of hosts
and no more than a total of 2500 m in length are allowed.) An alternative would be to put a node with a pair
of Ethernet adaptors between the two Ethernets and have the node forward frames from one Ethernet to the
other. This node would differ from a repeater, which operates on bits, not frames, and just blindly copies the
bits received on one interface to another. Instead, this node would fully implement the Ethernet’s collision
detection and media access protocols on each interface. Hence, the length and number-of-host restrictions
of the Ethernet, which are all about managing collisions, would not apply to the combined pair of Ethernets
connected in this way. This device operates in promiscuous mode, accepting all frames transmitted on either
of the Ethernets, and forwarding them to the other.

In their simplest variants, bridges simply accept LAN frames on their inputs and forward them out on all
other outputs. This simple strategy was used by early bridges but has some pretty serious limitations as we’ll
see below. A number of refinements were added over the years to make bridges an effective mechanism for
interconnecting a set of LANs. The rest of this section fills in the more interesting details.

3.2.1 Learning Bridges

The first optimization we can make to a bridge is to observe that it need not forward all frames that it
receives. Consider the bridge in Figure 3.9. Whenever a frame from host A that is addressed to host B
arrives on port 1, there is no need for the bridge to forward the frame out over port 2. The question, then, is
how does a bridge come to learn on which port the various hosts reside?

One option would be to have a human download a table into the bridge similar to the one given in Table 3.5.
Then, whenever the bridge receives a frame on port 1 that is addressed to host A, it would not forward the
frame out on port 2; there would be no need because host A would have already directly received the frame
on the LAN connected to port 1. Anytime a frame addressed to host A was received on port 2, the bridge
would forward the frame out on port 1.

116 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

A B C
—_ — —
N
<— Port 1
Bridge
4_Port2
| |
- — —
X Y z

Figure 3.9.: Illustration of a learning bridge.

Table 3.5.: Forwarding Table Maintained by a Bridge.
Host | Port

N| =< M| Q| | >
R | 1| = | = | =

Having a human maintain this table is too burdensome, and there is a simple trick by which a bridge can
learn this information for itself. The idea is for each bridge to inspect the source address in all the frames
it receives. Thus, when host A sends a frame to a host on either side of the bridge, the bridge receives this
frame and records the fact that a frame from host A was just received on port 1. In this way, the bridge can
build a table just like Table 3.5.

Note that a bridge using such a table implements a version of the datagram (or connectionless) model of
forwarding described earlier. Each packet carries a global address, and the bridge decides which output to
send a packet on by looking up that address in a table.

When a bridge first boots, this table is empty; entries are added over time. Also, a timeout is associated with
each entry, and the bridge discards the entry after a specified period of time. This is to protect against the
situation in which a host—and, as a consequence, its LAN address—is moved from one network to another.
Thus, this table is not necessarily complete. Should the bridge receive a frame that is addressed to a host not
currently in the table, it goes ahead and forwards the frame out on all the other ports. In other words, this
table is simply an optimization that filters out some frames; it is not required for correctness.

3.2. Switched Ethernet 117

Computer Networks: A Systems Approach, Release Version 6.1

3.2.2 Implementation

The code that implements the learning bridge algorithm is quite simple, and we sketch it here. Structure
BridgeEntry defines a single entry in the bridge’s forwarding table; these are stored in a Map structure
(which supports mapCreate, mapBind, and mapResolve operations) to enable entries to be efficiently
located when packets arrive from sources already in the table. The constant MAX_TTL specifies how long
an entry is kept in the table before it is discarded.

#define BRIDGE_TAB SIZE 1024 /* max size of bridging table */
#define MAX TTL 120 /% time (in seconds) before an entry 1is_
—flushed x*/

typedef struct ({

MacAddr destination; /+ MAC address of a node */
int ifnumber; /% Interface to reach it =/
u_short TTL; /* time to live x*/

Binding binding; /* binding in the Map x/

} BridgeEntry;

int numEntries = 0;
Map bridgeMap = mapCreate (BRIDGE_TAB_SIZE, sizeof (BridgeEntry));

The routine that updates the forwarding table when a new packet arrives is given by updateTable. The
arguments passed are the source media access control (MAC) address contained in the packet and the inter-
face number on which it was received. Another routine, not shown here, is invoked at regular intervals, scans
the entries in the forwarding table, and decrements the TTL (time to live) field of each entry, discarding any
entries whose TTL has reached 0. Note that the TTL is reset to MAX_TTL every time a packet arrives to
refresh an existing table entry and that the interface on which the destination can be reached is updated to
reflect the most recently received packet.

void
updateTable (MacAddr src, int inif)
{

BridgeEntry *b;

if (mapResolve (bridgeMap, &src, (void ++)é&b) == FALSE)
{
/+ this address is not in the table, so try to add it x/
if (numEntries < BRIDGE_TAB_SIZE)
{
b = NEW(BridgeEntry);
b->binding = mapBind(bridgeMap, &src, b);
/* use source address of packet as dest. address in table #*/
b->destination = src;
numEntries++;
}
else
{
/* can't fit this address in the table now, so give up #*/
return;

(continues on next page)

118 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

(continued from previous page)

}

/% reset TTL and use most recent input interface x/
b->TTL = MAX_TTL;
b->ifnumber = inif;

Note that this implementation adopts a simple strategy in the case where the bridge table has become full
to capacity—it simply fails to add the new address. Recall that completeness of the bridge table is not
necessary for correct forwarding; it just optimizes performance. If there is some entry in the table that is
not currently being used, it will eventually time out and be removed, creating space for a new entry. An
alternative approach would be to invoke some sort of cache replacement algorithm on finding the table full;
for example, we might locate and remove the entry with the smallest TTL to accommodate the new entry.

3.2.3 Spanning Tree Algorithm

The preceding strategy works just fine until the network has a loop in it, in which case it fails in a horrible
way—frames potentially get forwarded forever. This is easy to see in the example depicted in Figure 3.10,
where switches S1, S4, and S6 form a loop.

Figure 3.10.: Switched Ethernet with loops.

Note that we are now making the shift from calling the each forwarding device a bridge (connecting seg-
ments that might reach multiple other devices) to instead calling them L2 switches (connecting point-to-
point links that reach just one other device). To keep the example managable, we include just three hosts.
In practice, switches typically have 16, 24, or 48 ports, meaning they are able to connect to that many hosts
(and other swiches).

3.2. Switched Ethernet 119

Computer Networks: A Systems Approach, Release Version 6.1

In our example switched network, suppose that a packet enters switch S4 from Host C and that the desti-
nation address is one not yet in any switches’s forwarding table: S4 sends a copy of the packet out its two
other ports: to switches S1 and S6. Switch S6 forwards the packet onto S1 (and meanwhile, S1 forwards the
packet onto S6), both of which in turn forward their packets back to S4. Switch S4 still doesn’t have this
destination in its table, so it forwards the packet out its two other ports. There is nothing to stop this cycle
from repeating endlessly, with packets looping in both directions among S1, S4, and S6.

Why would a switched Ethernet (or extended LAN) come to have a loop in it? One possibility is that the
network is managed by more than one administrator, for example, because it spans multiple departments in
an organization. In such a setting, it is possible that no single person knows the entire configuration of the
network, meaning that a switch that closes a loop might be added without anyone knowing. A second, more
likely scenario is that loops are built into the network on purpose—to provide redundancy in case of failure.
After all, a network with no loops needs only one link failure to become split into two separate partitions.

Whatever the cause, switches must be able to correctly handle loops. This problem is addressed by having
the switches run a distributed spanning tree algorithm. If you think of the network as being represented by a
graph that possibly has loops (cycles), then a spanning tree is a subgraph of this graph that covers (spans) all
the vertices but contains no cycles. That is, a spanning tree keeps all of the vertices of the original graph but
throws out some of the edges. For example, Figure 3.11 shows a cyclic graph on the left and one of possibly

many spanning trees on the right.

(@) (b)
Figure 3.11.: Example of (a) a cyclic graph; (b) a corresponding spanning tree.

The idea of a spanning tree is simple enough: It’s a subset of the actual network topology that has no loops
and that reaches all the devices in the network. The hard part is how all of the switches coordinate their
decisions to arrive at a single view of the spanning tree. After all, one topology is typically able to be
covered by multiple spanning trees. The answer lies in the spanning tree protocol, which we’ll describe
now.

The spanning tree algorithm, which was developed by Radia Perlman, then at the Digital Equipment Cor-
poration, is a protocol used by a set of switches to agree upon a spanning tree for a particular network. (The
IEEE 802.1 specification is based on this algorithm.) In practice, this means that each switch decides the
ports over which it is and is not willing to forward frames. In a sense, it is by removing ports from the
topology that the network is reduced to an acyclic tree. It is even possible that an entire switch will not
participate in forwarding frames, which seems kind of strange at first glance. The algorithm is dynamic,
however, meaning that the switches are always prepared to reconfigure themselves into a new spanning tree
should some switch fail, and so those unused ports and switches provide the redundant capacity needed to
recover from failures.

120 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

The main idea of the spanning tree is for the switches to select the ports over which they will forward frames.
The algorithm selects ports as follows. Each switch has a unique identifier; for our purposes, we use the
labels S1, S2, S3, and so on. The algorithm first elects the switch with the smallest ID as the root of the
spanning tree; exactly how this election takes place is described below. The root switch always forwards
frames out over all of its ports. Next, each switch computes the shortest path to the root and notes which
of its ports is on this path. This port is also selected as the switch’s preferred path to the root. Finally, to
account for the possibility there could be another switch connected to its ports, the switch elect a single
designated switch that will be responsible for forwarding frames toward the root. Each designated switch is
the one that is closest to the root. If two or more switches are equally close to the root, then the switches’
identifiers are used to break ties, and the smallest ID wins. Of course, each switch might be connected to
more than one other switch, so it participates in the election of a designated switch for each such port. In
effect, this means that each switch decides if it is the designated switch relative to each of its ports. The
switch forwards frames over those ports for which it is the designated switch.
Host B .
.-'r .

/

/ . Host C
. - . _'J_'_._,_.—-—"_f- —

Figure 3.12.: Spanning tree with some ports not selected.

Figure 3.12 shows the spanning tree that corresponds to the network shown in Figure 3.10. In this example,
S1 is the root, since it has the smallest ID. Notice that S3 and S5 are connected to each other, but S5 is the
designated switch since it is closer to the root. Similarly, S5 and S7 are connected to each other, but in this
case S5 is the designated switch since it has the smaller ID; both are an equal distance from S1.

While it is possible for a human to look at the network given in Figure 3.10 and to compute the spanning
tree given in the Figure 3.12 according to the rules given above, the switches do not have the luxury of being
able to see the topology of the entire network, let alone peek inside other switches to see their ID. Instead,
they have to exchange configuration messages with each other and then decide whether or not they are the
root or a designated switch based on these messages.

Specifically, the configuration messages contain three pieces of information:

1. The ID for the switch that is sending the message.

3.2. Switched Ethernet 121

Computer Networks: A Systems Approach, Release Version 6.1

2. The ID for what the sending switch believes to be the root switch.
3. The distance, measured in hops, from the sending switch to the root switch.

Each switch records the current best configuration message it has seen on each of its ports (“best” is de-
fined below), including both messages it has received from other switches and messages that it has itself
transmitted.

Initially, each switch thinks it is the root, and so it sends a configuration message out on each of its ports
identifying itself as the root and giving a distance to the root of 0. Upon receiving a configuration message
over a particular port, the switch checks to see if that new message is better than the current best configura-
tion message recorded for that port. The new configuration message is considered better than the currently
recorded information if any of the following is true:

* It identifies a root with a smaller ID.
* It identifies a root with an equal ID but with a shorter distance.
* The root ID and distance are equal, but the sending switch has a smaller ID

If the new message is better than the currently recorded information, the switch discards the old information
and saves the new information. However, it first adds 1 to the distance-to-root field since the switch is one
hop farther away from the root than the switch that sent the message.

When a switch receives a configuration message indicating that it is not the root—that is, a message from
a switch with a smaller ID—the switch stops generating configuration messages on its own and instead
only forwards configuration messages from other switches, after first adding 1 to the distance field. Like-
wise, when a switch receives a configuration message that indicates it is not the designated switch for that
port—that is, a message from a switch that is closer to the root or equally far from the root but with a smaller
ID—the switch stops sending configuration messages over that port. Thus, when the system stabilizes, only
the root switch is still generating configuration messages, and the other switches are forwarding these mes-
sages only over ports for which they are the designated switch. At this point, a spanning tree has been built,
and all the switches are in agreement on which ports are in use for the spanning tree. Only those ports may
be used for forwarding data packets.

Let’s see how this works with an example. Consider what would happen in Figure 3.12 if the power had
just been restored to a campus, so that all the switches boot at about the same time. All the switches would
start off by claiming to be the root. We denote a configuration message from node X in which it claims to be
distance d from root node Y as (Y,d,X). Focusing on the activity at S3, a sequence of events would unfold
as follows:

—

. S3 receives (S2, 0, S2).

Since 2 < 3, S3 accepts S2 as root.

S3 adds one to the distance advertised by S2 (0) and thus sends (S2, 1, S3) toward S5.
Meanwhile, S2 accepts S1 as root because it has the lower ID, and it sends (S1, 1, S2) toward S3.

S5 accepts S1 as root and sends (S1, 1, S5) toward S3.

A T

S3 accepts S1 as root, and it notes that both S2 and S5 are closer to the root than it is, but S2 has the
smaller id, so it remains on S3’s path to the root.

122 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

This leaves S3 with active ports as shown in Figure 3.12. Note that Hosts A an B are not able to commu-
nication over the shortest path (via S5) because frames have to “flow up the tree and back down,” but that’s
the price you pay to avoid loops.

Even after the system has stabilized, the root switch continues to send configuration messages periodically,
and the other switches continue to forward these messages as just described. Should a particular switch fail,
the downstream switches will not receive these configuration messages, and after waiting a specified period
of time they will once again claim to be the root, and the algorithm will kick in again to elect a new root and
new designated switches.

One important thing to notice is that although the algorithm is able to reconfigure the spanning tree whenever
a switch fails, it is not able to forward frames over alternative paths for the sake of routing around a congested
switch.

3.2.4 Broadcast and Multicast

The preceding discussion focuses on how switches forward unicast frames from one port to another. Since
the goal of a switch is to transparently extend a LAN across multiple networks, and since most LANSs support
both broadcast and multicast, then switches must also support these two features. Broadcast is simple—each
switch forwards a frame with a destination broadcast address out on each active (selected) port other than
the one on which the frame was received.

Multicast can be implemented in exactly the same way, with each host deciding for itself whether or not
to accept the message. This is exactly what is done in practice. Notice, however, that since not all hosts
are a member of any particular multicast group, it is possible to do better. Specifically, the spanning tree
algorithm can be extended to prune networks over which multicast frames need not be forwarded. Consider
a frame sent to group M by a host A in Figure 3.12. If host C does not belong to group M, then there is no
need for switch S4 to forward the frames over that network.

How would a given switch learn whether it should forward a multicast frame over a given port? It learns ex-
actly the same way that a switch learns whether it should forward a unicast frame over a particular port—by
observing the source addresses that it receives over that port. Of course, groups are not typically the source
of frames, so we have to cheat a little. In particular, each host that is a member of group M must periodically
send a frame with the address for group M in the source field of the frame header. This frame would have
as its destination address the multicast address for the switches.

Although the multicast extension just described was once proposed, it was not widely adopted. Instead,
multicast is implemented in exactly the same way as broadcast.

3.2.5 Virtual LANs (VLANS)

One limitation of switches is that they do not scale. It is not realistic to connect more than a few switches,
where in practice few typically means “tens of.” One reason for this is that the spanning tree algorithm scales
linearly; that is, there is no provision for imposing a hierarchy on the set of switches. A second reason is
that switches forward all broadcast frames. While it is reasonable for all hosts within a limited setting (say,
a department) to see each other’s broadcast messages, it is unlikely that all the hosts in a larger environment
(say, a large company or university) would want to have to be bothered by each other’s broadcast messages.
Said another way, broadcast does not scale, and as a consequence L2-based networks do not scale.

3.2. Switched Ethernet 123

Computer Networks: A Systems Approach, Release Version 6.1

One approach to increasing the scalability is the virfual LAN (VLAN). VLANSs allow a single extended
LAN to be partitioned into several seemingly separate LANs. Each virtual LAN is assigned an identifier
(sometimes called a color), and packets can only travel from one segment to another if both segments have
the same identifier. This has the effect of limiting the number of segments in an extended LAN that will
receive any given broadcast packet.

. Host W Host X .

VLAN 100 VLAN 100
s S1f s 52/

VLAN 200 VLAN 200
Host Y Host Z

Figure 3.13.: Two virtual LANs share a common backbone.

We can see how VLANs work with an example. Figure 3.13 shows four hosts and two switches. In the
absence of VLANS, any broadcast packet from any host will reach all the other hosts. Now let’s suppose
that we define the segments connected to hosts W and X as being in one VLAN, which we’ll call VLAN
100. We also define the segments that connect to hosts Y and Z as being in VLAN 200. To do this, we need
to configure a VLAN ID on each port of switches S1 and S2. The link between S1 and S2 is considered to
be in both VLANS.

When a packet sent by host X arrives at switch S2, the switch observes that it came in a port that was
configured as being in VLAN 100. It inserts a VLAN header between the Ethernet header and its payload.
The interesting part of the VLAN header is the VLAN ID; in this case, that ID is set to 100. The switch
now applies its normal rules for forwarding to the packet, with the extra restriction that the packet may not
be sent out an interface that is not part of VLAN 100. Thus, under no circumstances will the packet—even
a broadcast packet—be sent out the interface to host Z, which is in VLAN 200. The packet, however, is
forwarded on to switch S1, which follows the same rules and thus may forward the packet to host W but not
to host Y.

An attractive feature of VLANS is that it is possible to change the logical topology without moving any
wires or changing any addresses. For example, if we wanted to make the link that connects to host Z be
part of VLAN 100 and thus enable X, W, and Z to be on the same virtual LAN, then we would just need to
change one piece of configuration on switch S2.

Supporting VLANS requires a fairly simple extension to the original 802.1 header specification, inserting
a 12-bit VLAN ID (VID) field between the SrcAddr and Type fields, as shown in Figure 3.14. (This
VID is typically referred to as a VLAN Tag.) There are actually 32-bits inserted in the middle of the header,
but the first 16-bits are used to preserve backwards compatibility with the original specification (they use

124 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Type = 0x8100 toindicate that this frame includes the VLAN extension); the other four bits hold control
information used to prioritize frames. This means it is possible to map 22 = 4096 virtual networks onto a
single physical LAN.

64 48 48 16 16
Preamble | DestAddr SrcAddr | Type ... Body ... CRC
802.1)
802.1Q
Preamble DestAddr SrcAddr Hdra Type ... Body ... CRC
802.1Q _15: Type
32=4 4: Control
12: Tag

Figure 3.14.: 802.1Q VLAN tag embedded within an Ethernet (802.1) header.

We conclude this discussion by observing there is another limitation of networks built by interconnecting
L2 switches: lack of support for heterogeneity. That is, switches are limited in the kinds of networks they
can interconnect. In particular, switches make use of the network’s frame header and so can support only
networks that have exactly the same format for addresses. For example, switches can be used to connect
Ethernet and 802.11 based networks to another, since they share a common header format, but switches do
not readily generalize to other kinds of networks with different addressing formats, such as ATM, SONET,
PON, or the cellular network. The next section explains how to address this limitation, as well as to scale
switched networks to even larger sizes.

3.3 Internet (IP)

In the previous section, we saw that it was possible to build reasonably large LANs using bridges and
LAN switches, but that such approaches were limited in their ability to scale and to handle heterogeneity.
In this section, we explore some ways to go beyond the limitations of bridged networks, enabling us to
build large, highly heterogeneous networks with reasonably efficient routing. We refer to such networks as
internetworks. We’ll continue the discussion of how to build a truly global internetwork in the next chapter,
but for now we’ll explore the basics. We start by considering more carefully what the word internetwork
means.

3.3.1 What Is an Internetwork?

We use the term internetwork, or sometimes just internet with a lowercase i, to refer to an arbitrary collection
of networks interconnected to provide some sort of host-to-host packet delivery service. For example, a
corporation with many sites might construct a private internetwork by interconnecting the LANs at their
different sites with point-to-point links leased from the phone company. When we are talking about the
widely used global internetwork to which a large percentage of networks are now connected, we call it the
Internet with a capital 1. In keeping with the first-principles approach of this book, we mainly want you
to learn about the principles of “lowercase i internetworking, but we illustrate these ideas with real-world
examples from the “big I”” Internet.

3.3. Internet (IP) 125

Computer Networks: A Systems Approach, Release Version 6.1

Another piece of terminology that can be confusing is the difference between networks, subnetworks, and
internetworks. We are going to avoid subnetworks (or subnets) altogether until a later section. For now,
we use network to mean either a directly connected or a switched network of the kind described in the
previous section and the previous chapter. Such a network uses one technology, such as 802.11 or Ethernet.
An internetwork is an interconnected collection of such networks. Sometimes, to avoid ambiguity, we refer
to the underlying networks that we are interconnecting as physical networks. An internet is a logical network
built out of a collection of physical networks. In this context, a collection of Ethernet segments connected
by bridges or switches would still be viewed as a single network.

Network 4 (Ethernet)

’;\\\

H8

g

HO

Network 2
(Ethernet) S Network 3
R1 (Point-point)
R2
AP
He H7
H5 . H6
SE e
Network 1
(Wireless)

Figure 3.15.: A simple internetwork. H denotes a host and R denotes a router.

Figure 3.15 shows an example internetwork. An internetwork is often referred to as a “network of networks”
because it is made up of lots of smaller networks. In this figure, we see Ethernets, a wireless network,
and a point-to-point link. Each of these is a single-technology network. The nodes that interconnect the
networks are called routers. They are also sometimes called gateways, but since this term has several other
connotations, we restrict our usage to router.

The Internet Protocol is the key tool used today to build scalable, heterogeneous internetworks. It was
originally known as the Kahn-Cerf protocol after its inventors. One way to think of IP is that it runs on
all the nodes (both hosts and routers) in a collection of networks and defines the infrastructure that allows
these nodes and networks to function as a single logical internetwork. For example, Figure 3.16 shows how
hosts HS and HS are logically connected by the internet in Figure 3.15, including the protocol graph running
on each node. Note that higher-level protocols, such as TCP and UDP, typically run on top of IP on the
hosts.

126 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

H5 H8
TCP R1 R2 R3 TCP
| |
IP IP IP IP IP
| |
802.11 802.11|| ETH ETH PPP PPP ETH ETH

Figure 3.16.: A simple internetwork, showing the protocol layers used to connect H5 to H8 in the above
figure. ETH is the protocol that runs over the Ethernet.

The rest of this and the next chapter are about various aspects of IP. While it is certainly possible to build
an internetwork that does not use IP—and in fact, in the early days of the Internet there were alternative
solutions—IP is the most interesting case to study simply because of the size of the Internet. Said another
way, it is only the IP Internet that has really faced the issue of scale. Thus, it provides the best case study of
a scalable internetworking protocol.

L2 vs L3 Networks

As seen in the previous section, an Ethernet can be treated as a point-to-point /ink interconnecting a pair
of switches, with a mesh of interconnected switches forming a Switched Ethernet. This configuration is
also known as an L2 Network.

But as we’ll discover in this section, an Ethernet (even when arranged in a point-to-point configuration
rather than a shared CSMA/CD network) can be treated as a network interconnecting a pair of routers,
with a mesh of such routers forming an Internet. This configuration is also known as an L3 Network.

Confusingly, this is because a point-to-point Ethernet is both a link and a network (albeit a trivial two-
node network in the second case), depending on whether it’s connected to a pair of L2 switches running
the spanning tree algorithm, or to a pair of L3 routers running IP (plus the routing protocols described
later in this chapter). Why pick one configuration over the other? It partly depends on whether you want
the network to be a single broadcast domain (if yes, pick L2), and whether you want the hosts connected
to the network to be on different networks (if yes, select L3).

The good news is that when you fully understand the implications of this duality, you will have cleared a
major hurdle in mastering modern packet-switched networks.

3.3.2 Service Model

A good place to start when you build an internetwork is to define its service model, that is, the host-to-
host services you want to provide. The main concern in defining a service model for an internetwork is

3.3. Internet (IP) 127

Computer Networks: A Systems Approach, Release Version 6.1

that we can provide a host-to-host service only if this service can somehow be provided over each of the
underlying physical networks. For example, it would be no good deciding that our internetwork service
model was going to provide guaranteed delivery of every packet in 1 ms or less if there were underlying
network technologies that could arbitrarily delay packets. The philosophy used in defining the IP service
model, therefore, was to make it undemanding enough that just about any network technology that might
turn up in an internetwork would be able to provide the necessary service.

The IP service model can be thought of as having two parts: an addressing scheme, which provides a way to
identify all hosts in the internetwork, and a datagram (connectionless) model of data delivery. This service
model is sometimes called best effort because, although IP makes every effort to deliver datagrams, it makes
no guarantees. We postpone a discussion of the addressing scheme for now and look first at the data delivery
model.

Datagram Delivery

The IP datagram is fundamental to the Internet Protocol. Recall an earlier section that a datagram is a type
of packet that happens to be sent in a connectionless manner over a network. Every datagram carries enough
information to let the network forward the packet to its correct destination; there is no need for any advance
setup mechanism to tell the network what to do when the packet arrives. You just send it, and the network
makes its best effort to get it to the desired destination. The “best-effort” part means that if something goes
wrong and the packet gets lost, corrupted, misdelivered, or in any way fails to reach its intended destination,
the network does nothing—it made its best effort, and that is all it has to do. It does not make any attempt
to recover from the failure. This is sometimes called an unreliable service.

Best-effort, connectionless service is about the simplest service you could ask for from an internetwork,
and this is a great strength. For example, if you provide best-effort service over a network that provides a
reliable service, then that’s fine—you end up with a best-effort service that just happens to always deliver the
packets. If, on the other hand, you had a reliable service model over an unreliable network, you would have
to put lots of extra functionality into the routers to make up for the deficiencies of the underlying network.
Keeping the routers as simple as possible was one of the original design goals of IP.

The ability of IP to “run over anything” is frequently cited as one of its most important characteristics. It is
noteworthy that many of the technologies over which IP runs today did not exist when IP was invented. So
far, no networking technology has been invented that has proven too bizarre for IP; in principle, IP can run
over a network that transports messages using carrier pigeons.

Best-effort delivery does not just mean that packets can get lost. Sometimes they can get delivered out
of order, and sometimes the same packet can get delivered more than once. The higher-level protocols or
applications that run above IP need to be aware of all these possible failure modes.

Packet Format

Clearly, a key part of the IP service model is the type of packets that can be carried. The IP datagram, like
most packets, consists of a header followed by a number of bytes of data. The format of the header is shown
in Figure 3.17. Note that we have adopted a different style of representing packets than the one we used in
previous chapters. This is because packet formats at the internetworking layer and above, where we will be
focusing our attention for the next few chapters, are almost invariably designed to align on 32-bit boundaries
to simplify the task of processing them in software. Thus, the common way of representing them (used in

128 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Internet Requests for Comments, for example) is to draw them as a succession of 32-bit words. The top
word is the one transmitted first, and the leftmost byte of each word is the one transmitted first. In this
representation, you can easily recognize fields that are a multiple of 8 bits long. On the odd occasion when
fields are not an even multiple of 8 bits, you can determine the field lengths by looking at the bit positions
marked at the top of the packet.

0 4 8 16 19 31
Version | HLen TOS Length
Ident Flags Offset
TTL Protocol Checksum
SourceAddr
DestinationAddr
Options (variable) v aI:izgl e)

Data

AN\ S P/ NN

Figure 3.17.: IPv4 packet header.

Looking at each field in the IP header, we see that the “simple” model of best-effort datagram delivery still
has some subtle features. The Version field specifies the version of IP. The still-assumed version of IP is
4, which is typically called /Pv4. Observe that putting this field right at the start of the datagram makes it
easy for everything else in the packet format to be redefined in subsequent versions; the header processing
software starts off by looking at the version and then branches off to process the rest of the packet according
to the appropriate format. The next field, HLen, specifies the length of the header in 32-bit words. When
there are no options, which is most of the time, the header is 5 words (20 bytes) long. The 8-bit TOS (type
of service) field has had a number of different definitions over the years, but its basic function is to allow
packets to be treated differently based on application needs. For example, the TOS value might determine
whether or not a packet should be placed in a special queue that receives low delay.

The next 16 bits of the header contain the Length of the datagram, including the header. Unlike the
HLen field, the Length field counts bytes rather than words. Thus, the maximum size of an IP datagram
is 65,535 bytes. The physical network over which IP is running, however, may not support such long
packets. For this reason, IP supports a fragmentation and reassembly process. The second word of the
header contains information about fragmentation, and the details of its use are presented in the following
section entitled “Fragmentation and Reassembly.”

Moving on to the third word of the header, the next byte is the TTL (time to live) field. Its name reflects its
historical meaning rather than the way it is commonly used today. The intent of the field is to catch packets
that have been going around in routing loops and discard them, rather than let them consume resources

3.3. Internet (IP) 129

Computer Networks: A Systems Approach, Release Version 6.1

indefinitely. Originally, TTL was set to a specific number of seconds that the packet would be allowed to
live, and routers along the path would decrement this field until it reached 0. However, since it was rare for
a packet to sit for as long as 1 second in a router, and routers did not all have access to a common clock,
most routers just decremented the TTL by 1 as they forwarded the packet. Thus, it became more of a hop
count than a timer, which is still a perfectly good way to catch packets that are stuck in routing loops. One
subtlety is in the initial setting of this field by the sending host: Set it too high and packets could circulate
rather a lot before getting dropped; set it too low and they may not reach their destination. The value 64 is
the current default.

The Protocol field is simply a demultiplexing key that identifies the higher-level protocol to which this
IP packet should be passed. There are values defined for the TCP (Transmission Control Protocol—6), UDP
(User Datagram Protocol—17), and many other protocols that may sit above IP in the protocol graph.

The Checksum is calculated by considering the entire IP header as a sequence of 16-bit words, adding
them up using ones’ complement arithmetic, and taking the ones’ complement of the result. Thus, if any
bit in the header is corrupted in transit, the checksum will not contain the correct value upon receipt of the
packet. Since a corrupted header may contain an error in the destination address—and, as a result, may have
been misdelivered—it makes sense to discard any packet that fails the checksum. It should be noted that this
type of checksum does not have the same strong error detection properties as a CRC, but it is much easier
to calculate in software.

The last two required fields in the header are the SourceAddr and the DestinationAddr for the
packet. The latter is the key to datagram delivery: Every packet contains a full address for its intended
destination so that forwarding decisions can be made at each router. The source address is required to allow
recipients to decide if they want to accept the packet and to enable them to reply. IP addresses are discussed
in a later section—for now, the important thing to know is that IP defines its own global address space,
independent of whatever physical networks it runs over. As we will see, this is one of the keys to supporting
heterogeneity.

Finally, there may be a number of options at the end of the header. The presence or absence of options may
be determined by examining the header length (HLen) field. While options are used fairly rarely, a complete
IP implementation must handle them all.

Fragmentation and Reassembly

One of the problems of providing a uniform host-to-host service model over a heterogeneous collection of
networks is that each network technology tends to have its own idea of how large a packet can be. For
example, classic Ethernet can accept packets up to 1500 bytes long, but modern-day variants can deliver
larger (jumbo) packets that carry up to 9000 bytes of payload. This leaves two choices for the IP service
model: Make sure that all IP datagrams are small enough to fit inside one packet on any network technology,
or provide a means by which packets can be fragmented and reassembled when they are too big to go over
a given network technology. The latter turns out to be a good choice, especially when you consider the fact
that new network technologies are always turning up, and IP needs to run over all of them; this would make
it hard to pick a suitably small bound on datagram size. This also means that a host will not send needlessly
small packets, which wastes bandwidth and consumes processing resources by requiring more headers per
byte of data sent.

The central idea here is that every network type has a maximum transmission unit (MTU), which is the

130 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

largest IP datagram that it can carry in a frame.! Note that this value is smaller than the largest packet size
on that network because the IP datagram needs to fit in the payload of the link-layer frame.

When a host sends an IP datagram, therefore, it can choose any size that it wants. A reasonable choice is
the MTU of the network to which the host is directly attached. Then, fragmentation will only be necessary
if the path to the destination includes a network with a smaller MTU. Should the transport protocol that sits
on top of IP give IP a packet larger than the local MTU, however, then the source host must fragment it.

Fragmentation typically occurs in a router when it receives a datagram that it wants to forward over a network
that has an MTU that is smaller than the received datagram. To enable these fragments to be reassembled
at the receiving host, they all carry the same identifier in the Ident field. This identifier is chosen by
the sending host and is intended to be unique among all the datagrams that might arrive at the destination
from this source over some reasonable time period. Since all fragments of the original datagram contain
this identifier, the reassembling host will be able to recognize those fragments that go together. Should all
the fragments not arrive at the receiving host, the host gives up on the reassembly process and discards the
fragments that did arrive. IP does not attempt to recover from missing fragments.

HS H8

R1 R2 R3

S &8 3

[802.11] 1P| 1400 | [ETH[IP| 1400 | [PPP|IP| 512 | [ETH|[IP| 512 |
lpPP|iP| 512 | [ETH[IP| 512 |
[prp[1P| 512 | [ETH[IP| 512 |

Figure 3.18.: IP datagrams traversing the sequence of physical networks graphed in the earlier figure.

To see what this all means, consider what happens when host H5 sends a datagram to host H8 in the example
internet shown in Figure 3.15. Assuming that the MTU is 1500 bytes for the two Ethernets and the 802.11
network, and 532 bytes for the point-to-point network, then a 1420-byte datagram (20-byte IP header plus
1400 bytes of data) sent from HS makes it across the 802.11 network and the first Ethernet without fragmen-
tation but must be fragmented into three datagrams at router R2. These three fragments are then forwarded
by router R3 across the second Ethernet to the destination host. This situation is illustrated in Figure 3.18.
This figure also serves to reinforce two important points:

1. Each fragment is itself a self-contained IP datagram that is transmitted over a sequence of physical
networks, independent of the other fragments.

2. Each IP datagram is re-encapsulated for each physical network over which it travels.

The fragmentation process can be understood in detail by looking at the header fields of each datagram, as

!'In ATM networks, the MTU is, fortunately, much larger than a single cell, as ATM has its own fragmentation and reassembly
mechanism. The link-layer frame in ATM is called a convergence-sublayer protocol data unit (CS-PDU).

3.3. Internet (IP) 131

Computer Networks: A Systems Approach, Release Version 6.1

(a)

(b)

Start of header

Ident=x

0

Offset=0

Rest of header

1400 data bytes

Start of header

ldent=x

1

Offset=0

Rest of header

512 data bytes

Start of header

Ident=x

1

Offset =64

Rest of header

512 data bytes

Start of header

ldent=x

0

Offset=128

Rest of header

376 data bytes

Figure 3.19.: Header fields used in IP fragmentation: (a) unfragmented packet; (b) fragmented packets.

132

Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

is done in Figure 3.19. The unfragmented packet, shown at the top, has 1400 bytes of data and a 20-byte IP
header. When the packet arrives at router R2, which has an MTU of 532 bytes, it has to be fragmented. A
532-byte MTU leaves 512 bytes for data after the 20-byte IP header, so the first fragment contains 512 bytes
of data. The router sets the M bitin the F1ags field (see Figure 3.17), meaning that there are more fragments
to follow, and it sets the Of £set to 0, since this fragment contains the first part of the original datagram.
The data carried in the second fragment starts with the 513th byte of the original data, so the Of fset field
in this header is set to 64, which is 512/8. Why the division by 8? Because the designers of IP decided
that fragmentation should always happen on 8-byte boundaries, which means that the Of fset field counts
8-byte chunks, not bytes. (We leave it as an exercise for you to figure out why this design decision was
made.) The third fragment contains the last 376 bytes of data, and the offset is now 2 x 512/8 = 128. Since
this is the last fragment, the M bit is not set.

Observe that the fragmentation process is done in such a way that it could be repeated if a fragment arrived
at another network with an even smaller MTU. Fragmentation produces smaller, valid IP datagrams that can
be readily reassembled into the original datagram upon receipt, independent of the order of their arrival.
Reassembly is done at the receiving host and not at each router.

IP reassembly is far from a simple process. For example, if a single fragment is lost, the receiver will still
attempt to reassemble the datagram, and it will eventually give up and have to garbage-collect the resources
that were used to perform the failed reassembly. Getting a host to tie up resources needlessly can be the
basis of a denial-of-service attack.

For this reason, among others, IP fragmentation is generally considered a good thing to avoid. Hosts are
now strongly encouraged to perform “path MTU discovery,” a process by which fragmentation is avoided
by sending packets that are small enough to traverse the link with the smallest MTU in the path from sender
to receiver.

3.3.3 Global Addresses

In the above discussion of the IP service model, we mentioned that one of the things that it provides is an
addressing scheme. After all, if you want to be able to send data to any host on any network, there needs
to be a way of identifying all the hosts. Thus, we need a global addressing scheme—one in which no two
hosts have the same address. Global uniqueness is the first property that should be provided in an addressing
scheme.

Ethernet addresses are globally unique, but that alone does not suffice for an addressing scheme in a large
internetwork. Ethernet addresses are also flat, which means that they have no structure and provide very
few clues to routing protocols. (In fact, Ethernet addresses do have a structure for the purposes of as-
signment—the first 24 bits identify the manufacturer—but this provides no useful information to routing
protocols since this structure has nothing to do with network topology.) In contrast, IP addresses are hierar-
chical, by which we mean that they are made up of several parts that correspond to some sort of hierarchy
in the internetwork. Specifically, IP addresses consist of two parts, usually referred to as a network part and
a host part. This is a fairly logical structure for an internetwork, which is made up of many interconnected
networks. The network part of an IP address identifies the network to which the host is attached; all hosts
attached to the same network have the same network part in their IP address. The host part then identifies
each host uniquely on that particular network. Thus, in the simple internetwork of Figure 3.15, the addresses
of the hosts on network 1, for example, would all have the same network part and different host parts.

Note that the routers in Figure 3.15 are attached to two networks. They need to have an address on each

3.3. Internet (IP) 133

Computer Networks: A Systems Approach, Release Version 6.1

network, one for each interface. For example, router R1, which sits between the wireless network and an
Ethernet, has an IP address on the interface to the wireless network whose network part is the same as all the
hosts on that network. It also has an IP address on the interface to the Ethernet that has the same network
part as the hosts on that Ethernet. Thus, bearing in mind that a router might be implemented as a host with
two network interfaces, it is more precise to think of IP addresses as belonging to interfaces than to hosts.

Now, what do these hierarchical addresses look like? Unlike some other forms of hierarchical address, the
sizes of the two parts are not the same for all addresses. Originally, IP addresses were divided into three
different classes, as shown in Figure 3.20, each of which defines different-sized network and host parts.
(There are also class D addresses that specify a multicast group and class E addresses that are currently
unused.) In all cases, the address is 32 bits long.

The class of an IP address is identified in the most significant few bits. If the first bit is 0, it is a class A
address. If the first bit is 1 and the second is O, it is a class B address. If the first two bits are 1 and the
third is 0, it is a class C address. Thus, of the approximately 4 billion possible IP addresses, half are class A,
one-quarter are class B, and one-eighth are class C. Each class allocates a certain number of bits for the
network part of the address and the rest for the host part. Class A networks have 7 bits for the network part
and 24 bits for the host part, meaning that there can be only 126 class A networks (the values 0 and 127
are reserved), but each of them can accommodate up to 224 — 2 (about 16 million) hosts (again, there are
two reserved values). Class B addresses allocate 14 bits for the network and 16 bits for the host, meaning
that each class B network has room for 65,534 hosts. Finally, class C addresses have only 8 bits for the host
and 21 for the network part. Therefore, a class C network can have only 256 unique host identifiers, which
means only 254 attached hosts (one host identifier, 255, is reserved for broadcast, and 0 is not a valid host
number). However, the addressing scheme supports 22! class C networks.

(a) 7 24
0 | Network Host

(b) 14 16
110 Network Host

(c) 21 8
11110 Network Host

Figure 3.20.: IP addresses: (a) class A; (b) class B; (c) class C.

On the face of it, this addressing scheme has a lot of flexibility, allowing networks of vastly different sizes
to be accommodated fairly efficiently. The original idea was that the Internet would consist of a small
number of wide area networks (these would be class A networks), a modest number of site- (campus-
) sized networks (these would be class B networks), and a large number of LANs (these would be class C
networks). However, it turned out not to be flexible enough, as we will see in a moment. Today, IP addresses
are normally “classless”; the details of this are explained below.

Before we look at how IP addresses get used, it is helpful to look at some practical matters, such as how you
write them down. By convention, IP addresses are written as four decimal integers separated by dots. Each

134 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

integer represents the decimal value contained in 1 byte of the address, starting at the most significant. For
example, the address of the computer on which this sentence was typedis 171.69.210.245.

It is important not to confuse IP addresses with Internet domain names, which are also hierarchical. Domain
names tend to be ASCII strings separated by dots, such as cs.princeton.edu. The important thing
about IP addresses is that they are what is carried in the headers of IP packets, and it is those addresses that
are used in IP routers to make forwarding decisions.

3.3.4 Datagram Forwarding in IP

We are now ready to look at the basic mechanism by which IP routers forward datagrams in an internetwork.
Recall from an earlier section that forwarding is the process of taking a packet from an input and sending
it out on the appropriate output, while routing is the process of building up the tables that allow the correct
output for a packet to be determined. The discussion here focuses on forwarding; we take up routing in a
later section.

The main points to bear in mind as we discuss the forwarding of IP datagrams are the following:
* Every IP datagram contains the IP address of the destination host.

* The network part of an IP address uniquely identifies a single physical network that is part of the
larger Internet.

* All hosts and routers that share the same network part of their address are connected to the same
physical network and can thus communicate with each other by sending frames over that network.

* Every physical network that is part of the Internet has at least one router that, by definition, is also
connected to at least one other physical network; this router can exchange packets with hosts or routers
on either network.

Forwarding IP datagrams can therefore be handled in the following way. A datagram is sent from a source
host to a destination host, possibly passing through several routers along the way. Any node, whether it is a
host or a router, first tries to establish whether it is connected to the same physical network as the destination.
To do this, it compares the network part of the destination address with the network part of the address of
each of its network interfaces. (Hosts normally have only one interface, while routers normally have two or
more, since they are typically connected to two or more networks.) If a match occurs, then that means that
the destination lies on the same physical network as the interface, and the packet can be directly delivered
over that network. A later section explains some of the details of this process.

If the node is not connected to the same physical network as the destination node, then it needs to send the
datagram to a router. In general, each node will have a choice of several routers, and so it needs to pick the
best one, or at least one that has a reasonable chance of getting the datagram closer to its destination. The
router that it chooses is known as the next hop router. The router finds the correct next hop by consulting
its forwarding table. The forwarding table is conceptually just a list of (NetworkNum, NextHop) pairs.
(As we will see below, forwarding tables in practice often contain some additional information related to the
next hop.) Normally, there is also a default router that is used if none of the entries in the table matches the
destination’s network number. For a host, it may be quite acceptable to have a default router and nothing
else—this means that all datagrams destined for hosts not on the physical network to which the sending host
is attached will be sent out through the default router.

We can describe the datagram forwarding algorithm in the following way:

3.3. Internet (IP) 135

Computer Networks: A Systems Approach, Release Version 6.1

if (NetworkNum of destination = NetworkNum of one of my interfaces) then
deliver packet to destination over that interface
else
if (NetworkNum of destination is in my forwarding table) then
deliver packet to NextHop router
else
deliver packet to default router

For a host with only one interface and only a default router in its forwarding table, this simplifies to

if (NetworkNum of destination = my NetworkNum) then
deliver packet to destination directly

else
deliver packet to default router

Let’s see how this works in the example internetwork of Figure 3.15. First, suppose that H1 wants to send
a datagram to H2. Since they are on the same physical network, H1 and H2 have the same network number
in their IP address. Thus, H1 deduces that it can deliver the datagram directly to H2 over the Ethernet. The
one issue that needs to be resolved is how H1 finds out the correct Ethernet address for H2—the resolution
mechanism described in a later section addresses this issue.

Now suppose H5 wants to send a datagram to HS. Since these hosts are on different physical networks, they
have different network numbers, so H5 deduces that it needs to send the datagram to a router. R1 is the only
choice—the default router—so H1 sends the datagram over the wireless network to R1. Similarly, R1 knows
that it cannot deliver a datagram directly to H8 because neither of R1’s interfaces are on the same network as
HS. Suppose R1’s default router is R2; R1 then sends the datagram to R2 over the Ethernet. Assuming R2
has the forwarding table shown in Table 3.6, it looks up H8’s network number (network 4) and forwards the
datagram over the point-to-point network to R3. Finally, R3, since it is on the same network as H8, forwards
the datagram directly to H8.

Table 3.6.: Forwarding table for Router R2.
NetworkNum | NextHop
1 R1
4 R3

Note that it is possible to include the information about directly connected networks in the forwarding table.
For example, we could label the network interfaces of router R2 as interface O for the point-to-point link
(network 3) and interface 1 for the Ethernet (network 2). Then R2 would have the forwarding table shown
in Table 3.7.

Table 3.7.: Complete Forwarding table for Router R2.

NetworkNum | NextHop
1 R1

2 Interface 1
3 Interface 0
4 R3

Thus, for any network number that R2 encounters in a packet, it knows pwhat to do. Either that network is

136 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

directly connected to R2, in which case the packet can be delivered to its destination over that network, or
the network is reachable via some next hop router that R2 can reach over a network to which it is connected.
In either case, R2 will use ARP, described below, to find the MAC address of the node to which the packet
is to be sent next.

The forwarding table used by R2 is simple enough that it could be manually configured. Usually, however,
these tables are more complex and would be built up by running a routing protocol such as one of those
described in a later section. Also note that, in practice, the network numbers are usually longer (e.g., 128.96).

We can now see how hierarchical addressing—splitting the address into network and host parts—has im-
proved the scalability of a large network. Routers now contain forwarding tables that list only a set of
network numbers rather than all the nodes in the network. In our simple example, that meant that R2 could
store the information needed to reach all the hosts in the network (of which there were eight) in a four-entry
table. Even if there were 100 hosts on each physical network, R2 would still only need those same four
entries. This is a good first step (although by no means the last) in achieving scalability.

Key Takeaway

This illustrates one of the most important principles of building scalable networks: To achieve scalability,
you need to reduce the amount of information that is stored in each node and that is exchanged between
nodes. The most common way to do that is hierarchical aggregation. 1P introduces a two-level hierarchy,
with networks at the top level and nodes at the bottom level. We have aggregated information by letting
routers deal only with reaching the right network; the information that a router needs to deliver a datagram
to any node on a given network is represented by a single aggregated piece of information. /Next/

3.3.5 Subnetting and Classless Addressing

The original intent of IP addresses was that the network part would uniquely identify exactly one physical
network. It turns out that this approach has a couple of drawbacks. Imagine a large campus that has lots
of internal networks and decides to connect to the Internet. For every network, no matter how small, the
site needs at least a class C network address. Even worse, for any network with more than 255 hosts, they
need a class B address. This may not seem like a big deal, and indeed it wasn’t when the Internet was first
envisioned, but there are only a finite number of network numbers, and there are far fewer class B addresses
than class Cs. Class B addresses tend to be in particularly high demand because you never know if your
network might expand beyond 255 nodes, so it is easier to use a class B address from the start than to have
to renumber every host when you run out of room on a class C network. The problem we observe here is
address assignment inefficiency: A network with two nodes uses an entire class C network address, thereby
wasting 253 perfectly useful addresses; a class B network with slightly more than 255 hosts wastes over
64,000 addresses.

Assigning one network number per physical network, therefore, uses up the IP address space potentially
much faster than we would like. While we would need to connect over 4 billion hosts to use up all the valid
addresses, we only need to connect 2! (about 16,000) class B networks before that part of the address space
runs out. Therefore, we would like to find some way to use the network numbers more efficiently.

Assigning many network numbers has another drawback that becomes apparent when you think about rout-
ing. Recall that the amount of state that is stored in a node participating in a routing protocol is proportional
to the number of other nodes, and that routing in an internet consists of building up forwarding tables that

3.3. Internet (IP) 137

Computer Networks: A Systems Approach, Release Version 6.1

tell a router how to reach different networks. Thus, the more network numbers there are in use, the big-
ger the forwarding tables get. Big forwarding tables add costs to routers, and they are potentially slower to
search than smaller tables for a given technology, so they degrade router performance. This provides another
motivation for assigning network numbers carefully.

Subnetting provides a first step to reducing total number of network numbers that are assigned. The idea
is to take a single IP network number and allocate the IP addresses with that network number to several
physical networks, which are now referred to as subnets. Several things need to be done to make this work.
First, the subnets should be close to each other. This is because from a distant point in the Internet, they
will all look like a single network, having only one network number between them. This means that a router
will only be able to select one route to reach any of the subnets, so they had better all be in the same general
direction. A perfect situation in which to use subnetting is a large campus or corporation that has many
physical networks. From outside the campus, all you need to know to reach any subnet inside the campus
is where the campus connects to the rest of the Internet. This is often at a single point, so one entry in your
forwarding table will suffice. Even if there are multiple points at which the campus is connected to the rest
of the Internet, knowing how to get to one point in the campus network is still a good start.

The mechanism by which a single network number can be shared among multiple networks involves con-
figuring all the nodes on each subnet with a subnet mask. With simple IP addresses, all hosts on the same
network must have the same network number. The subnet mask enables us to introduce a subnet number;
all hosts on the same physical network will have the same subnet number, which means that hosts may be
on different physical networks but share a single network number. This concept is illustrated in Figure 3.21.

Network number Host number

Class B address

11111111111111111111111 | 00000000

Subnet mask (255.255.255.0)

Network number Subnet ID Host ID

Subnetted address

Figure 3.21.: Subnet addressing.

What subnetting means to a host is that it is now configured with both an IP address and a subnet mask for
the subnet to which it is attached. For example, host H1 in Figure 3.22 is configured with an address of
128.96.34.15 and a subnet mask of 255.255.255.128. (All hosts on a given subnet are configured with the
same mask; that is, there is exactly one subnet mask per subnet.) The bitwise AND of these two numbers
defines the subnet number of the host and of all other hosts on the same subnet. In this case, 128.96.34.15
AND 255.255.255.128 equals 128.96.34.0, so this is the subnet number for the topmost subnet in the figure.

When the host wants to send a packet to a certain IP address, the first thing it does is to perform a bitwise
AND between its own subnet mask and the destination IP address. If the result equals the subnet number of
the sending host, then it knows that the destination host is on the same subnet and the packet can be delivered

138 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Subnet mask: 255.255.255.128
Subnet number: 128.96.34.0

128.96.34.15 ‘
. 128.96.34.1
& =2 Ri
H1
128.96.34.130 Subnet mask: 255.255.255.128
Subnet number: 128.96.34.128
‘ 128.96.34.139
128.96.34.129
H3 << .

< =1 R2 &
. H2

128.96.33.1

’ 128.96.33.14
Subnet mask: 255.255.255.0
Subnet number: 128.96.33.0

Figure 3.22.: An example of subnetting.

directly over the subnet. If the results are not equal, the packet needs to be sent to a router to be forwarded
to another subnet. For example, if H1 is sending to H2, then H1 ANDs its subnet mask (255.255.255.128)
with the address for H2 (128.96.34.139) to obtain 128.96.34.128. This does not match the subnet number
for H1 (128.96.34.0) so H1 knows that H2 is on a different subnet. Since H1 cannot deliver the packet to
H2 directly over the subnet, it sends the packet to its default router R1.

The forwarding table of a router also changes slightly when we introduce subnetting. Recall that we pre-
viously had a forwarding table that consisted of entries of the form (NetworkNum, NextHop). To
support subnetting, the table must now hold entries of the form (SubnetNumber, SubnetMask,
NextHop). To find the right entry in the table, the router ANDs the packet’s destination address with
the SubnetMaskfor each entry in turn; if the result matches the SubnetNumber of the entry, then this is
the right entry to use, and it forwards the packet to the next hop router indicated. In the example network of
Figure 3.22, router R1 would have the entries shown in Table 3.8.

Table 3.8.: Example Forwarding Table with Subnetting.

SubnetNumber | SubnetMask NextHop
128.96.34.0 255.255.255.128 | Interface O
128.96.34.128 255.255.255.128 | Interface 1
128.96.33.0 255.255.255.0 R2

Continuing with the example of a datagram from HI1 being sent to H2, R1 would AND H2’s ad-
dress (128.96.34.139) with the subnet mask of the first entry (255.255.255.128) and compare the result

3.3. Internet (IP) 139

Computer Networks: A Systems Approach, Release Version 6.1

(128.96.34.128) with the network number for that entry (128.96.34.0). Since this is not a match, it proceeds
to the next entry. This time a match does occur, so R1 delivers the datagram to H2 using interface 1, which
is the interface connected to the same network as H2.

We can now describe the datagram forwarding algorithm in the following way:

D = destination IP address
for each forwarding table entry (SubnetNumber, SubnetMask, NextHop)
D1 = SubnetMask & D
if D1 = SubnetNumber
if NextHop is an interface
deliver datagram directly to destination
else
deliver datagram to NextHop (a router)

Although not shown in this example, a default route would usually be included in the table and would be
used if no explicit matches were found. Note that a naive implementation of this algorithm—one involving
repeated ANDing of the destination address with a subnet mask that may not be different every time, and a
linear table search—would be very inefficient.

An important consequence of subnetting is that different parts of the internet see the world differently. From
outside our hypothetical campus, routers see a single network. In the example above, routers outside the
campus see the collection of networks in Figure 3.22 as just the network 128.96, and they keep one entry in
their forwarding tables to tell them how to reach it. Routers within the campus, however, need to be able to
route packets to the right subnet. Thus, not all parts of the internet see exactly the same routing information.
This is an example of an aggregation of routing information, which is fundamental to scaling of the routing
system. The next section shows how aggregation can be taken to another level.

Classless Addressing

Subnetting has a counterpart, sometimes called supernetting, but more often called Classless Interdomain
Routing or CIDR, pronounced “cider.” CIDR takes the subnetting idea to its logical conclusion by essentially
doing away with address classes altogether. Why isn’t subnetting alone sufficient? In essence, subnetting
only allows us to split a classful address among multiple subnets, while CIDR allows us to coalesce several
classful addresses into a single “supernet.” This further tackles the address space inefficiency noted above,
and does so in a way that keeps the routing system from being overloaded.

To see how the issues of address space efficiency and scalability of the routing system are coupled, consider
the hypothetical case of a company whose network has 256 hosts on it. That is slightly too many for a
Class C address, so you would be tempted to assign a class B. However, using up a chunk of address space
that could address 65535 to address 256 hosts has an efficiency of only 256/65,535 = 0.39%. Even though
subnetting can help us to assign addresses carefully, it does not get around the fact that any organization
with more than 255 hosts, or an expectation of eventually having that many, wants a class B address.

The first way you might deal with this issue would be to refuse to give a class B address to any organization
that requests one unless they can show a need for something close to 64K addresses, and instead giving them
an appropriate number of class C addresses to cover the expected number of hosts. Since we would now be
handing out address space in chunks of 256 addresses at a time, we could more accurately match the amount
of address space consumed to the size of the organization. For any organization with at least 256 hosts, we

140 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

can guarantee an address utilization of at least 50%, and typically much more. (Sadly, even if you can justify
a request of a class B network number, don’t bother, because they were all spoken for long ago.)

This solution, however, raises a problem that is at least as serious: excessive storage requirements at the
routers. If a single site has, say, 16 class C network numbers assigned to it, that means every Internet
backbone router needs 16 entries in its routing tables to direct packets to that site. This is true even if the
path to every one of those networks is the same. If we had assigned a class B address to the site, the same
routing information could be stored in one table entry. However, our address assignment efficiency would
then be only 6 x 255/ 65,536 = 6.2%.

CIDR, therefore, tries to balance the desire to minimize the number of routes that a router needs to know
against the need to hand out addresses efficiently. To do this, CIDR helps us to aggregate routes. That is,
it lets us use a single entry in a forwarding table to tell us how to reach a lot of different networks. As
noted above it does this by breaking the rigid boundaries between address classes. To understand how this
works, consider our hypothetical organization with 16 class C network numbers. Instead of handing out
16 addresses at random, we can hand out a block of contiguous class C addresses. Suppose we assign the
class C network numbers from 192.4.16 through 192.4.31. Observe that the top 20 bits of all the addresses
in this range are the same (11000000 00000100 0001). Thus, what we have effectively created is
a 20-bit network number—something that is between a class B network number and a class C number in
terms of the number of hosts that it can support. In other words, we get both the high address efficiency of
handing out addresses in chunks smaller than a class B network, and a single network prefix that can be used
in forwarding tables. Observe that, for this scheme to work, we need to hand out blocks of class C addresses
that share a common prefix, which means that each block must contain a number of class C networks that is
a power of two.

CIDR requires a new type of notation to represent network numbers, or prefixes as they are known, because
the prefixes can be of any length. The convention is to place a /X after the prefix, where X is the prefix
length in bits. So, for the example above, the 20-bit prefix for all the networks 192.4.16 through 192.4.31 is
represented as 192.4.16/20. By contrast, if we wanted to represent a single class C network number, which
is 24 bits long, we would write it 192.4.16/24. Today, with CIDR being the norm, it is more common to
hear people talk about “slash 24” prefixes than class C networks. Note that representing a network address
in this way is similar to the (mask, wvalue) approach used in subnetting, as long as masks consist of
contiguous bits starting from the most significant bit (which in practice is almost always the case).

The ability to aggregate routes at the edge of the network as we have just seen is only the first step. Imagine
an Internet service provider network, whose primary job is to provide Internet connectivity to a large number
of corporations and campuses (customers). If we assign prefixes to the customers in such a way that many
different customer networks connected to the provider network share a common, shorter address prefix,
then we can get even greater aggregation of routes. Consider the example in Figure 3.23. Assume that eight
customers served by the provider network have each been assigned adjacent 24-bit network prefixes. Those
prefixes all start with the same 21 bits. Since all of the customers are reachable through the same provider
network, it can advertise a single route to all of them by just advertising the common 21-bit prefix they
share. And it can do this even if not all the 24-bit prefixes have been handed out, as long as the provider
ultimately will have the right to hand out those prefixes to a customer. One way to accomplish that is to
assign a portion of address space to the provider in advance and then to let the network provider assign
addresses from that space to its customers as needed. Note that, in contrast to this simple example, there is
no need for all customer prefixes to be the same length.

3.3. Internet (IP) 141

Computer Networks: A Systems Approach, Release Version 6.1

Customers
Advertise
128.112.128/21 128.112.128/24
128.112.129/24
‘ 128.112.130/24

128.112.135/24

Figure 3.23.: Route aggregation with CIDR.

IP Forwarding Revisited

In all our discussion of IP forwarding so far, we have assumed that we could find the network number in a
packet and then look up that number in a forwarding table. However, now that we have introduced CIDR,
we need to reexamine this assumption. CIDR means that prefixes may be of any length, from 2 to 32 bits.
Furthermore, it is sometimes possible to have prefixes in the forwarding table that “overlap,” in the sense that
some addresses may match more than one prefix. For example, we might find both 171.69 (a 16-bit prefix)
and 171.69.10 (a 24-bit prefix) in the forwarding table of a single router. In this case, a packet destined to,
say, 171.69.10.5 clearly matches both prefixes. The rule in this case is based on the principle of “longest
match”; that is, the packet matches the longest prefix, which would be 171.69.10 in this example. On the
other hand, a packet destined to 171.69.20.5 would match 171.69 and not 171.69.10, and in the absence of
any other matching entry in the routing table 171.69 would be the longest match.

The task of efficiently finding the longest match between an IP address and the variable-length prefixes in a
forwarding table has been a fruitful field of research for many years. The most well-known algorithm uses
an approach known as a PATRICIA tree, which was actually developed well in advance of CIDR.

3.3.6 Address Translation (ARP)

In the previous section we talked about how to get IP datagrams to the right physical network but glossed
over the issue of how to get a datagram to a particular host or router on that network. The main issue is
that IP datagrams contain IP addresses, but the physical interface hardware on the host or router to which
you want to send the datagram only understands the addressing scheme of that particular network. Thus,
we need to translate the IP address to a link-level address that makes sense on this network (e.g., a 48-bit
Ethernet address). We can then encapsulate the IP datagram inside a frame that contains that link-level
address and send it either to the ultimate destination or to a router that promises to forward the datagram
toward the ultimate destination.

One simple way to map an IP address into a physical network address is to encode a host’s physical address

142 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

in the host part of its IP address. For example, a host with physical address 00100001 01001001 (which
has the decimal value 33 in the upper byte and 81 in the lower byte) might be given the IP address 128.
96.33.81. While this solution has been used on some networks, it is limited in that the network’s physical
addresses can be no more than 16 bits long in this example; they can be only 8 bits long on a class C network.
This clearly will not work for 48-bit Ethernet addresses.

A more general solution would be for each host to maintain a table of address pairs; that is, the table
would map IP addresses into physical addresses. While this table could be centrally managed by a system
administrator and then copied to each host on the network, a better approach would be for each host to
dynamically learn the contents of the table using the network. This can be accomplished using the Address
Resolution Protocol (ARP). The goal of ARP is to enable each host on a network to build up a table of
mappings between IP addresses and link-level addresses. Since these mappings may change over time (e.g.,
because an Ethernet card in a host breaks and is replaced by a new one with a new address), the entries are
timed out periodically and removed. This happens on the order of every 15 minutes. The set of mappings
currently stored in a host is known as the ARP cache or ARP table.

ARP takes advantage of the fact that many link-level network technologies, such as Ethernet, support broad-
cast. If a host wants to send an IP datagram to a host (or router) that it knows to be on the same network
(i.e., the sending and receiving nodes have the same IP network number), it first checks for a mapping in
the cache. If no mapping is found, it needs to invoke the Address Resolution Protocol over the network. It
does this by broadcasting an ARP query onto the network. This query contains the IP address in question
(the target IP address). Each host receives the query and checks to see if it matches its IP address. If it does
match, the host sends a response message that contains its link-layer address back to the originator of the
query. The originator adds the information contained in this response to its ARP table.

The query message also includes the IP address and link-layer address of the sending host. Thus, when a
host broadcasts a query message, each host on the network can learn the sender’s link-level and IP addresses
and place that information in its ARP table. However, not every host adds this information to its ARP table.
If the host already has an entry for that host in its table, it “refreshes” this entry; that is, it resets the length
of time until it discards the entry. If that host is the target of the query, then it adds the information about
the sender to its table, even if it did not already have an entry for that host. This is because there is a good
chance that the source host is about to send it an application-level message, and it may eventually have to
send a response or ACK back to the source; it will need the source’s physical address to do this. If a host
is not the target and does not already have an entry for the source in its ARP table, then it does not add an
entry for the source. This is because there is no reason to believe that this host will ever need the source’s
link-level address; there is no need to clutter its ARP table with this information.

Figure 3.24 shows the ARP packet format for IP-to-Ethernet address mappings. In fact, ARP can be used
for lots of other kinds of mappings—the major differences are in the address sizes. In addition to the IP and
link-layer addresses of both sender and target, the packet contains

* A HardwareType field, which specifies the type of physical network (e.g., Ethernet)
* A ProtocolType field, which specifies the higher-layer protocol (e.g., IP)

* HLen (“hardware” address length) and PLen (“protocol” address length) fields, which specify the
length of the link-layer address and higher-layer protocol address, respectively

* An Operation field, which specifies whether this is a request or a response

* The source and target hardware (Ethernet) and protocol (IP) addresses

3.3. Internet (IP) 143

Computer Networks: A Systems Approach, Release Version 6.1

0 8 16 31
Hardware type=1 ProtocolType =0x0800

HLen=48 PLen=32 Operation

SourceHardwareAddr (bytes 0-3)

SourceHardwareAddr (bytes 4-5) | SourceProtocolAddr (bytes 0—1)

SourceProtocolAddr (bytes 2-3) | TargetHardwareAddr (bytes 0—1)

TargetHardwareAddr (bytes 2-5)

TargetProtocolAddr (bytes 0-3)

Figure 3.24.: ARP packet format for mapping IP addresses into Ethernet addresses.

Note that the results of the ARP process can be added as an extra column in a forwarding table like the one
in Table 3.6. Thus, for example, when R2 needs to forward a packet to network 2, it not only finds that the
next hop is R1, but also finds the MAC address to place on the packet to send it to R1.

Key Takeaway

We have now seen the basic mechanisms that IP provides for dealing with both heterogeneity and scale. On
the issue of heterogeneity, IP begins by defining a best-effort service model that makes minimal assumptions
about the underlying networks; most notably, this service model is based on unreliable datagrams. IP then
makes two important additions to this starting point: (1) a common packet format (fragmentation/reassembly
is the mechanism that makes this format work over networks with different MTUs) and (2) a global address
space for identifying all hosts (ARP is the mechanism that makes this global address space work over net-
works with different physical addressing schemes). On the issue of scale, IP uses hierarchical aggregation to
reduce the amount of information needed to forward packets. Specifically, IP addresses are partitioned into
network and host components, with packets first routed toward the destination network and then delivered
to the correct host on that network. [Next]

3.3.7 Host Configuration (DHCP)

Ethernet addresses are configured into the network adaptor by the manufacturer, and this process is managed
in such a way to ensure that these addresses are globally unique. This is clearly a sufficient condition to
ensure that any collection of hosts connected to a single Ethernet (including an extended LAN) will have
unique addresses. Furthermore, uniqueness is all we ask of Ethernet addresses.

IP addresses, by contrast, not only must be unique on a given internetwork but also must reflect the structure
of the internetwork. As noted above, they contain a network part and a host part, and the network part must
be the same for all hosts on the same network. Thus, it is not possible for the IP address to be configured
once into a host when it is manufactured, since that would imply that the manufacturer knew which hosts
were going to end up on which networks, and it would mean that a host, once connected to one network,
could never move to another. For this reason, IP addresses need to be reconfigurable.

144 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

In addition to an IP address, there are some other pieces of information a host needs to have before it can
start sending packets. The most notable of these is the address of a default router—the place to which it can
send packets whose destination address is not on the same network as the sending host.

Most host operating systems provide a way for a system administrator, or even a user, to manually configure
the IP information needed by a host; however, there are some obvious drawbacks to such manual configu-
ration. One is that it is simply a lot of work to configure all the hosts in a large network directly, especially
when you consider that such hosts are not reachable over a network until they are configured. Even more
importantly, the configuration process is very error prone, since it is necessary to ensure that every host gets
the correct network number and that no two hosts receive the same IP address. For these reasons, auto-
mated configuration methods are required. The primary method uses a protocol known as the Dynamic Host
Configuration Protocol (DHCP).

DHCEP relies on the existence of a DHCP server that is responsible for providing configuration information
to hosts. There is at least one DHCP server for an administrative domain. At the simplest level, the DHCP
server can function just as a centralized repository for host configuration information. Consider, for example,
the problem of administering addresses in the internetwork of a large company. DHCP saves the network
administrators from having to walk around to every host in the company with a list of addresses and network
map in hand and configuring each host manually. Instead, the configuration information for each host could
be stored in the DHCP server and automatically retrieved by each host when it is booted or connected to the
network. However, the administrator would still pick the address that each host is to receive; he would just
store that in the server. In this model, the configuration information for each host is stored in a table that is
indexed by some form of unique client identifier, typically the hardware address (e.g., the Ethernet address
of its network adaptor).

A more sophisticated use of DHCP saves the network administrator from even having to assign addresses
to individual hosts. In this model, the DHCP server maintains a pool of available addresses that it hands
out to hosts on demand. This considerably reduces the amount of configuration an administrator must do,
since now it is only necessary to allocate a range of IP addresses (all with the same network number) to each
network.

Since the goal of DHCP is to minimize the amount of manual configuration required for a host to function, it
would rather defeat the purpose if each host had to be configured with the address of a DHCP server. Thus,
the first problem faced by DHCP is that of server discovery.

To contact a DHCP server, a newly booted or attached host sends a DHCPDISCOVER message to a special
IP address (255.255.255.255) that is an IP broadcast address. This means it will be received by all hosts and
routers on that network. (Routers do not forward such packets onto other networks, preventing broadcast to
the entire Internet.) In the simplest case, one of these nodes is the DHCP server for the network. The server
would then reply to the host that generated the discovery message (all the other nodes would ignore it).
However, it is not really desirable to require one DHCP server on every network, because this still creates
a potentially large number of servers that need to be correctly and consistently configured. Thus, DHCP
uses the concept of a relay agent. There is at least one relay agent on each network, and it is configured
with just one piece of information: the IP address of the DHCP server. When a relay agent receives a
DHCPDISCOVER message, it unicasts it to the DHCP server and awaits the response, which it will then
send back to the requesting client. The process of relaying a message from a host to a remote DHCP server
is shown in Figure 3.25.

Figure 3.26 below shows the format of a DHCP message. The message is actually sent using a protocol
called the User Datagram Protocol (UDP) that runs over IP. UDP is discussed in detail in the next chapter,
but the only interesting thing it does in this context is to provide a demultiplexing key that says, “This is a

3.3. Internet (IP) 145

Computer Networks: A Systems Approach, Release Version 6.1

Unicast to server

_—
[11
__| DHCP |_ Other networks X3
relay X
DHCP server
Broadcast
Host

Figure 3.25.: A DHCP relay agent receives a broadcast DHCPDISCOVER message from a host and sends
a unicast DHCPDISCOVER to the DHCP server.

DHCP packet.”

DHCP is derived from an earlier protocol called BOOTP, and some of the packet fields are thus not strictly
relevant to host configuration. When trying to obtain configuration information, the client puts its hardware
address (e.g., its Ethernet address) in the chaddr field. The DHCP server replies by filling in the yiaddr
(“your” IP address) field and sending it to the client. Other information such as the default router to be used
by this client can be included in the opt ions field.

In the case where DHCP dynamically assigns IP addresses to hosts, it is clear that hosts cannot keep ad-
dresses indefinitely, as this would eventually cause the server to exhaust its address pool. At the same time,
a host cannot be depended upon to give back its address, since it might have crashed, been unplugged from
the network, or been turned off. Thus, DHCP allows addresses to be leased for some period of time. Once
the lease expires, the server is free to return that address to its pool. A host with a leased address clearly
needs to renew the lease periodically if in fact it is still connected to the network and functioning correctly.

Key Takeaway

DHCEP illustrates an important aspect of scaling: the scaling of network management. While discussions
of scaling often focus on keeping the state in network devices from growing too fast, it is important to pay
attention to the growth of network management complexity. By allowing network managers to configure a
range of IP addresses per network rather than one IP address per host, DHCP improves the manageability of
a network. [Next]

Note that DHCP may also introduce some more complexity into network management, since it makes the
binding between physical hosts and IP addresses much more dynamic. This may make the network man-
ager’s job more difficult if, for example, it becomes necessary to locate a malfunctioning host.

146 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Operation HType HLen Hops
Xid
Secs Flags
ciaddr
yiaddr
siaddr
giaddr

chaddr (16 bytes)

sname (64 bytes)

file (128 bytes)

options

Figure 3.26.: DHCP packet format.

3.3.8 Error Reporting (ICMP)

The next issue is how the Internet treats errors. While IP is perfectly willing to drop datagrams when
the going gets tough—for example, when a router does not know how to forward the datagram or when
one fragment of a datagram fails to arrive at the destination—it does not necessarily fail silently. IP is
always configured with a companion protocol, known as the Internet Control Message Protocol (ICMP),
that defines a collection of error messages that are sent back to the source host whenever a router or host is
unable to process an IP datagram successfully. For example, ICMP defines error messages indicating that
the destination host is unreachable (perhaps due to a link failure), that the reassembly process failed, that
the TTL had reached 0, that the IP header checksum failed, and so on.

ICMP also defines a handful of control messages that a router can send back to a source host. One of the
most useful control messages, called an ICMP-Redirect, tells the source host that there is a better route to the
destination. ICMP-Redirects are used in the following situation. Suppose a host is connected to a network
that has two routers attached to it, called R/ and R2, where the host uses R1 as its default router. Should R1
ever receive a datagram from the host, where based on its forwarding table it knows that R2 would have been
a better choice for a particular destination address, it sends an ICMP-Redirect back to the host, instructing
it to use R2 for all future datagrams addressed to that destination. The host then adds this new route to its
forwarding table.

ICMP also provides the basis for two widely used debugging tools, ping and traceroute. ping uses
ICMP echo messages to determine if a node is reachable and alive. traceroute uses a slightly non-
intuitive technique to determine the set of routers along the path to a destination, which is the topic for one
of the exercises at the end of this chapter.

3.3. Internet (IP) 147

Computer Networks: A Systems Approach, Release Version 6.1

3.3.9 Virtual Networks and Tunnels

We conclude our introduction to IP by considering an issue you might not have anticipated, but one that
is increasingly important. Our discussion up to this point has focused on making it possible for nodes on
different networks to communicate with each other in an unrestricted way. This is usually the goal in the
Internet—everybody wants to be able to send email to everybody, and the creator of a new website wants to
reach the widest possible audience. However, there are many situations where more controlled connectivity
is required. An important example of such a situation is the virtual private network (VPN).

The term VPN is heavily overused and definitions vary, but intuitively we can define a VPN by considering
first the idea of a private network. Corporations with many sites often build private networks by leasing
circuits from the phone companies and using those lines to interconnect sites. In such a network, com-
munication is restricted to take place only among the sites of that corporation, which is often desirable for
security reasons. To make a private network virtual, the leased transmission lines—which are not shared
with any other corporations—would be replaced by some sort of shared network. A virtual circuit (VC) is
a very reasonable replacement for a leased line because it still provides a logical point-to-point connection
between the corporation’s sites. For example, if corporation X has a VC from site A to site B, then clearly
it can send packets between sites A and B. But there is no way that corporation Y can get its packets de-
livered to site B without first establishing its own virtual circuit to site B, and the establishment of such a
VC can be administratively prevented, thus preventing unwanted connectivity between corporation X and
corporation Y.

Figure 3.27(a) shows two private networks for two separate corporations. In Figure 3.27(b) they are both
migrated to a virtual circuit network. The limited connectivity of a real private network is maintained, but
since the private networks now share the same transmission facilities and switches we say that two virtual
private networks have been created.

In Figure 3.27, a virtual circuit network (using ATM, for example) is used to provide the controlled con-
nectivity among sites. It is also possible to provide a similar function using an IP network to provide the
connectivity. However, we cannot just connect the various corporations’ sites to a single internetwork be-
cause that would provide connectivity between corporation X and corporation Y, which we wish to avoid.
To solve this problem, we need to introduce a new concept, the IP tunnel.

We can think of an IP tunnel as a virtual point-to-point link between a pair of nodes that are actually separated
by an arbitrary number of networks. The virtual link is created within the router at the entrance to the tunnel
by providing it with the IP address of the router at the far end of the tunnel. Whenever the router at the
entrance of the tunnel wants to send a packet over this virtual link, it encapsulates the packet inside an IP
datagram. The destination address in the IP header is the address of the router at the far end of the tunnel,
while the source address is that of the encapsulating router.

In the forwarding table of the router at the entrance to the tunnel, this virtual link looks much like a normal
link. Consider, for example, the network in Figure 3.28. A tunnel has been configured from R1 to R2 and
assigned a virtual interface number of 0. The forwarding table in R1 might therefore look like Table 3.9.

Table 3.9.: Forwarding Table for Router R1.

NetworkNum | NextHop

1 Interface 0

2 Virtual interface 0
Default Interface 1

148 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

(a) o
Physical links
A B
Corporation X private network
K L
Corporation Y private network
(b)

) Physical links

Virtual circuits

Figure 3.27.: An example of virtual private networks: (a) two separate private networks; (b) two virtual
private networks sharing common switches.

3.3. Internet (IP) 149

Computer Networks: A Systems Approach, Release Version 6.1

R1 R2
Network 1 @— Internetwork @ Network 2
X 18.5.0.1

IP header, IP header, IP header,
Destination=2.x Destination=18.5.0.1 Destination=2.x

—_— —_—

IP header,

IP payload Destination=2.x IP payload

IP payload

Figure 3.28.: A tunnel through an internetwork. 18.5.0.1 is the address of R2 that can be reached from R1
across the internetwork.

R1 has two physical interfaces. Interface O connects to network 1; interface 1 connects to a large internet-
work and is thus the default for all traffic that does not match something more specific in the forwarding
table. In addition, R1 has a virtual interface, which is the interface to the tunnel. Suppose R1 receives a
packet from network 1 that contains an address in network 2. The forwarding table says this packet should
be sent out virtual interface 0. In order to send a packet out this interface, the router takes the packet, adds
an IP header addressed to R2, and then proceeds to forward the packet as if it had just been received. R2’s
address is 18.5.0.1; since the network number of this address is 18, not 1 or 2, a packet destined for R2 will
be forwarded out the default interface into the internetwork.

Once the packet leaves R1, it looks to the rest of the world like a normal IP packet destined to R2, and it
is forwarded accordingly. All the routers in the internetwork forward it using normal means, until it arrives
at R2. When R2 receives the packet, it finds that it carries its own address, so it removes the IP header
and looks at the payload of the packet. What it finds is an inner IP packet whose destination address is in
network 2. R2 now processes this packet like any other IP packet it receives. Since R2 is directly connected
to network 2, it forwards the packet on to that network. Figur 3.28 shows the change in encapsulation of the
packet as it moves across the network.

While R2 is acting as the endpoint of the tunnel, there is nothing to prevent it from performing the normal
functions of a router. For example, it might receive some packets that are not tunneled, but that are addressed
to networks that it knows how to reach, and it would forward them in the normal way.

You might wonder why anyone would want to go to all the trouble of creating a tunnel and changing the
encapsulation of a packet as it goes across an internetwork. One reason is security. Supplemented with
encryption, a tunnel can become a very private sort of link across a public network. Another reason may
be that R1 and R2 have some capabilities that are not widely available in the intervening networks, such as
multicast routing. By connecting these routers with a tunnel, we can build a virtual network in which all
the routers with this capability appear to be directly connected. A third reason to build tunnels is to carry
packets from protocols other than IP across an IP network. As long as the routers at either end of the tunnel
know how to handle these other protocols, the IP tunnel looks to them like a point-to-point link over which
they can send non-IP packets. Tunnels also provide a mechanism by which we can force a packet to be

150 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

delivered to a particular place even if its original header—the one that gets encapsulated inside the tunnel
header—might suggest that it should go somewhere else. Thus, we see that tunneling is a powerful and
quite general technique for building virtual links across internetworks. So general, in fact, that the technique
recurses, with the most common use case being to tunnel IP over IP.

Tunneling does have its downsides. One is that it increases the length of packets; this might represent a
significant waste of bandwidth for short packets. Longer packets might be subject to fragmentation, which
has its own set of drawbacks. There may also be performance implications for the routers at either end of the
tunnel, since they need to do more work than normal forwarding as they add and remove the tunnel header.
Finally, there is a management cost for the administrative entity that is responsible for setting up the tunnels
and making sure they are correctly handled by the routing protocols.

3.4 Routing

So far in this chapter we have assumed that the switches and routers have enough knowledge of the network
topology so they can choose the right port onto which each packet should be output. In the case of virtual
circuits, routing is an issue only for the connection request packet; all subsequent packets follow the same
path as the request. In datagram networks, including IP networks, routing is an issue for every packet. In
either case, a switch or router needs to be able to look at a destination address and then to determine which
of the output ports is the best choice to get a packet to that address. As we saw in an earlier section, the
switch makes this decision by consulting a forwarding table. The fundamental problem of routing is how
switches and routers acquire the information in their forwarding tables.

Key Takeaway

We restate an important distinction, which is often neglected, between forwarding and routing. Forwarding
consists of receiving a packet, looking up its destination address in a table, and sending the packet in a
direction determined by that table. We saw several examples of forwarding in the preceding section. It is
a simple and well-defined process performed locally at each node, and is often referred to as the network’s
data plane. Routing is the process by which forwarding tables are built. It depends on complex distributed
algorithms, and is often referred to as the network’s control plane. [Next]

While the terms forwarding table and routing table are sometimes used interchangeably, we will make a
distinction between them here. The forwarding table is used when a packet is being forwarded and so must
contain enough information to accomplish the forwarding function. This means that a row in the forwarding
table contains the mapping from a network prefix to an outgoing interface and some MAC information, such
as the Ethernet address of the next hop. The routing table, on the other hand, is the table that is built up by
the routing algorithms as a precursor to building the forwarding table. It generally contains mappings from
network prefixes to next hops. It may also contain information about how this information was learned, so
that the router will be able to decide when it should discard some information.

Whether the routing table and forwarding table are actually separate data structures is something of an
implementation choice, but there are numerous reasons to keep them separate. For example, the forwarding
table needs to be structured to optimize the process of looking up an address when forwarding a packet,
while the routing table needs to be optimized for the purpose of calculating changes in topology. In many
cases, the forwarding table may even be implemented in specialized hardware, whereas this is rarely if ever
done for the routing table.

3.4. Routing 151

Computer Networks: A Systems Approach, Release Version 6.1

Table 3.10 gives an example of a row from a routing table, which tells us that network prefix 18/8 is to be
reached by a next hop router with the IP address 171.69.245.10

Table 3.10.: Example row from a routing table.

Prefix/Length | Next Hop
18/8 171.69.245.10

In contrast, Table 3.11 gives an example of a row from a forwarding table, which contains the information
about exactly how to forward a packet to that next hop: Send it out interface number O with a MAC address
of 8:0:2b:e4:b:1:2. Note that the last piece of information is provided by the Address Resolution Protocol.

Table 3.11.: Example row from a forwarding table.

Prefix/Length | Interface | MAC Address
18/8 if0 8:0:2b:e4:b:1:2

Before getting into the details of routing, we need to remind ourselves of the key question we should be
asking anytime we try to build a mechanism for the Internet: “Does this solution scale?”” The answer for
the algorithms and protocols described in this section is “not so much.” They are designed for networks of
fairly modest size—up to a few hundred nodes, in practice. However, the solutions we describe do serve
as a building block for a hierarchical routing infrastructure that is used in the Internet today. Specifically,
the protocols described in this section are collectively known as intradomain routing protocols, or interior
gateway protocols (IGPs). To understand these terms, we need to define a routing domain. A good working
definition is an internetwork in which all the routers are under the same administrative control (e.g., a single
university campus, or the network of a single Internet Service Provider). The relevance of this definition will
become apparent in the next chapter when we look at interdomain routing protocols. For now, the important
thing to keep in mind is that we are considering the problem of routing in the context of small to midsized
networks, not for a network the size of the Internet.

3.4.1 Network as a Graph

Routing is, in essence, a problem of graph theory. Figure 3.29 shows a graph representing a network.
The nodes of the graph, labeled A through F, may be hosts, switches, routers, or networks. For our initial
discussion, we will focus on the case where the nodes are routers. The edges of the graph correspond to the
network links. Each edge has an associated cost, which gives some indication of the desirability of sending
traffic over that link. A discussion of how edge costs are assigned is given in a later section.

Note that the example networks (graphs) used throughout this chapter have undirected edges that are as-
signed a single cost. This is actually a slight simplification. It is more accurate to make the edges directed,
which typically means that there would be a pair of edges between each node—one flowing in each direction,
and each with its own edge cost.

The basic problem of routing is to find the lowest-cost path between any two nodes, where the cost of a
path equals the sum of the costs of all the edges that make up the path. For a simple network like the one in
Figure 3.29, you could imagine just calculating all the shortest paths and loading them into some nonvolatile
storage on each node. Such a static approach has several shortcomings:

¢ It does not deal with node or link failures.

152 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 3.29.: Network represented as a graph.

* It does not consider the addition of new nodes or links.

* It implies that edge costs cannot change, even though we might reasonably wish to have link costs
change over time (e.g., assigning high cost to a link that is heavily loaded).

For these reasons, routing is achieved in most practical networks by running routing protocols among the
nodes. These protocols provide a distributed, dynamic way to solve the problem of finding the lowest-
cost path in the presence of link and node failures and changing edge costs. Note the word distributed in
the previous sentence; it is difficult to make centralized solutions scalable, so all the widely used routing
protocols use distributed algorithms.

The distributed nature of routing algorithms is one of the main reasons why this has been such a rich field
of research and development—there are a lot of challenges in making distributed algorithms work well. For
example, distributed algorithms raise the possibility that two routers will at one instant have different ideas
about the shortest path to some destination. In fact, each one may think that the other one is closer to the
destination and decide to send packets to the other one. Clearly, such packets will be stuck in a loop until
the discrepancy between the two routers is resolved, and it would be good to resolve it as soon as possible.
This is just one example of the type of problem routing protocols must address.

To begin our analysis, we assume that the edge costs in the network are known. We will examine the two
main classes of routing protocols: distance vector and link state. In a later section, we return to the problem
of calculating edge costs in a meaningful way.

3.4.2 Distance-Vector (RIP)

The idea behind the distance-vector algorithm is suggested by its name. (The other common name for
this class of algorithm is Bellman-Ford, after its inventors.) Each node constructs a one-dimensional array
(a vector) containing the “distances” (costs) to all other nodes and distributes that vector to its immediate
neighbors. The starting assumption for distance-vector routing is that each node knows the cost of the link
to each of its directly connected neighbors. These costs may be provided when the router is configured by a
network manager. A link that is down is assigned an infinite cost.

3.4. Routing 153

Computer Networks: A Systems Approach, Release Version 6.1

G

Figure 3.30.: Distance-vector routing: an example network.

Table 3.12.: Initial Distances Stored at Each Node (Global View).

A|B|C|D|E |F |G
AlO 1 1 oo |1 1 o0
B |1 0 1 o0 | o0 | 0o | o0
C 1 1 0 1 o0 | 00 | 00
D|oco | 0|1 0 oo | oo |1
E |1 oo | oo oo |0 o0 | 00
F |1 oo | oo oo |oo|0 1
G|loo|oo ||l oo |1 0

To see how a distance-vector routing algorithm works, it is easiest to consider an example like the one
depicted in Figure 3.30. In this example, the cost of each link is set to 1, so that a least-cost path is simply
the one with the fewest hops. (Since all edges have the same cost, we do not show the costs in the graph.)
We can represent each node’s knowledge about the distances to all other nodes as a table like Table 3.12.
Note that each node knows only the information in one row of the table (the one that bears its name in the
left column). The global view that is presented here is not available at any single point in the network.

We may consider each row in Table 3.12 as a list of distances from one node to all other nodes, representing
the current beliefs of that node. Initially, each node sets a cost of 1 to its directly connected neighbors and
oo to all other nodes. Thus, A initially believes that it can reach B in one hop and that D is unreachable. The
routing table stored at A reflects this set of beliefs and includes the name of the next hop that A would use
to reach any reachable node. Initially, then, A’s routing table would look like Table 3.13.

Table 3.13.: Initial Routing Table at Node A.

Destination | Cost | NextHop
B 1 B

C 1 C

D 00 —

E 1 E

F 1 F

G o0 —

154

Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

The next step in distance-vector routing is that every node sends a message to its directly connected neigh-
bors containing its personal list of distances. For example, node F tells node A that it can reach node G at a
cost of 1; A also knows it can reach F at a cost of 1, so it adds these costs to get the cost of reaching G by
means of F. This total cost of 2 is less than the current cost of infinity, so A records that it can reach G at a
cost of 2 by going through F. Similarly, A learns from C that D can be reached from C at a cost of 1; it adds
this to the cost of reaching C (1) and decides that D can be reached via C at a cost of 2, which is better than
the old cost of infinity. At the same time, A learns from C that B can be reached from C at a cost of 1, so it
concludes that the cost of reaching B via C is 2. Since this is worse than the current cost of reaching B (1),
this new information is ignored. At this point, A can update its routing table with costs and next hops for all
nodes in the network. The result is shown in Table 3.14.

Table 3.14.: Final Routing Table at Node A.
Destination | Cost | NextHop

DO =] = | DN b [b=t
ol oAl w

o|Tloolalw

In the absence of any topology changes, it takes only a few exchanges of information between neighbors
before each node has a complete routing table. The process of getting consistent routing information to
all the nodes is called convergence. Table 3.15 shows the final set of costs from each node to all other
nodes when routing has converged. We must stress that there is no one node in the network that has all the
information in this table—each node only knows about the contents of its own routing table. The beauty of
a distributed algorithm like this is that it enables all nodes to achieve a consistent view of the network in the
absence of any centralized authority.

Table 3.15.: Final Distances Stored at Each Node (Global View).
A/B|C|D|E|F|G

Q| m g QW >
| = =N ==
W =] —
NN = O ==
=N WO =N
WO W NN =
= O NN NN —
O = W =] | W

There are a few details to fill in before our discussion of distance-vector routing is complete. First we note
that there are two different circumstances under which a given node decides to send a routing update to its
neighbors. One of these circumstances is the periodic update. In this case, each node automatically sends
an update message every so often, even if nothing has changed. This serves to let the other nodes know that
this node is still running. It also makes sure that they keep getting information that they may need if their
current routes become unviable. The frequency of these periodic updates varies from protocol to protocol,
but it is typically on the order of several seconds to several minutes. The second mechanism, sometimes
called a triggered update, happens whenever a node notices a link failure or receives an update from one of

3.4. Routing 155

Computer Networks: A Systems Approach, Release Version 6.1

its neighbors that causes it to change one of the routes in its routing table. Whenever a node’s routing table
changes, it sends an update to its neighbors, which may lead to a change in their tables, causing them to
send an update to their neighbors.

Now consider what happens when a link or node fails. The nodes that notice first send new lists of distances
to their neighbors, and normally the system settles down fairly quickly to a new state. As to the question of
how a node detects a failure, there are a couple of different answers. In one approach, a node continually
tests the link to another node by sending a control packet and seeing if it receives an acknowledgment. In
another approach, a node determines that the link (or the node at the other end of the link) is down if it does
not receive the expected periodic routing update for the last few update cycles.

To understand what happens when a node detects a link failure, consider what happens when F detects that
its link to G has failed. First, F sets its new distance to G to infinity and passes that information along to A.
Since A knows that its 2-hop path to G is through F, A would also set its distance to G to infinity. However,
with the next update from C, A would learn that C has a 2-hop path to G. Thus, A would know that it could
reach G in 3 hops through C, which is less than infinity, and so A would update its table accordingly. When
it advertises this to F, node F would learn that it can reach G at a cost of 4 through A, which is less than
infinity, and the system would again become stable.

Unfortunately, slightly different circumstances can prevent the network from stabilizing. Suppose, for ex-
ample, that the link from A to E goes down. In the next round of updates, A advertises a distance of infinity
to E, but B and C advertise a distance of 2 to E. Depending on the exact timing of events, the following
might happen: Node B, upon hearing that E can be reached in 2 hops from C, concludes that it can reach E
in 3 hops and advertises this to A; node A concludes that it can reach E in 4 hops and advertises this to C;
node C concludes that it can reach E in 5 hops; and so on. This cycle stops only when the distances reach
some number that is large enough to be considered infinite. In the meantime, none of the nodes actually
knows that E is unreachable, and the routing tables for the network do not stabilize. This situation is known
as the count to infinity problem.

There are several partial solutions to this problem. The first one is to use some relatively small number as
an approximation of infinity. For example, we might decide that the maximum number of hops to get across
a certain network is never going to be more than 16, and so we could pick 16 as the value that represents
infinity. This at least bounds the amount of time that it takes to count to infinity. Of course, it could also
present a problem if our network grew to a point where some nodes were separated by more than 16 hops.

One technique to improve the time to stabilize routing is called split horizon. The idea is that when a node
sends a routing update to its neighbors, it does not send those routes it learned from each neighbor back to
that neighbor. For example, if B has the route (E, 2, A) in its table, then it knows it must have learned this
route from A, and so whenever B sends a routing update to A, it does not include the route (E, 2) in that
update. In a stronger variation of split horizon, called split horizon with poison reverse, B actually sends
that route back to A, but it puts negative information in the route to ensure that A will not eventually use B
to get to E. For example, B sends the route (E, co) to A. The problem with both of these techniques is that
they only work for routing loops that involve two nodes. For larger routing loops, more drastic measures are
called for. Continuing the above example, if B and C had waited for a while after hearing of the link failure
from A before advertising routes to E, they would have found that neither of them really had a route to E.
Unfortunately, this approach delays the convergence of the protocol; speed of convergence is one of the key
advantages of its competitor, link-state routing, the subject of a later section.

156 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Implementation

The code that implements this algorithm is very straightforward; we give only some of the basics here.
Structure Route defines each entry in the routing table, and constant MAX_ TTL specifies how long an entry
is kept in the table before it is discarded.

#define MAX_ROUTES 128 /+ maximum size of routing table */
#define MAX_TTL 120 /* time (in seconds) until route expires x/

typedef struct ({

NodeAddr Destination; /% address of destination =/
NodeAddr NextHop; /* address of next hop */
int Cost; /+* distance metric */
u_short TTL; /* time to live */

} Route;

int numRoutes = 0;

Route routingTable [MAX_ROUTES];

The routine that updates the local node’s routing table based on a new route is given by mergeRoute.
Although not shown, a timer function periodically scans the list of routes in the node’s routing table, decre-
ments the TTL (time to live) field of each route, and discards any routes that have a time to live of 0. Notice,
however, that the TTL field is reset to MAX_TTL any time the route is reconfirmed by an update message
from a neighboring node.

void
mergeRoute (Route *new)

{

int i;
for (i = 0; 1 < numRoutes; ++1)
{
if (new—->Destination == routingTable[i].Destination)
{
if (new->Cost + 1 < routingTable[i].Cost)
{
/* found a better route: */
break;
} else if (new->NextHop == routingTable[i] .NextHop) {
/+ metric for current next—-hop may have changed: x/
break;
} else {
/* route 1s uninteresting——--just ignore it */
return;
}
}
}
if (i == numRoutes)

{
/* this is a completely new route; 1is there room for it? =/
if (numRoutes < MAXROUTES)
{

(continues on next page)

3.4. Routing 157

Computer Networks: A Systems Approach, Release Version 6.1

(continued from previous page)

++numRoutes;

} else {
/+ can't fit this route in table so give up */
return;
}
}
routingTable[i] = *new;

/% reset TTL #*/

routingTable[i] .TTL = MAX_TTL;

/* account for hop to get to next node #*/
++routingTable[i] .Cost;

Finally, the procedure updateRout ingTable is the main routine that calls me rgeRoute to incorporate
all the routes contained in a routing update that is received from a neighboring node.

void
updateRoutingTable (Route *newRoute, int numNewRoutes)

{

int i;

for (i=0; 1 < numNewRoutes; ++i)

{

mergeRoute (&newRoute[1]);

Routing Information Protocol (RIP)

One of the more widely used routing protocols in IP networks is the Routing Information Protocol (RIP). Its
widespread use in the early days of IP was due in no small part to the fact that it was distributed along with
the popular Berkeley Software Distribution (BSD) version of Unix, from which many commercial versions
of Unix were derived. It is also extremely simple. RIP is the canonical example of a routing protocol built
on the distance-vector algorithm just described.

Routing protocols in internetworks differ very slightly from the idealized graph model described above. In
an internetwork, the goal of the routers is to learn how to forward packets to various networks. Thus, rather
than advertising the cost of reaching other routers, the routers advertise the cost of reaching networks. For
example, in Figure 3.31, router C would advertise to router A the fact that it can reach networks 2 and 3 (to
which it is directly connected) at a cost of 0, networks 5 and 6 at cost 1, and network 4 at cost 2.

We can see evidence of this in the RIP (version 2) packet format in Figure 3.32. The majority of the packet is
taken up with (address, mask, distance) triples. However, the principles of the routing algorithm
are just the same. For example, if router A learns from router B that network X can be reached at a lower
cost via B than via the existing next hop in the routing table, A updates the cost and next hop information
for the network number accordingly.

RIP is in fact a fairly straightforward implementation of distance-vector routing. Routers running RIP send
their advertisements every 30 seconds; a router also sends an update message whenever an update from
another router causes it to change its routing table. One point of interest is that it supports multiple address

158 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

1 4
2 | | 5
3] AN 6
Figure 3.31.: Example network running RIP.
0 8 16 31
Command| Version Must be zero

Family of net 1

Route Tags

Address prefix of net 1

Mask of net 1

Distance to net 1

Family of net 2

Route Tags

Address prefix of net 2

Mask of net 2

Distance to net 2

Figure 3.32.: RIPv2 packet format.

3.4. Routing

159

Computer Networks: A Systems Approach, Release Version 6.1

families, not just [P—that is the reason for the Fami 1y part of the advertisements. RIP version 2 (RIPv2)
also introduced the subnet masks described in an earlier section, whereas RIP version 1 worked with the old
classful addresses of IP.

As we will see below, it is possible to use a range of different metrics or costs for the links in a routing
protocol. RIP takes the simplest approach, with all link costs being equal to 1, just as in our example above.
Thus, it always tries to find the minimum hop route. Valid distances are 1 through 15, with 16 representing
infinity. This also limits RIP to running on fairly small networks—those with no paths longer than 15 hops.

3.4.3 Link State (OSPF)

Link-state routing is the second major class of intradomain routing protocol. The starting assumptions for
link-state routing are rather similar to those for distance-vector routing. Each node is assumed to be capable
of finding out the state of the link to its neighbors (up or down) and the cost of each link. Again, we want
to provide each node with enough information to enable it to find the least-cost path to any destination. The
basic idea behind link-state protocols is very simple: Every node knows how to reach its directly connected
neighbors, and if we make sure that the totality of this knowledge is disseminated to every node, then every
node will have enough knowledge of the network to build a complete map of the network. This is clearly a
sufficient condition (although not a necessary one) for finding the shortest path to any point in the network.
Thus, link-state routing protocols rely on two mechanisms: reliable dissemination of link-state information,
and the calculation of routes from the sum of all the accumulated link-state knowledge.

Reliable Flooding

Reliable flooding is the process of making sure that all the nodes participating in the routing protocol get a
copy of the link-state information from all the other nodes. As the term flooding suggests, the basic idea is
for a node to send its link-state information out on all of its directly connected links; each node that receives
this information then forwards it out on all of its links. This process continues until the information has
reached all the nodes in the network.

More precisely, each node creates an update packet, also called a link-state packet (LSP), which contains
the following information:

* The ID of the node that created the LSP

* A list of directly connected neighbors of that node, with the cost of the link to each one
* A sequence number

* A time to live for this packet

The first two items are needed to enable route calculation; the last two are used to make the process of
flooding the packet to all nodes reliable. Reliability includes making sure that you have the most recent
copy of the information, since there may be multiple, contradictory LSPs from one node traversing the
network. Making the flooding reliable has proven to be quite difficult. (For example, an early version of
link-state routing used in the ARPANET caused that network to fail in 1981.)

Flooding works in the following way. First, the transmission of LSPs between adjacent routers is made
reliable using acknowledgments and retransmissions just as in the reliable link-layer protocol. However,
several more steps are necessary to reliably flood an LSP to all nodes in a network.

160 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Consider a node X that receives a copy of an LSP that originated at some other node Y. Note that Y may be
any other router in the same routing domain as X. X checks to see if it has already stored a copy of an LSP
from Y. If not, it stores the LSP. If it already has a copy, it compares the sequence numbers; if the new LSP
has a larger sequence number, it is assumed to be the more recent, and that LSP is stored, replacing the old
one. A smaller (or equal) sequence number would imply an LSP older (or not newer) than the one stored, so
it would be discarded and no further action would be needed. If the received LSP was the newer one, X then
sends a copy of that LSP to all of its neighbors except the neighbor from which the LSP was just received.
The fact that the LSP is not sent back to the node from which it was received helps to bring an end to the
flooding of an LSP. Since X passes the LSP on to all its neighbors, who then turn around and do the same
thing, the most recent copy of the LSP eventually reaches all nodes.

(a) o (b)—-
|
c)—B)—D) (0)

Figure 3.33.: Flooding of link-state packets: (a) LSP arrives at node X; (b) X floods LSP to A and C;
(c) A and C flood LSP to B (but not X); (d) flooding is complete.

Figure 3.33 shows an LSP being flooded in a small network. Each node becomes shaded as it stores the new
LSP. In Figure 3.33(a) the LSP arrives at node X, which sends it to neighbors A and C in Figure 3.33(b). A
and C do not send it back to X, but send it on to B. Since B receives two identical copies of the LSP, it will
accept whichever arrived first and ignore the second as a duplicate. It then passes the LSP onto D, which
has no neighbors to flood it to, and the process is complete.

Just as in RIP, each node generates LSPs under two circumstances. Either the expiry of a periodic timer or
a change in topology can cause a node to generate a new LSP. However, the only topology-based reason for
a node to generate an LSP is if one of its directly connected links or immediate neighbors has gone down.
The failure of a link can be detected in some cases by the link-layer protocol. The demise of a neighbor or
loss of connectivity to that neighbor can be detected using periodic “hello” packets. Each node sends these
to its immediate neighbors at defined intervals. If a sufficiently long time passes without receipt of a “hello”
from a neighbor, the link to that neighbor will be declared down, and a new LSP will be generated to reflect
this fact.

One of the important design goals of a link-state protocol’s flooding mechanism is that the newest infor-
mation must be flooded to all nodes as quickly as possible, while old information must be removed from
the network and not allowed to circulate. In addition, it is clearly desirable to minimize the total amount of
routing traffic that is sent around the network; after all, this is just overhead from the perspective of those

3.4. Routing 161

Computer Networks: A Systems Approach, Release Version 6.1

who actually use the network for their applications. The next few paragraphs describe some of the ways that
these goals are accomplished.

One easy way to reduce overhead is to avoid generating LSPs unless absolutely necessary. This can be done
by using very long timers—often on the order of hours—for the periodic generation of LSPs. Given that the
flooding protocol is truly reliable when topology changes, it is safe to assume that messages saying ‘“nothing
has changed” do not need to be sent very often.

To make sure that old information is replaced by newer information, LSPs carry sequence numbers. Each
time a node generates a new LSP, it increments the sequence number by 1. Unlike most sequence numbers
used in protocols, these sequence numbers are not expected to wrap, so the field needs to be quite large (say,
64 bits). If a node goes down and then comes back up, it starts with a sequence number of 0. If the node was
down for a long time, all the old LSPs for that node will have timed out (as described below); otherwise,
this node will eventually receive a copy of its own LSP with a higher sequence number, which it can then
increment and use as its own sequence number. This will ensure that its new LSP replaces any of its old
LSPs left over from before the node went down.

LSPs also carry a time to live. This is used to ensure that old link-state information is eventually removed
from the network. A node always decrements the TTL of a newly received LSP before flooding it to its
neighbors. It also “ages” the LSP while it is stored in the node. When the TTL reaches 0, the node refloods
the LSP with a TTL of 0, which is interpreted by all the nodes in the network as a signal to delete that LSP.

Route Calculation

Once a given node has a copy of the LSP from every other node, it is able to compute a complete map
for the topology of the network, and from this map it is able to decide the best route to each destination.
The question, then, is exactly how it calculates routes from this information. The solution is based on a
well-known algorithm from graph theory—Dijkstra’s shortest-path algorithm.

We first define Dijkstra’s algorithm in graph-theoretic terms. Imagine that a node takes all the LSPs it has
received and constructs a graphical representation of the network, in which N denotes the set of nodes in
the graph, 1(i,j) denotes the nonnegative cost (weight) associated with the edge between nodes i, j in N and
1(i, j) = oo if no edge connects i and j. In the following description, we let s in N denote this node, that is,
the node executing the algorithm to find the shortest path to all the other nodes in N. Also, the algorithm
maintains the following two variables: M denotes the set of nodes incorporated so far by the algorithm, and
C(n) denotes the cost of the path from s to each node n. Given these definitions, the algorithm is defined as
follows:

M = {s}

for each n in N - {s}
C(n) = 1(s,n)

while (N != M)

M =M + {w} such that C(w) is the minimum for all w in (N-M)
for each n in (N-M)
C(n) = MIN(C(n), C(w)+1l(w,n))

Basically, the algorithm works as follows. We start with M containing this node s and then initialize the
table of costs (the array C (n)) to other nodes using the known costs to directly connected nodes. We then
look for the node that is reachable at the lowest cost (w) and add it to M. Finally, we update the table of
costs by considering the cost of reaching nodes through w. In the last line of the algorithm, we choose a new

162 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

route to node n that goes through node w if the total cost of going from the source to w and then following
the link from w to n is less than the old route we had to n. This procedure is repeated until all nodes are
incorporated in M.

In practice, each switch computes its routing table directly from the LSPs it has collected using a realiza-
tion of Dijkstra’s algorithm called the forward search algorithm. Specifically, each switch maintains two
lists, known as Tentative and Confirmed. Each of these lists contains a set of entries of the form
(Destination, Cost, NextHop). The algorithm works as follows:

1. Initialize the Confirmed list with an entry for myself; this entry has a cost of 0.

2. For the node just added to the Confirmed list in the previous step, call it node Next and select its
LSP.

3. For each neighbor (Neighbor) of Next, calculate the cost (Cost) to reach this Neighbor as the
sum of the cost from myself to Next and from Next to Neighbor.

1. If Neighbor is currently on neither the Confirmed nor the Tentative list, then add
(Neighbor, Cost, NextHop) tothe Tentative list, where NextHop is the direction
I go to reach Next.

2. If Neighbor is currently on the Tentat ive list, and the Cost is less than the currently listed
cost for Neighbor, then replace the current entry with (Neighbor, Cost, NextHop),
where Next Hop is the direction I go to reach Next.

4. If the Tentative list is empty, stop. Otherwise, pick the entry from the Tentative list with the
lowest cost, move it to the Confirmed list, and return to step 2.

11

Figure 3.34.: Link-state routing: an example network.

This will become a lot easier to understand when we look at an example. Consider the network depicted in
Figure 3.34. Note that, unlike our previous example, this network has a range of different edge costs. Table
3.16 traces the steps for building the routing table for node D. We denote the two outputs of D by using the
names of the nodes to which they connect, B and C. Note the way the algorithm seems to head off on false
leads (like the 11-unit cost path to B that was the first addition to the Tentat ive list) but ends up with the
least-cost paths to all nodes.

3.4. Routing 163

Computer Networks: A Systems Approach, Release Version 6.1

Table 3.16.: Steps for Building Routing Table for Node D. :align:
center :widths: auto

Step Confirmed Tenta- | Comments
tive
1 (D,0,-) Since D is the only new member of the confirmed list, look at its
LSP.
2 (D,0,-) (B,11,B) | D’s LSP says we can reach B through B at cost 11, which is better
(C,2,C) | than anything else on either list, so put it on Tentative list; same
for C.

3 (D,0,-) (C,2,C) | (B,11,B) | Putlowest-cost member of Tentative (C) onto Confirmed list.
Next, examine LSP of newly confirmed member (C).

4 (D,0,-) (C,2,C) | (B,5,C) | Costtoreach B through Cis 5, so replace (B,11,B). C’s LSP tells us
(A,12,C) | that we can reach A at cost 12.

5 (D,0,~) (C,2,0) | (A,12,C)| Move lowest-cost member of Tentative (B) to Confirmed,

(B,5,0) then look at its LSP.

6 (D,0,-) (C,2,C) | (A,10,C)| Since we can reach A at cost 5 through B, replace the Tentative
(B,5,0) entry.

7 (D,0,-) (C,2,0) Move lowest-cost member of Tentat ive (A)to Confirmed, and
(B,5,0) we are all done.
(A,10,C)

The link-state routing algorithm has many nice properties: It has been proven to stabilize quickly, it does
not generate much traffic, and it responds rapidly to topology changes or node failures. On the downside,
the amount of information stored at each node (one LSP for every other node in the network) can be quite
large. This is one of the fundamental problems of routing and is an instance of the more general problem of
scalability. Some solutions to both the specific problem (the amount of storage potentially required at each
node) and the general problem (scalability) will be discussed in the next section.

Key Takeaway

Distance-vector and link-state are both distributed routing algorithms, but they adopt different strategies. In
distance-vector, each node talks only to its directly connected neighbors, but it tells them everything it has
learned (i.e., distance to all nodes). In link-state, each node talks to all other nodes, but it tells them only what
it knows for sure (i.e., only the state of its directly connected links). In contrast to both of these algorithms,
we will consider a more centralized approach to routing in Section 3.5 when we introduce Software Defined
Networking (SDN). [Next]

The Open Shortest Path First Protocol (OSPF)

One of the most widely used link-state routing protocols is OSPFE. The first word, “Open,” refers to the fact
that it is an open, nonproprietary standard, created under the auspices of the Internet Engineering Task Force
(IETF). The “SPF” part comes from an alternative name for link-state routing. OSPF adds quite a number
of features to the basic link-state algorithm described above, including the following:

* Authentication of routing messages—One feature of distributed routing algorithms is that they dis-

164 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

perse information from one node to many other nodes, and the entire network can thus be impacted
by bad information from one node. For this reason, it’s a good idea to be sure that all the nodes
taking part in the protocol can be trusted. Authenticating routing messages helps achieve this. Early
versions of OSPF used a simple 8-byte password for authentication. This is not a strong enough form
of authentication to prevent dedicated malicious users, but it alleviates some problems caused by mis-
configuration or casual attacks. (A similar form of authentication was added to RIP in version 2.)
Strong cryptographic authentication was later added.

* Additional hierarchy—Hierarchy is one of the fundamental tools used to make systems more scalable.
OSPF introduces another layer of hierarchy into routing by allowing a domain to be partitioned into
areas. This means that a router within a domain does not necessarily need to know how to reach every
network within that domain—it may be able to get by knowing only how to get to the right area. Thus,
there is a reduction in the amount of information that must be transmitted to and stored in each node.

* Load balancing—OSPF allows multiple routes to the same place to be assigned the same cost and
will cause traffic to be distributed evenly over those routes, thus making better use of the available
network capacity.

0 8 16 31
Version Type Message length
SourceAddr
Areald
Checksum Authentication type
Authentication

Figure 3.35.: OSPF header format.

There are several different types of OSPF messages, but all begin with the same header, as shown in Fig-
ure 3.35. The Version field is currently set to 2, and the Type field may take the values 1 through 5.
The SourceAddr identifies the sender of the message, and the AreaId is a 32-bit identifier of the area
in which the node is located. The entire packet, except the authentication data, is protected by a 16-bit
checksum using the same algorithm as the IP header. The Authentication type is 0 if no authenti-
cation is used; otherwise, it may be 1, implying that a simple password is used, or 2, which indicates that a
cryptographic authentication checksum is used. In the latter cases, the Authentication field carries the
password or cryptographic checksum.

Of the five OSPF message types, type 1 is the “hello” message, which a router sends to its peers to notify
them that it is still alive and connected as described above. The remaining types are used to request, send,
and acknowledge the receipt of link-state messages. The basic building block of link-state messages in
OSPF is the link-state advertisement (LSA). One message may contain many LSAs. We provide a few
details of the LSA here.

Like any internetwork routing protocol, OSPF must provide information about how to reach networks. Thus,

3.4. Routing 165

Computer Networks: A Systems Approach, Release Version 6.1

OSPF must provide a little more information than the simple graph-based protocol described above. Specif-
ically, a router running OSPF may generate link-state packets that advertise one or more of the networks
that are directly connected to that router. In addition, a router that is connected to another router by some
link must advertise the cost of reaching that router over the link. These two types of advertisements are
necessary to enable all the routers in a domain to determine the cost of reaching all networks in that domain
and the appropriate next hop for each network.

LS Age Options Type=1
Link-state 1D
Advertising router
LS sequence number

LS checksum Length
0 |Flags 0 Number of links
Link ID
Link data
Linktype | Num_TOS Metric
Optional TOS information
More links

Figure 3.36.: OSPF link-state advertisement.

Figure 3.36 shows the packet format for a type 1 link-state advertisement. Type 1 LSAs advertise the cost
of links between routers. Type 2 LSAs are used to advertise networks to which the advertising router is
connected, while other types are used to support additional hierarchy as described in the next section. Many
fields in the LSA should be familiar from the preceding discussion. The LS Age is the equivalent of a time
to live, except that it counts up and the LSA expires when the age reaches a defined maximum value. The
Type field tells us that this is a type 1 LSA.

Inatype 1 LSA, the Link state ID andthe Advertising router field are identical. Each carries
a 32-bit identifier for the router that created this LSA. While a number of assignment strategies may be used
to assign this ID, it is essential that it be unique in the routing domain and that a given router consistently uses
the same router ID. One way to pick a router ID that meets these requirements would be to pick the lowest
IP address among all the IP addresses assigned to that router. (Recall that a router may have a different IP
address on each of its interfaces.)

The LS sequence number is used exactly as described above to detect old or duplicate LSAs. The
LS checksum is similar to others we have seen in other protocols; it is, of course, used to verify that data
has not been corrupted. It covers all fields in the packet except LS Age, so it is not necessary to recompute
a checksum every time LS Age is incremented. Length is the length in bytes of the complete LSA.

Now we get to the actual link-state information. This is made a little complicated by the presence of
TOS (type of service) information. Ignoring that for a moment, each link in the LSA is represented by
aLink ID,some Link Data, and ametric. The first two of these fields identify the link; a common

166 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

way to do this would be to use the router ID of the router at the far end of the link as the Link ID and then
use the Link Data to disambiguate among multiple parallel links if necessary. The metric is of course
the cost of the link. Type tells us something about the link—for example, if it is a point-to-point link.

The TOS information is present to allow OSPF to choose different routes for IP packets based on the value
in their TOS field. Instead of assigning a single metric to a link, it is possible to assign different metrics
depending on the TOS value of the data. For example, if we had a link in our network that was very good
for delay-sensitive traffic, we could give it a low metric for the TOS value representing low delay and a high
metric for everything else. OSPF would then pick a different shortest path for those packets that had their
TOS field set to that value. It is worth noting that, at the time of writing, this capability has not been widely
deployed.

3.4.4 Metrics

The preceding discussion assumes that link costs, or metrics, are known when we execute the routing algo-
rithm. In this section, we look at some ways to calculate link costs that have proven effective in practice.
One example that we have seen already, which is quite reasonable and very simple, is to assign a cost of 1
to all links—the least-cost route will then be the one with the fewest hops. Such an approach has several
drawbacks, however. First, it does not distinguish between links on a latency basis. Thus, a satellite link
with 250-ms latency looks just as attractive to the routing protocol as a terrestrial link with 1-ms latency.
Second, it does not distinguish between routes on a capacity basis, making a 1-Mbps link look just as good
as a 10-Gbps link. Finally, it does not distinguish between links based on their current load, making it im-
possible to route around overloaded links. It turns out that this last problem is the hardest because you are
trying to capture the complex and dynamic characteristics of a link in a single scalar cost.

The ARPANET was the testing ground for a number of different approaches to link-cost calculation. (It was
also the place where the superior stability of link-state over distance-vector routing was demonstrated; the
original mechanism used distance vector while the later version used link state.) The following discussion
traces the evolution of the ARPANET routing metric and, in so doing, explores the subtle aspects of the
problem.

The original ARPANET routing metric measured the number of packets that were queued waiting to be
transmitted on each link, meaning that a link with 10 packets queued waiting to be transmitted was assigned
a larger cost weight than a link with 5 packets queued for transmission. Using queue length as a routing
metric did not work well, however, since queue length is an artificial measure of load—it moves packets
toward the shortest queue rather than toward the destination, a situation all too familiar to those of us who
hop from line to line at the grocery store. Stated more precisely, the original ARPANET routing mechanism
suffered from the fact that it did not take either the bandwidth or the latency of the link into consideration.

A second version of the ARPANET routing algorithm took both link bandwidth and latency into consider-
ation and used delay, rather than just queue length, as a measure of load. This was done as follows. First,
each incoming packet was timestamped with its time of arrival at the router (ArrivalTime); its departure
time from the router (DepartTime) was also recorded. Second, when the link-level ACK was received
from the other side, the node computed the delay for that packet as

Delay = (DepartTime - ArrivalTime) + TransmissionTime + Latency

where TransmissionTime and Latency were statically defined for the link and captured the link’s
bandwidth and latency, respectively. Notice that in this case, DepartTime - ArrivalTime represents

3.4. Routing 167

Computer Networks: A Systems Approach, Release Version 6.1

the amount of time the packet was delayed (queued) in the node due to load. If the ACK did not arrive,
but instead the packet timed out, then DepartTime was reset to the time the packet was retransmitted.
In this case, DepartTime - ArrivalTime captures the reliability of the link—the more frequent the
retransmission of packets, the less reliable the link, and the more we want to avoid it. Finally, the weight
assigned to each link was derived from the average delay experienced by the packets recently sent over that
link.

Although an improvement over the original mechanism, this approach also had a lot of problems. Under
light load, it worked reasonably well, since the two static factors of delay dominated the cost. Under heavy
load, however, a congested link would start to advertise a very high cost. This caused all the traffic to move
off that link, leaving it idle, so then it would advertise a low cost, thereby attracting back all the traffic, and
so on. The effect of this instability was that, under heavy load, many links would in fact spend a great deal
of time being idle, which is the last thing you want under heavy load.

Another problem was that the range of link values was much too large. For example, a heavily loaded
9.6-kbps link could look 127 times more costly than a lightly loaded 56-kbps link. (Keep in mind, we’re
talking about the ARPANET circa 1975.) This means that the routing algorithm would choose a path with
126 hops of lightly loaded 56-kbps links in preference to a 1-hop 9.6-kbps path. While shedding some traffic
from an overloaded line is a good idea, making it look so unattractive that it loses all its traffic is excessive.
Using 126 hops when 1 hop will do is in general a bad use of network resources. Also, satellite links were
unduly penalized, so that an idle 56-kbps satellite link looked considerably more costly than an idle 9.6-kbps
terrestrial link, even though the former would give better performance for high-bandwidth applications.

A third approach addressed these problems. The major changes were to compress the dynamic range of the
metric considerably, to account for the link type, and to smooth the variation of the metric with time.

The smoothing was achieved by several mechanisms. First, the delay measurement was transformed to a
link utilization, and this number was averaged with the last reported utilization to suppress sudden changes.
Second, there was a hard limit on how much the metric could change from one measurement cycle to the
next. By smoothing the changes in the cost, the likelihood that all nodes would abandon a route at once is
greatly reduced.

The compression of the dynamic range was achieved by feeding the measured utilization, the link type, and
the link speed into a function that is shown graphically in Figure 3.37. below. Observe the following:

* A highly loaded link never shows a cost of more than three times its cost when idle.
* The most expensive link is only seven times the cost of the least expensive.

* A high-speed satellite link is more attractive than a low-speed terrestrial link.

* Cost is a function of link utilization only at moderate to high loads.

All of these factors mean that a link is much less likely to be universally abandoned, since a threefold
increase in cost is likely to make the link unattractive for some paths while letting it remain the best choice
for others. The slopes, offsets, and breakpoints for the curves in Figure 3.37 were arrived at by a great deal
of trial and error, and they were carefully tuned to provide good performance.

Despite all these improvements, it turns out that in the majority of real-world network deployments, metrics
change rarely if at all and only under the control of a network administrator, not automatically as described
above. The reason for this is partly that conventional wisdom now holds that dynamically changing metrics
are too unstable, even though this probably need not be true. Perhaps more significantly, many networks to-
day lack the great disparity of link speeds and latencies that prevailed in the ARPANET. Thus, static metrics

168 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

225 -
w
g 9.6-kbps satellite link
o 140 9.6-kbps terrestrial link
‘g‘ 56-kbps satellite link - - - - -
“3’ 56-kbps terrestrial link
z 90 4
§ 75 -
) S
2 60

30 +

25% 50% 75% 100%
Utilization

Figure 3.37.: Revised ARPANET routing metric versus link utilization.

are the norm. One common approach to setting metrics is to use a constant multiplied by (1/link_bandwidth).

Key Takeaway

Why do we still tell the story about a decades old algorithm that’s no longer in use? Because it perfectly
illustrates two valuable lessons. The first is that computer systems are often designed iteratively based on
experience. We seldom get it right the first time, so it’s important to deploy a simple solution sooner rather
than later, and expect to improve it over time. Staying stuck in the design phase indefinitely is usually
not a good plan. The second is the well-know KISS principle: Keep it Simple, Stupid. When building a
complex system, less is often more. Opportunities to invent sophisticated optimizations are plentiful, and
it’s a tempting opportunity to pursue. While such optimizations sometimes have short-term value, it is
shocking how often a simple approach proves best over time. This is because when a system has many
moving parts, as the Internet most certainly does, keeping each part as simple as possible is usually the best
approach. [Next]

3.5 Implementation

So far, we have talked about what switches and routers must do without describing how they do it. There is a
straightforward way to build a switch or router: Buy a general-purpose processor and equip it with multiple
network interfaces. Such a device, running suitable software, can receive packets on one of its interfaces,
perform any of the switching or forwarding functions described in this chapter, and send packets out another

3.5. Implementation 169

Computer Networks: A Systems Approach, Release Version 6.1

of its interfaces. This so called software switch is not too far removed from the architecture of many com-
mercial mid- to low-end network devices.! Implementations that deliver high-end performance typically
take advantage of additional hardware acceleration. We refer to these as hardware switches, although both
approaches obviously include a combination of hardware and software.

This section gives an overview of both software-centric and hardware-centric designs, but it is worth noting
that on the question of switches versus routers, the distinction isn’t such a big deal. It turns out that the
implementation of switches and routers have so much in common that a network administrator typically
buys a single forwarding box and then configures it to be an L2 switch, an L3 router, or some combination
of the two. Since their internal designs are so similar, we’ll use the word switch to cover both variants
throughout this section, avoiding the tedium of saying “switch or router” all the time. We’ll call out the
differences between the two when appropriate.

3.5.1 Software Switch

Figure 3.38 shows a software switch built using a general-purpose processor with four network interface
cards (NICs). The path for a typical packet that arrives on, say, NIC 1 and is forwarded out on NIC 2 is
straightforward: as NIC 1 receives the packet it copies its bytes directly into the main memory over the
I/0 bus (PCle in this example) using a technique called direct memory access (DMA). Once the packet is
in memory, the CPU examines its header to determine which interface the packet should be sent out on,
and instructs NIC 2 to transmit the packet, again directly out of main memory using DMA. The important
take-away is that the packet is buffered in main memory (this is the “store” half of store-and-forward), with
the CPU reading only the necessary header fields into its internal registers for processing.

CPU

8

Main Memory (DRAM)

¢

S —

NIC1 NIC 2 NIC 3 NIC 4

Figure 3.38.: A general-purpose processor used as a software switch.

There are two potential bottlenecks with this approach, one or both of which limits the aggregate packet
forwarding capacity of the software switch.

The first problem is that performance is limited by the fact that all packets must pass into and out of main

! This is also how the very first Internet routers, often called gateways at the time, were implemented in the early days of the
Internet.

170 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

memory. Your mileage will vary based on how much you are willing to pay for hardware, but as an example,
a machine limited by a 1333-MHz, 64-bit-wide memory bus can transmit data at a peak rate of a little over
100 Gbps—enough to build a switch with a handful of 10-Gbps Ethernet ports, but hardly enough for a
high-end router in the core of the Internet.

Moreover, this upper bound assumes that moving data is the only problem. This is a fair approximation for
long packets but a bad one when packets are short, which is the worst-case situation switch designers have to
plan for. With minimum-sized packets, the cost of processing each packet—parsing its header and deciding
which output link to transmit it on—is likely to dominate, and potentially become a bottleneck. Suppose,
for example, that a processor can perform all the necessary processing to switch 40 million packets each
second. This is sometimes called the packet per second (pps) rate. If the average packet is 64 bytes, this
would imply

Throughput = pps x BitsPerPacket
=40 x 10° x 64 x 8
= 2048 x 107

that is, a throughput of about 20 Gbps—fast, but substantially below the range users are demanding from
their switches today. Bear in mind that this 20 Gbps would be shared by all users connected to the switch,
just as the bandwidth of a single (unswitched) Ethernet segment is shared among all users connected to the
shared medium. Thus, for example, a 16-port switch with this aggregate throughput would only be able to
cope with an average data rate of about 1 Gbps on each port.”

One final consideration is important to understand when evaluating switch implementations. The non-trivial
algorithms discussed in this chapter—the spanning tree algorithm used by learning bridges, the distance-
vector algorithm used by RIP, and the link-state algorithm used by OSPF—are not directly part of the per-
packet forwarding decision. They run periodically in the background, but switches do not have to execute,
say, OSPF code for every packet it forwards. The most costly routine the CPU is likely to execute on a
per-packet basis is a table lookup, for example, looking up a VCI number in a VC table, an IP address in an
L3 forwarding table, or an Ethernet address in an L2 forwarding table.

Key Takeaway

The distinction between these two kinds of processing is important enough to give it a name: the control
plane corresponds to the background processing required to “control” the network (e.g., running OSPF,
RIP, or the BGP protocol described in the next chapter) and the data plane corresponds to the per-packet
processing required to move packets from input port to output port. For historical reasons, this distinction
is called control plane and user plane in cellular access networks, but the idea is the same, and in fact, the
3GPP standard defines CUPS (Control/User Plane Separation) as an architectural principle.

These two kinds of processing are easy to conflate when both run on the same CPU, as is the case in software
switch depicted in Figure 3.38, but performance can be dramatically improved by optimizing how the data
plane is implemented, and correspondingly, specifying a well-defined interface between the control and data
planes. [Next]

% These example performance numbers do not represent the absolute maximum throughput rate that highly tuned software
running on a high-end server could achieve, but they are indicative of limits one ultimately faces in pursuing this approach.

3.5. Implementation 171

Computer Networks: A Systems Approach, Release Version 6.1

3.5.2 Hardware Switch

Throughout much of the Internet’s history, high-performance switches and routers have been specialized
devices, built with Application-Specific Integrated Circuits (ASICs). While it was possible to build low-end
routers and switches using commodity servers running C programs, ASICs were required to achieve the
required throughput rates.

The problem with ASICs is that hardware takes a long time to design and fabricate, meaning the delay for
adding new features to a switch is usually measured in years, not the days or weeks today’s software industry
is accustomed to. Ideally, we’d like to benefit from the performance of ASICs and the agility of software.

Fortunately, recent advances in domain specific processors (and other commodity components) have made
this possible. Just as importantly, the full architectural specification for switches that take advantage of these
new processors is now available on-line—the hardware equivalent of open source software. This means
anyone can build a high-performance switch by pulling the blueprint off the web (see the Open Compute
Project, OCP, for examples) in the same way it is possible to build your own PC. In both cases you still need
software to run on the hardware, but just as Linux is available to run on your home-built PC, there are now
open source L2 and L3 stacks available on GitHub to run on your home-built switch. Alternatively, you
can simply buy a pre-built switch from a commodity switch manufacturer and then load your own software
onto it. The following describes these open white-box switches, so called to contrast them with closed
“black-box” devices that have historically dominated the industry.

MNetwork Processing Unit

TCAM (Patterns to Match)

A N CPU
i —

Forwarding Pipeline PCle (Control)

SRAM (Packet Buffers)

5FI

48x40G SFP+
(Parts 1~48)

Figure 3.39.: White-box switch using a Network Processing Unit.

Figure 3.39 is a simplified depiction of a white-box switch. The key difference from the earlier implemen-
tation on a general-purpose processor is the addition of a Network Processor Unit (NPU), a domain-specific
processor with an architecture and instruction set that has been optimized for processing packet headers (i.e.,
for implementing the data plane). NPUs are similar in spirit to GPUs that have an architecture optimized for
rendering computer graphics, but in this case, the NPU is optimized for parsing packet headers and making
a forwarding decision. NPUs are able to process packets (input, make a forwarding decision, and output) at

172 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

rates measured in Terabits-per-second (Tbps), easily fast enough to keep up with 32x100-Gbps ports, or the
48x40-Gbps ports shown in the diagram.

Network Processing Units

Our use of the term NPU is a bit non-standard. Historically, NPU was the name given more narrowly-
defined network processing chips used, for example, to implement intelligent firewalls or deep packet
inspection. They were not as general-purpose as the NPUs we’re discussing here; nor were they as
high-performance. It seems likely that the current approach will make purpose-built network processors
obsolete, but in any case, we prefer the NPU nomenclator because it is consistent with the trend to build
programmable domain-specific processors, including GPUs for graphics and TPUs (Tensor Processing
Units) for Al

The beauty of this new switch design is that a given white-box can now be programmed to be an L2 switch,
and L3 router, or a combination of both, just by a matter of programming. The exact same control plane
software stack used in a software switch still runs on the control CPU, but in addition, data plane “programs”
are loaded onto the NPU to reflect the forwarding decisions made by the control plane software. Exactly
how one “programs” the NPU depends on the chip vendor, of which there are currently several. In some
cases, the forwarding pipeline is fixed and the control processor merely loads the forwarding table into the
NPU (by fixed we mean the NPU only knows how to process certain headers, like Ethernet and IP), but in
other cases, the forwarding pipeline is itself programmable. P4 is a new programming language that can be
used to program such NPU-based forwarding pipelines. Among other things, P4 tries to hide many of the
differences in the underlying NPU instruction sets.

Internally, an NPU takes advantage of three technologies. First, a fast SRAM-based memory buffers packets
while they are being processed. SRAM (Static Random Access Memory), is roughly an order of magnitude
faster than the DRAM (Dynamic Random Access Memory) that is used by main memory. Second, a TCAM-
based memory stores bit patterns to be matched in the packets being processed. The “CAM” in TCAM stands
for “Content Addressable Memory,” which means that the key you want to look up in a table can effectively
be used as the address into the memory that implements the table. The “T” stands for “Ternary”” which is a
fancy way to say the key you want to look up can have wildcards in it (e.g, key 101 matches both 1001 and
1011). Finally, the processing involved to forward each packet is implemented by a forwarding pipeline.
This pipeline is implemented by an ASIC, but when well-designed, the pipeline’s forwarding behavior can
be modified by changing the program it runs. At a high level, this program is expressed as a collection of
(Match, Action) pairs: if you match such-and-such field in the header, then execute this-or-that action.

The relevance of packet processing being implemented by a multi-stage pipeline rather than a single-stage
processor is that forwarding a single packet likely involves looking at multiple header fields. Each stage can
be programmed to look at a different combination of fields. A multi-stage pipeline adds a little end-to-end
latency to each packet (measured in nanoseconds), but also means that multiple packets can be processed at
the same time. For example, Stage 2 can be making a second lookup on packet A while Stage 1 is doing an
initial lookup on packet B, and so on. This means the NPU as a whole is able to keep up with line speeds.
As of this writing, the state-of-the-art is 12.8 Tbps.

Finally, Figure 3.39 includes other commodity components that make this all practical. In particular, it is
now possible to buy pluggable transceiver modules that take care of all the media access details—be it
Gigabit Ethernet, 10-Gigabit Ethernet, or SONET—as well as the optics. These transceivers all conform
to standardized form factors, such as SFP+, that can in turn be connected to other components over a

3.5. Implementation 173

Computer Networks: A Systems Approach, Release Version 6.1

standardized bus (e.g., SFI). Again, the key takeaway is that the networking industry is just now entering
into the same commoditized world that the computing industry has enjoyed for the last two decades.

3.5.3 Software Defined Networks

With switches becoming increasingly commoditized, attention is rightfully shifting to the software that
controls them. This puts us squarely in the middle of a trend to build Software Defined Networks (SDN), an
idea that started to germinate about ten years ago. In fact, it was the early stages of SDN that triggered the
networking industry to move towards white-box switches.

The fundamental idea of SDN is one we’ve already discussed: to decouple the network control plane (i.e.,
where routing algorithms like RIP, OSPF, and BGP run) from the network data plane (i.e., where packet
forwarding decisions get made), with the former moved into software running on commodity servers and the
latter implemented by white-box switches. The key enabling idea behind SDN was to take this decoupling a
step further, and to define a standard interface between the control plane and the data plane. Doing so allows
any implementation of the control plane to talk to any implementation of the data plane; this breaks the
dependency on any one vendor’s bundled solution. The original interface is called OpenFlow, and this idea
of decoupling the control and data planes came to be known as disaggregation. (The P4 language mentioned
in the previous subsection is a second-generation attempt to define this interface by generalizing OpenFlow.)

Another important aspect of disaggregation is that a logically centralized control plane can be used to control
a distributed network data plane. We say logically centralized because while the state collected by the
control plane is maintained in a global data structure, such as a Network Map, the implementation of this
data structure could still be distributed over multiple servers. For example, it could run in a cloud. This
is important for both scalability and availability, where the key is that the two planes are configured and
scaled independent of each other. This idea took off quickly in the cloud, where today’s cloud providers run
SDN-based solutions both within their datacenters and across the backbone networks that interconnect their
datacenters.

One consequence of this design that isn’t immediately obvious is that a logically centralized control plane
doesn’t just manage a network of physical (hardware) switches that interconnects physical servers, but it also
manages a network of virtual (software) switches that interconnect virtual servers (e.g., Virtual Machines
and containers). If you’re counting “switch ports” (a good measure of all the devices connected to your
network) then the number of virtual ports in the Internet rocketed past the number of physical ports in 2012.

One of other key enablers for SDN’s success, as depicted in Figure 3.40, is the Network Operating System
(NOS). Like a server operating system (e.g., Linux, i0S, Android, Windows) that provides a set of high-
level abstractions that make it easier to implement applications (e.g., you can read and write files instead of
directly accessing disk drives), a NOS makes it easier to implement network control functionality, otherwise
known as Control Apps. A good NOS abstracts the details of the network switches and provides a Network
Map abstraction to the application developer. The NOS detects changes in the underlying network (e.g.,
switches, ports, and links going up-and-down) and the control application simply implements the behavior
it wants on this abstract graph. This means the NOS takes on the burden of collecting network state (the
hard part of distributed algorithms like Link-State and Distance-Vector algorithms) and the app is free to
simply implement the shortest path algorithm and load the forwarding rules into the underlying switches.
By centralizing this logic, the goal is to come up with a globally optimized solution. The published evidence
from cloud providers that have embraced this approach confirms this advantage.

174 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Control Control Control Control
App App App " App

Global
Network

Network OS @ .I Map
o

Control Plane

Abstract : ! Data Plane

Forwarding Model — GEg

(e.g., OpenFlow, P4) / San \ /

Lea,
el T
o

Figure 3.40.: Network Operating System (NOS) hosting a set of control applications and providing a logi-
cally centralized point of control for an underlying network data plane.

Key Takeaway

It is important to understand that SDN is an implementation strategy. It does not magically make fundamen-
tal problems like needing to compute a forwarding table go away. But instead of burdening the switches with
having to exchange messages with each other as part of a distributed routing algorithm, the logically central-
ized SDN controller is charged with collecting link and port status information from the individual switches,
constructing a global view of the network graph, and making that graph available to the control apps. From
the control application’s perspective, all the information it needs to compute the forwarding table is locally
available. Keeping in mind that the SDN Controller is logically centralized but physically replicated on
multple servers—for both scalable performance and high availability—it is still a hotly contested question
whether the centralized or distributed approach is best. [Next]

As much of an advantage as the cloud providers have been able to get out of SDN, its adoption in enterprises
and Telcos has been much slower. This is partly about the ability of different markets to manage their
networks. The Googles, Microsofts, and Amazons of the world have the engineers and DevOps skills needed
to take advantage of this technology, whereas others still prefer pre-packaged and integrated solutions that
support the management and command line interfaces they are familiar with.

Perspective: Virtual Networks All the Way Down

For almost as long as there have been packet-switched networks, there have been ideas about how to virtu-
alize them, starting with virtual circuits. But what exactly does it mean to virtualize a network?

Virtual memory is a helpful example. Virtual memory creates an abstraction of a large and private pool of
memory, even though the underlying physical memory may be shared by many applications and consid-

3.5. Implementation 175

Computer Networks: A Systems Approach, Release Version 6.1

erably smaller that the apparent pool of virtual memory. This abstraction enables programmers to operate
under the illusion that there is plenty of memory and that no-one else is using it, while under the covers the
memory management system takes care of things like mapping the virtual memory to physical resources
and avoiding conflict between users.

Similarly, server virtualization presents the abstraction of a virtual machine (VM), which has all the features
of a physical machine. Again, there may be many VMs supported on a single physical server, and the
operating system and users on the virtual machine are happily unaware that the VM is being mapped onto
physical resources.

A key point is the virtualization of computing resources preserves the abstractions and interfaces that existed
before they were virtualized. This is important because it means that users of those abstractions don’t need
to change—they see a faithful reproduction of the resource being virtualized. Virtualization also means that
the different users (sometimes called fenants) cannot interfere with each other. So what happens when we
try to virtualize a network?

VPNs, as described in Section 3.3, were one early success for virtual networking. They allowed carriers to
present corporate customers with the illusion that they had their own private network, even though in reality
they were sharing underlying links and switches with many other users. VPNs, however, only virtualize a
few resources, notably addressing and routing tables. Network virtualization as commonly understood today
goes further, virtualizing every aspect of networking. That means that a virtual network should support all
the basic abstractions of a physical network. In this sense, they are analogous to the virtual machine, with
its support of all the resources of a server: CPU, storage, I/O, and so on.

To this end, VLANS, as described in Section 3.2, are how we typically virtualize an L2 network. VLANs
proved to be quite useful to enterprises that wanted to isolate different internal groups (e.g., departments,
labs), giving each of them the appearance of having their own private LAN. VLANs were also seen as a
promising way to virtualize L2 networks in cloud datacenters, making it possible to give each tenant their
own L2 network so as to isolate their traffic from the traffic of all other tenants. But there was a problem:
the 4096 possible VLANs was not sufficient to account for all the tenants that a cloud might host, and
to complicate matters, in a cloud the network needs to connect virfual machines rather than the physical
machines that those VMs run on.

To address this problem, another standard called Virtual Extensible LAN (VXLAN) was introduced. Unlike
the original approach, which effectively encapsulated a virtualized ethernet frame inside another ethernet
frame, VXLAN encapsulates a virtual ethernet frame inside a UDP packet. This means a VXLAN-based
virtual network (which is often referred to as an overlay network) runs on top of an IP-based network, which
in turn runs on an underlying ethernet (or perhaps in just one VLAN of the underlying ethernet). VXLAN
also makes it possible for one cloud tenant to have multiple VLANs of their own, which allows them to
segregate their own internal traffic. This means it is ultimately possible to have a VLAN encapsulated in a
VXLAN overlay encapsulated in a VLAN.

The powerful thing about virtualization is that when done right, it should be possible to nest one virtualized
resource inside another virtualized resource, since after all, a virtual resource should behave just like a
physical resources and we know how to virtualize physical resources! Said another way, being able to
virtualize a virtual resource is the best proof that you have done a good job of virtualizing the original
physical resource. To re-purpose the mythology of the World Turtle: It’s virtual networks all the way down.

The actual VXLAN header is simple, as shown in Figure 3.41. It includes a 24-bit Virtual Network Id (VNI),
plus some flag and reserved bits. It also implies a particular setting of the UDP source and destination port
fields (see Section 5.1), with the destination port 4789 officially reserved for VXLANSs. Figuring out how to

176 Chapter 3. Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Outer Outer Outer WXLAN Inner
Ethernet P UDP Header Ethernet ... Body ...
Header Header Header Header
DestPort=4789 < pd
P 24 24 B
Flags Reserved W Reserved

Figure 3.41.: VXLAN Header encapsulated in a UDP/IP packet. header.

uniquely identify virtual LANs (VLAN tags) and virtual networks (VXLAN VIDs) is the easy part. This is
because encapsulation is the fundamental cornerstone of virtualization; all you need to add is an identifier
that tells you which of many possible users this encapsulated packet belongs to.

The hard part is grappling with the idea of virtual networks being nested (encapsulated) inside virtual net-
works, which is networking’s version of recursion. The other challenge is understanding how to automate
the creation, management, migration, and deletion of virtual networks, and on this front there is still a lot
of room for improvement. Mastering this challenge will be at the heart of networking in the next decade,
and while some of this work will undoubtedly happen in proprietary settings, there are open source network
virtualization platforms (e.g., the Linux Foundation’s Tungsten Fabric project) leading the way.

Broader Perspective

To continue reading about the cloudification of the Internet, see Perspective: The Cloud is Eating the Inter-
net.

To learn more about the maturation of virtual networks, we recommend:
* Network Heresy, 2012.
* Tungsten Fabric, 2018.

3.5. Implementation 177

https://networkheresy.com/2012/05/31/network-virtualization/
https://tungstenfabric.github.io/website/

Computer Networks: A Systems Approach, Release Version 6.1

178 Chapter 3. Internetworking

CHAPTER
FOUR

ADVANCED INTERNETWORKING

Every seeming equality conceals a hierarchy.

—Mason Cooley

Problem: Scaling to Billions

We have now seen how to build an internetwork that consists of a number of networks of different types.
That is, we have dealt with the problem of heferogeneity. The second critical problem in internetwork-
ing—arguably the fundamental problem for all networking—is scale. To understand the problem of scaling
a network, it is worth considering the growth of the Internet, which has roughly doubled in size each year
for 30 years. This sort of growth forces us to face a number of challenges.

Chief among these is how do you build a routing system that can handle hundreds of thousands of networks
and billions of end nodes? As we will see in this chapter, most approaches to tackling the scalability of
routing depend on the introduction of hierarchy. We can introduce hierarchy in the form of areas within a
domain; we also use hierarchy to scale the routing system among domains. The interdomain routing protocol
that has enabled the Internet to scale to its current size is BGP. We will take a look at how BGP operates,
and consider the challenges faced by BGP as the Internet continues to grow.

Closely related to the scalability of routing is the problem of addressing. Even two decades ago it had
become apparent that the 32-bit addressing scheme of IP version 4 would not last forever. That led to the
definition of a new version of [P—version 6, since version 5 had been used in an earlier experiment. IPv6
primarily expands the address space but also adds a number of new features, some of which have been
retrofitted to IPv4.

While the Internet continues to grow in size, it also needs to evolve its functionality. The final sections of
this chapter cover some significant enhancements to the Internet’s capabilities. The first, multicast, is an
enhancement of the basic service model. We show how multicast—the ability to deliver the same packets to
a group of receivers efficiently—can be incorporated into an internet, and we describe several of the routing
protocols that have been developed to support multicast. The second enhancement, Multiprotocol Label
Switching (MPLS), modifies the forwarding mechanism of IP networks. This modification has enabled
some changes in the way IP routing is performed and in the services offered by IP networks. Finally, we
look at the effects of mobility on routing and describe some enhancements to IP to support mobile hosts and
routers. For each of these enhancements, issues of scalability continue to be important.

179

Computer Networks: A Systems Approach, Release Version 6.1

4.1 Global Internet

At this point, we have seen how to connect a heterogeneous collection of networks to create an internetwork
and how to use the simple hierarchy of the IP address to make routing in an internet somewhat scalable. We
say “somewhat” scalable because, even though each router does not need to know about all the hosts con-
nected to the internet, it does, in the model described so far, need to know about all the networks connected
to the internet. Today’s Internet has hundreds of thousands of networks connected to it (or more, depending
on how you count). Routing protocols such as those we have just discussed do not scale to those kinds of
numbers. This section looks at a variety of techniques that greatly improve scalability and that have enabled
the Internet to grow as far as it has.

NSFNET backbone

BARRNET
regional

MidNet
regional

Westnet
regional

Figure 4.1.: The tree structure of the Internet in 1990.

Before getting to these techniques, we need to have a general picture in our heads of what the global Internet
looks like. It is not just a random interconnection of Ethernets, but instead it takes on a shape that reflects
the fact that it interconnects many different organizations. Figure 4.1 gives a simple depiction of the state
of the Internet in 1990. Since that time, the Internet’s topology has grown much more complex than this
figure suggests—we present a slightly more accurate picture of the current Internet in a later section—but
this picture will do for now.

One of the salient features of this topology is that it consists of end-user sites (e.g., Stanford University)
that connect to service provider networks (e.g., BARRNET was a provider network that served sites in the
San Francisco Bay Area). In 1990, many providers served a limited geographic region and were thus known
as regional networks. The regional networks were, in turn, connected by a nationwide backbone. In 1990,
this backbone was funded by the National Science Foundation (NSF) and was therefore called the NSFNET
backbone.

NSFNET gave way to Internet2, which still runs a backbone on behalf of Research and Education institutions
in the US (there are similar R&E networks in other countries), but of course most people get their Internet
connectivity from commercial providers. Although the detail is not shown in the figure, today the largest
provider networks (they are called tier-1) are typically built from dozens of high-end routers located in major
meteropolitan areas (colloquially referred to as “NFL cities”) connected by point-to-point links (often with
100 Gbps capacity). Similarly, each end-user site is typically not a single network but instead consists of
multiple physical networks connected by switches and routers.

Notice in that each provider and end-user is likely to be an administratively independent entity. This has

180 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

some significant consequences on routing. For example, it is quite likely that different providers will have
different ideas about the best routing protocol to use within their networks and on how metrics should be
assigned to links in their network. Because of this independence, each provider’s network is usually a single
autonomous system (AS). We will define this term more precisely in a later section, but for now it is adequate
to think of an AS as a network that is administered independently of other ASs.

The fact that the Internet has a discernible structure can be used to our advantage as we tackle the problem of
scalability. In fact, we need to deal with two related scaling issues. The first is the scalability of routing. We
need to find ways to minimize the number of network numbers that get carried around in routing protocols
and stored in the routing tables of routers. The second is address utilization—that is, making sure that the
IP address space does not get consumed too quickly.

Throughout this book, we see the principle of hierarchy used again and again to improve scalability. We
saw in the previous chapter how the hierarchical structure of IP addresses, especially with the flexibility
provided by Classless Interdomain Routing (CIDR) and subnetting, can improve the scalability of routing.
In the next two sections, we’ll see further uses of hierarchy (and its partner, aggregation) to provide greater
scalability, first in a single domain and then between domains. Our final subsection looks at IP version 6,
the invention of which was largely the result of scalability concerns.

4.1.1 Routing Areas

As a first example of using hierarchy to scale up the routing system, we’ll examine how link-state routing
protocols (such as OSPF and IS-IS) can be used to partition a routing domain into subdomains called areas.
(The terminology varies somewhat among protocols—we use the OSPF terminology here.) By adding
this extra level of hierarchy, we enable single domains to grow larger without overburdening the routing
protocols or resorting to the more complex interdomain routing protocols described later.

An area is a set of routers that are administratively configured to exchange link-state information with each
other. There is one special area—the backbone area, also known as area 0. An example of a routing domain
divided into areas is shown in Figure 4.2 . Routers R1, R2, and R3 are members of the backbone area. They
are also members of at least one nonbackbone area; R1 is actually a member of both area 1 and area 2.
A router that is a member of both the backbone area and a nonbackbone area is an area border router (ABR).
Note that these are distinct from the routers that are at the edge of an AS, which are referred to as AS border
routers for clarity.

Routing within a single area is exactly as described in the previous chapter. All the routers in the area send
link-state advertisements to each other and thus develop a complete, consistent map of the area. However,
the link-state advertisements of routers that are not area border routers do not leave the area in which they
originated. This has the effect of making the flooding and route calculation processes considerably more
scalable. For example, router R4 in area 3 will never see a link-state advertisement from router R8 in area 1.
As a consequence, it will know nothing about the detailed topology of areas other than its own.

How, then, does a router in one area determine the right next hop for a packet destined to a network in
another area? The answer to this becomes clear if we imagine the path of a packet that has to travel from
one nonbackbone area to another as being split into three parts. First, it travels from its source network to the
backbone area, then it crosses the backbone, then it travels from the backbone to the destination network.
To make this work, the area border routers summarize routing information that they have learned from
one area and make it available in their advertisements to other areas. For example, R1 receives link-state
advertisements from all the routers in area 1 and can thus determine the cost of reaching any network in area

4.1. Global Internet 181

Computer Networks: A Systems Approach, Release Version 6.1

-
- Area 3
Area 1
R9 R7 Area 0
0 G =,
S S
c3 >< &5
R2
- — / —<
v
Area 2
R6 R5
CISENETS
U T
o

Figure 4.2.: A domain divided into areas.

1. When R1 sends link-state advertisements into area 0, it advertises the costs of reaching the networks in
area 1 much as if all those networks were directly connected to R1. This enables all the area O routers to
learn the cost to reach all networks in area 1. The area border routers then summarize this information and
advertise it into the nonbackbone areas. Thus, all routers learn how to reach all networks in the domain.

Note that, in the case of area 2, there are two ABRs and that routers in area 2 will thus have to make a
choice as to which one they use to reach the backbone. This is easy enough, since both R1 and R2 will be
advertising costs to various networks, so it will become clear which is the better choice as the routers in
area 2 run their shortest-path algorithm. For example, it is pretty clear that R1 is going to be a better choice
than R2 for destinations in area 1.

When dividing a domain into areas, the network administrator makes a tradeoff between scalability and
optimality of routing. The use of areas forces all packets traveling from one area to another to go via the
backbone area, even if a shorter path might have been available. For example, even if R4 and RS were
directly connected, packets would not flow between them because they are in different nonbackbone areas.
It turns out that the need for scalability is often more important than the need to use the absolute shortest
path.

Key Takeaway

This illustrates an important principle in network design. There is frequently a trade-off between scalability
and some sort of optimality. When hierarchy is introduced, information is hidden from some nodes in
the network, hindering their ability to make perfect decisions. However, information hiding is essential
to scaling a solution, since it saves all nodes from having global knowledge. It is invariably true in large
networks that scalability is a more pressing design goal than selecting the optimal route. [Next]

Finally, we note that there is a trick by which network administrators can more flexibly decide which routers
go in area 0. This trick uses the idea of a virfual link between routers. Such a virtual link is obtained by

182 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

configuring a router that is not directly connected to area 0 to exchange backbone routing information with
a router that is. For example, a virtual link could be configured from R8 to R1, thus making R8 part of the
backbone. R8 would now participate in link-state advertisement flooding with the other routers in area 0.
The cost of the virtual link from R8 to R1 is determined by the exchange of routing information that takes
place in area 1. This technique can help to improve the optimality of routing.

4.1.2 Interdomain Routing (BGP)

At the beginning of this chapter, we introduced the notion that the Internet is organized as autonomous
systems, each of which is under the control of a single administrative entity. A corporation’s complex
internal network might be a single AS, as may the national network of any single Internet Service Provider
(ISP). Figure 4.3 shows a simple network with two autonomous systems.

%} R1 @ R3

E3re
Autonomous system 1

Autonomous system 2

R5 R6

Figure 4.3.: A network with two autonomous systems.

The basic idea behind autonomous systems is to provide an additional way to hierarchically aggregate rout-
ing information in a large internet, thus improving scalability. We now divide the routing problem into two
parts: routing within a single autonomous system and routing between autonomous systems. Since another
name for autonomous systems in the Internet is routing domains, we refer to the two parts of the routing
problem as interdomain routing and intradomain routing. In addition to improving scalability, the AS model
decouples the intradomain routing that takes place in one AS from that taking place in another. Thus, each
AS can run whatever intradomain routing protocols it chooses. It can even use static routes or multiple pro-

4.1. Global Internet 183

Computer Networks: A Systems Approach, Release Version 6.1

tocols, if desired. The interdomain routing problem is then one of having different ASs share reachability
information—descriptions of the set of IP addresses that can be reached via a given AS—with each other.

Challenges in Interdomain Routing

Perhaps the most important challenge of interdomain routing today is the need for each AS to determine
its own routing policies. A simple example routing policy implemented at a particular AS might look like
this: “Whenever possible, I prefer to send traffic via AS X than via AS Y, but I'll use AS Y if it is the only
path, and I never want to carry traffic from AS X to AS Y or vice versa.” Such a policy would be typical
when I have paid money to both AS X and AS Y to connect my AS to the rest of the Internet, and AS X
is my preferred provider of connectivity, with AS Y being the fallback. Because I view both AS X and AS
Y as providers (and presumably I paid them to play this role), I don’t expect to help them out by carrying
traffic between them across my network (this is called transit traffic). The more autonomous systems I
connect to, the more complex policies I might have, especially when you consider backbone providers, who
may interconnect with dozens of other providers and hundreds of customers and have different economic
arrangements (which affect routing policies) with each one.

A key design goal of interdomain routing is that policies like the example above, and much more complex
ones, should be supported by the interdomain routing system. To make the problem harder, I need to be able
to implement such a policy without any help from other autonomous systems, and in the face of possible
misconfiguration or malicious behavior by other autonomous systems. Furthermore, there is often a desire
to keep the policies private, because the entities that run the autonomous systems—mostly ISPs—are often
in competition with each other and don’t want their economic arrangements made public.

There have been two major interdomain routing protocols in the history of the Internet. The first was the
Exterior Gateway Protocol (EGP), which had a number of limitations, perhaps the most severe of which was
that it constrained the topology of the Internet rather significantly. EGP was designed when the Internet had
a treelike topology, such as that illustrated in Figure 4.1, and did not allow for the topology to become more
general. Note that in this simple treelike structure there is a single backbone, and autonomous systems are
connected only as parents and children and not as peers.

The replacement for EGP was the Border Gateway Protocol (BGP), which has iterated through four versions
(BGP-4). BGP is often regarded as one of the more complex parts of the Internet. We’ll cover some of its
high points here.

Unlike its predecessor EGP, BGP makes virtually no assumptions about how autonomous systems are in-
terconnected—they form an arbitrary graph. This model is clearly general enough to accommodate non-
tree-structured internetworks, like the simplified picture of a multi-provider Internet shown in Figure 4.4. (It
turns out there is still some sort of structure to the Internet, as we’ll see below, but it’s nothing like as simple
as a tree, and BGP makes no assumptions about such structure.)

Unlike the simple tree-structured Internet shown in Figure 4.1, or even the fairly simple picture in Figure 4.4,
today’s Internet consists of a richly interconnected set of networks, mostly operated by private companies
(ISPs) rather than governments. Many Internet Service Providers (ISPs) exist mainly to provide service
to “consumers” (i.e., individuals with computers in their homes), while others offer something more like
the old backbone service, interconnecting other providers and sometimes larger corporations. Often, many
providers arrange to interconnect with each other at a single peering point.

To get a better sense of how we might manage routing among this complex interconnection of autonomous
systems, we can start by defining a few terms. We define local traffic as traffic that originates at or terminates

184 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Large corporation

Backbone service provider
“Consumer” ISP
Large corporation Consumer” ISP

“Consumer” ISP

N

Peering
point

Small
corporation

Figure 4.4.: A simple multi-provider Internet.

on nodes within an AS, and transit traffic as traffic that passes through an AS. We can classify autonomous
systems into three broad types:

* Stub AS—an AS that has only a single connection to one other AS; such an AS will only carry local
traffic. The small corporation in Figure 4.4 is an example of a stub AS.

* Multihomed AS—an AS that has connections to more than one other AS but that refuses to carry
transit traffic, such as the large corporation at the top of Figure 4.4.

* Transit AS—an AS that has connections to more than one other AS and that is designed to carry both
transit and local traffic, such as the backbone providers in Figure 4.4.

Whereas the discussion of routing in the previous chapter focused on finding optimal paths based on min-
imizing some sort of link metric, the goals of interdomain routing are rather more complex. First, it is
necessary to find some path to the intended destination that is loop free. Second, paths must be compliant
with the policies of the various autonomous systems along the path—and, as we have already seen, those
policies might be almost arbitrarily complex. Thus, while intradomain focuses on a well-defined problem
of optimizing the scalar cost of the path, interdomain focuses on finding a non-looping, policy-compliant
path—a much more complex optimization problem.

There are additional factors that make interdomain routing hard. The first is simply a matter of scale. An
Internet backbone router must be able to forward any packet destined anywhere in the Internet. That means
having a routing table that will provide a match for any valid IP address. While CIDR has helped to control
the number of distinct prefixes that are carried in the Internet’s backbone routing, there is inevitably a lot of
routing information to pass around—roughly 700,000 prefixes in mid-2018.

A further challenge in interdomain routing arises from the autonomous nature of the domains. Note that
each domain may run its own interior routing protocols and use any scheme it chooses to assign metrics to
paths. This means that it is impossible to calculate meaningful path costs for a path that crosses multiple
autonomous systems. A cost of 1000 across one provider might imply a great path, but it might mean an

4.1. Global Internet 185

Computer Networks: A Systems Approach, Release Version 6.1

unacceptably bad one from another provider. As a result, interdomain routing advertises only reachability.
The concept of reachability is basically a statement that “you can reach this network through this AS.” This
means that for interdomain routing to pick an optimal path is essentially impossible.

The autonomous nature of interdomain raises issue of trust. Provider A might be unwilling to believe certain
advertisements from provider B for fear that provider B will advertise erroneous routing information. For
example, trusting provider B when he advertises a great route to anywhere in the Internet can be a disastrous
choice if provider B turns out to have made a mistake configuring his routers or to have insufficient capacity
to carry the traffic.

The issue of trust is also related to the need to support complex policies as noted above. For example, I
might be willing to trust a particular provider only when he advertises reachability to certain prefixes, and
thus I would have a policy that says, “Use AS X to reach only prefixes p and g, if and only if AS X advertises
reachability to those prefixes.”

Basics of BGP

Each AS has one or more border routers through which packets enter and leave the AS. In our simple
example in Figure 4.3, routers R2 and R4 would be border routers. (Over the years, routers have sometimes
also been known as gateways, hence the names of the protocols BGP and EGP). A border router is simply
an IP router that is charged with the task of forwarding packets between autonomous systems.

Each AS that participates in BGP must also have at least one BGP speaker, a router that “speaks” BGP to
other BGP speakers in other autonomous systems. It is common to find that border routers are also BGP
speakers, but that does not have to be the case.

BGP does not belong to either of the two main classes of routing protocols, distance-vector or link-state.
Unlike these protocols, BGP advertises complete paths as an enumerated list of autonomous systems to reach
a particular network. It is sometimes called a path-vector protocol for this reason. The advertisement of
complete paths is necessary to enable the sorts of policy decisions described above to be made in accordance
with the wishes of a particular AS. It also enables routing loops to be readily detected.

Customer P
(AS 4)
Customer Q
(AS 5)

Customer R
(AS 6)

128.96
192.4.153

Regional provider A
(AS 2)

192.4.32
192.4.3

Backbone network
(AS 1)

192.12.69

Regional provider B
(AS 3)

192.4.54
192.4.23

Customer S
(AS7)

Figure 4.5.: Example of a network running BGP.

To see how this works, consider the very simple example network in Figure 4.5. Assume that the providers
are transit networks, while the customer networks are stubs. A BGP speaker for the AS of provider A (AS 2)

186 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

would be able to advertise reachability information for each of the network numbers assigned to customers P
and Q. Thus, it would say, in effect, “The networks 128.96, 192.4.153, 192.4.32, and 192.4.3 can be reached
directly from AS 2.” The backbone network, on receiving this advertisement, can advertise, “The networks
128.96, 192.4.153, 192.4.32, and 192.4.3 can be reached along the path (AS 1, AS 2).” Similarly, it could
advertise, “The networks 192.12.69, 192.4.54, and 192.4.23 can be reached along the path (AS 1, AS 3).”

Customer P
(AS 4)
Customer Q
(AS 5)
Customer R
(AS 6)
Customer S
(AS7)

Figure 4.6.: Example of loop among autonomous systems.

128.96

Regional provider A
(AS 2)

Backbone network
(AS 1)

Regional provider B
(AS 3)

An important job of BGP is to prevent the establishment of looping paths. For example, consider the network
illustrated in Figure 4.6. It differs from Figure 4.5 only in the addition of an extra link between AS 2 and
AS 3, but the effect now is that the graph of autonomous systems has a loop in it. Suppose AS 1 learns
that it can reach network 128.96 through AS 2, so it advertises this fact to AS 3, who in turn advertises it
back to AS 2. In the absence of any loop prevention mechanism, AS 2 could now decide that AS 3 was the
preferred route for packets destined for 128.96. If AS 2 starts sending packets addressed to 128.96 to AS 3,
AS 3 would send them to AS 1; AS 1 would send them back to AS 2; and they would loop forever. This is
prevented by carrying the complete AS path in the routing messages. In this case, the advertisement for a
path to 128.96 received by AS 2 from AS 3 would contain an AS path of (AS 3, AS 1, AS 2, AS 4). AS2
sees itself in this path, and thus concludes that this is not a useful path for it to use.

In order for this loop prevention technique to work, the AS numbers carried in BGP clearly need to be
unique. For example, AS 2 can only recognize itself in the AS path in the above example if no other AS
identifies itself in the same way. AS numbers are now 32-bits long, and they are assigned by a central
authority to assure uniqueness.

A given AS will only advertise routes that it considers good enough for itself. That is, if a BGP speaker has
a choice of several different routes to a destination, it will choose the best one according to its own local
policies, and then that will be the route it advertises. Furthermore, a BGP speaker is under no obligation to
advertise any route to a destination, even if it has one. This is how an AS can implement a policy of not
providing transit—by refusing to advertise routes to prefixes that are not contained within that AS, even if it
knows how to reach them.

Given that links fail and policies change, BGP speakers need to be able to cancel previously advertised paths.
This is done with a form of negative advertisement known as a withdrawn route. Both positive and negative
reachability information are carried in a BGP update message, the format of which is shown in Figure 4.7.
(Note that the fields in this figure are multiples of 16 bits, unlike other packet formats in this chapter.)

4.1. Global Internet 187

Computer Networks: A Systems Approach, Release Version 6.1

0 15

Withdrawn routes
length

Withdrawn routes
(variable)

Total path
attribute length

Path attributes
(variable)

Network layer
reachability info
(variable)

Figure 4.7.: BGP-4 update packet format.

Unlike the routing protocols described in the previous chapter, BGP is defined to run on top of TCP, the
reliable transport protocol. Because BGP speakers can count on TCP to be reliable, this means that any
information that has been sent from one speaker to another does not need to be sent again. Thus, as long as
nothing has changed, a BGP speaker can simply send an occasional keepalive message that says, in effect,
“I’m still here and nothing has changed.” If that router were to crash or become disconnected from its peer,
it would stop sending the keepalives, and the other routers that had learned routes from it would assume that
those routes were no longer valid.

Common AS Relationships and Policies

Having said that policies may be arbitrarily complex, there turn out to be a few common ones, reflecting
common relationships between autonomous systems. The most common relationships are illustrated in
Figure 4.8. The three common relationships and the policies that go with them are as follows:

* Provider-Customer—Providers are in the business of connecting their customers to the rest of the
Internet. A customer might be a corporation, or it might be a smaller ISP (which may have customers
of its own). So the common policy is to advertise all the routes I know about to my customer, and
advertise routes I learn from my customer to everyone.

* Customer-Provider—In the other direction, the customer wants to get traffic directed to him (and his
customers, if he has them) by his provider, and he wants to be able to send traffic to the rest of the
Internet through his provider. So the common policy in this case is to advertise my own prefixes and
routes learned from my customers to my provider, advertise routes learned from my provider to my
customers, but don’t advertise routes learned from one provider to another provider. That last part is
to make sure the customer doesn’t find himself in the business of carrying traffic from one provider to

188 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Peering link

Clstomer-provider link

Figure 4.8.: Common AS relationships.

another, which isn’t in his interests if he is paying the providers to carry traffic for him.

* Peer—The third option is a symmetrical peering between autonomous systems. Two providers who
view themselves as equals usually peer so that they can get access to each other’s customers without
having to pay another provider. The typical policy here is to advertise routes learned from my cus-
tomers to my peer, advertise routes learned from my peer to my customers, but don’t advertise routes
from my peer to any provider or vice versa.

One thing to note about this figure is the way it has brought back some structure to the apparently unstruc-
tured Internet. At the bottom of the hierarchy we have the stub networks that are customers of one or more
providers, and as we move up the hierarchy we see providers who have other providers as their customers. At
the top, we have providers who have customers and peers but are not customers of anyone. These providers
are known as the Tier-1 providers.

Key Takeaway

Let’s return to the real question: How does all this help us to build scalable networks? First, the number of
nodes participating in BGP is on the order of the number of autonomous systems, which is much smaller
than the number of networks. Second, finding a good interdomain route is only a matter of finding a path
to the right border router, of which there are only a few per AS. Thus, we have neatly subdivided the
routing problem into manageable parts, once again using a new level of hierarchy to increase scalability.
The complexity of interdomain routing is now on the order of the number of autonomous systems, and the
complexity of intradomain routing is on the order of the number of networks in a single AS. [Next]

Integrating Interdomain and Intradomain Routing

While the preceding discussion illustrates how a BGP speaker learns interdomain routing information, the
question still remains as to how all the other routers in a domain get this information. There are several ways
this problem can be addressed.

Let’s start with a very simple situation, which is also very common. In the case of a stub AS that only
connects to other autonomous systems at a single point, the border router is clearly the only choice for all

4.1. Global Internet 189

Computer Networks: A Systems Approach, Release Version 6.1

routes that are outside the AS. Such a router can inject a default route into the intradomain routing protocol.
In effect, this is a statement that any network that has not been explicitly advertised in the intradomain
protocol is reachable through the border router. Recall from the discussion of IP forwarding in the previous
chapter that the default entry in the forwarding table comes after all the more specific entries, and it matches
anything that failed to match a specific entry.

The next step up in complexity is to have the border routers inject specific routes they have learned from
outside the AS. Consider, for example, the border router of a provider AS that connects to a customer AS.
That router could learn that the network prefix 192.4.54/24 is located inside the customer AS, either through
BGP or because the information is configured into the border router. It could inject a route to that prefix into
the routing protocol running inside the provider AS. This would be an advertisement of the sort, “I have a
link to 192.4.54/24 of cost X.” This would cause other routers in the provider AS to learn that this border
router is the place to send packets destined for that prefix.

The final level of complexity comes in backbone networks, which learn so much routing information from
BGP that it becomes too costly to inject it into the intradomain protocol. For example, if a border router
wants to inject 10,000 prefixes that it learned about from another AS, it will have to send very big link-
state packets to the other routers in that AS, and their shortest-path calculations are going to become very
complex. For this reason, the routers in a backbone network use a variant of BGP called interior BGP
(iBGP) to effectively redistribute the information that is learned by the BGP speakers at the edges of the AS
to all the other routers in the AS. (The other variant of BGP, discussed above, runs between autonomous
systems and is called exterior BGP, or eBGP). iBGP enables any router in the AS to learn the best border
router to use when sending a packet to any address. At the same time, each router in the AS keeps track
of how to get to each border router using a conventional intradomain protocol with no injected information.
By combining these two sets of information, each router in the AS is able to determine the appropriate next
hop for all prefixes.

To see how this all works, consider the simple example network, representing a single AS, in Figure 4.9.
The three border routers, A, D, and E, speak eBGP to other autonomous systems and learn how to reach
various prefixes. These three border routers communicate with other and with the interior routers B and C
by building a mesh of iBGP sessions among all the routers in the AS. Let’s now focus in on how router B
builds up its complete view of how to forward packets to any prefix. Look at the top left of Figure 4.10,
which shows the information that router B learns from its iBGP sessions. It learns that some prefixes are
best reached via router A, some via D, and some via E. At the same time, all the routers in the AS are also
running some intradomain routing protocol such as Routing Information Protocol (RIP) or Open Shortest
Path First (OSPF). (A generic term for intradomain protocols is an interior gateway protocol, or IGP.) From
this completely separate protocol, B learns how to reach other nodes inside the domain, as shown in the top
right table. For example, to reach router E, B needs to send packets toward router C. Finally, in the bottom
table, B puts the whole picture together, combining the information about external prefixes learned from
iBGP with the information about interior routes to the border routers learned from the IGP. Thus, if a prefix
like 18.0/16 is reachable via border router E, and the best interior path to E is via C, then it follows that any
packet destined for 18.0/16 should be forwarded toward C. In this way, any router in the AS can build up a
complete routing table for any prefix that is reachable via some border router of the AS.

4.2 IP Version 6

The motivation for defining a new version of IP is simple: to deal with exhaustion of the IP address space.
CIDR helped considerably to contain the rate at which the Internet address space was being consumed and

190 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Toffrom other autonomous
systems

To/from other autonomous
systems

Tof/from other autonomous
systems

Figure 4.9.: Example of interdomain and intradomain routing. All routers run iBGP and an intradomain
routing protocol. Border routers A, D, and E also run eBGP to other autonomous systems.

4.2. IP Version 6 191

Computer Networks: A Systems Approach, Release Version 6.1

Prefix BGP Next Hop Router IGP Path
18.0/16 E A A
12.5.5/24 A C C
128.34/16 D D C
128.69./16 A E C

BGP table for the AS IGP table for router B
Prefix IGP Path
18.0/16 Cc
12.5.5/24 A
128.34/16 C
128.69./16 A

Combined table for router B

Figure 4.10.: BGP routing table, IGP routing table, and combined table at router B.

192 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

also helped to control the growth of routing table information needed in the Internet’s routers. However,
these techniques are no longer adequate. In particular, it is virtually impossible to achieve 100% address
utilization efficiency, so the address space was consumed well before the 4 billionth host was connected to
the Internet. Even if we were able to use all 4 billion addresses, it is now clear that IP addresses need to be
assigned to more than traditional computers, including smart phones, televisions, household appliances, and
drones. With the clarity of 20/20 hindsight, a 32-bit address space is quite small.

4.2.1 Historical Perspective

The IETF began looking at the problem of expanding the IP address space in 1991, and several alternatives
were proposed. Since the IP address is carried in the header of every IP packet, increasing the size of the
address dictates a change in the packet header. This means a new version of the Internet Protocol and, as a
consequence, a need for new software for every host and router in the Internet. This is clearly not a trivial
matter—it is a major change that needs to be thought about very carefully.

The effort to define a new version of IP was originally known as IP Next Generation, or IPng. As the work
progressed, an official IP version number was assigned, so IPng became IPv6. Note that the version of IP
discussed so far in this chapter is version 4 (IPv4). The apparent discontinuity in numbering is the result of
version number 5 being used for an experimental protocol many years ago.

The significance of changing to a new version of IP caused a snowball effect. The general feeling among
network designers was that if you are going to make a change of this magnitude you might as well fix as
many other things in IP as possible at the same time. Consequently, the IETF solicited white papers from
anyone who cared to write one, asking for input on the features that might be desired in a new version of IP.
In addition to the need to accommodate scalable routing and addressing, some of the other wish list items
for IPng included:

* Support for real-time services
 Security support

* Autoconfiguration (i.e., the ability of hosts to automatically configure themselves with such informa-
tion as their own IP address and domain name)

* Enhanced routing functionality, including support for mobile hosts

It is interesting to note that, while many of these features were absent from IPv4 at the time IPv6 was being
designed, support for all of them has made its way into IPv4 in recent years, often using similar techniques
in both protocols. It can be argued that the freedom to think of IPv6 as a clean slate facilitated the design of
new capabilities for IP that were then retrofitted into IPv4.

In addition to the wish list, one absolutely non-negotiable feature for IPv6 was that there must be a transition
plan to move from the current version of IP (version 4) to the new version. With the Internet being so large
and having no centralized control, it would be completely impossible to have a “flag day”” on which everyone
shut down their hosts and routers and installed a new version of IP. The architects expected a long transition
period in which some hosts and routers would run IPv4 only, some will run IPv4 and IPv6, and some will run
IPv6 only. It is doubtful they anticipated that transition period would be approaching its 30th anniversary.

4.2. IP Version 6 193

Computer Networks: A Systems Approach, Release Version 6.1

4.2.2 Addresses and Routing

First and foremost, IPv6 provides a 128-bit address space, as opposed to the 32 bits of version 4. Thus,
while version 4 can potentially address 4 billion nodes if address assignment efficiency reaches 100%, IPv6
can address 3.4 x 1038 nodes, again assuming 100% efficiency. As we have seen, though, 100% efficiency
in address assignment is not likely. Some analysis of other addressing schemes, such as those of the French
and U.S. telephone networks, as well as that of IPv4, have turned up some empirical numbers for address
assignment efficiency. Based on the most pessimistic estimates of efficiency drawn from this study, the
IPv6 address space is predicted to provide over 1500 addresses per square foot of the Earth’s surface, which
certainly seems like it should serve us well even when toasters on Venus have IP addresses.

Address Space Allocation

Drawing on the effectiveness of CIDR in IPv4, IPv6 addresses are also classless, but the address space is
still subdivided in various ways based on the leading bits. Rather than specifying different address classes,
the leading bits specify different uses of the IPv6 address. The current assignment of prefixes is listed in
Table 4.1.

Table 4.1.: Address Prefix Assignments for IPv6.

Prefix Use

00...0 (128 bits) | Unspecified

00...1 (128 bits) | Loopback

1111 1111 Multicast addresses
1111111010 Link-local unicast
Everything else | Global Unicast

This allocation of the address space warrants a little discussion. First, the entire functionality of IPv4’s
three main address classes (A, B, and C) is contained inside the “everything else” range. Global Unicast
Addresses, as we will see shortly, are a lot like classless IPv4 addresses, only much longer. These are the
main ones of interest at this point, with over 99% of the total IPv6 address space available to this important
form of address. (At the time of writing, IPv6 unicast addresses are being allocated from the block that
begins 001, with the remaining address space—about 87%—being reserved for future use.)

The multicast address space is (obviously) for multicast, thereby serving the same role as class D addresses
in IPv4. Note that multicast addresses are easy to distinguish—they start with a byte of all 1s. We will see
how these addresses are used in a later section.

The idea behind link-local use addresses is to enable a host to construct an address that will work on the
network to which it is connected without being concerned about the global uniqueness of the address. This
may be useful for autoconfiguration, as we will see below. Similarly, the site-local use addresses are intended
to allow valid addresses to be constructed on a site (e.g., a private corporate network) that is not connected
to the larger Internet; again, global uniqueness need not be an issue.

Within the global unicast address space are some important special types of addresses. A node may be
assigned an IPv4-compatible IPv6 address by zero-extending a 32-bit IPv4 address to 128 bits. A node that
is only capable of understanding IPv4 can be assigned an IPv4-mapped IPv6 address by prefixing the 32-bit
IPv4 address with 2 bytes of all 1s and then zero-extending the result to 128 bits. These two special address
types have uses in the IPv4-to-IPv6 transition (see the sidebar on this topic).

194 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Address Notation

Just as with IPv4, there is some special notation for writing down IPv6 addresses. The standard representa-
tionis x:x:x:x:x:x:x:x, where each x is a hexadecimal representation of a 16-bit piece of the address.
An example would be

47CD:1234:4422:AC02:0022:1234:A456:0124

Any IPv6 address can be written using this notation. Since there are a few special types of IPv6 addresses,
there are some special notations that may be helpful in certain circumstances. For example, an address with
a large number of contiguous Os can be written more compactly by omitting all the O fields. Thus,

47CD:0000:0000:0000:0000:0000:A456:0124

could be written

47CD::A456:0124

Clearly, this form of shorthand can only be used for one set of contiguous Os in an address to avoid ambiguity.

The two types of IPv6 addresses that contain an embedded IPv4 address have their own special notation that
makes extraction of the IPv4 address easier. For example, the IPv4-mapped IPv6 address of a host whose
IPv4 address was 128.96.33.81 could be written as

::FFFF:128.96.33.81

That is, the last 32 bits are written in IPv4 notation, rather than as a pair of hexadecimal numbers separated
by a colon. Note that the double colon at the front indicates the leading Os.

Global Unicast Addresses

By far the most important sort of addressing that IPv6 must provide is plain old unicast addressing. It must
do this in a way that supports the rapid rate of addition of new hosts to the Internet and that allows routing
to be done in a scalable way as the number of physical networks in the Internet grows. Thus, at the heart of
IPv6 is the unicast address allocation plan that determines how unicast addresses will be assigned to service
providers, autonomous systems, networks, hosts, and routers.

In fact, the address allocation plan that is proposed for IPv6 unicast addresses is extremely similar to that
being deployed with CIDR in IPv4. To understand how it works and how it provides scalability, it is helpful
to define some new terms. We may think of a nontransit AS (i.e., a stub or multihomed AS) as a subscriber,
and we may think of a transit AS as a provider. Furthermore, we may subdivide providers into direct and
indirect. The former are directly connected to subscribers. The latter primarily connect other providers, are
not connected directly to subscribers, and are often known as backbone networks.

With this set of definitions, we can see that the Internet is not just an arbitrarily interconnected set of au-
tonomous systems; it has some intrinsic hierarchy. The difficulty lies in making use of this hierarchy without
inventing mechanisms that fail when the hierarchy is not strictly observed, as happened with EGP. For ex-
ample, the distinction between direct and indirect providers becomes blurred when a subscriber connects to
a backbone or when a direct provider starts connecting to many other providers.

4.2. IP Version 6 195

Computer Networks: A Systems Approach, Release Version 6.1

As with CIDR, the goal of the IPv6 address allocation plan is to provide aggregation of routing information
to reduce the burden on intradomain routers. Again, the key idea is to use an address prefix—a set of
contiguous bits at the most significant end of the address—to aggregate reachability information to a large
number of networks and even to a large number of autonomous systems. The main way to achieve this is
to assign an address prefix to a direct provider and then for that direct provider to assign longer prefixes
that begin with that prefix to its subscribers. Thus, a provider can advertise a single prefix for all of its
subscribers.

Of course, the drawback is that if a site decides to change providers, it will need to obtain a new address
prefix and renumber all the nodes in the site. This could be a colossal undertaking, enough to dissuade
most people from ever changing providers. For this reason, there is ongoing research on other addressing
schemes, such as geographic addressing, in which a site’s address is a function of its location rather than the
provider to which it attaches. At present, however, provider-based addressing is necessary to make routing
work efficiently.

Note that while IPv6 address assignment is essentially equivalent to the way address assignment has hap-
pened in IPv4 since the introduction of CIDR, IPv6 has the significant advantage of not having a large
installed base of assigned addresses to fit into its plans.

One question is whether it makes sense for hierarchical aggregation to take place at other levels in the
hierarchy. For example, should all providers obtain their address prefixes from within a prefix allocated
to the backbone to which they connect? Given that most providers connect to multiple backbones, this
probably doesn’t make sense. Also, since the number of providers is much smaller than the number of sites,
the benefits of aggregating at this level are much fewer.

One place where aggregation may make sense is at the national or continental level. Continental boundaries
form natural divisions in the Internet topology. If all addresses in Europe, for example, had a common
prefix, then a great deal of aggregation could be done, and most routers in other continents would only need
one routing table entry for all networks with the Europe prefix. Providers in Europe would all select their
prefixes such that they began with the European prefix. Using this scheme, an IPv6 address might look
like Figure 4.11. The RegistryID might be an identifier assigned to a European address registry, with
different IDs assigned to other continents or countries. Note that prefixes would be of different lengths under
this scenario. For example, a provider with few customers could have a longer prefix (and thus less total
address space available) than one with many customers.

3 m n o] p 125-m-n-o—p

010 | RegistrylD ProviderID SubscriberID | SubnetlD | InterfacelD

Figure 4.11.: An IPv6 provider-based unicast address.

One tricky situation could occur when a subscriber is connected to more than one provider. Which prefix
should the subscriber use for his or her site? There is no perfect solution to the problem. For example,
suppose a subscriber is connected to two providers, X and Y. If the subscriber takes his prefix from X, then
Y has to advertise a prefix that has no relationship to its other subscribers and that as a consequence cannot
be aggregated. If the subscriber numbers part of his AS with the prefix of X and part with the prefix of Y,
he runs the risk of having half his site become unreachable if the connection to one provider goes down.
One solution that works fairly well if X and Y have a lot of subscribers in common is for them to have three
prefixes between them: one for subscribers of X only, one for subscribers of Y only, and one for the sites
that are subscribers of both X and Y.

196 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

4.2.3 Packet Format

Despite the fact that IPv6 extends IPv4 in several ways, its header format is actually simpler. This simplicity
is due to a concerted effort to remove unnecessary functionality from the protocol. Figure 4.12 shows the
result.

As with many headers, this one starts with a Version field, which is set to 6 for IPv6. The Version field
is in the same place relative to the start of the header as IPv4’s Version field so that header-processing
software can immediately decide which header format to look for. The TrafficClass and FlowLabel
fields both relate to quality of service issues.

The PayloadLen field gives the length of the packet, excluding the IPv6 header, measured in bytes. The
NextHeader field cleverly replaces both the IP options and the Protocol field of IPv4. If options are
required, then they are carried in one or more special headers following the IP header, and this is indicated by
the value of the Next Header field. If there are no special headers, the Next Header field is the demux
key identifying the higher-level protocol running over IP (e.g., TCP or UDP); that is, it serves the same
purpose as the IPv4 Protocol field. Also, fragmentation is now handled as an optional header, which
means that the fragmentation-related fields of IPv4 are not included in the IPv6 header. The HopLimit
field is simply the TTL of IPv4, renamed to reflect the way it is actually used.

Finally, the bulk of the header is taken up with the source and destination addresses, each of which is 16 bytes
(128 bits) long. Thus, the IPv6 header is always 40 bytes long. Considering that IPv6 addresses are four
times longer than those of IPv4, this compares quite well with the IPv4 header, which is 20 bytes long in the
absence of options.

The way that IPv6 handles options is quite an improvement over IPv4. In IPv4, if any options were present,
every router had to parse the entire options field to see if any of the options were relevant. This is because
the options were all buried at the end of the IP header, as an unordered collection of ‘(type, length, value)’
tuples. In contrast, IPv6 treats options as extension headers that must, if present, appear in a specific order.
This means that each router can quickly determine if any of the options are relevant to it; in most cases, they
will not be. Usually this can be determined by just looking at the NextHeader field. The end result is
that option processing is much more efficient in IPv6, which is an important factor in router performance.
In addition, the new formatting of options as extension headers means that they can be of arbitrary length,
whereas in IPv4 they were limited to 44 bytes at most. We will see how some of the options are used below.

Each option has its own type of extension header. The type of each extension header is identified by the value
of the Next Header field in the header that precedes it, and each extension header contains a Next Header
field to identify the header following it. The last extension header will be followed by a transport-layer
header (e.g., TCP) and in this case the value of the NextHeader field is the same as the value of the
Protocol field would be in an IPv4 header. Thus, the Next Header field does double duty; it may either
identify the type of extension header to follow, or, in the last extension header, it serves as a demux key to
identify the higher-layer protocol running over IPv6.

Consider the example of the fragmentation header, shown in Figure 4.13. This header provides functionality
similar to the fragmentation fields in the IPv4 header, but it is only present if fragmentation is necessary.
Assuming it is the only extension header present, then the Next Header field of the IPv6 header would
contain the value 44, which is the value assigned to indicate the fragmentation header. The Next Header
field of the fragmentation header itself contains a value describing the header that follows it. Again, assum-
ing no other extension headers are present, then the next header might be the TCP header, which results
in Next Header containing the value 6, just as the Protocol field would in IPv4. If the fragmentation

4.2. IP Version 6 197

Computer Networks: A Systems Approach, Release Version 6.1

0 4 12 16 24 31

Version | TrafficClass FlowLabel

PayloadLen NextHeader HopLimit

SourceAddress

DestinationAddress

Next header/data

PSS P/ NP

Figure 4.12.: IPv6 packet header.

0 8 16 29 31
NextHeader | Reserved Offset RES | M

Ident

Figure 4.13.: IPv6 fragmentation extension header.

198

Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

header were followed by, say, an authentication header, then the fragmentation header’s Next Header field
would contain the value 51.

4.2.4 Advanced Capabilities

As mentioned at the beginning of this section, the primary motivation behind the development of IPv6 was
to support the continued growth of the Internet. Once the IP header had to be changed for the sake of
the addresses, however, the door was open for a wide variety of other changes, two of which we describe
below. But IPv6 includes several additional features, most of which are covered elsewhere in this book; e.g.,
mobility, security, quality-of-service. It is interesting to note that, in most of these areas, the IPv4 and IPv6
capabilities have become virtually indistinguishable, so that the main driver for IPv6 remains the need for
larger addresses.

Autoconfiguration

While the Internet’s growth has been impressive, one factor that has inhibited faster acceptance of the tech-
nology is the fact that getting connected to the Internet has typically required a fair amount of system
administration expertise. In particular, every host that is connected to the Internet needs to be configured
with a certain minimum amount of information, such as a valid IP address, a subnet mask for the link to
which it attaches, and the address of a name server. Thus, it has not been possible to unpack a new computer
and connect it to the Internet without some preconfiguration. One goal of IPv6, therefore, is to provide
support for autoconfiguration, sometimes referred to as plug-and-play operation.

As we saw in the previous chapter, autoconfiguration is possible for IPv4, but it depends on the existence
of a server that is configured to hand out addresses and other configuration information to Dynamic Host
Configuration Protocol (DHCP) clients. The longer address format in IPv6 helps provide a useful, new form
of autoconfiguration called stateless autoconfiguration, which does not require a server.

Recall that IPv6 unicast addresses are hierarchical, and that the least significant portion is the interface ID.
Thus, we can subdivide the autoconfiguration problem into two parts:

1. Obtain an interface ID that is unique on the link to which the host is attached.
2. Obtain the correct address prefix for this subnet.

The first part turns out to be rather easy, since every host on a link must have a unique link-level address.
For example, all hosts on an Ethernet have a unique 48-bit Ethernet address. This can be turned into a valid
link-local use address by adding the appropriate prefix from :numref”Table %s <fig-v6tab> (1111 1110
10) followed by enough Os to make up 128 bits. For some devices—for example, printers or hosts on a
small routerless network that do not connect to any other networks—this address may be perfectly adequate.
Those devices that need a globally valid address depend on a router on the same link to periodically advertise
the appropriate prefix for the link. Clearly, this requires that the router be configured with the correct address
prefix, and that this prefix be chosen in such a way that there is enough space at the end (e.g., 48 bits) to
attach an appropriate link-level address.

The ability to embed link-level addresses as long as 48 bits into IPv6 addresses was one of the reasons for
choosing such a large address size. Not only does 128 bits allow the embedding, but it leaves plenty of space
for the multilevel hierarchy of addressing that we discussed above.

4.2. IP Version 6 199

Computer Networks: A Systems Approach, Release Version 6.1

Source-Directed Routing

Another of IPv6’s extension headers is the routing header. In the absence of this header, routing for IPv6
differs very little from that of IPv4 under CIDR. The routing header contains a list of IPv6 addresses that
represent nodes or topological areas that the packet should visit en route to its destination. A topological
area may be, for example, a backbone provider’s network. Specifying that packets must visit this network
would be a way of implementing provider selection on a packet-by-packet basis. Thus, a host could say that
it wants some packets to go through a provider that is cheap, others through a provider that provides high
reliability, and still others through a provider that the host trusts to provide security.

To provide the ability to specify topological entities rather than individual nodes, IPv6 defines an anycast
address. An anycast address is assigned to a set of interfaces, and packets sent to that address will go to
the “nearest” of those interfaces, with nearest being determined by the routing protocols. For example, all
the routers of a backbone provider could be assigned a single anycast address, which would be used in the
routing header.

4.3 Multicast

Multi-access networks like Ethernet implement multicast in hardware. There are, however, applications that
need a broader multicasting capability that is effective at the scale of the Internet. For example, when a
radio station is broadcast over the Internet, the same data must be sent to all the hosts where a user has tuned
in to that station. In that example, the communication is one-to-many. Other examples of one-to-many
applications include transmitting the same news, current stock prices, software updates, or TV channels to
multiple hosts. The latter example is commonly called IPTV.

There are also applications whose communication is many-to-many, such as multimedia teleconferencing,
online multiplayer gaming, or distributed simulations. In such cases, members of a group receive data from
multiple senders, typically each other. From any particular sender, they all receive the same data.

Normal IP communication, in which each packet must be addressed and sent to a single host, is not well
suited to such applications. If an application has data to send to a group, it would have to send a separate
packet with the identical data to each member of the group. This redundancy consumes more bandwidth
than necessary. Furthermore, the redundant traffic is not distributed evenly but rather is focused around the
sending host, and may easily exceed the capacity of the sending host and the nearby networks and routers.

To better support many-to-many and one-to-many communication, IP provides an IP-level multicast analo-
gous to the link-level multicast provided by multi-access networks like Ethernet. Now that we are introduc-
ing the concept of multicast for IP, we also need a term for the traditional one-to-one service of IP that has
been described so far: That service is referred to as unicast.

The basic IP multicast model is a many-to-many model based on multicast groups, where each group has
its own IP multicast address. The hosts that are members of a group receive copies of any packets sent to
that group’s multicast address. A host can be in multiple groups, and it can join and leave groups freely by
telling its local router using a protocol that we will discuss shortly. Thus, while we think of unicast addresses
as being associated with a node or an interface, multicast addresses are associated with an abstract group,
the membership of which changes dynamically over time. Further, the original IP multicast service model
allows any host to send multicast traffic to a group; it doesn’t have to be a member of the group, and there
may be any number of such senders to a given group.

200 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Using IP multicast to send the identical packet to each member of the group, a host sends a single copy of
the packet addressed to the group’s multicast address. The sending host doesn’t need to know the individual
unicast IP address of each member of the group because, as we will see, that knowledge is distributed
among the routers in the internetwork. Similarly, the sending host doesn’t need to send multiple copies of
the packet because the routers will make copies whenever they have to forward the packet over more than
one link. Compared to using unicast IP to deliver the same packets to many receivers, IP multicast is more
scalable because it eliminates the redundant traffic (packets) that would have been sent many times over the
same links, especially those near to the sending host.

IP’s original many-to-many multicast has been supplemented with support for a form of one-to-many mul-
ticast. In this model of one-to-many multicast, called Source-Specific Multicast (SSM), a receiving host
specifies both a multicast group and a specific sending host. The receiving host would then receive multi-
casts addressed to the specified group, but only if they are from the specified sender. Many Internet multicast
applications (e.g., radio broadcasts) fit the SSM model. To contrast it with SSM, IP’s original many-to-many
model is sometimes referred to as Any Source Multicast (ASM).

A host signals its desire to join or leave a multicast group by communicating with its local router using
a special protocol for just that purpose. In IPv4, that protocol is the Internet Group Management Protocol
(IGMP); in IPv6, it is Multicast Listener Discovery (MLD). The router then has the responsibility for making
multicast behave correctly with regard to that host. Because a host may fail to leave a multicast group when
it should (after a crash or other failure, for example), the router periodically polls the network to determine
which groups are still of interest to the attached hosts.

4.3.1 Multicast Addresses

IP has a subrange of its address space reserved for multicast addresses. In IPv4, these addresses are assigned
in the class D address space, and IPv6 also has a portion of its address space reserved for multicast group
addresses. Some subranges of the multicast ranges are reserved for intradomain multicast, so they can be
reused independently by different domains.

There are thus 28 bits of possible multicast address in IPv4 when we ignore the prefix shared by all multicast
addresses. This presents a problem when attempting to take advantage of hardware multicasting on a local
area network (LAN). Let’s take the case of Ethernet. Ethernet multicast addresses have only 23 bits when we
ignore their shared prefix. In other words, to take advantage of Ethernet multicasting, IP has to map 28-bit
IP multicast addresses into 23-bit Ethernet multicast addresses. This is implemented by taking the low-order
23 bits of any IP multicast address to use as its Ethernet multicast address and ignoring the high-order 5 bits.
Thus, 32 (2°) IP addresses map into each one of the Ethernet addresses.

In this section we use Ethernet as a canonical example of a networking technology that supports
multicast in hardware, but the same is also true of PON (Passive Optical Networks), which is
the access network technology often used to deliver fiber-to-the-home. In fact, IP Multicast
over PON is now a common way to deliver IPTV to homes.

When a host on an Ethernet joins an IP multicast group, it configures its Ethernet interface to receive any
packets with the corresponding Ethernet multicast address. Unfortunately, this causes the receiving host to
receive not only the multicast traffic it desired but also traffic sent to any of the other 31 IP multicast groups
that map to the same Ethernet address, if they are routed to that Ethernet. Therefore, IP at the receiving
host must examine the IP header of any multicast packet to determine whether the packet really belongs to
the desired group. In summary, the mismatch of multicast address sizes means that multicast traffic may

4.3. Multicast 201

Computer Networks: A Systems Approach, Release Version 6.1

place a burden on hosts that are not even interested in the group to which the traffic was sent. Fortunately,
in some switched networks (such as switched Ethernet) this problem can be mitigated by schemes wherein
the switches recognize unwanted packets and discard them.

One perplexing question is how senders and receivers learn which multicast addresses to use in the first
place. This is normally handled by out-of-band means, and there are some quite sophisticated tools to
enable group addresses to be advertised on the Internet.

4.3.2 Multicast Routing (DVMRP, PIM, MSDP)

A router’s unicast forwarding tables indicate, for any IP address, which link to use to forward the unicast
packet. To support multicast, a router must additionally have multicast forwarding tables that indicate,
based on multicast address, which links—possibly more than one—to use to forward the multicast packet
(the router duplicates the packet if it is to be forwarded over multiple links). Thus, where unicast forwarding
tables collectively specify a set of paths, multicast forwarding tables collectively specify a set of trees:
multicast distribution trees. Furthermore, to support Source-Specific Multicast (and, it turns out, for some
types of Any Source Multicast), the multicast forwarding tables must indicate which links to use based on
the combination of multicast address and the (unicast) IP address of the source, again specifying a set of
trees.

Multicast routing is the process by which the multicast distribution trees are determined or, more concretely,
the process by which the multicast forwarding tables are built. As with unicast routing, it is not enough that
a multicast routing protocol “work™; it must also scale reasonably well as the network grows, and it must
accommodate the autonomy of different routing domains.

DVMRP

Distance-vector routing used in unicast can be extended to support multicast. The resulting protocol is called
Distance Vector Multicast Routing Protocol, or DVMRP. DVMRP was the first multicast routing protocol
to see widespread use.

Recall that, in the distance-vector algorithm, each router maintains a table of Destination, Cost,
NextHop tuples, and exchanges a list of (Destination, Cost) pairs with its directly connected
neighbors. Extending this algorithm to support multicast is a two-stage process. First, we create a broadcast
mechanism that allows a packet to be forwarded to all the networks on the internet. Second, we need to
refine this mechanism so that it prunes back networks that do not have hosts that belong to the multicast
group. Consequently, DVMRP is one of several multicast routing protocols described as flood-and-prune
protocols.

Given a unicast routing table, each router knows that the current shortest path to a given destination
goes through NextHop. Thus, whenever it receives a multicast packet from source S, the router forwards
the packet on all outgoing links (except the one on which the packet arrived) if and only if the packet arrived
over the link that is on the shortest path to S (i.e., the packet came from the Next Hop associated with S in
the routing table). This strategy effectively floods packets outward from S but does not loop packets back
toward S.

There are two major shortcomings to this approach. The first is that it truly floods the network; it has no
provision for avoiding LANs that have no members in the multicast group. We address this problem below.
The second limitation is that a given packet will be forwarded over a LAN by each of the routers connected

202 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

to that LAN. This is due to the forwarding strategy of flooding packets on all links other than the one on
which the packet arrived, without regard to whether or not those links are part of the shortest-path tree rooted
at the source.

The solution to this second limitation is to eliminate the duplicate broadcast packets that are generated
when more than one router is connected to a given LAN. One way to do this is to designate one router as
the parent router for each link, relative to the source, where only the parent router is allowed to forward
multicast packets from that source over the LAN. The router that has the shortest path to source S is selected
as the parent; a tie between two routers would be broken according to which router has the smallest address.
A given router can learn if it is the parent for the LAN (again relative to each possible source) based upon
the distance-vector messages it exchanges with its neighbors.

Notice that this refinement requires that each router keep, for each source, a bit for each of its incident links
indicating whether or not it is the parent for that source/link pair. Keep in mind that in an internet setting,
a source is a network, not a host, since an internet router is only interested in forwarding packets between
networks. The resulting mechanism is sometimes called Reverse Path Broadcast (RPB) or Reverse Path
Forwarding (RPF). The path is reverse because we are considering the shortest path toward the source when
making our forwarding decisions, as compared to unicast routing, which looks for the shortest path to a
given destination.

The RPB mechanism just described implements shortest-path broadcast. We now want to prune the set
of networks that receives each packet addressed to group G to exclude those that have no hosts that are
members of G. This can be accomplished in two stages. First, we need to recognize when a leaf network
has no group members. Determining that a network is a leaf is easy—if the parent router as described above
is the only router on the network, then the network is a leaf. Determining if any group members reside on
the network is accomplished by having each host that is a member of group G periodically announce this
fact over the network, as described in our earlier description of link-state multicast. The router then uses
this information to decide whether or not to forward a multicast packet addressed to G over this LAN.

The second stage is to propagate this “no members of G here” information up the shortest-path tree. This is
done by having the router augment the (Destination, Cost) pairs it sends to its neighbors with the
set of groups for which the leaf network is interested in receiving multicast packets. This information can
then be propagated from router to router, so that for each of its links a given router knows for what groups it
should forward multicast packets.

Note that including all of this information in the routing update is a fairly expensive thing to do. In practice,
therefore, this information is exchanged only when some source starts sending packets to that group. In
other words, the strategy is to use RPB, which adds a small amount of overhead to the basic distance-vector
algorithm, until a particular multicast address becomes active. At that time, routers that are not interested in
receiving packets addressed to that group speak up, and that information is propagated to the other routers.

PIM-SM

Protocol Independent Multicast, or PIM, was developed in response to the scaling problems of earlier mul-
ticast routing protocols. In particular, it was recognized that the existing protocols did not scale well in
environments where a relatively small proportion of routers want to receive traffic for a certain group. For
example, broadcasting traffic to all routers until they explicitly ask to be removed from the distribution is
not a good design choice if most routers don’t want to receive the traffic in the first place. This situation is
sufficiently common that PIM divides the problem space into sparse mode and dense mode, where sparse

4.3. Multicast 203

Computer Networks: A Systems Approach, Release Version 6.1

and dense refer to the proportion of routers that will want the multicast. PIM dense mode (PIM-DM) uses
a flood-and-prune algorithm like DVMRP and suffers from the same scalability problem. PIM sparse mode
(PIM-SM) has become the dominant multicast routing protocol and is the focus of our discussion here. The
“protocol independent” aspect of PIM, by the way, refers to the fact that, unlike earlier protocols such as
DVMRP, PIM does not depend on any particular sort of unicast routing—it can be used with any unicast
routing protocol, as we will see below.

In PIM-SM, routers explicitly join the multicast distribution tree using PIM protocol messages known as
Join messages. Note the contrast to DVMRP’s approach of creating a broadcast tree first and then pruning
the uninterested routers. The question that arises is where to send those Join messages because, after all,
any host (and any number of hosts) could send to the multicast group. To address this, PIM-SM assigns to
each group a special router known as the rendezvous point (RP). In general, a number of routers in a domain
are configured to be candidate RPs, and PIM-SM defines a set of procedures by which all the routers in a
domain can agree on the router to use as the RP for a given group. These procedures are rather complex, as
they must deal with a wide variety of scenarios, such as the failure of a candidate RP and the partitioning of
a domain into two separate networks due to a number of link or node failures. For the rest of this discussion,
we assume that all routers in a domain know the unicast IP address of the RP for a given group.

A multicast forwarding tree is built as a result of routers sending Join messages to the RP. PIM-SM allows
two types of trees to be constructed: a shared tree, which may be used by all senders, and a source-specific
tree, which may be used only by a specific sending host. The normal mode of operation creates the shared
tree first, followed by one or more source-specific trees if there is enough traffic to warrant it. Because
building trees installs state in the routers along the tree, it is important that the default is to have only one
tree for a group, not one for every sender to a group.

When a router sends a Join message toward the RP for a group G, it is sent using normal IP unicast
transmission. This is illustrated in Figure 4.14(a), in which router R4 is sending a Join to the rendezvous
point for some group. The initial Join message is “wildcarded”; that is, it applies to all senders. A Join
message clearly must pass through some sequence of routers before reaching the RP (e.g., R2). Each router
along the path looks at the Join and creates a forwarding table entry for the shared tree, called a (*, G) entry
(where * means “all senders”). To create the forwarding table entry, it looks at the interface on which the
Join arrived and marks that interface as one on which it should forward data packets for this group. It then
determines which interface it will use to forward the Join toward the RP. This will be the only acceptable
interface for incoming packets sent to this group. It then forwards the Join toward the RP. Eventually, the
message arrives at the RP, completing the construction of the tree branch. The shared tree thus constructed
is shown as a solid line from the RP to R4 in Figure 4.14(a).

As more routers send Joins toward the RP, they cause new branches to be added to the tree, as illustrated in
Figure 4.14(b). Note that, in this case, the Join only needs to travel to R2, which can add the new branch
to the tree simply by adding a new outgoing interface to the forwarding table entry created for this group.
R2 need not forward the Join on to the RP. Note also that the end result of this process is to build a tree
whose root is the RP.

At this point, suppose a host wishes to send a message to the group. To do so, it constructs a packet with the
appropriate multicast group address as its destination and sends it to a router on its local network known as
the designated router (DR). Suppose the DR is R1 in Figure 4.14. There is no state for this multicast group
between R1 and the RP at this point, so instead of simply forwarding the multicast packet, R1 tunnels it to
the RP. That is, R1 encapsulates the multicast packet inside a PIM Register message that it sends to the
unicast [P address of the RP. Just like an IP tunnel endpoint, the RP receives the packet addressed to it, looks
at the payload of the Register message, and finds inside an IP packet addressed to the multicast address

204 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

RP =Rendezvous point
— Shared tree
— —— - Source-specific tree for source R1

Figure 4.14.: PIM operation: (a) R4 sends a Join message to RP and joins shared tree; (b) RS joins shared
tree; (¢c) RP builds source-specific tree to R1 by sending a Join message to R1; (d) R4 and RS build source-
specific tree to R1 by sending Join messages to R1.

4.3. Multicast 205

Computer Networks: A Systems Approach, Release Version 6.1

of this group. The RP, of course, does know what to do with such a packet—it sends it out onto the shared
tree of which the RP is the root. In the example of Figure 4.14, this means that the RP sends the packet on
to R2, which is able to forward it on to R4 and R5. The complete delivery of a packet from R1 to R4 and
R5 is shown in Figure 4.15. We see the tunneled packet travel from R1 to the RP with an extra IP header
containing the unicast address of RP, and then the multicast packet addressed to G making its way along the
shared tree to R4 and RS.

At this point, we might be tempted to declare success, since all hosts can send to all receivers this way.
However, there is some bandwidth inefficiency and processing cost in the encapsulation and decapsulation
of packets on the way to the RP, so the RP forces knowledge about this group into the intervening routers so
tunneling can be avoided. It sends a Join message toward the sending host (Figure 4.14(c)). As this Join
travels toward the host, it causes the routers along the path (R3) to learn about the group, so that it will be
possible for the DR to send the packet to the group as native (i.e., not tunneled) multicast packets.

Figure 4.15.: Delivery of a packet along a shared tree. R1 tunnels the packet to the RP, which forwards it
along the shared tree to R4 and RS.

An important detail to note at this stage is that the Join message sent by the RP to the sending host is
specific to that sender, whereas the previous ones sent by R4 and RS applied to all senders. Thus, the effect
of the new Join is to create sender-specific state in the routers between the identified source and the RP.
This is referred to as (S, G) state, since it applies to one sender to one group, and contrasts with the (*, G)
state that was installed between the receivers and the RP that applies to all senders. Thus, in Figure 4.14(c),
we see a source-specific route from R1 to the RP (indicated by the dashed line) and a tree that is valid for
all senders from the RP to the receivers (indicated by the solid line).

206 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

The next possible optimization is to replace the entire shared tree with a source-specific tree. This is desirable
because the path from sender to receiver via the RP might be significantly longer than the shortest possible
path. This again is likely to be triggered by a high data rate being observed from some sender. In this case,
the router at the downstream end of the tree—say, R4 in our example—sends a source-specific Join toward
the source. As it follows the shortest path toward the source, the routers along the way create (S, G) state for
this tree, and the result is a tree that has its root at the source, rather than the RP. Assuming both R4 and R5
made the switch to the source-specific tree, we would end up with the tree shown in Figure 4.14(d). Note
that this tree no longer involves the RP at all. We have removed the shared tree from this picture to simplify
the diagram, but in reality all routers with receivers for a group must stay on the shared tree in case new
senders show up.

We can now see why PIM is protocol independent. All of its mechanisms for building and maintaining
trees take advantage of unicast routing without depending on any particular unicast routing protocol. The
formation of trees is entirely determined by the paths that Join messages follow, which is determined by
the choice of shortest paths made by unicast routing. Thus, to be precise, PIM is “unicast routing protocol
independent,” as compared to DVMRP. Note that PIM is very much bound up with the Internet Protocol—it
is not protocol independent in terms of network-layer protocols.

The design of PIM-SM again illustrates the challenges in building scalable networks and how scalability is
sometimes pitted against some sort of optimality. The shared tree is certainly more scalable than a source-
specific tree, in the sense that it reduces the total state in routers to be on the order of the number of groups
rather than the number of senders times the number of groups. However, the source-specific tree is likely to
be necessary to achieve efficient routing and effective use of link bandwidth.

Interdomain Multicast (MSDP)

PIM-SM has some significant shortcomings when it comes to interdomain multicast. In particular, the
existence of a single RP for a group goes against the principle that domains are autonomous. For a given
multicast group, all the participating domains would be dependent on the domain where the RP is located.
Furthermore, if there is a particular multicast group for which a sender and some receivers shared a single
domain, the multicast traffic would still have to be routed initially from the sender to those receivers via
whatever domain has the RP for that multicast group. Consequently, the PIM-SM protocol is typically not
used across domains, only within a domain.

To extend multicast across domains using PIM-SM, the Multicast Source Discovery Protocol (MSDP) was
devised. MSDP is used to connect different domains—each running PIM-SM internally, with its own
RPs—by connecting the RPs of the different domains. Each RP has one or more MSDP peer RPs in other
domains. Each pair of MSDP peers is connected by a TCP connection over which the MSDP protocol runs.
Together, all the MSDP peers for a given multicast group form a loose mesh that is used as a broadcast
network. MSDP messages are broadcast through the mesh of peer RPs using the Reverse Path Broadcast
algorithm that we discussed in the context of DVMRP.

What information does MSDP broadcast through the mesh of RPs? Not group membership information;
when a host joins a group, the furthest that information will flow is its own domain’s RP. Instead, it is
source—multicast sender—information. Each RP knows the sources in its own domain because it receives a
Register message whenever a new source arises. Each RP periodically uses MSDP to broadcast Source
Active messages to its peers, giving the IP address of the source, the multicast group address, and the IP
address of the originating RP.

4.3. Multicast 207

Computer Networks: A Systems Approach, Release Version 6.1

(a) Domain A

3: Join

Domain B

RP2

2b: MSDP
Source active

(b) Domain A
REEY e :
%\ \\ Domain B
N
RP1 ___- “\. RP2

—— Shared tree
———— Source-specific tree for source SR

Figure 4.16.: MSDP operation: (a) The source SR sends a Register message to its domain’s RP, RP1; then
RP1 sends a source-specific Join message to SR and an MSDP Source Active message to its MSDP peer in
Domain B, RP2; then RP2 sends a source-specific Join message to SR. (b) As a result, RP1 and RP2 are in
the source-specific tree for source SR.

208 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

If an MSDP peer RP that receives one of these broadcasts has active receivers for that multicast group, it
sends a source-specific Join, on that RP’s own behalf, to the source host, as shown in Figure 4.16(a). The
Join message builds a branch of the source-specific tree to this RP, as shown in Figure 4.16(b). The result
is that every RP that is part of the MSDP network and has active receivers for a particular multicast group
is added to the source-specific tree of the new source. When an RP receives a multicast from the source, the
RP uses its shared tree to forward the multicast to the receivers in its domain.

Source-Specific Multicast (PIM-SSM)

The original service model of PIM was, like earlier multicast protocols, a many-to-many model. Receivers
joined a group, and any host could send to the group. However, it was recognized in the late 1990s that
it might be useful to add a one-to-many model. Lots of multicast applications, after all, have only one
legitimate sender, such as the speaker at a conference being sent over the Internet. We already saw that
PIM-SM can create source-specific shortest path trees as an optimization after using the shared tree initially.
In the original PIM design, this optimization was invisible to hosts—only routers joined source-specific
trees. However, once the need for a one-to-many service model was recognized, it was decided to make
the source-specific routing capability of PIM-SM explicitly available to hosts. It turns out that this mainly
required changes to IGMP and its IPv6 analog, MLD, rather than PIM itself. The newly exposed capability
is now known as PIM-SSM (PIM Source-Specific Multicast).

PIM-SSM introduces a new concept, the channel, which is the combination of a source address S and a
group address G. The group address G looks just like a normal IP multicast address, and both IPv4 and
IPv6 have allocated subranges of the multicast address space for SSM. To use PIM-SSM, a host specifies
both the group and the source in an IGMP Membership Report message to its local router. That router then
sends a PIM-SM source-specific Join message toward the source, thereby adding a branch to itself in the
source-specific tree, just as was described above for “normal” PIM-SM, but bypassing the whole shared-tree
stage. Since the tree that results is source specific, only the designated source can send packets on that tree.

The introduction of PIM-SSM has provided some significant benefits, particularly since there is relatively
high demand for one-to-many multicasting:

* Multicasts travel more directly to receivers.

* The address of a channel is effectively a multicast group address plus a source address. Therefore,
given that a certain range of multicast group addresses will be used for SSM exclusively, multiple
domains can use the same multicast group address independently and without conflict, as long as they
use it only with sources in their own domains.

* Because only the specified source can send to an SSM group, there is less risk of attacks based on
malicious hosts overwhelming the routers or receivers with bogus multicast traffic.

* PIM-SSM can be used across domains exactly as it is used within a domain, without reliance on
anything like MSDP.

SSM, therefore, is quite a useful addition to the multicast service model.

Bidirectional Trees (BIDIR-PIM)

We round off our discussion of multicast with another enhancement to PIM known as Bidirectional PIM.
BIDIR-PIM is a recent variant of PIM-SM that is well suited to many-to-many multicasting within a domain,

4.3. Multicast 209

Computer Networks: A Systems Approach, Release Version 6.1

especially when senders and receivers to a group may be the same, as in a multiparty videoconference, for
example. As in PIM-SM, would-be receivers join groups by sending IGMP Membership Report messages
(which must not be source specific), and a shared tree rooted at an RP is used to forward multicast packets
to receivers. Unlike PIM-SM, however, the shared tree also has branches to the sources. That wouldn’t
make any sense with PIM-SM’s unidirectional tree, but BIDIR-PIM’s trees are bidirectional—a router that
receives a multicast packet from a downstream branch can forward it both up the tree and down other
branches. The route followed to deliver a packet to any particular receiver goes only as far up the tree as
necessary before going down the branch to that receiver. See the multicast route from R1 to R2 in Figure
4.17(b) for an example. R4 forwards a multicast packet downstream to R2 at the same time that it forwards
a copy of the same packet upstream to RS5.

A surprising aspect of BIDIR-PIM is that there need not actually be an RP. All that is needed is a routable
address, which is known as an RP address even though it need not be the address of an RP or anything at all.
How can this be? A Join from a receiver is forwarded toward the RP address until it reaches a router with
an interface on the link where the RP address would reside, where the Join terminates. Figure 4.17(a) shows
a Join from R2 terminating at RS, and a Join from R3 terminating at R6. The upstream forwarding of
a multicast packet similarly flows toward the RP address until it reaches a router with an interface on the
link where the RP address would reside, but then the router forwards the multicast packet onto that link as
the final step of upstream forwarding, ensuring that all other routers on that link receive the packet. Figure
4.17(b) illustrates the flow of multicast traffic originating at R1.

BIDIR-PIM cannot thus far be used across domains. On the other hand, it has several advantages over
PIM-SM for many-to-many multicast within a domain:

* There is no source registration process because the routers already know how to route a multicast
packet toward the RP address.

* The routes are more direct than those that use PIM-SM’s shared tree because they go only as far up
the tree as necessary, not all the way to the RP.

* Bidirectional trees use much less state than the source-specific trees of PIM-SM because there is never
any source-specific state. (On the other hand, the routes will be longer than those of source-specific
trees.)

¢ The RP cannot be a bottleneck, and indeed no actual RP is needed.

One conclusion to draw from the fact that there are so many different approaches to multicast just within
PIM is that multicast is a difficult problem space in which to find optimal solutions. You need to decide
which criteria you want to optimize (bandwidth usage, router state, path length, etc.) and what sort of
application you are trying to support (one-to-many, many-to-many, etc.) before you can make a choice of
the “best” multicast mode for the task.

4.4 Multiprotocol Label Switching

We continue our discussion of enhancements to IP by describing an addition to the Internet architecture
that is very widely used but largely hidden from end users. The enhancement, called Multiprotocol Label
Switching (MPLS), combines some of the properties of virtual circuits with the flexibility and robustness
of datagrams. On the one hand, MPLS is very much associated with the Internet Protocol’s datagram-
based architecture—it relies on IP addresses and IP routing protocols to do its job. On the other hand,
MPLS-enabled routers also forward packets by examining relatively short, fixed-length labels, and these

210 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

Figure 4.17.: BIDIR-PIM operation: (a) R2 and R3 send Join messages toward the RP address that terminate
when they reach a router on the RP address’s link. (b) A multicast packet from R1 is forwarded upstream to
the RP address’s link and downstream wherever it intersects a group member branch.

4.4. Multiprotocol Label Switching 211

Computer Networks: A Systems Approach, Release Version 6.1

labels have local scope, just like in a virtual circuit network. It is perhaps this marriage of two seemingly
opposed technologies that has caused MPLS to have a somewhat mixed reception in the Internet engineering
community.

Before looking at how MPLS works, it is reasonable to ask “what is it good for?” Many claims have been
made for MPLS, but there are three main things that it is used for today:

* To enable IP capabilities on devices that do not have the capability to forward IP datagrams in the
normal manner

» To forward IP packets along explicit routes—precalculated routes that don’t necessarily match those
that normal IP routing protocols would select

* To support certain types of virtual private network services

It is worth noting that one of the original goals—improving performance—is not on the list. This has a lot to
do with the advances that have been made in forwarding algorithms for IP routers in recent years and with
the complex set of factors beyond header processing that determine performance.

The best way to understand how MPLS works is to look at some examples of its use. In the next three
sections, we will look at examples to illustrate the three applications of MPLS mentioned above.

4.4.1 Destination-Based Forwarding

One of the earliest publications to introduce the idea of attaching labels to IP packets was a paper by Chan-
dranmenon and Vargese that described an idea called threaded indices. A very similar idea is now imple-
mented in MPLS-enabled routers. The following example shows how this idea works.

18.1.1/24

18.3.3/24

Prefix Int. Prefix Int.

18.1.1 0 18.1.1 1
18.3.3 0 18.3.3 0

Figure 4.18.: Routing tables in example network.

Consider the network in Figure 4.18. Each of the two routers on the far right (R3 and R4) has one connected
network, with prefixes 18.1.1/24 and 18.3.3/24. The remaining routers (R1 and R2) have routing
tables that indicate which outgoing interface each router would use when forwarding packets to one of those
two networks.

When MPLS is enabled on a router, the router allocates a label for each prefix in its routing table and
advertises both the label and the prefix that it represents to its neighboring routers. This advertisement is

212 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

carried in the Label Distribution Protocol. This is illustrated in Figure 4.19. Router R2 has allocated the label
value 15 for the prefix 18. 1.1 and the label value 16 for the prefix 18. 3. 3. These labels can be chosen
at the convenience of the allocating router and can be thought of as indices into the routing table. After
allocating the labels, R2 advertises the label bindings to its neighbors; in this case, we see R2 advertising
a binding between the label 15 and the prefix 18.1.1 to R1. The meaning of such an advertisement is
that R2 has said, in effect, “Please attach the label 15 to all packets sent to me that are destined to prefix
18.1.1.” RI stores the label in a table alongside the prefix that it represents as the remote or outgoing label
for any packets that it sends to that prefix.

In Figure 4.19(c), we see another label advertisement from router R3 to R2 for the prefix 18.1.1, and R2
places the remote label that it learned from R3 in the appropriate place in its table.

At this point, we can look at what happens when a packet is forwarded in this network. Suppose a packet
destined to the IP address 18.1.1.5 arrives from the left to router R1. R1 in this case is referred to as a
Label Edge Router (LER); an LER performs a complete IP lookup on arriving IP packets and then applies
labels to them as a result of the lookup. In this case, R1 would see that 18.1.1.5 matches the prefix
18.1.1 in its forwarding table and that this entry contains both an outgoing interface and a remote label
value. R1 therefore attaches the remote label 15 to the packet before sending it.

When the packet arrives at R2, R2 looks only at the label in the packet, not the IP address. The forwarding
table at R2 indicates that packets arriving with a label value of 15 should be sent out interface 1 and that
they should carry the label value 24, as advertised by router R3. R2 therefore rewrites, or swaps, the label
and forwards it on to R3.

What has been accomplished by all this application and swapping of labels? Observe that when R2 for-
warded the packet in this example it never actually needed to examine the IP address. Instead, R2 looked
only at the incoming label. Thus, we have replaced the normal IP destination address lookup with a label
lookup. To understand why this is significant, it helps to recall that, although IP addresses are always the
same length, IP prefixes are of variable length, and the IP destination address lookup algorithm needs to find
the longest match—the longest prefix that matches the high order bits in the IP address of the packet being
forwarded. By contrast, the label forwarding mechanism just described is an exact match algorithm. It is
possible to implement a very simple exact match algorithm, for example, by using the label as an index into
an array, where each element in the array is one line in the forwarding table.

Note that, while the forwarding algorithm has been changed from longest match to exact match, the routing
algorithm can be any standard IP routing algorithm (e.g., OSPF). The path that a packet will follow in this
environment is the exact same path that it would have followed if MPLS were not involved: the path chosen
by the IP routing algorithms. All that has changed is the forwarding algorithm.

An important fundamental concept of MPLS is illustrated by this example. Every MPLS label is associated
with a forwarding equivalence class (FEC)—a set of packets that are to receive the same forwarding treat-
ment in a particular router. In this example, each prefix in the routing table is an FEC; that is, all packets
that match the prefix 18.1.1—no matter what the low order bits of the IP address are—get forwarded along
the same path. Thus, each router can allocate one label that maps to 18.1.1, and any packet that contains an
IP address whose high order bits match that prefix can be forwarded using that label.

As we will see in the subsequent examples, FECs are a very powerful and flexible concept. FECs can be
formed using almost any criteria; for example, all the packets corresponding to a particular customer could
be considered to be in the same FEC.

Returning to the example at hand, we observe that changing the forwarding algorithm from normal IP
forwarding to label swapping has an important consequence: Devices that previously didn’t know how to

4.4. Multiprotocol Label Switching 213

Computer Networks: A Systems Approach, Release Version 6.1

(@)
18.1.1/24

|Label=15, Pref=18.1.1]

18.3.3/24

Prefix Int. Label Prefix Int.
18.1.1 0 15 18.1.1 1
18.3.3 0 16| 18.3.3 0

18.1.1/24

18.3.3/24

Remote
Prefix Int. label Label Prefix Int.
18.1.1 0 |15 15| 18.1.1 1

18.3.3 0 |16 16| 1833 | O

18.1.1/24

18.3.3/24

Remote Remote
Prefix Int. label Label Prefix Int. label
18.1.1 0 |15 15| 18.1.1 1124
18.3.3 0 |16 16| 18.3.3 0

Figure 4.19.: (a) R2 allocates labels and advertises bindings to R1. (b) R1 stores the received labels in a
table. (c) R3 advertises another binding, and R2 stores the received label in a table.

214 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

forward IP packets can be used to forward IP traffic in an MPLS network. The most notable early application
of this result was to ATM switches, which can support MPLS without any changes to their forwarding
hardware. ATM switches support the label-swapping forwarding algorithm just described, and by providing
these switches with IP routing protocols and a method to distribute label bindings they could be turned
into Label Switching Routers (LSRs)—devices that run IP control protocols but use the label switching
forwarding algorithm. More recently, the same idea has been applied to optical switches.

Before we consider the purported benefits of turning an ATM switch into an LSR, we should tie up some
loose ends. We have said that labels are “attached” to packets, but where exactly are they attached? The
answer depends on the type of link on which packets are carried. Two common methods for carrying labels
on packets are shown in Figure 4.20. When IP packets are carried as complete frames, as they are on most
link types including Ethernet and PPP, the label is inserted as a “shim” between the layer 2 header and the IP
(or other layer 3) header, as shown in the lower part of the figure. However, if an ATM switch is to function
as an MPLS LSR, then the label needs to be in a place where the switch can use it, and that means it needs
to be in the ATM cell header, exactly where one would normally find the virtual circuit identifier (VCI) and
virtual path identifier (VPI) fields.

(a) ATM cell

GFC VPI VCI PTI | CLP | HEC DATA
header

A s [}

Label

(b) “Shim” header
(for PPP, Ethernet, PPP header Label header Layer 3 header
etc.)

Figure 4.20.: (a) Label on an ATM-encapsulated packet; (b) label on a frame-encapsulated packet.

Having now devised a scheme by which an ATM switch can function as an LSR, what have we gained?
One thing to note is that we could now build a network that uses a mixture of conventional IP routers, label
edge routers, and ATM switches functioning as LSRs, and they would all use the same routing protocols.
To understand the benefits of using the same protocols, consider the alternative. In Figure 4.21(a), we see
a set of routers interconnected by virtual circuits over an ATM network, a configuration called an overlay
network. At one point in time, networks of this type were often built because commercially available ATM
switches supported higher total throughput than routers. Today, networks like this are less common because
routers have caught up with and even surpassed ATM switches. However, these networks still exist because
of the significant installed base of ATM switches in network backbones, which in turn is partly a result of
ATM’s ability to support a range of capabilities such as circuit emulation and virtual circuit services.

In an overlay network, each router would potentially be connected to each of the other routers by a virtual
circuit, but in this case for clarity we have just shown the circuits from R1 to all of its peer routers. R1
has five routing neighbors and needs to exchange routing protocol messages with all of them—we say that
R1 has five routing adjacencies. By contrast, in Figure 4.21(b), the ATM switches have been replaced with
LSRs. There are no longer virtual circuits interconnecting the routers. Thus, R1 has only one adjacency,
with LSRI. In large networks, running MPLS on the switches leads to a significant reduction in the number
of adjacencies that each router must maintain and can greatly reduce the amount of work that the routers
have to do to keep each other informed of topology changes.

4.4. Multiprotocol Label Switching 215

Computer Networks: A Systems Approach, Release Version 6.1

Figure 4.21.: (a) Routers connect to each other using an overlay of virtual circuits. (b) Routers peer directly
with LSRs.

216 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

A second benefit of running the same routing protocols on edge routers and on the LSRs is that the edge
routers now have a full view of the topology of the network. This means that if some link or node fails inside
the network, the edge routers will have a better chance of picking a good new path than if the ATM switches
rerouted the affected VCs without the knowledge of the edge routers.

Note that the step of “replacing” ATM switches with LSRs is actually achieved by changing the protocols
running on the switches, but typically no change to the forwarding hardware is needed; that is, an ATM
switch can often be converted to an MPLS LSR by upgrading only its software. Furthermore, an MPLS
LSR might continue to support standard ATM capabilities at the same time as it runs the MPLS control
protocols, in what is referred to as “ships in the night” mode.

The idea of running IP control protocols on devices that are unable to forward IP packets natively has been
extended to Wavelength Division Multiplexing (WDM) and Time Division Multiplexing (TDM) networks
(e.g., SONET). This is known as Generalized MPLS (GMPLYS). Part of the motivation for GMPLS was
to provide routers with topological knowledge of an optical network, just as in the ATM case. Even more
important was the fact that there were no standard protocols for controlling optical devices, so MPLS proved
to be a natural fit for that job.

4.4.2 Explicit Routing

IP has a source routing option, but it is not widely used for several reasons, including the fact that only a
limited number of hops can be specified and because it is usual processed outside the “fast path” on most
routers.

MPLS provides a convenient way to add capabilities similar to source-routing to IP networks, although
the capability is more often referred to as explicit routing rather than source routing. One reason for the
distinction is that it usually isn’t the real source of the packet that picks the route. More often it is one of
the routers inside a service provider’s network. Figure 4.22 shows an example of how the explicit routing
capability of MPLS might be applied. This sort of network is often called a fish network because of its shape
(the routers R1 and R2 form the tail; R7 is at the head).

Figure 4.22.: A network requiring explicit routing.

Suppose that the operator of the network in Figure 4.22 has determined that any traffic flowing from R1 to
R7 should follow the path R1-R3-R6-R7 and that any traffic going from R2 to R7 should follow the path
R2-R3-R4-R5-R7. One reason for such a choice would be to make good use of the capacity available along
the two distinct paths from R3 to R7. We can think of the R1-to-R7 traffic as constituting one forwarding

4.4. Multiprotocol Label Switching 217

Computer Networks: A Systems Approach, Release Version 6.1

equivalence class, and the R2-to-R7 traffic constitutes a second FEC. Forwarding traffic in these two classes
along different paths is difficult with normal IP routing, because R3 doesn’t normally look at where traffic
came from in making its forwarding decisions.

Because MPLS uses label swapping to forward packets, it is easy enough to achieve the desired routing if the
routers are MPLS enabled. If R1 and R2 attach distinct labels to packets before sending them to R3—thus
identifying them as being in different FECs—then R3 can forward packets from R1 and R2 along different
paths. The question that then arises is how do all the routers in the network agree on what labels to use
and how to forward packets with particular labels? Clearly, we can’t use the same procedures as described
in the preceding section to distribute labels, because those procedures establish labels that cause packets to
follow the normal paths picked by IP routing, which is exactly what we are trying to avoid. Instead, a new
mechanism is needed. It turns out that the protocol used for this task is the Resource Reservation Protocol
(RSVP). For now it suffices to say that it is possible to send an RSVP message along an explicitly specified
path (e.g., R1-R3-R6-R7) and use it to set up label forwarding table entries all along that path. This is very
similar to the process of establishing a virtual circuit.

One of the applications of explicit routing is traffic engineering, which refers to the task of ensuring that
sufficient resources are available in a network to meet the demands placed on it. Controlling exactly which
paths the traffic flows on is an important part of traffic engineering. Explicit routing can also help to make
networks more resilient in the face of failure, using a capability called fast reroute. For example, it is
possible to precalculate a path from router A to router B that explicitly avoids a certain link L. In the event
that link L fails, router A could send all traffic destined to B down the precalculated path. The combination
of precalculation of the backup path and the explicit routing of packets along the path means that A doesn’t
need to wait for routing protocol packets to make their way across the network or for routing algorithms to
be executed by various other nodes in the network. In certain circumstances, this can significantly reduce
the time taken to reroute packets around a point of failure.

One final point to note about explicit routing is that explicit routes need not be calculated by a network oper-
ator as in the above example. Routers can use various algorithms to calculate explicit routes automatically.
The most common of these is constrained shortest path first (CSPF), which is a link-state algorithm, but
which also takes various constraints into account. For example, if it was required to find a path from R1 to
R7 that could carry an offered load of 100 Mbps, we could say that the constraint is that each link must have
at least 100 Mbps of available capacity. CSPF addresses this sort of problem.

4.4.3 Virtual Private Networks and Tunnels

One way to build virtual private networks (VPNs) is to use tunnels. It turns out that MPLS can be thought
of as a way to build tunnels, and this makes it suitable for building VPNs of various types.

The simplest form of MPLS VPN to understand is a layer 2 VPN. In this type of VPN, MPLS is used to
tunnel layer 2 data (such as Ethernet frames or ATM cells) across a network of MPLS-enabled routers. One
reason for tunnels is to provide some sort of network service (such as multicast) that is not supported by
some routers in the network. The same logic applies here: IP routers are not ATM switches, so you cannot
provide an ATM virtual circuit service across a network of conventional routers. However, if you had a pair
of routers interconnected by a tunnel, they could send ATM cells across the tunnel and emulate an ATM
circuit. The term for this technique within the IETF is pseudowire emulation. Figure 4.23 illustrates the
idea.

We have already seen how IP tunnels are built: The router at the entrance of the tunnel wraps the data to

218 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

ATM cells arrive ATM cells sent

Tail

Cells sent into Tunneled data
tunnel at head arrives at tail

Figure 4.23.: An ATM circuit is emulated by a tunnel.

be tunneled in an IP header (the funnel header), which represents the address of the router at the far end of
the tunnel and sends the data like any other IP packet. The receiving router receives the packet with its own
address in the header, strips the tunnel header, and finds the data that was tunneled, which it then processes.
Exactly what it does with that data depends on what it is. For example, if it were another IP packet, it would
then be forwarded on like a normal IP packet. However, it need not be an IP packet, as long as the receiving
router knows what to do with non-IP packets. We’ll return to the issue of how to handle non-IP data in a
moment.

An MPLS tunnel is not too different from an IP tunnel, except that the tunnel header consists of an MPLS
header rather than an IP header. Looking back to our first example, in Figure 4.19, we saw that router R1
attached a label (15) to every packet that it sent towards prefix 18.1.1. Such a packet would then follow
the path R1-R2-R3, with each router in the path examining only the MPLS label. Thus, we observe that
there was no requirement that R1 only send IP packets along this path—any data could be wrapped up in
the MPLS header and it would follow the same path, because the intervening routers never look beyond the
MPLS header. In this regard, an MPLS header is just like an IP tunnel header (except only 4 bytes long
instead of 20 bytes). The only issue with sending non-IP traffic along a tunnel, MPLS or otherwise, is what
to do with non-IP traffic when it reaches the end of the tunnel. The general solution is to carry some sort
of demultiplexing identifier in the tunnel payload that tells the router at the end of the tunnel what to do. It
turns out that an MPLS label is a perfect fit for such an identifier. An example will make this clear.

Let’s assume we want to tunnel ATM cells from one router to another across a network of MPLS-enabled
routers, as in Figure 4.23. Further, we assume that the goal is to emulate an ATM virtual circuit; that is, cells
arrive at the entrance, or head, of the tunnel on a certain input port with a certain VCI and should leave the
tail end of the tunnel on a certain output port and potentially different VCI. This can be accomplished by
configuring the head and tail routers as follows:

* The head router needs to be configured with the incoming port, the incoming VCI, the demultiplexing
label for this emulated circuit, and the address of the tunnel end router.

* The tail router needs to be configured with the outgoing port, the outgoing VCI, and the demultiplex-
ing label.

Once the routers are provided with this information, we can see how an ATM cell would be forwarded.
Figure 4.24 illustrates the steps.

1. An ATM cell arrives on the designated input port with the appropriate VCI value (101 in this example).
2. The head router attaches the demultiplexing label that identifies the emulated circuit.

3. The head router then attaches a second label, which is the tunnel label that will get the packet to the

4.4. Multiprotocol Label Switching 219

Computer Networks: A Systems Approach, Release Version 6.1

tail router. This label is learned by mechanisms just like those described elsewhere in this section.
4. Routers between the head and tail forward the packet using only the tunnel label.

5. The tail router removes the tunnel label, finds the demultiplexing label, and recognizes the emulated
circuit.

6. The tail router modifies the ATM VClI to the correct value (202 in this case) and sends it out the correct
port.

1. ATM cells arrive 6. ATM cells sent

2. Demux label added [DL[101] |

[DL[101] | [TL[DL]101] | 5. Demux label examined
4. Packet forwarded to tail

3. Tunnel label added
[TL]DL[101] |

Figure 4.24.: Forward ATM cells along a tunnel.

One item in this example that might be surprising is that the packet has two labels attached to it. This is one
of the interesting features of MPLS—Iabels may be stacked on a packet to any depth. This provides some
useful scaling capabilities. In this example, it allows a single tunnel to carry a potentially large number of
emulated circuits.

The same techniques described here can be applied to emulate many other layer 2 services, including Frame
Relay and Ethernet. It is worth noting that virtually identical capabilities can be provided using IP tunnels;
the main advantage of MPLS here is the shorter tunnel header.

Before MPLS was used to tunnel layer 2 services, it was also being used to support layer 3 VPNs. We won’t
go into the details of layer 3 VPNs, which are quite complex, but we will note that they represent one of the
most popular uses of MPLS today. Layer 3 VPNs also use stacks of MPLS labels to tunnel packets across
an IP network. However, the packets that are tunneled are themselves IP packets—hence, the name layer 3
VPNs. In alayer 3 VPN, a single service provider operates a network of MPLS-enabled routers and provides
a “virtually private” IP network service to any number of distinct customers. That is, each customer of the
provider has some number of sites, and the service provider creates the illusion for each customer that there
are no other customers on the network. The customer sees an IP network interconnecting his own sites and
no other sites. This means that each customer is isolated from all other customers in terms of both routing
and addressing. Customer A can’t sent packets directly to customer B, and vice versa. Customer A can even
use [P addresses that have also been used by customer B. The basic idea is illustrated in Figure 4.25. As in
layer 2 VPNs, MPLS is used to tunnel packets from one site to another; however, the configuration of the
tunnels is performed automatically by some fairly elaborate use of BGP, which is beyond the scope of this
book.

Customer A in fact usually can send data to customer B in some restricted way. Most likely, both customer
A and customer B have some connection to the global Internet, and thus it is probably possible for customer
A to send email messages, for example, to the mail server inside customer B’s network. The “privacy”
offered by a VPN prevents customer A from having unrestricted access to all the machines and subnets
inside customer B’s network.

220 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

VPN A/Site 2

VPN B/Site 2

VPN B/Site 1

Provider
network

VPN A/Site 3
VPN A/Site 1

VPN B/Site 3

Figure 4.25.: Example of a layer 3 VPN. Customers A and B each obtain a virtually private IP service from
a single provider.

In summary, MPLS is a rather versatile tool that has been applied to a wide range of different networking
problems. It combines the label-swapping forwarding mechanism that is normally associated with virtual
circuit networks with the routing and control protocols of IP datagram networks to produce a class of net-
work that is somewhere between the two conventional extremes. This extends the capabilities of IP networks
to enable, among other things, more precise control of routing and the support of a range of VPN services.

4.5 Routing Among Mobile Devices

It probably should not be a great surprise to learn that mobile devices present some challenges for the Internet
architecture. The Internet was designed in an era when computers were large, immobile devices, and, while
the Internet’s designers probably had some notion that mobile devices might appear in the future, it’s fair to
assume it was not a top priority to accommodate them. Today, of course, mobile computers are everywhere,
notably in the form of laptops and smartphones, and increasingly in other forms, such as drones. In this
section, we will look at some of the challenges posed by the appearance of mobile devices and some of the
current approaches to accommodating them.

4.5.1 Challenges for Mobile Networking

It is easy enough today to turn up in a wireless hotspot, connect to the Internet using 802.11 or some other
wireless networking protocol, and obtain pretty good Internet service. One key enabling technology that

4.5. Routing Among Mobile Devices 221

Computer Networks: A Systems Approach, Release Version 6.1

made the hotspot feasible is DHCP. You can settle in at a coffee shop, open your laptop, obtain an IP address
for your laptop, and get your laptop talking to a default router and a Domain Name System (DNS) server,
and for a broad class of applications you have everything you need.

If we look a little more closely, however, it’s clear that for some application scenarios, just getting a new IP
address every time you move—which is what DHCP does for you—isn’t always enough. Suppose you are
using your laptop or smartphone for a Voice over IP telephone call, and while talking on the phone you move
from one hotspot to another, or even switch from Wi-Fi to the cellular network for your Internet connection.

Clearly, when you move from one access network to another, you need to get a new IP address—one that
corresponds to the new network. But, the computer or telephone at the other end of your conversation doesn’t
immediately know where you have moved or what your new IP address is. Consequently, in the absence of
some other mechanism, packets would continue to be sent to the address where you used to be, not where
you are now. This problem is illustrated in Figure 4.26; as the mobile node moves from the 802.11 network
in Figure 4.26(a) to the cellular network in Figure 4.26(b), somehow packets from the correspondent node
need to find their way to the new network and then on to the mobile node.

(a)
. =

Correspondent
node

(b)

-, -

Correspondent
node

Figure 4.26.: Forwarding packets from a correspondent node to a mobile node.

There are many different ways to tackle the problem just described, and we will look at some of them below.
Assuming that there is some way to redirect packets so that they come to your new address rather than your
old address, the next immediately apparent problems relate to security. For example, if there is a mechanism
by which I can say, “My new IP address is X,” how do I prevent some attacker from making such a statement
without my permission, thus enabling him to either receive my packets, or to redirect my packets to some
unwitting third party? Thus, we see that security and mobility are quite closely related.

One issue that the above discussion highlights is the fact that IP addresses actually serve two tasks. They
are used as an identifier of an endpoint, and they are also used to locate the endpoint. Think of the identifier
as a long-lived name for the endpoint, and the locator as some possibly more temporary information about

222 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

how to route packets to the endpoint. As long as devices do not move, or do not move often, using a single
address for both jobs seem pretty reasonable. But once devices start to move, you would rather like to have
an identifier that does not change as you move—this is sometimes called an Endpoint Identifier or Host
ldentifier—and a separate locator. This idea of separating locators from identifiers has been around for a
long time, and most of the approaches to handling mobility described below provide such a separation in
some form.

The assumption that IP addresses don’t change shows up in many different places. For example, transport
protocols like TCP have historically made assumptions about the IP address staying constant for the life of
a connection, so one approach could be to redesign transport protocols so they can operate with changing
end-point addresses.

But rather than try to change TCP, a common alternative is for the application to periodically re-establish
the TCP connection in case the client’s IP address has changed. As strange as this sounds, if the application
is HTTP-based (e.g., a web browser like Chrome or a streaming application like Netflix) then that is exactly
what happens. In other words, the strategy is for the application to work around situations where the user’s
IP address may have changed, instead of trying to maintain the appearance that it does not change.

While we are all familiar with endpoints that move, it is worth noting that routers can also move. This is
certainly less common today than endpoint mobility, but there are plenty of environments where a mobile
router might make sense. One example might be an emergency response team trying to deploy a network
after some natural disaster has knocked out all the fixed infrastructure. There are additional considerations
when all the nodes in a network, not just the endpoints, are mobile, a topic we will discuss later in this
section.

Before we start to look at some of the approaches to supporting mobile devices, a couple of points of
clarification. It is common to find that people confuse wireless networks with mobility. After all, mobility
and wireless often are found together for obvious reasons. But wireless communication is really about
getting data from A to B without a wire, while mobility is about dealing with what happens when a node
moves around as it communicates. Certainly many nodes that use wireless communication channels are not
mobile, and sometimes mobile nodes will use wired communication (although this is less common).

Finally, in this chapter we are mostly interested in what we might call network-layer mobility. That is, we
are interested in how to deal with nodes that move from one network to another. Moving from one access
point to another in the same 802.11 network can be handled by mechanisms specific to 802.11, and cellular
networks also have ways to handle mobility, of course, but in large heterogeneous systems like the Internet
we need to support mobility more broadly across networks.

4.5.2 Routing to Mobile Hosts (Mobile IP)

Mobile IP is the primary mechanism in today’s Internet architecture to tackle the problem of routing packets
to mobile hosts. It introduces a few new capabilities but does not require any change from non-mobile hosts
or most routers—thus making it incrementally deployable.

The mobile host is assumed to have a permanent IP address, called its home address, which has a network
prefix equal to that of its home network. This is the address that will be used by other hosts when they initially
send packets to the mobile host; because it does not change, it can be used by long-lived applications as the
host roams. We can think of this as the long-lived identifier of the host.

When the host moves to a new foreign network away from its home network, it typically acquires a new

4.5. Routing Among Mobile Devices 223

Computer Networks: A Systems Approach, Release Version 6.1

address on that network using some means such as DHCP. This address is going to change every time the
host roams to a new network, so we can think of this as being more like the locator for the host, but it is
important to note that the host does not lose its permanent home address when it acquires a new address on
the foreign network. This home address is critical to its ability to sustain communications as it moves, as
we’ll see below.

Because DHCP was developed around the same time as Mobile IP, the original Mobile IP
standards did not require DHCP, but DHCP is ubiquitous today.

While the majority of routers remain unchanged, mobility support does require some new functionality in at
least one router, known as the home agent of the mobile node. This router is located on the home network
of the mobile host. In some cases, a second router with enhanced functionality, the foreign agent, is also
required. This router is located on a network to which the mobile node attaches itself when it is away from
its home network. We will consider first the operation of Mobile IP when a foreign agent is used. An
example network with both home and foreign agents is shown in Figure 4.27.

Sending host

Home agent Foreign agent

(18.5.0.3) (12.0.0.6)
Internetwork %D:
(-
Home network Mobilé host
(network 18) (18.5.0.9)

Figure 4.27.: Mobile host and mobility agents.

Both home and foreign agents periodically announce their presence on the networks to which they are
attached using agent advertisement messages. A mobile host may also solicit an advertisement when it
attaches to a new network. The advertisement by the home agent enables a mobile host to learn the address
of its home agent before it leaves its home network. When the mobile host attaches to a foreign network, it
hears an advertisement from a foreign agent and registers with the agent, providing the address of its home
agent. The foreign agent then contacts the home agent, providing a care-of address. This is usually the IP
address of the foreign agent.

At this point, we can see that any host that tries to send a packet to the mobile host will send it with a
destination address equal to the home address of that node. Normal IP forwarding will cause that packet to
arrive on the home network of the mobile node on which the home agent is sitting. Thus, we can divide the
problem of delivering the packet to the mobile node into three parts:

1. How does the home agent intercept a packet that is destined for the mobile node?
2. How does the home agent then deliver the packet to the foreign agent?
3. How does the foreign agent deliver the packet to the mobile node?

The first problem might look easy if you just look at Figure 4.27, in which the home agent is clearly the
only path between the sending host and the home network and thus must receive packets that are destined

224 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

to the mobile node. But what if the sending (correspondent) node were on network 18, or what if there
were another router connected to network 18 that tried to deliver the packet without its passing through
the home agent? To address this problem, the home agent actually impersonates the mobile node, using a
technique called proxy ARP. This works just like Address Resolution Protocol (ARP), except that the home
agent inserts the IP address of the mobile node, rather than its own, in the ARP messages. It uses its own
hardware address, so that all the nodes on the same network learn to associate the hardware address of the
home agent with the IP address of the mobile node. One subtle aspect of this process is the fact that ARP
information may be cached in other nodes on the network. To make sure that these caches are invalidated
in a timely way, the home agent issues an ARP message as soon as the mobile node registers with a foreign
agent. Because the ARP message is not a response to a normal ARP request, it is termed a gratuitous ARP.

The second problem is the delivery of the intercepted packet to the foreign agent. Here we use the tunneling
technique described elsewhere. The home agent simply wraps the packet inside an IP header that is destined
for the foreign agent and transmits it into the internetwork. All the intervening routers just see an IP packet
destined for the IP address of the foreign agent. Another way of looking at this is that an IP tunnel is
established between the home agent and the foreign agent, and the home agent just drops packets destined
for the mobile node into that tunnel.

When a packet finally arrives at the foreign agent, it strips the extra IP header and finds inside an IP packet
destined for the home address of the mobile node. Clearly the foreign agent cannot treat this like any old
IP packet because this would cause it to send it back to the home network. Instead, it has to recognize the
address as that of a registered mobile node. It then delivers the packet to the hardware address of the mobile
node (e.g., its Ethernet address), which was learned as part of the registration process.

One observation that can be made about these procedures is that it is possible for the foreign agent and the
mobile node to be in the same box; that is, a mobile node can perform the foreign agent function itself. To
make this work, however, the mobile node must be able to dynamically acquire an IP address that is located
in the address space of the foreign network (e.g., using DHCP). This address will then be used as the care-of
address. In our example, this address would have a network number of 12. This approach has the desirable
feature of allowing mobile nodes to attach to networks that don’t have foreign agents; thus, mobility can
be achieved with only the addition of a home agent and some new software on the mobile node (assuming
DHCEP is used on the foreign network).

What about traffic in the other direction (i.e., from mobile node to fixed node)? This turns out to be much
easier. The mobile node just puts the IP address of the fixed node in the destination field of its IP packets
while putting its permanent address in the source field, and the packets are forwarded to the fixed node using
normal means. Of course, if both nodes in a conversation are mobile, then the procedures described above
are used in each direction.

Route Optimization in Mobile IP

There is one significant drawback to the above approach: The route from the correspondent node to the
mobile node can be significantly suboptimal. One of the most extreme examples is when a mobile node and
the correspondent node are on the same network, but the home network for the mobile node is on the far side
of the Internet. The sending correspondent node addresses all packets to the home network; they traverse
the Internet to reach the home agent, which then tunnels them back across the Internet to reach the foreign
agent. Clearly, it would be nice if the correspondent node could find out that the mobile node is actually on
the same network and deliver the packet directly. In the more general case, the goal is to deliver packets as
directly as possible from correspondent node to mobile node without passing through a home agent. This is

4.5. Routing Among Mobile Devices 225

Computer Networks: A Systems Approach, Release Version 6.1

sometimes referred to as the triangle routing problem since the path from correspondent to mobile node via
home agent takes two sides of a triangle, rather than the third side that is the direct path.

The basic idea behind the solution to triangle routing is to let the correspondent node know the care-of
address of the mobile node. The correspondent node can then create its own tunnel to the foreign agent.
This is treated as an optimization of the process just described. If the sender has been equipped with the
necessary software to learn the care-of address and create its own tunnel, then the route can be optimized; if
not, packets just follow the suboptimal route.

When a home agent sees a packet destined for one of the mobile nodes that it supports, it can deduce that the
sender is not using the optimal route. Therefore, it sends a “binding update” message back to the source, in
addition to forwarding the data packet to the foreign agent. The source, if capable, uses this binding update
to create an entry in a binding cache, which consists of a list of mappings from mobile node addresses to
care-of addresses. The next time this source has a data packet to send to that mobile node, it will find the
binding in the cache and can tunnel the packet directly to the foreign agent.

There is an obvious problem with this scheme, which is that the binding cache may become out-of-date if
the mobile host moves to a new network. If an out-of-date cache entry is used, the foreign agent will receive
tunneled packets for a mobile node that is no longer registered on its network. In this case, it sends a binding
warning message back to the sender to tell it to stop using this cache entry. This scheme works only in the
case where the foreign agent is not the mobile node itself, however. For this reason, cache entries need to be
deleted after some period of time; the exact amount is specified in the binding update message.

As noted above, mobile routing provides some interesting security challenges, which are clearer now that
we have seen how Mobile IP works. For example, an attacker wishing to intercept the packets destined to
some other node in an internetwork could contact the home agent for that node and announce itself as the
new foreign agent for the node. Thus, it is clear that some authentication mechanisms are required.

Mobility in IPv6

There are a handful of significant differences between mobility support in IPv4 and IPv6. Most importantly,
it was possible to build mobility support into the standards for IPv6 pretty much from the beginning, thus
alleviating a number of incremental deployment problems. (It may be more correct to say that IPv6 is
one big incremental deployment problem, which, once solved, will deliver mobility support as part of the
package.)

Since all IPv6-capable hosts can acquire an address whenever they are attached to a foreign network (using
several mechanisms defined as part of the core v6 specifications), Mobile IPv6 does away with the foreign
agent and includes the necessary capabilities to act as a foreign agent in every host.

One other interesting aspect of IPv6 that comes into play with Mobile IP is its inclusion of a flexible set
of extension headers, as described elsewhere in this chapter. This is used in the optimized routing scenario
described above. Rather than funneling a packet to the mobile node at its care-of address, an IPv6 node can
send an IP packet to the care-of address with the home address contained in a routing header. This header
is ignored by all the intermediate nodes, but it enables the mobile node to treat the packet as if it were sent
to the home address, thus enabling it to continue presenting higher layer protocols with the illusion that its
IP address is fixed. Using an extension header rather than a tunnel is more efficient from the perspective of
both bandwidth consumption and processing.

Finally, we note that many open issues remain in mobile networking. Managing the power consumption of

226 Chapter 4. Advanced Internetworking

Computer Networks: A Systems Approach, Release Version 6.1

mobile devices is increasingly important, so that smaller devices with limited battery power can be built.
There is also the problem of ad hoc mobile networks—enabling a group of mobile nodes to form a net-
work in the absence of any fixed nodes—which has some special challenges. A particularly challenging
class of mobile networks is sensor networks. Sensors typically are small, inexpensive, and often battery
powered, meaning that issues of very low power consumption and limited processing capability must also
be considered. Furthermore, since wireless communications and mobility typically go hand in hand, the
continual advances in wireless technologies keep on producing new challenges and opportunities for mobile
networking.

Perspective: The Cloud is Eating the Internet

The Cloud and the Internet are symbiotic systems. They were historically distinct, but today the line be-
tween them is increasingly fuzzy. If you start with the textbook definition, the Internet provides end-to-end
connectivity between any two hosts (e.g., a client laptop and a remote server machine), and the cloud sup-
ports several warehouse-sized datacenters, each of which provides a cost-effective way to power, cool, and
operate a large number of server machines. End-users connect to the nearest datacenter over the Internet in
exactly the same way they connect to a server in a remote machine room.

That’s an accurate description of the relationship between the Internet and the Cloud in the early days of
commercial cloud providers like Amazon, Microsoft, and Google. For example, Amazon’s cloud circa 2009
had two datacenters, one on the east coast of the US and one on the west coast. Today, however, each
of the major cloud providers operates several dozen datacenters spread across the globe, and it should be
no surprise that they are strategically located in close proximity to Internet Exchange Points (IXP), each
of which provides rich connectivity to the rest of the Internet. There are over 150 IXPs worldwide, and
while not every cloud provider replicates a full datacenter near each one (many of these sites are co-location
facilities), it is fair to say the cloud’s most frequently accessed content (e.g., the most popular Netflix movies,
YouTube videos, and Facebook photos) is potentially distributed to that many locations.

There are two consequences to this wide dispersion of the cloud. One is that the end-to-end path from client
to server doesn’t necessarily traverse the entire Internet. A user is likely to find the content he or she wants
to access has been replicated at a nearby IXP—which is usually just one AS hop away—as opposed to
being on the far side of the globe. The second consequence is that the major cloud providers do not use the
public Internet to interconnect their distributed datacenters. It is common for cloud providers to keep their
content synchronized across distributed datacenters, but they typically do this over a private backbone. This
allows them to take advantage of whatever optimizations they want without needing to fully inter-operate
with anyone else.

In other words, while the figures in Section 4.1 fairly represents the Internet’s overall shape, and BGP makes
it possible to connect any pair of hosts, in practice most users interact with applications running in the
Cloud, which looks more like Figure 4.28. (One important detail that the figure does not convey is that
Cloud providers do not typically build a WAN by laying their own fiber, but they instead lease fiber from
servicer providers, meaning that the private cloud backbone and the service provider backbones often share
the same physical infrastructure.)

Note that while it is possible to replicate content across the cloud’s many locations, we do not yet have
the technology to replicate people. This means that when widely dispersed users want to talk with each
other—for example, as part of a video conference call—it’s the multicast tree that gets distributed across
the cloud. In other words, multicast isn’t typically running in the routers of the service provider backbones

4.5. Routing Among Mobile Devices 227

Computer Networks: A Systems Approach, Release Version 6.1

Private Cloud Backbone

e Y P .._\
A Cloud) A Cloud 3
?:‘ Site) L Site

West Coast East Coast
User User
Figure 4.28.: Cloud is widely distributed throughout the Internet with private backbones.

(as Section 4.3 suggests), but it is instead running in server processes distributed across some subset of the
150+ locations that serve as the Internet’s major interconnection points. A multicast tree constructed in this
way is called an overlay, which is a topic that we return to in Section 9.4.

Broader Perspective

To continue reading about the cloudification of the Internet, see Perspective: HTTP is the New Narrow
Waist.

To learn more about the Cloud’s distributed footprint, we recommend How the Internet Travels Across the
Ocean, New York Times, March 2019.

228 Chapter 4. Advanced Internetworking

https://www.nytimes.com/interactive/2019/03/10/technology/internet-cables-oceans.html
https://www.nytimes.com/interactive/2019/03/10/technology/internet-cables-oceans.html

CHAPTER
FIVE

END-TO-END PROTOCOLS

Victory is the beautiful, bright coloured flower. Transport is the stem without which it could
never have blossomed.

—Winston Churchill

Problem: Getting Processes to Communicate

Many technologies can be used to connect together a collection of computers, ranging from simple Eth-
ernets and wireless networks to global-scale internetworks. Once interconnected, the next problem is to
turn this host-to-host packet delivery service into a process-to-process communication channel. This is the
role played by the transport level of the network architecture, which, because it supports communication
between application programs running in end nodes, is sometimes called the end-to-end protocol.

Two forces shape the end-to-end protocol. From above, the application-level processes that use its services
have certain requirements. The following list itemizes some of the common properties that a transport
protocol can be expected to provide:

* Guarantees message delivery

* Delivers messages in the same order they are sent

* Delivers at most one copy of each message

* Supports arbitrarily large messages

* Supports synchronization between the sender and the receiver
* Allows the receiver to apply flow control to the sender

» Supports multiple application processes on each host

Note that this list does not include all the functionality that application processes might want from the
network. For example, it does not include security features like authentication or encryption, which are
typically provided by protocols that sit above the transport level. (We discuss security-related topics in a
later chapter.)

From below, the underlying network upon which the transport protocol operates has certain limitations in
the level of service it can provide. Some of the more typical limitations of the network are that it may

* Drop messages

229

Computer Networks: A Systems Approach, Release Version 6.1

* Reorder messages
* Deliver duplicate copies of a given message
* Limit messages to some finite size
* Deliver messages after an arbitrarily long delay
Such a network is said to provide a best-effort level of service, as exemplified by the Internet.

The challenge, therefore, is to develop algorithms that turn the less-than-perfect properties of the underlying
network into the high level of service required by application programs. Different transport protocols employ
different combinations of these algorithms. This chapter looks at these algorithms in the context of four
representative services—a simple asynchronous demultiplexing service, a reliable byte-stream service, a
request/reply service, and a service for real-time applications.

In the case of the demultiplexing and byte-stream services, we use the Internet’s User Datagram Protocol
(UDP) and Transmission Control Protocol (TCP), respectively, to illustrate how these services are provided
in practice. In the case of a request/reply service, we discuss the role it plays in a Remote Procedure Call
(RPC) service and what features that entails. The Internet does not have a single RPC protocol, so we cap
this discussion off with a description of three widely used RPC protocols: SunRPC, DCE-RPC, and gRPC.

Finally, real-time applications make particular demands on the transport protocol, such as the need to carry
timing information that allows audio or video samples to be played back at the appropriate point in time.
We look at the requirements placed by applications on such a protocol and the most widely used example,
the Real-Time Transport Protocol (RTP).

5.1 Simple Demultiplexor (UDP)

The simplest possible transport protocol is one that extends the host-to-host delivery service of the under-
lying network into a process-to-process communication service. There are likely to be many processes
running on any given host, so the protocol needs to add a level of demultiplexing, thereby allowing multiple
application processes on each host to share the network. Aside from this requirement, the transport protocol
adds no other functionality to the best-effort service provided by the underlying network. The Internet’s
User Datagram Protocol is an example of such a transport protocol.

The only interesting issue in such a protocol is the form of the address used to identify the target process.
Although it is possible for processes to directly identify each other with an OS-assigned process id (pid),
such an approach is only practical in a closed distributed system in which a single OS runs on all hosts and
assigns each process a unique id. A more common approach, and the one used by UDP, is for processes to
indirectly identify each other using an abstract locater, usually called a port. The basic idea is for a source
process to send a message to a port and for the destination process to receive the message from a port.

The header for an end-to-end protocol that implements this demultiplexing function typically contains an
identifier (port) for both the sender (source) and the receiver (destination) of the message. For example, the
UDP header is given in Figure 5.1. Notice that the UDP port field is only 16 bits long. This means that
there are up to 64K possible ports, clearly not enough to identify all the processes on all the hosts in the
Internet. Fortunately, ports are not interpreted across the entire Internet, but only on a single host. That is,
a process is really identified by a port on some particular host: a (port, host) pair. This pair constitutes the
demultiplexing key for the UDP protocol.

230 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

The next issue is how a process learns the port for the process to which it wants to send a message. Typically,
a client process initiates a message exchange with a server process. Once a client has contacted a server, the
server knows the client’s port (from the SrcPrt field contained in the message header) and can reply to it.
The real problem, therefore, is how the client learns the server’s port in the first place. A common approach
is for the server to accept messages at a well-known port. That is, each server receives its messages at some
fixed port that is widely published, much like the emergency telephone service available in the United States
at the well-known phone number 911. In the Internet, for example, the Domain Name Server (DNS) receives
messages at well-known port 53 on each host, the mail service listens for messages at port 25, and the Unix
talk program accepts messages at well-known port 517, and so on. This mapping is published periodically
in an RFC and is available on most Unix systems in file /et c/services. Sometimes a well-known port
is just the starting point for communication: The client and server use the well-known port to agree on
some other port that they will use for subsequent communication, leaving the well-known port free for other
clients.

0 16 31
SrcPort DstPort
Length Checksum
Data
i\ A P e N
/\/\/WW\/\

Figure 5.1.: Format for UDP header.

An alternative strategy is to generalize this idea, so that there is only a single well-known port—the one
at which the port mapper service accepts messages. A client would send a message to the port mapper’s
well-known port asking for the port it should use to talk to the “whatever” service, and the port mapper
returns the appropriate port. This strategy makes it easy to change the port associated with different services
over time and for each host to use a different port for the same service.

As just mentioned, a port is purely an abstraction. Exactly how it is implemented differs from system to
system, or more precisely, from OS to OS. For example, the socket API described in Chapter 1 is an example
implementation of ports. Typically, a port is implemented by a message queue, as illustrated in Figure 5.2.
When a message arrives, the protocol (e.g., UDP) appends the message to the end of the queue. Should the
queue be full, the message is discarded. There is no flow-control mechanism in UDP to tell the sender to
slow down. When an application process wants to receive a message, one is removed from the front of the
queue. If the queue is empty, the process blocks until a message becomes available.

Finally, although UDP does not implement flow control or reliable/ordered delivery, it does provide one more
function aside from demultiplexing messages to some application process—it also ensures the correctness
of the message by the use of a checksum. (The UDP checksum is optional in IPv4 but is mandatory in IPv6.)
The basic UDP checksum algorithm is the same one used for [P—that is, it adds up a set of 16-bit words
using ones’ complement arithmetic and takes the ones’ complement of the result. But the input data that is
used for the checksum is a little counterintuitive.

5.1. Simple Demultiplexor (UDP) 231

Computer Networks: A Systems Approach, Release Version 6.1

Application Application Application
process process process

A 3 A

Ports ——

Quewes F-—--—- | ——+ @ ———--

L
Packets \ / I—I
demultiplexed

Packets arrive

Figure 5.2.: UDP message queue.

232 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

The UDP checksum takes as input the UDP header, the contents of the message body, and something called
the pseudoheader. The pseudoheader consists of three fields from the IP header—protocol number, source
IP address, and destination IP address—plus the UDP length field. (Yes, the UDP length field is included
twice in the checksum calculation.) The motivation behind having the pseudoheader is to verify that this
message has been delivered between the correct two endpoints. For example, if the destination IP address
was modified while the packet was in transit, causing the packet to be misdelivered, this fact would be
detected by the UDP checksum.

5.2 Reliable Byte Stream (TCP)

In contrast to a simple demultiplexing protocol like UDP, a more sophisticated transport protocol is one
that offers a reliable, connection-oriented, byte-stream service. Such a service has proven useful to a wide
assortment of applications because it frees the application from having to worry about missing or reordered
data. The Internet’s Transmission Control Protocol is probably the most widely used protocol of this type;
it is also the most carefully tuned. It is for these two reasons that this section studies TCP in detail, although
we identify and discuss alternative design choices at the end of the section.

In terms of the properties of transport protocols given in the problem statement at the start of this chapter,
TCP guarantees the reliable, in-order delivery of a stream of bytes. It is a full-duplex protocol, meaning
that each TCP connection supports a pair of byte streams, one flowing in each direction. It also includes
a flow-control mechanism for each of these byte streams that allows the receiver to limit how much data
the sender can transmit at a given time. Finally, like UDP, TCP supports a demultiplexing mechanism that
allows multiple application programs on any given host to simultaneously carry on a conversation with their
peers.

In addition to the above features, TCP also implements a highly tuned congestion-control mechanism. The
idea of this mechanism is to throttle how fast TCP sends data, not for the sake of keeping the sender from
over-running the receiver, but so as to keep the sender from overloading the network. A description of TCP’s
congestion-control mechanism is postponed until the next chapter, where we discuss it in the larger context
of how network resources are fairly allocated.

Since many people confuse congestion control and flow control, we restate the difference. Flow control
involves preventing senders from over-running the capacity of receivers. Congestion control involves pre-
venting too much data from being injected into the network, thereby causing switches or links to become
overloaded. Thus, flow control is an end-to-end issue, while congestion control is concerned with how hosts
and networks interact.

5.2.1 End-to-End Issues

At the heart of TCP is the sliding window algorithm. Even though this is the same basic algorithm as is often
used at the link level, because TCP runs over the Internet rather than a physical point-to-point link, there are
many important differences. This subsection identifies these differences and explains how they complicate
TCP. The following subsections then describe how TCP addresses these and other complications.

First, whereas the link-level sliding window algorithm presented runs over a single physical link that always
connects the same two computers, TCP supports logical connections between processes that are running on
any two computers in the Internet. This means that TCP needs an explicit connection establishment phase
during which the two sides of the connection agree to exchange data with each other. This difference is

5.2. Reliable Byte Stream (TCP) 233

Computer Networks: A Systems Approach, Release Version 6.1

analogous to having to dial up the other party, rather than having a dedicated phone line. TCP also has an
explicit connection teardown phase. One of the things that happens during connection establishment is that
the two parties establish some shared state to enable the sliding window algorithm to begin. Connection
teardown is needed so each host knows it is OK to free this state.

Second, whereas a single physical link that always connects the same two computers has a fixed round-trip
time (RTT), TCP connections are likely to have widely different round-trip times. For example, a TCP
connection between a host in San Francisco and a host in Boston, which are separated by several thousand
kilometers, might have an RTT of 100 ms, while a TCP connection between two hosts in the same room,
only a few meters apart, might have an RTT of only 1 ms. The same TCP protocol must be able to support
both of these connections. To make matters worse, the TCP connection between hosts in San Francisco and
Boston might have an RTT of 100 ms at 3 a.m., but an RTT of 500 ms at 3 p.m. Variations in the RTT are
even possible during a single TCP connection that lasts only a few minutes. What this means to the sliding
window algorithm is that the timeout mechanism that triggers retransmissions must be adaptive. (Certainly,
the timeout for a point-to-point link must be a settable parameter, but it is not necessary to adapt this timer
for a particular pair of nodes.)

A third difference is that packets may be reordered as they cross the Internet, but this is not possible on a
point-to-point link where the first packet put into one end of the link must be the first to appear at the other
end. Packets that are slightly out of order do not cause a problem since the sliding window algorithm can
reorder packets correctly using the sequence number. The real issue is how far out of order packets can
get or, said another way, how late a packet can arrive at the destination. In the worst case, a packet can be
delayed in the Internet until the IP time to live (TTL) field expires, at which time the packet is discarded (and
hence there is no danger of it arriving late). Knowing that IP throws packets away after their TTL expires,
TCP assumes that each packet has a maximum lifetime. The exact lifetime, known as the maximum segment
lifetime (MSL), is an engineering choice. The current recommended setting is 120 seconds. Keep in mind
that IP does not directly enforce this 120-second value; it is simply a conservative estimate that TCP makes
of how long a packet might live in the Internet. The implication is significant—TCP has to be prepared for
very old packets to suddenly show up at the receiver, potentially confusing the sliding window algorithm.

Fourth, the computers connected to a point-to-point link are generally engineered to support the link. For
example, if a link’s delay x bandwidth product is computed to be 8 KB—meaning that a window size
is selected to allow up to 8 KB of data to be unacknowledged at a given time—then it is likely that the
computers at either end of the link have the ability to buffer up to 8 KB of data. Designing the system
otherwise would be silly. On the other hand, almost any kind of computer can be connected to the Internet,
making the amount of resources dedicated to any one TCP connection highly variable, especially considering
that any one host can potentially support hundreds of TCP connections at the same time. This means that
TCP must include a mechanism that each side uses to “learn” what resources (e.g., how much buffer space)
the other side is able to apply to the connection. This is the flow control issue.

Fifth, because the transmitting side of a directly connected link cannot send any faster than the bandwidth
of the link allows, and only one host is pumping data into the link, it is not possible to unknowingly congest
the link. Said another way, the load on the link is visible in the form of a queue of packets at the sender.
In contrast, the sending side of a TCP connection has no idea what links will be traversed to reach the
destination. For example, the sending machine might be directly connected to a relatively fast Ethernet—and
capable of sending data at a rate of 10 Gbps—but somewhere out in the middle of the network, a 1.5-Mbps
link must be traversed. And, to make matters worse, data being generated by many different sources might
be trying to traverse this same slow link. This leads to the problem of network congestion. Discussion of
this topic is delayed until the next chapter.

234 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

We conclude this discussion of end-to-end issues by comparing TCP’s approach to providing a reli-
able/ordered delivery service with the approach used by virtual-circuit-based networks like the historically
important X.25 network. In TCP, the underlying IP network is assumed to be unreliable and to deliver mes-
sages out of order; TCP uses the sliding window algorithm on an end-to-end basis to provide reliable/ordered
delivery. In contrast, X.25 networks use the sliding window protocol within the network, on a hop-by-hop
basis. The assumption behind this approach is that if messages are delivered reliably and in order between
each pair of nodes along the path between the source host and the destination host, then the end-to-end
service also guarantees reliable/ordered delivery.

The problem with this latter approach is that a sequence of hop-by-hop guarantees does not necessarily add
up to an end-to-end guarantee. First, if a heterogeneous link (say, an Ethernet) is added to one end of the
path, then there is no guarantee that this hop will preserve the same service as the other hops. Second,
just because the sliding window protocol guarantees that messages are delivered correctly from node A to
node B, and then from node B to node C, it does not guarantee that node B behaves perfectly. For example,
network nodes have been known to introduce errors into messages while transferring them from an input
buffer to an output buffer. They have also been known to accidentally reorder messages. As a consequence
of these small windows of vulnerability, it is still necessary to provide true end-to-end checks to guarantee
reliable/ordered service, even though the lower levels of the system also implement that functionality.

Key Takeaway

This discussion serves to illustrate one of the most important principles in system design—the end-to-end
argument. In a nutshell, the end-to-end argument says that a function (in our example, providing reli-
able/ordered delivery) should not be provided in the lower levels of the system unless it can be completely
and correctly implemented at that level. Therefore, this rule argues in favor of the TCP/IP approach. This
rule is not absolute, however. It does allow for functions to be incompletely provided at a low level as a per-
formance optimization. This is why it is perfectly consistent with the end-to-end argument to perform error
detection (e.g., CRC) on a hop-by-hop basis; detecting and retransmitting a single corrupt packet across one
hop is preferable to having to retransmit an entire file end-to-end. [Next/

5.2.2 Segment Format

TCP is a byte-oriented protocol, which means that the sender writes bytes into a TCP connection and the
receiver reads bytes out of the TCP connection. Although “byte stream” describes the service TCP offers to
application processes, TCP does not, itself, transmit individual bytes over the Internet. Instead, TCP on the
source host buffers enough bytes from the sending process to fill a reasonably sized packet and then sends
this packet to its peer on the destination host. TCP on the destination host then empties the contents of the
packet into a receive buffer, and the receiving process reads from this buffer at its leisure. This situation is
illustrated in Figure 5.3, which, for simplicity, shows data flowing in only one direction. Remember that, in
general, a single TCP connection supports byte streams flowing in both directions.

The packets exchanged between TCP peers in Figure 5.3 are called segments, since each one carries a
segment of the byte stream. Each TCP segment contains the header schematically depicted in Figure 5.4.
The relevance of most of these fields will become apparent throughout this section. For now, we simply
introduce them.

The SrcPort and DstPort fields identify the source and destination ports, respectively, just as in UDP.

5.2. Reliable Byte Stream (TCP) 235

Computer Networks: A Systems Approach, Release Version 6.1

Application process Application process

- Y
[Twrite [IRead
: bytes . bytes
y[1 L]
TCP TCP
‘ Send buffer I | Receive buffer I

A

‘ Segment | | Segment | ‘ Segment |

Transmit segments

Figure 5.3.: How TCP manages a byte stream.

0 4 10 16 31
SrcPort DstPort
SequenceNum
Acknowledgment
HdrLen 0 Flags AdvertisedWindow

Checksum UrgPtr
Options (variable)
Data

e A SANA T e

Figure 5.4.: TCP header format.

236 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

These two fields, plus the source and destination IP addresses, combine to uniquely identify each TCP
connection. That is, TCP’s demux key is given by the 4-tuple

(SrcPort, SrcIPAddr, DstPort, DstIPAddr)

Note that because TCP connections come and go, it is possible for a connection between a particular pair
of ports to be established, used to send and receive data, and closed, and then at a later time for the same
pair of ports to be involved in a second connection. We sometimes refer to this situation as two different
incarnations of the same connection.

The Acknowledgement, SequenceNum, and AdvertisedWindow fields are all involved in TCP’s
sliding window algorithm. Because TCP is a byte-oriented protocol, each byte of data has a sequence
number. The SequenceNum field contains the sequence number for the first byte of data carried in that
segment, and the Acknowledgement and AdvertisedWindow fields carry information about the flow
of data going in the other direction. To simplify our discussion, we ignore the fact that data can flow in both
directions, and we concentrate on data that has a particular SequenceNum flowing in one direction and
Acknowledgement and AdvertisedWindow values flowing in the opposite direction, as illustrated in
Figure 5.5. The use of these three fields is described more fully later in this chapter.

Data (SequenceNum)

Sender Receiver

R

Acknowledgment +
AdvertisedWindow

Figure 5.5.: Simplified illustration (showing only one direction) of the TCP process, with data flow in one
direction and ACKSs in the other.

The 6-bit Flags field is used to relay control information between TCP peers. The possible flags include
SYN, FIN, RESET, PUSH, URG, and ACK. The SYN and FIN flags are used when establishing and termi-
nating a TCP connection, respectively. Their use is described in a later section. The ACK flag is set any time
the Acknowledgement field is valid, implying that the receiver should pay attention to it. The URG flag
signifies that this segment contains urgent data. When this flag is set, the UrgPt r field indicates where the
nonurgent data contained in this segment begins. The urgent data is contained at the front of the segment
body, up to and including a value of UrgPtr bytes into the segment. The PUSH flag signifies that the
sender invoked the push operation, which indicates to the receiving side of TCP that it should notify the
receiving process of this fact. We discuss these last two features more in a later section. Finally, the RESET
flag signifies that the receiver has become confused—for example, because it received a segment it did not
expect to receive—and so wants to abort the connection.

Finally, the Checksum field is used in exactly the same way as for UDP—it is computed over the TCP
header, the TCP data, and the pseudoheader, which is made up of the source address, destination address,
and length fields from the IP header. The checksum is required for TCP in both IPv4 and IPv6. Also, since
the TCP header is of variable length (options can be attached after the mandatory fields), a HdrLen field is
included that gives the length of the header in 32-bit words. This field is also known as the Of fset field,
since it measures the offset from the start of the packet to the start of the data.

5.2. Reliable Byte Stream (TCP) 237

Computer Networks: A Systems Approach, Release Version 6.1

5.2.3 Connection Establishment and Termination

A TCP connection begins with a client (caller) doing an active open to a server (callee). Assuming that the
server had earlier done a passive open, the two sides engage in an exchange of messages to establish the
connection. (Recall from Chapter 1 that a party wanting to initiate a connection performs an active open,
while a party willing to accept a connection does a passive open.') Only after this connection establishment
phase is over do the two sides begin sending data. Likewise, as soon as a participant is done sending data,
it closes one direction of the connection, which causes TCP to initiate a round of connection termination
messages. Notice that, while connection setup is an asymmetric activity (one side does a passive open and
the other side does an active open), connection teardown is symmetric (each side has to close the connection
independently). Therefore, it is possible for one side to have done a close, meaning that it can no longer
send data, but for the other side to keep the other half of the bidirectional connection open and to continue
sending data.

Three-Way Handshake

The algorithm used by TCP to establish and terminate a connection is called a three-way handshake. We
first describe the basic algorithm and then show how it is used by TCP. The three-way handshake involves
the exchange of three messages between the client and the server, as illustrated by the timeline given in
Figure 5.6.

Active participant Passive participant
(client) (server)

Figure 5.6.: Timeline for three-way handshake algorithm.

The idea is that two parties want to agree on a set of parameters, which, in the case of opening a TCP
connection, are the starting sequence numbers the two sides plan to use for their respective byte streams. In
general, the parameters might be any facts that each side wants the other to know about. First, the client (the
active participant) sends a segment to the server (the passive participant) stating the initial sequence number
it plans to use (Flags = SYN, SequenceNum = x). The server then responds with a single segment that
both acknowledges the client’s sequence number (Flags = ACK, Ack = x + 1) and states its own

! To be more precise, TCP allows connection setup to be symmetric, with both sides trying to open the connection at the same
time, but the common case is for one side to do an active open and the other side to do a passive open.

238 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

beginning sequence number (Flags = SYN, SequenceNum = y). That is, both the SYN and ACK
bits are set in the F1ags field of this second message. Finally, the client responds with a third segment that
acknowledges the server’s sequence number (Flags = ACK, Ack = y + 1). The reason why each
side acknowledges a sequence number that is one larger than the one sent is that the Acknowledgement
field actually identifies the “next sequence number expected,” thereby implicitly acknowledging all earlier
sequence numbers. Although not shown in this timeline, a timer is scheduled for each of the first two
segments, and if the expected response is not received the segment is retransmitted.

You may be asking yourself why the client and server have to exchange starting sequence numbers with
each other at connection setup time. It would be simpler if each side simply started at some “well-known”
sequence number, such as 0. In fact, the TCP specification requires that each side of a connection select
an initial starting sequence number at random. The reason for this is to protect against two incarnations
of the same connection reusing the same sequence numbers too soon—that is, while there is still a chance
that a segment from an earlier incarnation of a connection might interfere with a later incarnation of the
connection.

State-Transition Diagram

TCP is complex enough that its specification includes a state-transition diagram. A copy of this diagram
is given in Figure 5.7. This diagram shows only the states involved in opening a connection (everything
above ESTABLISHED) and in closing a connection (everything below ESTABLISHED). Everything that
goes on while a connection is open—that is, the operation of the sliding window algorithm—is hidden in
the ESTABLISHED state.

TCP’s state-transition diagram is fairly easy to understand. Each box denotes a state that one end of a TCP
connection can find itself in. All connections start in the CLOSED state. As the connection progresses,
the connection moves from state to state according to the arcs. Each arc is labeled with a tag of the form
event/action. Thus, if a connection is in the LISTEN state and a SYN segment arrives (i.e., a segment with
the SYN flag set), the connection makes a transition to the SYN_RCVD state and takes the action of replying
with an ACK+SYN segment.

Notice that two kinds of events trigger a state transition: (1) a segment arrives from the peer (e.g., the event
on the arc from LISTEN to SYN_RCVD), or (2) the local application process invokes an operation on TCP
(e.g., the active open event on the arc from CLOSED to SYN_SENT). In other words, TCP’s state-transition
diagram effectively defines the semantics of both its peer-to-peer interface and its service interface. The
syntax of these two interfaces is given by the segment format (as illustrated in Figure 5.4) and by some
application programming interface, such as the socket API, respectively.

Now let’s trace the typical transitions taken through the diagram in Figure 5.7. Keep in mind that at each
end of the connection, TCP makes different transitions from state to state. When opening a connection,
the server first invokes a passive open operation on TCP, which causes TCP to move to the LISTEN state.
At some later time, the client does an active open, which causes its end of the connection to send a SYN
segment to the server and to move to the SYN_SENT state. When the SYN segment arrives at the server,
it moves to the SYN_RCVD state and responds with a SYN+ACK segment. The arrival of this segment
causes the client to move to the ESTABLISHED state and to send an ACK back to the server. When this
ACK arrives, the server finally moves to the ESTABLISHED state. In other words, we have just traced the
three-way handshake.

There are three things to notice about the connection establishment half of the state-transition diagram. First,

5.2. Reliable Byte Stream (TCP) 239

240

Computer Networks: A Systems Approach, Release Version 6.1

SYN_RCVD

FIN_WAIT 2

\\\H_FWUACK

CLOSED
4 Active open/SYN
Passive open Close
Close
y
LISTEN
SYN/SYN+ACK Send/SYN
< SYN/SYN+ACK SYN_SENT
ACE‘\\\\ 7~ SYN+ACK/ACK
Close/FIN
ESTABLISHED
Close/FIN _ FIN/ACK
CLOSE_WAIT
FIN/ACK
Close/FIN
Y
CLOSING LAST_ACK
ACK Timeout after two ACK
Y segment lifetimes Y
= TIME_WAIT > CLOSED

Figure 5.7.: TCP state-transition diagram.

Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

if the client’s ACK to the server is lost, corresponding to the third leg of the three-way handshake, then the
connection still functions correctly. This is because the client side is already in the ESTABLISHED state,
so the local application process can start sending data to the other end. Each of these data segments will
have the ACK flag set, and the correct value in the Acknowledgement field, so the server will move to
the ESTABLISHED state when the first data segment arrives. This is actually an important point about
TCP—every segment reports what sequence number the sender is expecting to see next, even if this repeats
the same sequence number contained in one or more previous segments.

The second thing to notice about the state-transition diagram is that there is a funny transition out of the
LISTEN state whenever the local process invokes a send operation on TCP. That is, it is possible for a
passive participant to identify both ends of the connection (i.e., itself and the remote participant that it is
willing to have connect to it), and then for it to change its mind about waiting for the other side and instead
actively establish the connection. To the best of our knowledge, this is a feature of TCP that no application
process actually takes advantage of.

The final thing to notice about the diagram is the arcs that are not shown. Specifically, most of the states
that involve sending a segment to the other side also schedule a timeout that eventually causes the segment
to be present if the expected response does not happen. These retransmissions are not depicted in the state-
transition diagram. If after several tries the expected response does not arrive, TCP gives up and returns to
the CLOSED state.

Turning our attention now to the process of terminating a connection, the important thing to keep in mind
is that the application process on both sides of the connection must independently close its half of the
connection. If only one side closes the connection, then this means it has no more data to send, but it is
still available to receive data from the other side. This complicates the state-transition diagram because it
must account for the possibility that the two sides invoke the close operator at the same time, as well as the
possibility that first one side invokes close and then, at some later time, the other side invokes close. Thus,
on any one side there are three combinations of transitions that get a connection from the ESTABLISHED
state to the CLOSED state:

* This side closes first: ESTABLISHED — FIN_WAIT_1 — FIN_WAIT_2 — TIME_WAIT —
CLOSED.

¢ The other side closes first: ESTABLISHED — CLOSE_WAIT — LAST ACK — CLOSED.

¢ Both sides close at the same time: ESTABLISHED — FIN_WAIT_1 — CLOSING — TIME_WAIT
— CLOSED.

There is actually a fourth, although rare, sequence of transitions that leads to the CLOSED state; it follows
the arc from FIN_WAIT _1 to TIME_WAIT. We leave it as an exercise for you to figure out what combination
of circumstances leads to this fourth possibility.

The main thing to recognize about connection teardown is that a connection in the TIME_WAIT state cannot
move to the CLOSED state until it has waited for two times the maximum amount of time an IP datagram
might live in the Internet (i.e., 120 seconds). The reason for this is that, while the local side of the connection
has sent an ACK in response to the other side’s FIN segment, it does not know that the ACK was successfully
delivered. As a consequence, the other side might retransmit its FIN segment, and this second FIN segment
might be delayed in the network. If the connection were allowed to move directly to the CLOSED state, then
another pair of application processes might come along and open the same connection (i.e., use the same
pair of port numbers), and the delayed FIN segment from the earlier incarnation of the connection would
immediately initiate the termination of the later incarnation of that connection.

5.2. Reliable Byte Stream (TCP) 241

Computer Networks: A Systems Approach, Release Version 6.1

5.2.4 Sliding Window Revisited

We are now ready to discuss TCP’s variant of the sliding window algorithm, which serves several purposes:
(1) it guarantees the reliable delivery of data, (2) it ensures that data is delivered in order, and (3) it en-
forces flow control between the sender and the receiver. TCP’s use of the sliding window algorithm is the
same as at the link level in the case of the first two of these three functions. Where TCP differs from the
link-level algorithm is that it folds the flow-control function in as well. In particular, rather than having
a fixed-size sliding window, the receiver advertises a window size to the sender. This is done using the
AdvertisedWindow field in the TCP header. The sender is then limited to having no more than a value
of AdvertisedWindow bytes of unacknowledged data at any given time. The receiver selects a suitable
value for AdvertisedWindow based on the amount of memory allocated to the connection for the pur-
pose of buffering data. The idea is to keep the sender from over-running the receiver’s buffer. We discuss
this at greater length below.

Reliable and Ordered Delivery

To see how the sending and receiving sides of TCP interact with each other to implement reliable and
ordered delivery, consider the situation illustrated in Figure 5.8. TCP on the sending side maintains a send
buffer. This buffer is used to store data that has been sent but not yet acknowledged, as well as data that has
been written by the sending application but not transmitted. On the receiving side, TCP maintains a receive
buffer. This buffer holds data that arrives out of order, as well as data that is in the correct order (i.e., there
are no missing bytes earlier in the stream) but that the application process has not yet had the chance to read.

(a) (b)

Sending application Receiving application

TCP //’ TCP
LastByteWritten LastByteRead
Y \J
} } '
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

Figure 5.8.: Relationship between TCP send buffer (a) and receive buffer (b).

To make the following discussion simpler to follow, we initially ignore the fact that both the buffers and the
sequence numbers are of some finite size and hence will eventually wrap around. Also, we do not distinguish
between a pointer into a buffer where a particular byte of data is stored and the sequence number for that
byte.

Looking first at the sending side, three pointers are maintained into the send buffer, each with an obvious
meaning: LastByteAcked, LastByteSent, and LastByteWritten. Clearly,

LastByteAcked <= LastByteSent

242 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

since the receiver cannot have acknowledged a byte that has not yet been sent, and

LastByteSent <= LastByteWritten

since TCP cannot send a byte that the application process has not yet written. Also note that none of
the bytes to the left of LastByteAcked need to be saved in the buffer because they have already been
acknowledged, and none of the bytes to the right of LastByteWritten need to be buffered because they
have not yet been generated.

A similar set of pointers (sequence numbers) are maintained on the receiving side: LastByteRead,
NextByteExpected, and LastByteRcvd. The inequalities are a little less intuitive, however, because
of the problem of out-of-order delivery. The first relationship

LastByteRead < NextByteExpected

is true because a byte cannot be read by the application until it is received and all preceding bytes have
also been received. Next ByteExpected points to the byte immediately after the latest byte to meet this
criterion. Second,

NextByteExpected <= LastByteRcvd + 1

since, if data has arrived in order, Next Byt eExpected points to the byte after LastByteRcvd, whereas
if data has arrived out of order, then NextByteExpected points to the start of the first gap in the data,
as in Figure 5.8. Note that bytes to the left of LastByteRead need not be buffered because they have
already been read by the local application process, and bytes to the right of LastByteRcvd need not be
buffered because they have not yet arrived.

Flow Control

Most of the above discussion is similar to that found in the standard sliding window algorithm; the only real
difference is that this time we elaborated on the fact that the sending and receiving application processes are
filling and emptying their local buffer, respectively. (The earlier discussion glossed over the fact that data
arriving from an upstream node was filling the send buffer and data being transmitted to a downstream node
was emptying the receive buffer.)

You should make sure you understand this much before proceeding because now comes the point where
the two algorithms differ more significantly. In what follows, we reintroduce the fact that both buffers are
of some finite size, denoted MaxSendBuffer and MaxRcvBuffer, although we don’t worry about the
details of how they are implemented. In other words, we are only interested in the number of bytes being
buffered, not in where those bytes are actually stored.

Recall that in a sliding window protocol, the size of the window sets the amount of data that can be sent
without waiting for acknowledgment from the receiver. Thus, the receiver throttles the sender by advertising
a window that is no larger than the amount of data that it can buffer. Observe that TCP on the receive side
must keep

LastByteRcvd - LastByteRead <= MaxRcvBuffer

to avoid overflowing its buffer. It therefore advertises a window size of

5.2. Reliable Byte Stream (TCP) 243

Computer Networks: A Systems Approach, Release Version 6.1

AdvertisedWindow = MaxRcvBuffer - ((NextByteExpected - 1) - LastByteRead)

which represents the amount of free space remaining in its buffer. As data arrives, the receiver acknowledges
it as long as all the preceding bytes have also arrived. In addition, LastByteRcvd moves to the right (is
incremented), meaning that the advertised window potentially shrinks. Whether or not it shrinks depends
on how fast the local application process is consuming data. If the local process is reading data just as
fast as it arrives (causing LastByteRead to be incremented at the same rate as LastByteRcvd), then
the advertised window stays open (i.e., AdvertisedWindow = MaxRcvBuffer). If, however, the
receiving process falls behind, perhaps because it performs a very expensive operation on each byte of data
that it reads, then the advertised window grows smaller with every segment that arrives, until it eventually
goes to 0.

TCP on the send side must then adhere to the advertised window it gets from the receiver. This means that
at any given time, it must ensure that

LastByteSent - LastByteAcked <= AdvertisedWindow

Said another way, the sender computes an effective window that limits how much data it can send:

EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked)

Clearly, Ef fectiveWindow must be greater than O before the source can send more data. It is pos-
sible, therefore, that a segment arrives acknowledging x bytes, thereby allowing the sender to increment
LastByteAcked by x, but because the receiving process was not reading any data, the advertised window
is now x bytes smaller than the time before. In such a situation, the sender would be able to free buffer
space, but not to send any more data.

All the while this is going on, the send side must also make sure that the local application process does not
overflow the send buffer—that is,

LastByteWritten - LastByteAcked <= MaxSendBuffer

If the sending process tries to write y bytes to TCP, but

(LastByteWritten - LastByteAcked) + y > MaxSendBuffer

then TCP blocks the sending process and does not allow it to generate more data.

It is now possible to understand how a slow receiving process ultimately stops a fast sending process. First,
the receive buffer fills up, which means the advertised window shrinks to 0. An advertised window of 0
means that the sending side cannot transmit any data, even though data it has previously sent has been
successfully acknowledged. Finally, not being able to transmit any data means that the send buffer fills
up, which ultimately causes TCP to block the sending process. As soon as the receiving process starts
to read data again, the receive-side TCP is able to open its window back up, which allows the send-side
TCP to transmit data out of its buffer. When this data is eventually acknowledged, LastByteAcked is
incremented, the buffer space holding this acknowledged data becomes free, and the sending process is
unblocked and allowed to proceed.

There is only one remaining detail that must be resolved—how does the sending side know that the
advertised window is no longer 0?7 As mentioned above, TCP always sends a segment in response
to a received data segment, and this response contains the latest values for the Acknowledge and

244 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

AdvertisedWindow fields, even if these values have not changed since the last time they were sent.
The problem is this. Once the receive side has advertised a window size of 0, the sender is not permitted
to send any more data, which means it has no way to discover that the advertised window is no longer O at
some time in the future. TCP on the receive side does not spontaneously send nondata segments; it only
sends them in response to an arriving data segment.

TCP deals with this situation as follows. Whenever the other side advertises a window size of 0, the sending
side persists in sending a segment with 1 byte of data every so often. It knows that this data will probably not
be accepted, but it tries anyway, because each of these 1-byte segments triggers a response that contains the
current advertised window. Eventually, one of these 1-byte probes triggers a response that reports a nonzero
advertised window.

Note that these 1-byte messages are called Zero Window Probes and in practice they are sent every 5 to 60
seconds. As for what single byte of data to send in the probe: it’s the next byte of actual data just outside
the window. (It has to be real data in case it’s accepted by the receiver.)

Key Takeaway

Note that the reason the sending side periodically sends this probe segment is that TCP is designed to make
the receive side as simple as possible—it simply responds to segments from the sender, and it never initiates
any activity on its own. This is an example of a well-recognized (although not universally applied) protocol
design rule, which, for lack of a better name, we call the smart sender/ dumb receiver rule. Recall that we
saw another example of this rule when we discussed the use of NAKSs in sliding window algorithm. [Next]

Protecting Against Wraparound

This subsection and the next consider the size of the SequenceNum and AdvertisedWindow fields
and the implications of their sizes on TCP’s correctness and performance. TCP’s SequenceNum field is
32 bits long, and its AdvertisedWindow field is 16 bits long, meaning that TCP has easily satisfied the
requirement of the sliding window algorithm that the sequence number space be twice as big as the window
size: 232 >> 2 x 216, However, this requirement is not the interesting thing about these two fields. Consider
each field in turn.

The relevance of the 32-bit sequence number space is that the sequence number used on a given connection
might wrap around—a byte with sequence number S could be sent at one time, and then at a later time a
second byte with the same sequence number S might be sent. Once again, we assume that packets cannot
survive in the Internet for longer than the recommended MSL. Thus, we currently need to make sure that the
sequence number does not wrap around within a 120-second period of time. Whether or not this happens
depends on how fast data can be transmitted over the Internet—that is, how fast the 32-bit sequence number
space can be consumed. (This discussion assumes that we are trying to consume the sequence number space
as fast as possible, but of course we will be if we are doing our job of keeping the pipe full.) Table 5.1 shows
how long it takes for the sequence number to wrap around on networks with various bandwidths.

5.2. Reliable Byte Stream (TCP) 245

Computer Networks: A Systems Approach, Release Version 6.1

Table 5.1.: Time Until 32-Bit Sequence Number Space Wraps

Around.

Bandwidth Time until Wraparound
T1 (1.5 Mbps) 6.4 hours

T3 (45 Mbps) 13 minutes

Fast Ethernet (100 Mbps) | 6 minutes

OC-3 (155 Mbps) 4 minutes

0OC-48 (2.5 Gbps) 14 seconds

OC-192 (10 Gbps) 3 seconds

10GigE (10 Gbps) 3 seconds

As you can see, the 32-bit sequence number space is adequate at modest bandwidths, but given that OC-192
links are now common in the Internet backbone, and that most servers now come with 10Gig Ethernet (or
10 Gbps) interfaces, we’re now well-past the point where 32 bits is too small. Fortunately, the IETF has
worked out an extension to TCP that effectively extends the sequence number space to protect against the
sequence number wrapping around. This and related extensions are described in a later section.

Keeping the Pipe Full

The relevance of the 16-bit AdvertisedWindow field is that it must be big enough to allow the sender to
keep the pipe full. Clearly, the receiver is free to not open the window as large as the AdvertisedWindow
field allows; we are interested in the situation in which the receiver has enough buffer space to handle as
much data as the largest possible AdvertisedwWindow allows.

In this case, it is not just the network bandwidth but the delay x bandwidth product that dictates how big the
AdvertisedWindow field needs to be—the window needs to be opened far enough to allow a full delay
x bandwidth product’s worth of data to be transmitted. Assuming an RTT of 100 ms (a typical number for
a cross-country connection in the United States), Table 5.2 gives the delay x bandwidth product for several
network technologies.

Table 5.2.: Required Window Size for 100-ms RTT

Bandwidth Delay x Bandwidth Product
T1 (1.5 Mbps) 18 KB

T3 (45 Mbps) 549 KB

Fast Ethernet (100 Mbps) | 1.2 MB

OC-3 (155 Mbps) 1.8 MB

0OC-48 (2.5 Gbps) 29.6 MB

0OC-192 (10 Gbps) 118.4 MB

10GigE (10 Gbps) 118.4 MB

Asyou can see, TCP’s AdvertisedWindow field is in even worse shape than its SequenceNum field—it
is not big enough to handle even a T3 connection across the continental United States, since a 16-bit field
allows us to advertise a window of only 64 KB. The very same TCP extension mentioned above provides a
mechanism for effectively increasing the size of the advertised window.

246 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

5.2.5 Triggering Transmission

We next consider a surprisingly subtle issue: how TCP decides to transmit a segment. As described earlier,
TCP supports a byte-stream abstraction; that is, application programs write bytes into the stream, and it is
up to TCP to decide that it has enough bytes to send a segment. What factors govern this decision?

If we ignore the possibility of flow control—that is, we assume the window is wide open, as would be
the case when a connection first starts—then TCP has three mechanisms to trigger the transmission of a
segment. First, TCP maintains a variable, typically called the maximum segment size (MSS), and it sends a
segment as soon as it has collected MSS bytes from the sending process. MSS is usually set to the size of the
largest segment TCP can send without causing the local IP to fragment. That is, MSS is set to the maximum
transmission unit (MTU) of the directly connected network, minus the size of the TCP and IP headers. The
second thing that triggers TCP to transmit a segment is that the sending process has explicitly asked it to do
so. Specifically, TCP supports a push operation, and the sending process invokes this operation to effectively
flush the buffer of unsent bytes. The final trigger for transmitting a segment is that a timer fires; the resulting
segment contains as many bytes as are currently buffered for transmission. However, as we will soon see,
this “timer” isn’t exactly what you expect.

Silly Window Syndrome

Of course, we can’t just ignore flow control, which plays an obvious role in throttling the sender. If the
sender has MSS bytes of data to send and the window is open at least that much, then the sender transmits a
full segment. Suppose, however, that the sender is accumulating bytes to send, but the window is currently
closed. Now suppose an ACK arrives that effectively opens the window enough for the sender to transmit,
say, MSS/2 bytes. Should the sender transmit a half-full segment or wait for the window to open to a full
MSS? The original specification was silent on this point, and early implementations of TCP decided to go
ahead and transmit a half-full segment. After all, there is no telling how long it will be before the window
opens further.

It turns out that the strategy of aggressively taking advantage of any available window leads to a situation
now known as the silly window syndrome. Figure 5.9 helps visualize what happens. If you think of a TCP
stream as a conveyor belt with “full” containers (data segments) going in one direction and empty containers
(ACKs) going in the reverse direction, then MSS-sized segments correspond to large containers and 1-byte
segments correspond to very small containers. As long as the sender is sending MSS-sized segments and
the receiver ACKs at least one MSS of data at a time, everything is good (Figure 5.9(a)). But, what if the
receiver has to reduce the window, so that at some time the sender can’t send a full MSS of data? If the
sender aggressively fills a smaller-than-MSS empty container as soon as it arrives, then the receiver will
ACK that smaller number of bytes, and hence the small container introduced into the system remains in the
system indefinitely. That is, it is immediately filled and emptied at each end and is never coalesced with
adjacent containers to create larger containers, as in Figure 5.9(b). This scenario was discovered when early
implementations of TCP regularly found themselves filling the network with tiny segments.

Note that the silly window syndrome is only a problem when either the sender transmits a small segment or
the receiver opens the window a small amount. If neither of these happens, then the small container is never
introduced into the stream. It’s not possible to outlaw sending small segments; for example, the application
might do a push after sending a single byte. It is possible, however, to keep the receiver from introducing
a small container (i.e., a small open window). The rule is that after advertising a zero window the receiver
must wait for space equal to an MSS before it advertises an open window.

5.2. Reliable Byte Stream (TCP) 247

Computer Networks: A Systems Approach, Release Version 6.1

(@) | MSS | | MSS |
Data g
Sender Receiver
- ACKS
] MSS] | MSS |

(0) <mMss_ | | MSS |

Data

Sender Receiver
ACKS

] MSS | [<mss]

Figure 5.9.: Silly window syndrome. (a) As long as the sender sends MSS-sized segments and the receiver
ACKSs one MSS at a time, the system works smoothly. (b) As soon as the sender sends less than one MSS,
or the receiver ACKs less than one MSS, a small “container” enters the system and continues to circulate.

Since we can’t eliminate the possibility of a small container being introduced into the stream, we also need
mechanisms to coalesce them. The receiver can do this by delaying ACKs—sending one combined ACK
rather than multiple smaller ones—but this is only a partial solution because the receiver has no way of
knowing how long it is safe to delay waiting either for another segment to arrive or for the application to
read more data (thus opening the window). The ultimate solution falls to the sender, which brings us back
to our original issue: When does the TCP sender decide to transmit a segment?

Nagle’s Algorithm

Returning to the TCP sender, if there is data to send but the window is open less than MSS, then we may
want to wait some amount of time before sending the available data, but the question is how long? If we
wait too long, then we hurt interactive applications like Telnet. If we don’t wait long enough, then we risk
sending a bunch of tiny packets and falling into the silly window syndrome. The answer is to introduce a
timer and to transmit when the timer expires.

While we could use a clock-based timer—for example, one that fires every 100 ms—Nagle introduced
an elegant self-clocking solution. The idea is that as long as TCP has any data in flight, the sender will
eventually receive an ACK. This ACK can be treated like a timer firing, triggering the transmission of more
data. Nagle’s algorithm provides a simple, unified rule for deciding when to transmit:

When the application produces data to send
if both the available data and the window >= MSS
send a full segment
else
if there is unACKed data in flight
buffer the new data until an ACK arrives

(continues on next page)

248 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

(continued from previous page)

else
send all the new data now

In other words, it’s always OK to send a full segment if the window allows. It’s also all right to immediately
send a small amount of data if there are currently no segments in transit, but if there is anything in flight
the sender must wait for an ACK before transmitting the next segment. Thus, an interactive application
like Telnet that continually writes one byte at a time will send data at a rate of one segment per RTT. Some
segments will contain a single byte, while others will contain as many bytes as the user was able to type
in one round-trip time. Because some applications cannot afford such a delay for each write it does to
a TCP connection, the socket interface allows the application to turn off Nagel’s algorithm by setting the
TCP_NODELAY option. Setting this option means that data is transmitted as soon as possible.

5.2.6 Adaptive Retransmission

Because TCP guarantees the reliable delivery of data, it retransmits each segment if an ACK is not received
in a certain period of time. TCP sets this timeout as a function of the RTT it expects between the two ends of
the connection. Unfortunately, given the range of possible RTTs between any pair of hosts in the Internet, as
well as the variation in RTT between the same two hosts over time, choosing an appropriate timeout value is
not that easy. To address this problem, TCP uses an adaptive retransmission mechanism. We now describe
this mechanism and how it has evolved over time as the Internet community has gained more experience
using TCP.

Original Algorithm

We begin with a simple algorithm for computing a timeout value between a pair of hosts. This is the
algorithm that was originally described in the TCP specification—and the following description presents it
in those terms—but it could be used by any end-to-end protocol.

The idea is to keep a running average of the RTT and then to compute the timeout as a function of this RTT.
Specifically, every time TCP sends a data segment, it records the time. When an ACK for that segment
arrives, TCP reads the time again, and then takes the difference between these two times as a SampleRTT.
TCP then computes an Est imatedRTT as a weighted average between the previous estimate and this new
sample. That is,

EstimatedRTT = alpha x EstimatedRTT + (1 - alpha) x SampleRTT

The parameter alpha is selected to smooth the Est imatedRTT. A small alpha tracks changes in the
RTT but is perhaps too heavily influenced by temporary fluctuations. On the other hand, a large alpha is
more stable but perhaps not quick enough to adapt to real changes. The original TCP specification recom-
mended a setting of alpha between 0.8 and 0.9. TCP then uses EstimatedRTT to compute the timeout
in a rather conservative way:

TimeOut = 2 x EstimatedRTT

5.2. Reliable Byte Stream (TCP) 249

Computer Networks: A Systems Approach, Release Version 6.1

Karn/Partridge Algorithm

After several years of use on the Internet, a rather obvious flaw was discovered in this simple algorithm.
The problem was that an ACK does not really acknowledge a transmission; it actually acknowledges the
receipt of data. In other words, whenever a segment is retransmitted and then an ACK arrives at the sender,
it is impossible to determine if this ACK should be associated with the first or the second transmission of
the segment for the purpose of measuring the sample RTT. It is necessary to know which transmission to
associate it with so as to compute an accurate SampleRTT. As illustrated in Figure 5.10, if you assume
that the ACK is for the original transmission but it was really for the second, then the SampleRTT is too
large (a); if you assume that the ACK is for the second transmission but it was actually for the first, then the
SampleRTT is too small (b).

Sender Receiver Sender Receiver

SampleRTT
SampleRTT

Figure 5.10.: Associating the ACK with (a) original transmission versus (b) retransmission.

The solution, which was proposed in 1987, is surprisingly simple. Whenever TCP retransmits a segment,
it stops taking samples of the RTT; it only measures SampleRTT for segments that have been sent only
once. This solution is known as the Karn/Partridge algorithm, after its inventors. Their proposed fix also
includes a second small change to TCP’s timeout mechanism. Each time TCP retransmits, it sets the next
timeout to be twice the last timeout, rather than basing it on the last Est imatedRTT. That is, Karn and
Partridge proposed that TCP use exponential backoff, similar to what the Ethernet does. The motivation
for using exponential backoff is simple: Congestion is the most likely cause of lost segments, meaning that
the TCP source should not react too aggressively to a timeout. In fact, the more times the connection times
out, the more cautious the source should become. We will see this idea again, embodied in a much more
sophisticated mechanism, in the next chapter.

Jacobson/Karels Algorithm

The Karn/Partridge algorithm was introduced at a time when the Internet was suffering from high levels
of network congestion. Their approach was designed to fix some of the causes of that congestion, but,
although it was an improvement, the congestion was not eliminated. The following year (1988), two other
researchers—Jacobson and Karels—proposed a more drastic change to TCP to battle congestion. The bulk
of that proposed change is described in the next chapter. Here, we focus on the aspect of that proposal that
is related to deciding when to time out and retransmit a segment.

250 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

As an aside, it should be clear how the timeout mechanism is related to congestion—if you time out too
soon, you may unnecessarily retransmit a segment, which only adds to the load on the network. The other
reason for needing an accurate timeout value is that a timeout is taken to imply congestion, which triggers
a congestion-control mechanism. Finally, note that there is nothing about the Jacobson/Karels timeout
computation that is specific to TCP. It could be used by any end-to-end protocol.

The main problem with the original computation is that it does not take the variance of the sample RTTs
into account. Intuitively, if the variation among samples is small, then the Est imatedRTT can be better
trusted and there is no reason for multiplying this estimate by 2 to compute the timeout. On the other hand,
a large variance in the samples suggests that the timeout value should not be too tightly coupled to the
EstimatedRTT.

In the new approach, the sender measures a new SampleRTT as before. It then folds this new sample into
the timeout calculation as follows:

Difference = SampleRTT - EstimatedRTT
EstimatedRTT = EstimatedRTT + (delta x Difference)
Deviation = Deviation + delta (|Difference| - Deviation)

where delta and delta are fractions between 0 and 1. That is, we calculate both the mean RTT and the
variation in that mean.

TCP then computes the timeout value as a function of both Est imatedRTT and Deviation as follows:

TimeOut = mu x EstimatedRTT + phi x Deviation

where based on experience, mu is typically set to 1 and phi is set to 4. Thus, when the variance is small,
TimeOut is close to EstimatedRTT; a large variance causes the Deviation term to dominate the
calculation.

Implementation

There are two items of note regarding the implementation of timeouts in TCP. The first is that it is possible to
implement the calculation for Est imatedRTT and Deviation without using floating-point arithmetic.
Instead, the whole calculation is scaled by 2", with delta selected to be 1/2". This allows us to do integer
arithmetic, implementing multiplicationand division using shifts, thereby achieving higher performance.
The resulting calculation is given by the following code fragment, where n=3 (i.e., delta = 1/8). Note
that Est imatedRTT and Deviation are stored in their scaled-up forms, while the value of SampleRTT
at the start of the code and of TimeOut at the end are real, unscaled values. If you find the code hard to
follow, you might want to try plugging some real numbers into it and verifying that it gives the same results
as the equations above.

{
SampleRTT —-= (EstimatedRTT >> 3);
EstimatedRTT += SampleRTT;
if (SampleRTT < 0)
SampleRTT = —-SampleRTT;
SampleRTT —-= (Deviation >> 3);
Deviation += SampleRTT;

(continues on next page)

5.2. Reliable Byte Stream (TCP) 251

Computer Networks: A Systems Approach, Release Version 6.1

(continued from previous page)

TimeOut = (EstimatedRTT >> 3) + (Deviation >> 1);

The second point of note is that the Jacobson/Karels algorithm is only as good as the clock used to read the
current time. On typical Unix implementations at the time, the clock granularity was as large as 500 ms,
which is significantly larger than the average cross-country RTT of somewhere between 100 and 200 ms.
To make matters worse, the Unix implementation of TCP only checked to see if a timeout should happen
every time this 500-ms clock ticked and would only take a sample of the round-trip time once per RTT. The
combination of these two factors could mean that a timeout would happen 1 second after the segment was
transmitted. Once again, the extensions to TCP include a mechanism that makes this RTT calculation a bit
more precise.

All of the retransmission algorithms we have discussed are based on acknowledgment timeouts, which in-
dicate that a segment has probably been lost. Note that a timeout does not, however, tell the sender whether
any segments it sent after the lost segment were successfully received. This is because TCP acknowledg-
ments are cumulative; they identify only the last segment that was received without any preceding gaps. The
reception of segments that occur after a gap grows more frequent as faster networks lead to larger windows.
If ACKs also told the sender which subsequent segments, if any, had been received, then the sender could be
more intelligent about which segments it retransmits, draw better conclusions about the state of congestion,
and make better RTT estimates. A TCP extension supporting this is described in a later section.

Key Takeaway

There is one other point to make about computing timeouts. It is a surprisingly tricky business, so much so,
that there is an entire RFC dedicated to the topic: RFC 6298. The takeaway is that sometimes fully specify-
ing a protocol involves so much minutiae that the line between specification and implementation becomes
blurred. That has happened more than once with TCP, causing some to argue that “the implementation is
the specification.” But that’s not necessarily a bad thing as long as the reference implementation is available
as open source software. More generally, the industry is seeing open source software grow in importance as
open standards receed in importance. [Next]

5.2.7 Record Boundaries

Since TCP is a byte-stream protocol, the number of bytes written by the sender are not necessarily the same
as the number of bytes read by the receiver. For example, the application might write 8 bytes, then 2 bytes,
then 20 bytes to a TCP connection, while on the receiving side the application reads 5 bytes at a time inside
a loop that iterates 6 times. TCP does not interject record boundaries between the 8th and 9th bytes, nor
between the 10th and 11th bytes. This is in contrast to a message-oriented protocol, such as UDP, in which
the message that is sent is exactly the same length as the message that is received.

Even though TCP is a byte-stream protocol, it has two different features that can be used by the sender
to insert record boundaries into this byte stream, thereby informing the receiver how to break the stream
of bytes into records. (Being able to mark record boundaries is useful, for example, in many database
applications.) Both of these features were originally included in TCP for completely different reasons; they
have only come to be used for this purpose over time.

252 Chapter 5. End-to-End Protocols

https://tools.ietf.org/html/rfc6298

Computer Networks: A Systems Approach, Release Version 6.1

The first mechanism is the urgent data feature, as implemented by the URG flag and the UrgPt r field in the
TCP header. Originally, the urgent data mechanism was designed to allow the sending application to send
out-of-band data to its peer. By “out of band” we mean data that is separate from the normal flow of data
(e.g., a command to interrupt an operation already under way). This out-of-band data was identified in the
segment using the UrgPt r field and was to be delivered to the receiving process as soon as it arrived, even
if that meant delivering it before data with an earlier sequence number. Over time, however, this feature has
not been used, so instead of signifying “urgent” data, it has come to be used to signify “special” data, such
as a record marker. This use has developed because, as with the push operation, TCP on the receiving side
must inform the application that urgent data has arrived. That is, the urgent data in itself is not important. It
is the fact that the sending process can effectively send a signal to the receiver that is important.

The second mechanism for inserting end-of-record markers into a byte is the push operation. Originally,
this mechanism was designed to allow the sending process to tell TCP that it should send (flush) whatever
bytes it had collected to its peer. The push operation can be used to implement record boundaries because
the specification says that TCP must send whatever data it has buffered at the source when the application
says push, and, optionally, TCP at the destination notifies the application whenever an incoming segment
has the PUSH flag set. If the receiving side supports this option (the socket interface does not), then the
push operation can be used to break the TCP stream into records.

Of course, the application program is always free to insert record boundaries without any assistance from
TCP. For example, it can send a field that indicates the length of a record that is to follow, or it can insert its
own record boundary markers into the data stream.

5.2.8 TCP Extensions

We have mentioned at four different points in this section that there are now extensions to TCP that help to
mitigate some problem that TCP faced as the underlying network got faster. These extensions are designed
to have as small an impact on TCP as possible. In particular, they are realized as options that can be added
to the TCP header. (We glossed over this point earlier, but the reason why the TCP header has a HdrLen
field is that the header can be of variable length; the variable part of the TCP header contains the options
that have been added.) The significance of adding these extensions as options rather than changing the core
of the TCP header is that hosts can still communicate using TCP even if they do not implement the options.
Hosts that do implement the optional extensions, however, can take advantage of them. The two sides agree
that they will use the options during TCP’s connection establishment phase.

The first extension helps to improve TCP’s timeout mechanism. Instead of measuring the RTT using a
coarse-grained event, TCP can read the actual system clock when it is about to send a segment, and put this
time—think of it as a 32-bit timestamp—in the segment’s header. The receiver then echoes this timestamp
back to the sender in its acknowledgment, and the sender subtracts this timestamp from the current time to
measure the RTT. In essence, the timestamp option provides a convenient place for TCP to store the record
of when a segment was transmitted; it stores the time in the segment itself. Note that the endpoints in the
connection do not need synchronized clocks, since the timestamp is written and read at the same end of the
connection.

The second extension addresses the problem of TCP’s 32-bit SequenceNum field wrapping around too
soon on a high-speed network. Rather than define a new 64-bit sequence number field, TCP uses the 32-bit
timestamp just described to effectively extend the sequence number space. In other words, TCP decides
whether to accept or reject a segment based on a 64-bit identifier that has the SequenceNum field in the
low-order 32 bits and the timestamp in the high-order 32 bits. Since the timestamp is always increasing,

5.2. Reliable Byte Stream (TCP) 253

Computer Networks: A Systems Approach, Release Version 6.1

it serves to distinguish between two different incarnations of the same sequence number. Note that the
timestamp is being used in this setting only to protect against wraparound; it is not treated as part of the
sequence number for the purpose of ordering or acknowledging data.

The third extension allows TCP to advertise a larger window, thereby allowing it to fill larger delay x band-
width pipes that are made possible by high-speed networks. This extension involves an option that defines
a scaling factor for the advertised window. That is, rather than interpreting the number that appears in the
AdvertisedWindow field as indicating how many bytes the sender is allowed to have unacknowledged,
this option allows the two sides of TCP to agree that the AdvertisedWindow field counts larger chunks
(e.g., how many 16-byte units of data the sender can have unacknowledged). In other words, the window
scaling option specifies how many bits each side should left-shift the AdvertisedWindow field before
using its contents to compute an effective window.

The fourth extension allows TCP to augment its cumulative acknowledgment with selective acknowledg-
ments of any additional segments that have been received but aren’t contiguous with all previously received
segments. This is the selective acknowledgment, or SACK, option. When the SACK option is used, the
receiver continues to acknowledge segments normally—the meaning of the Acknowledge field does not
change—but it also uses optional fields in the header to acknowledge any additional blocks of received data.
This allows the sender to retransmit just the segments that are missing according to the selective acknowl-
edgment.

Without SACK, there are only two reasonable strategies for a sender. The pessimistic strategy responds to
a timeout by retransmitting not just the segment that timed out, but any segments transmitted subsequently.
In effect, the pessimistic strategy assumes the worst: that all those segments were lost. The disadvantage of
the pessimistic strategy is that it may unnecessarily retransmit segments that were successfully received the
first time. The other strategy is the optimistic strategy, which responds to a timeout by retransmitting only
the segment that timed out. In effect, the optimistic approach assumes the rosiest scenario: that only the
one segment has been lost. The disadvantage of the optimistic strategy is that it is very slow, unnecessarily,
when a series of consecutive segments has been lost, as might happen when there is congestion. It is slow
because each segment’s loss is not discovered until the sender receives an ACK for its retransmission of the
previous segment. So it consumes one RTT per segment until it has retransmitted all the segments in the lost
series. With the SACK option, a better strategy is available to the sender: retransmit just the segments that
fill the gaps between the segments that have been selectively acknowledged.

These extensions, by the way, are not the full story. We’ll see some more extensions in the next chapter
when we look at how TCP handles congestion. The Internet Assigned Numbers Authority (IANA) keeps
track of all the options that are defined for TCP (and for many other Internet protocols). See the references
at the end of the chapter for a link to IANA’s protocol number registry.

5.2.9 Performance

Recall that Chapter 1 introduced the two quantitative metrics by which network performance is evaluated:
latency and throughput. As mentioned in that discussion, these metrics are influenced not only by the under-
lying hardware (e.g., propagation delay and link bandwidth) but also by software overheads. Now that we
have a complete software-based protocol graph available to us that includes alternative transport protocols,
we can discuss how to meaningfully measure its performance. The importance of such measurements is that
they represent the performance seen by application programs.

We begin, as any report of experimental results should, by describing our experimental method. This in-

254 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

User process User process

Linux kernel Linux kernel

NIC

NIC

NIC

NIC

Figure 5.11.: Measured system: Two Linux workstations and a pair of Gbps Ethernet links.

cludes the apparatus used in the experiments; in this case, each workstation has a pair of dual CPU 2.4-GHz
Xeon processors running Linux. In order to enable speeds above 1 Gbps, a pair of Ethernet adaptors (labeled
NIC, for network interface card) are used on each machine. The Ethernet spans a single machine room so
propagation is not an issue, making this a measure of processor/software overheads. A test program running
on top of the socket interface simply tries to transfer data as quickly as possible from one machine to the
other. Figure 5.11 illustrates the setup.

You may notice that this experimental setup is not especially bleeding edge in terms of the hardware or link
speed. The point of this section is not to show how fast a particular protocol can run, but to illustrate the
general methodology for measuring and reporting protocol performance.

The throughput test is performed for a variety of message sizes using a standard benchmarking tool called
TTCP. The results of the throughput test are given in Figure 5.12. The key thing to notice in this graph is
that throughput improves as the messages get larger. This makes sense—each message involves a certain
amount of overhead, so a larger message means that this overhead is amortized over more bytes. The
throughput curve flattens off above 1 KB, at which point the per-message overhead becomes insignificant
when compared to the large number of bytes that the protocol stack has to process.

It’s worth noting that the maximum throughput is less than 2 Gbps, the available link speed in this setup.
Further testing and analysis of results would be needed to figure out where the bottleneck is (or if there
is more than one). For example, looking at CPU load might give an indication of whether the CPU is the
bottleneck or whether memory bandwidth, adaptor performance, or some other issue is to blame.

We also note that the network in this test is basically “perfect.” It has almost no delay or loss, so the only fac-
tors affecting performance are the TCP implementation and the workstation hardware and software. By con-
trast, most of the time we deal with networks that are far from perfect, notably our bandwidth-constrained,
last-mile links and loss-prone wireless links. Before we can fully appreciate how these links affect TCP

5.2. Reliable Byte Stream (TCP) 255

Computer Networks: A Systems Approach, Release Version 6.1

1.8

Throughput (Gbps)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0 T I T I
256 512 1kB 4kB 64 kB

Figure 5.12.: Measured throughput using TCP, for various message sizes.

performance, we need to understand how TCP deals with congestion, which is the topic of the next chapter.

At various times in the history of networking, the steadily increasing speed of network links has threatened
to run ahead of what could be delivered to applications. For example, a large research effort was begun in the
United States in 1989 to build “gigabit networks,” where the goal was not only to build links and switches
that could run at 1Gbps or higher but also to deliver that throughput all the way to a single application
process. There were some real problems (e.g., network adaptors, workstation architectures, and operating
systems all had to be designed with network-to-application throughput in mind) and also some perceived
problems that turned out to be not so serious. High on the list of such problems was the concern that existing
transport protocols, TCP in particular, might not be up to the challenge of gigabit operation.

As it turns out, TCP has done well keeping up with the increasing demands of high-speed networks and
applications. One of the most important factors was the introduction of window scaling to deal with larger
bandwidth-delay products. However, there is often a big difference between the theoretical performance of
TCP and what is achieved in practice. Relatively simple problems like copying the data more times than
necessary as it passes from network adaptor to application can drive down performance, as can insufficient
buffer memory when the bandwidth-delay product is large. And the dynamics of TCP are complex enough
(as will become even more apparent in the next chapter) that subtle interactions among network behavior,
application behavior, and the TCP protocol itself can dramatically alter performance.

For our purposes, it’s worth noting that TCP continues to perform very well as network speeds increase, and
when it runs up against some limit (normally related to congestion, increasing bandwidth-delay products,
or both), researchers rush in to find solutions. We’ve seen some of those in this chapter, and we’ll see some
more in the next.

256 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

5.2.10 Alternative Design Choices (SCTP, QUIC)

Although TCP has proven to be a robust protocol that satisfies the needs of a wide range of applications, the
design space for transport protocols is quite large. TCP is by no means the only valid point in that design
space. We conclude our discussion of TCP by considering alternative design choices. While we offer an
explanation for why TCP’s designers made the choices they did, we observe that other protocols exist that
have made other choices, and more such protocols may appear in the future.

First, we have suggested from the very first chapter of this book that there are at least two interesting
classes of transport protocols: stream-oriented protocols like TCP and request/reply protocols like RPC. In
other words, we have implicitly divided the design space in half and placed TCP squarely in the stream-
oriented half of the world. We could further divide the stream-oriented protocols into two groups—reliable
and unreliable—with the former containing TCP and the latter being more suitable for interactive video
applications that would rather drop a frame than incur the delay associated with a retransmission.

This exercise in building a transport protocol taxonomy is interesting and could be continued in greater and
greater detail, but the world isn’t as black and white as we might like. Consider the suitability of TCP as a
transport protocol for request/reply applications, for example. TCP is a full-duplex protocol, so it would be
easy to open a TCP connection between the client and server, send the request message in one direction, and
send the reply message in the other direction. There are two complications, however. The first is that TCP is
a byte-oriented protocol rather than a message-oriented protocol, and request/reply applications always deal
with messages. (We explore the issue of bytes versus messages in greater detail in a moment.) The second
complication is that in those situations where both the request message and the reply message fit in a single
network packet, a well-designed request/reply protocol needs only two packets to implement the exchange,
whereas TCP would need at least nine: three to establish the connection, two for the message exchange, and
four to tear down the connection. Of course, if the request or reply messages are large enough to require
multiple network packets (e.g., it might take 100 packets to send a 100,000-byte reply message), then the
overhead of setting up and tearing down the connection is inconsequential. In other words, it isn’t always
the case that a particular protocol cannot support a certain functionality; it’s sometimes the case that one
design is more efficient than another under particular circumstances.

Second, as just suggested, you might question why TCP chose to provide a reliable byfe-stream service rather
than a reliable message-stream service; messages would be the natural choice for a database application that
wants to exchange records. There are two answers to this question. The first is that a message-oriented
protocol must, by definition, establish an upper bound on message sizes. After all, an infinitely long message
is a byte stream. For any message size that a protocol selects, there will be applications that want to send
larger messages, rendering the transport protocol useless and forcing the application to implement its own
transport-like services. The second reason is that, while message-oriented protocols are definitely more
appropriate for applications that want to send records to each other, you can easily insert record boundaries
into a byte stream to implement this functionality.

A third decision made in the design of TCP is that it delivers bytes in order to the application. This means
that it may hold onto bytes that were received out of order from the network, awaiting some missing bytes
to fill a hole. This is enormously helpful for many applications but turns out to be quite unhelpful if the
application is capable of processing data out of order. As a simple example, a Web page containing multiple
embedded objects doesn’t need all the objects to be delivered in order before starting to display the page.
In fact, there is a class of applications that would prefer to handle out-of-order data at the application layer,
in return for getting data sooner when packets are dropped or misordered within the network. The desire to
support such applications led to the creation of not one but two IETF standard transport protocols. The first

5.2. Reliable Byte Stream (TCP) 257

Computer Networks: A Systems Approach, Release Version 6.1

of these was SCTP, the Stream Control Transmission Protocol. SCTP provides a partially ordered delivery
service, rather than the strictly ordered service of TCP. (SCTP also makes some other design decisions that
differ from TCP, including message orientation and support of multiple IP addresses for a single session.)
More recently, the IETF has been standardizing a protocol optimized for Web traffic, known as QUIC. More
on QUIC in a moment.

Fourth, TCP chose to implement explicit setup/teardown phases, but this is not required. In the case of
connection setup, it would be possible to send all necessary connection parameters along with the first data
message. TCP elected to take a more conservative approach that gives the receiver the opportunity to reject
the connection before any data arrives. In the case of teardown, we could quietly close a connection that has
been inactive for a long period of time, but this would complicate applications like remote login that want
to keep a connection alive for weeks at a time; such applications would be forced to send out-of-band “keep
alive” messages to keep the connection state at the other end from disappearing.

Finally, TCP is a window-based protocol, but this is not the only possibility. The alternative is a rate-based
design, in which the receiver tells the sender the rate—expressed in either bytes or packets per second—at
which it is willing to accept incoming data. For example, the receiver might inform the sender that it can
accommodate 100 packets a second. There is an interesting duality between windows and rate, since the
number of packets (bytes) in the window, divided by the RTT, is exactly the rate. For example, a window
size of 10 packets and a 100-ms RTT implies that the sender is allowed to transmit at a rate of 100 packets
a second. It is by increasing or decreasing the advertised window size that the receiver is effectively raising
or lowering the rate at which the sender can transmit. In TCP, this information is fed back to the sender
in the AdvertisedwWindow field of the ACK for every segment. One of the key issues in a rate-based
protocol is how often the desired rate—which may change over time—is relayed back to the source: Is it for
every packet, once per RTT, or only when the rate changes? While we have just now considered window
versus rate in the context of flow control, it is an even more hotly contested issue in the context of congestion
control, which we will discuss in the next chapter.

QuicC

QUIC, Quick UDP Internet Connections, originated at Google in 2012 and, at the time of writing, is still
undergoing standardization at the IETF. It has already seen a moderate amount of deployment (in some
Web browsers and quite a number of popular Web sites). The fact that it has been successful to this degree
is in itself an interesting part of the QUIC story, and indeed deployability was a key consideration for the
designers of the protocol.

The motivation for QUIC comes directly from the points we noted above about TCP: certain design decisions
have turned out to be non-optimal for a range of applications that run over TCP, with HTTP (Web) traffic
being a particularly notable example. These issues have become more noticeable over time, due to factors
such as the rise of high-latency wireless networks, the availability of multiple networks for a single device
(e.g., Wi-Fi and cellular), and the increasing use of encrypted, authenticated connections on the Web. While
a full description of QUIC is beyond our scope, some of the key design decisions are worth discussing.

Multipath TCP

Itisn’t always necessary to define a new protocol if you find an existing protocol does not adequately serve
a particular use case. Sometimes it’s possible to make substantial changes in how an existing protocol is

258 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

implemented, yet remain true to the original spec. Multipath TCP is an example of such a situation.

The idea of Multipath TCP is to steer packets over multiple paths through the Internet, for example, by
using two different IP addresses for one of the end-points. This can be especially helpful when delivering
data to a mobile device that is connected to both Wi-Fi and the cellular network (and hence, has two
unique IP addresses). Being wireless, both networks can experience significant packet-loss, so being able
to use both to carry packets can dramatically improve the user experience. The key is for the receiving side
of TCP to reconstruct the original, in-order byte stream before passing data up to the application, which
remains unaware it is sitting on top of Multipath TCP. (This is in contrast to applications that purposely
open two or more TCP connections to get better performance.)

As simple as Multipath TCP sounds, it is incredibly difficult to get right because it breaks many assump-
tions about how TCP flow control, in-order segment reassembly, and congestion control are implemented.
We leave it as an exercise for the reader to explore these subtleties. Doing so is a great way to make sure
your basic understanding of TCP is sound.

If network latency is high—in the hundreds of milliseconds—then a few RTTs can quickly add up to a visible
annoyance for an end user. Establishing an HTTP session over TCP with Transport Layer Security (Section
8.5) would typically take three round trips (one for TCP session establishment and two for setting up the
encryption parameters) before the first HTTP message could be sent. The designers of QUIC recognized
that this delay—the direct result of a layered approach to protocol design—could be dramatically reduced
if connection setup and the required security handshakes were combined and optimized for minimal round
trips.

Note also how the presence of multiple network interfaces might affect the design. If your mobile phone
loses its Wi-Fi connection and needs to switch to a cellular connection, that would typically require both
a TCP timeout on one connection and a new series of handshakes on the other. Making the connection
something that can persist over different network layer connections was another design goal for QUIC.

Finally, as noted above, the reliable byte stream model for TCP is a poor match to a Web page request, when
many objects need to be fetched and page rendering could begin before they have all arrived. While one
workaround for this would be to open multiple TCP connections in parallel, this approach (which was used
in the early days of the Web) has its own set of drawbacks, notably on congestion control (see Chapter 6).

Interestingly, by the time QUIC emerged, many design decisions had been made that presented challenges
for the deployment of a new transport protocol. Notably, many “middleboxes” such as NATs and firewalls
(see Section 8.5) have enough understanding of the existing widespread transport protocols (TCP and UDP)
that they can’t be relied upon to pass a new transport protocol. As a result, QUIC actually rides on top
of UDP. In other words, it is a transport protocol running on top of a transport protocol. This is not as
uncommon as our focus on layering might suggest, as the next two subsections also illustrate.

QUIC implements fast connection establishment with encryption and authentication in the first RTT. It
provides a connection identifier than persists across changes in the underlying network. It supports the
multiplexing of several streams onto a single transport connection, to avoid the head-of-line blocking that
may arise when a single packet is dropped while other useful data continues to arrive. And it preserves
the congestion avoidance properties of TCP, an important aspect of transport protocols that we return to in
Chapter 6.

QUIC is a most interesting development in the world of transport protocols. Many of the limitations of
TCP have been known for decades, but QUIC represents one of the most successful efforts to date to stake
out a different point in the design space. Because QUIC was inspired by experience with HTTP and the

5.2. Reliable Byte Stream (TCP) 259

Computer Networks: A Systems Approach, Release Version 6.1

Web—which arose long after TCP was well established in the Internet—it presents a fascinating case study
in the unforeseen consequences of layered designs and in the evolution of the Internet.

5.3 Remote Procedure Call

A common pattern of communication used by application programs structured as a client/server pair is the
request/reply message transaction: A client sends a request message to a server, and the server responds with
a reply message, with the client blocking (suspending execution) to wait for the reply. Figure 5.13 illustrates
the basic interaction between the client and server in such an exchange.

Client Server
Reques ¢ Blocked
Blocked :| Computing
RepYY
Blocked

Figure 5.13.: Timeline for RPC.

A transport protocol that supports the request/reply paradigm is much more than a UDP message going in
one direction followed by a UDP message going in the other direction. It needs to deal with correctly identi-
fying processes on remote hosts and correlating requests with responses. It may also need to overcome some
or all of the limitations of the underlying network outlined in the problem statement at the beginning of this
chapter. While TCP overcomes these limitations by providing a reliable byte-stream service, it doesn’t per-
fectly match the request/reply paradigm either. This section describes a third category of transport protocol,
called Remote Procedure Call (RPC), that more closely matches the needs of an application involved in a
request/reply message exchange.

5.3.1 RPC Fundamentals

RPC is not technically a protocol—it is better thought of as a general mechanism for structuring distributed
systems. RPC is popular because it is based on the semantics of a local procedure call—the application
program makes a call into a procedure without regard for whether it is local or remote and blocks until the
call returns. An application developer can be largely unaware of whether the procedure is local or remote,
simplifying his task considerably. When the procedures being called are actually methods of remote objects
in an object-oriented language, RPC is known as remote method invocation (RMI). While the RPC concept
is simple, there are two main problems that make it more complicated than local procedure calls:

* The network between the calling process and the called process has much more complex properties
than the backplane of a computer. For example, it is likely to limit message sizes and has a tendency
to lose and reorder messages.

260 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

* The computers on which the calling and called processes run may have significantly different archi-
tectures and data representation formats.

Thus, a complete RPC mechanism actually involves two major components:

1. A protocol that manages the messages sent between the client and the server processes and that deals
with the potentially undesirable properties of the underlying network.

2. Programming language and compiler support to package the arguments into a request message on the
client machine and then to translate this message back into the arguments on the server machine, and
likewise with the return value (this piece of the RPC mechanism is usually called a stub compiler).

Figure 5.14 schematically depicts what happens when a client invokes a remote procedure. First, the client
calls a local stub for the procedure, passing it the arguments required by the procedure. This stub hides the
fact that the procedure is remote by translating the arguments into a request message and then invoking an
RPC protocol to send the request message to the server machine. At the server, the RPC protocol delivers
the request message to the server stub, which translates it into the arguments to the procedure and then calls
the local procedure. After the server procedure completes, it returns in a reply message that it hands off to
the RPC protocol for transmission back to the client. The RPC protocol on the client passes this message up
to the client stub, which translates it into a return value that it returns to the client program.

Caller Callee
(client) (server)
Arguments FEIIE Arguments REHT
value value
Client Server
stub stub
Request Reply Request Reply
RPC RPC
protocol protocol

Figure 5.14.: Complete RPC mechanism.

This section considers just the protocol-related aspects of an RPC mechanism. That is, it ignores the stubs
and focuses instead on the RPC protocol, sometimes referred to as a request/reply protocol, that transmits
messages between client and server. The transformation of arguments into messages and vice versa is
covered elsewhere. It is also important to keep in mind that the client and server programs are written in

5.3. Remote Procedure Call 261

Computer Networks: A Systems Approach, Release Version 6.1

some programming language, meaning that a given RPC mechanism might support Python stubs, Java stubs,
GoLang stubs, and so on, each of which includes language-specific idioms for how procedures are invoked.

The term RPC refers to a type of protocol rather than a specific standard like TCP, so specific RPC protocols
vary in the functions they perform. And, unlike TCP, which is the dominant reliable byte-stream protocol,
there is no one dominant RPC protocol. Thus, in this section we will talk more about alternative design
choices than previously.

Identifiers in RPC

Two functions that must be performed by any RPC protocol are:
* Provide a name space for uniquely identifying the procedure to be called.
* Match each reply message to the corresponding request message.

The first problem has some similarities to the problem of identifying nodes in a network, something IP
addresses do, for example). One of the design choices when identifying things is whether to make this name
space flat or hierarchical. A flat name space would simply assign a unique, unstructured identifier (e.g., an
integer) to each procedure, and this number would be carried in a single field in an RPC request message.
This would require some kind of central coordination to avoid assigning the same procedure number to two
different procedures. Alternatively, the protocol could implement a hierarchical name space, analogous to
that used for file pathnames, which requires only that a file’s “basename” be unique within its directory.
This approach potentially simplifies the job of ensuring uniqueness of procedure names. A hierarchical
name space for RPC could be implemented by defining a set of fields in the request message format, one for
each level of naming in, say, a two- or three-level hierarchical name space.

The key to matching a reply message to the corresponding request is to uniquely identify request-replies
pairs using a message ID field. A reply message had its message ID field set to the same value as the
request message. When the client RPC module receives the reply, it uses the message ID to search for the
corresponding outstanding request. To make the RPC transaction appear like a local procedure call to the
caller, the caller is blocked until the reply message is received. When the reply is received, the blocked
caller is identified based on the request number in the reply, the remote procedure’s return value is obtained
from the reply, and the caller is unblocked so that it can return with that return value.

One of the recurrent challenges in RPC is dealing with unexpected responses, and we see this with message
IDs. For example, consider the following pathological (but realistic) situation. A client machine sends a
request message with a message ID of 0, then crashes and reboots, and then sends an unrelated request
message, also with a message ID of 0. The server may not have been aware that the client crashed and
rebooted and, upon seeing a request message with a message ID of 0, acknowledges it and discards it as a
duplicate. The client never gets a response to the request.

One way to eliminate this problem is to use a boot ID. A machine’s boot ID is a number that is incremented
each time the machine reboots; this number is read from nonvolatile storage (e.g., a disk or flash drive),
incremented, and written back to the storage device during the machine’s start-up procedure. This number
is then put in every message sent by that host. If a message is received with an old message ID but a new
boot ID, it is recognized as a new message. In effect, the message ID and boot ID combine to form a unique
ID for each transaction.

262 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

Overcoming Network Limitations

RPC protocols often perform additional functions to deal with the fact that networks are not perfect channels.
Two such functions are:

* Provide reliable message delivery
* Support large message sizes through fragmentation and reassembly

An RPC protocol might “define this problem away” by choosing to run on top of a reliable protocol like
TCP, but in many cases, the RCP protocol implements its own reliable message delivery layer on top of
an unreliable substrate (e.g., UDP/IP). Such an RPC protocol would likely implement reliability using ac-
knowledgments and timeouts, similarly to TCP.

The basic algorithm is straightforward, as illustrated by the timeline given in Figure 5.15. The client sends
a request message and the server acknowledges it. Then, after executing the procedure, the server sends a
reply message and the client acknowledges the reply.

Client Server

ReqUGSt

pCK

repY

ACK

Figure 5.15.: Simple timeline for a reliable RPC protocol.

Either a message carrying data (a request message or a reply message) or the ACK sent to acknowledge that
message may be lost in the network. To account for this possibility, both client and server save a copy of
each message they send until an ACK for it has arrived. Each side also sets a RETRANSMIT timer and
resends the message should this timer expire. Both sides reset this timer and try again some agreed-upon
number of times before giving up and freeing the message.

If an RPC client receives a reply message, clearly the corresponding request message must have been re-
ceived by the server. Hence, the reply message itself is an implicit acknowledgment, and any additional
acknowledgment from the server is not logically necessary. Similarly, a request message could implicitly
acknowledge the preceding reply message—assuming the protocol makes request-reply transactions sequen-
tial, so that one transaction must complete before the next begins. Unfortunately, this sequentiality would
severely limit RPC performance.

A way out of this predicament is for the RPC protocol to implement a channel abstraction. Within a given
channel, request/reply transactions are sequential—there can be only one transaction active on a given chan-
nel at any given time—but there can be multiple channels. Or said another way, the channel abstraction
makes it possible to multiplex multiple RPC request/reply transactions between a client/server pair.

5.3. Remote Procedure Call 263

Computer Networks: A Systems Approach, Release Version 6.1

Each message includes a channel ID field to indicate which channel the message belongs to. A request
message in a given channel would implicitly acknowledge the previous reply in that channel, if it hadn’t
already been acknowledged. An application program can open multiple channels to a server if it wants
to have more than one request/reply transaction between them at the same time (the application would
need multiple threads). As illustrated in Figure 5.16, the reply message serves to acknowledge the request
message, and a subsequent request acknowledges the preceding reply. Note that we saw a very similar
approach—called concurrent logical channels—in an earlier section as a way to improve on the performance
of a stop-and-wait reliability mechanism.

Client Server

Figure 5.16.: Timeline for a reliable RPC protocol using implicit acknowledgment.

Another complication that RPC must address is that the server may take an arbitrarily long time to produce
the result, and, worse yet, it may crash before generating the reply. Keep in mind that we are talking about
the period of time after the server has acknowledged the request but before it has sent the reply. To help
the client distinguish between a slow server and a dead server, the RPC’s client side can periodically send
an “Are you alive?” message to the server, and the server side responds with an ACK. Alternatively, the
server could send “T am still alive” messages to the client without the client having first solicited them. The
approach is more scalable because it puts more of the per-client burden (managing the timeout timer) on the
clients.

RPC reliability may include the property known as at-most-once semantics. This means that for every
request message that the client sends, at most one copy of that message is delivered to the server. Each time
the client calls a remote procedure, that procedure is invoked at most one time on the server machine. We
say “at most once” rather than “exactly once” because it is always possible that either the network or the
server machine has failed, making it impossible to deliver even one copy of the request message.

To implement at-most-once semantics, RPC on the server side must recognize duplicate requests (and ignore
them), even if it has already successfully replied to the original request. Hence, it must maintain some state
information that identifies past requests. One approach is to identify requests using sequence numbers, SO
a server need only remember the most recent sequence number. Unfortunately, this would limit an RPC to
one outstanding request (to a given server) at a time, since one request must be completed before the request
with the next sequence number can be transmitted. Once again, channels provide a solution. The server
could recognize duplicate requests by remembering the current sequence number for each channel, without
limiting the client to one request at a time.

264 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

As obvious as at-most-once sounds, not all RPC protocols support this behavior. Some support a semantics
that is facetiously called zero-or-more semantics; that is, each invocation on a client results in the remote
procedure being invoked zero or more times. It is not difficult to understand how this would cause problems
for a remote procedure that changed some local state variable (e.g., incremented a counter) or that had some
externally visible side effect (e.g., launched a missile) each time it was invoked. On the other hand, if the
remote procedure being invoked is idempotent—multiple invocations have the same effect as just one—then
the RPC mechanism need not support at-most-once semantics; a simpler (possibly faster) implementation
will suffice.

As was the case with reliability, the two reasons why an RPC protocol might implement message fragmenta-
tion and reassembly are that it is not provided by the underlying protocol stack or that it can be implemented
more efficiently by the RPC protocol. Consider the case where RPC is implemented on top of UDP/IP and
relies on IP for fragmentation and reassembly. If even one fragment of a message fails to arrive within a
certain amount of time, IP discards the fragments that did arrive and the message is effectively lost. Even-
tually, the RPC protocol (assuming it implements reliability) would time out and retransmit the message. In
contrast, consider an RPC protocol that implements its own fragmentation and reassembly and aggressively
ACKs or NACKs (negatively acknowledges) individual fragments. Lost fragments would be more quickly
detected and retransmitted, and only the lost fragments would be retransmitted, not the whole message.

Synchronous versus Asynchronous Protocols

One way to characterize a protocol is by whether it is synchronous or asynchronous. The precise meaning
of these terms depends on where in the protocol hierarchy you use them. At the transport layer, it is most
accurate to think of them as defining the extremes of a spectrum rather than as two mutually exclusive
alternatives. The key attribute of any point along the spectrum is how much the sending process knows after
the operation to send a message returns. In other words, if we assume that an application program invokes
a send operation on a transport protocol, then exactly what does the application know about the success of
the operation when the send operation returns?

At the asynchronous end of the spectrum, the application knows absolutely nothing when send returns.
Not only does it not know if the message was received by its peer, but it doesn’t even know for sure that
the message has successfully left the local machine. At the synchronous end of the spectrum, the send
operation typically returns a reply message. That is, the application not only knows that the message it sent
was received by its peer, but it also knows that the peer has returned an answer. Thus, synchronous protocols
implement the request/reply abstraction, while asynchronous protocols are used if the sender wants to be
able to transmit many messages without having to wait for a response. Using this definition, RPC protocols
are usually synchronous protocols.

Although we have not discussed them in this chapter, there are interesting points between these two ex-
tremes. For example, the transport protocol might implement send so that it blocks (does not return) until
the message has been successfully received at the remote machine, but returns before the sender’s peer on
that machine has actually processed and responded to it. This is sometimes called a reliable datagram
protocol.

5.3.2 RPC Implementations (SunRPC, DCE, gRPC)

We now turn our discussion to some example implementations of RPC protocols. These will serve to
highlight some of the different design decisions that protocol designers have made. Our first example is

5.3. Remote Procedure Call 265

Computer Networks: A Systems Approach, Release Version 6.1

SunRPC, a widely used RPC protocol also known as Open Network Computing RPC (ONC RPC). Our
second example, which we will refer to as DCE-RPC, is part of the Distributed Computing Environment
(DCE). DCE is a set of standards and software for building distributed systems that was defined by the Open
Software Foundation (OSF), a consortium of computer companies that originally included IBM, Digital
Equipment Corporation, and Hewlett-Packard; today, OSF goes by the name The Open Group. Our third
example is gRPC, a popular RPC mechanism that Google has open sourced, based on an RPC mechanism
that they have been using internally to implement cloud services in their datacenters.

These three examples represent interesting alternative design choices in the RPC solution space, but least
you think they are the only options, we describe three other RPC-like mechanisms (WSDL, SOAP, and
REST) in the context of web services in Chapter 9.

SunRPC

SunRPC became a de facto standard thanks to its wide distribution with Sun workstations and the central
role it plays in Sun’s popular Network File System (NFS). The IETF subsequently adopted it as a standard
Internet protocol under the name ONC RPC.

SunRPC can be implemented over several different transport protocols. Figure 5.17 illustrates the protocol
graph when SunRPC is implemented on UDP. As we noted earlier in this section, a strict layerist might
frown on the idea of running a transport protocol over a transport protocol, or argue that RPC must be
something other than a transport protocol since it appears “above” the transport layer. Pragmatically, the
design decision to run RPC over an existing transport layer makes quite a lot of sense, as will be apparent in
the following discussion.

SunRPC

UDP

ETH

Figure 5.17.: Protocol graph for SunRPC on top of UDP.

SunRPC uses two-tier identifiers to identify remote procedures: a 32-bit program number and a 32-bit
procedure number. (There is also a 32-bit version number, but we ignore that in the following discussion.)
For example, the NFS server has been assigned program number x00100003, and within this program
getattr is procedure 1, setattr is procedure 2, read is procedure 6, write is procedure 8, and so

266 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

on. The program number and procedure number are transmitted in the SunRPC request message’s header,
whose fields are shown in Figure 5.18. The server—which may support several program numbers—is
responsible for calling the specified procedure of the specified program. A SunRPC request really represents
a request to call the specified program and procedure on the particular machine to which the request was
sent, even though the same program number may be implemented on other machines in the same network.
Thus, the address of the server’s machine (e.g., an IP address) is an implicit third tier of the RPC address.

0 31 0 31
XID XID
MsgType = CALL MsgType = REPLY
RPCVersion = 2 Status = ACCEPTED
Program Data
Version m
Procedure

(b)

Credentials (variable)

Verifier (variable)

Data

/\/_/\/-\//‘\\
/\/\-\/\/\/\-\

(a)
Figure 5.18.: SunRPC header formats: (a) request; (b) reply.

Different program numbers may belong to different servers on the same machine. These different servers
have different transport layer demux keys (e.g., UDP ports), most of which are not well-known numbers but
instead are assigned dynamically. These demux keys are called transport selectors. How can a SunRPC
client that wants to talk to a particular program determine which transport selector to use to reach the
corresponding server? The solution is to assign a well-known address to just one program on the remote
machine and let that program handle the task of telling clients which transport selector to use to reach any
other program on the machine. The original version of this SunRPC program is called the Port Mapper,
and it supports only UDP and TCP as underlying protocols. Its program number is x00100000, and its
well-known port is 111. RPCBIND, which evolved from the Port Mapper, supports arbitrary underlying
transport protocols. As each SunRPC server starts, it calls an RPCBIND registration procedure, on the
server’s own home machine, to register its transport selector and the program numbers that it supports. A
remote client can then call an RPCBIND lookup procedure to look up the transport selector for a particular
program number.

To make this more concrete, consider an example using the Port Mapper with UDP. To send a request
message to NFS’s read procedure, a client first sends a request message to the Port Mapper at well-known

5.3. Remote Procedure Call 267

Computer Networks: A Systems Approach, Release Version 6.1

UDP port 111, asking that procedure 3 be invoked to map program number x00100003 to the UDP port
where the NFS program currently resides. The client then sends a SunRPC request message with program
number x00100003 and procedure number 6 to this UDP port, and the SunRPC module listening at that
port calls the NFS read procedure. The client also caches the program-to-port number mapping so that it
need not go back to the Port Mapper each time it wants to talk to the NFS program.'

To match up a reply message with the corresponding request, so that the result of the RPC can be returned to
the correct caller, both request and reply message headers include a XID (transaction ID) field, as in Figure
5.18. A XID is a unique transaction ID used only by one request and the corresponding reply. After the
server has successfully replied to a given request, it does not remember the XID. Because of this, SunRPC
cannot guarantee at-most-once semantics.

The details of SunRPC’s semantics depend on the underlying transport protocol. It does not implement
its own reliability, so it is only reliable if the underlying transport is reliable. (Of course, any application
that runs over SunRPC may also choose to implement its own reliability mechanisms above the level of
SunRPC.) The ability to send request and reply messages that are larger than the network MTU is also
dependent on the underlying transport. In other words, SunRPC does not make any attempt to improve on
the underlying transport when it comes to reliability and message size. Since SunRPC can run over many
different transport protocols, this gives it considerable flexibility without complicating the design of the RPC
protocol itself.

Returning to the SunRPC header format of Figure 5.18, the request message contains variable-length
Credentials and Verifier fields, both of which are used by the client to authenticate itself to the
server—that is, to give evidence that the client has the right to invoke the server. How a client authenticates
itself to a server is a general issue that must be addressed by any protocol that wants to provide a reasonable
level of security. This topic is discussed in more detail in another chapter.

DCE-RPC

DCE-RPC is the RPC protocol at the core of the DCE system and was the basis of the RPC mechanism
underlying Microsoft’s DCOM and ActiveX. It can be used with the Network Data Representation (NDR)
stub compiler described in another chapter, but it also serves as the underlying RPC protocol for the Common
Object Request Broker Architecture (CORBA), which is an industry-wide standard for building distributed,
object-oriented systems.

DCE-RPC, like SunRPC, can be implemented on top of several transport protocols including UDP and
TCP. It is also similar to SunRPC in that it defines a two-level addressing scheme: the transport protocol
demultiplexes to the correct server, DCE-RPC dispatches to a particular procedure exported by that server,
and clients consult an “endpoint mapping service” (similar to SunRPC’s Port Mapper) to learn how to reach
a particular server. Unlike SunRPC, however, DCE-RPC implements at-most-once call semantics. (In truth,
DCE-RPC supports multiple call semantics, including an idempotent semantics similar to SunRPC’s, but
at-most-once is the default behavior.) There are some other differences between the two approaches, which
we will highlight in the following paragraphs.

Figure 5.19 gives a timeline for the typical exchange of messages, where each message is labeled by its
DCE-RPC type. The client sends a Request message, the server eventually replies with a Response
message, and the client acknowledges (Ack) the response. Instead of the server acknowledging the request

!'In practice, NFS is such an important program that it has been given its own well-known UDP port, but for the purposes of
illustration we’re pretending that’s not the case.

268 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

Client Server

eqUes f

/

Pin 9

\N 0‘\(\“9

ang

\N 0\'\(\“9

\/

Respo“se

Figure 5.19.: Typical DCE-RPC message exchange.

5.3. Remote Procedure Call 269

Computer Networks: A Systems Approach, Release Version 6.1

messages, however, the client periodically sends a Ping message to the server, which responds with a
Working message to indicate that the remote procedure is still in progress. If the server’s reply is received
reasonably quickly, no Pings are sent. Although not shown in the figure, other message types are also
supported. For example, the client can send a Quit message to the server, asking it to abort an earlier call
that is still in progress; the server responds with a Quack (quit acknowledgment) message. Also, the server
can respond to a Request message with a Re ject message (indicating that a call has been rejected), and
it can respond to a Ping message with a Nocall message (indicating that the server has never heard of
the caller).

Each request/reply transaction in DCE-RPC takes place in the context of an activity. An activity is a logical
request/reply channel between a pair of participants. At any given time, there can be only one message
transaction active on a given channel. Like the concurrent logical channel approach described above, the
application programs have to open multiple channels if they want to have more than one request/reply
transaction between them at the same time. The activity to which a message belongs is identified by the
message’s ActivityId field. A SequenceNum field then distinguishes between calls made as part of
the same activity; it serves the same purpose as SunRPC’s XID (transaction id) field. Unlike SunRPC, DCE-
RPC keeps track of the last sequence number used as part of a particular activity, so as to ensure at-most-once
semantics. To distinguish between replies sent before and after a server machine reboots, DCE-RPC uses a
ServerBoot field to hold the machine’s boot ID.

Another design choice made in DCE-RPC that differs from SunRPC is the support of fragmentation and
reassembly in the RPC protocol. As noted above, even if an underlying protocol such as IP provides frag-
mentation/reassembly, a more sophisticated algorithm implemented as part of RPC can result in quicker
recovery and reduced bandwidth consumption when fragments are lost. The FragmentNum field uniquely
identifies each fragment that makes up a given request or reply message. Each DCE-RPC fragment is as-
signed a unique fragment number (0, 1, 2, 3, and so on). Both the client and server implement a selective
acknowledgment mechanism, which works as follows. (We describe the mechanism in terms of a client
sending a fragmented request message to the server; the same mechanism applies when a server sends a
fragment response to the client.)

First, each fragment that makes up the request message contains both a unique FragmentNum and a flag
indicating whether this packet is a fragment of a call (frag) or the last fragment of a call (); request
messages that fit in a single packet carry a flag. The server knows it has received the complete request
message when it has the packet and there are no gaps in the fragment numbers. Second, in response to
each arriving fragment, the server sends a Fack (fragment acknowledgment) message to the client. This
acknowledgment identifies the highest fragment number that the server has successfully received. In other
words, the acknowledgment is cumulative, much like in TCP. In addition, however, the server selectively
acknowledges any higher fragment numbers it has received out of order. It does so with a bit vector that
identifies these out-of-order fragments relative to the highest in-order fragment it has received. Finally, the
client responds by retransmitting the missing fragments.

Figure 5.20 illustrates how this all works. Suppose the server has successfully received fragments up through
number 20, plus fragments 23, 25, and 26. The server responds with a Fack that identifies fragment 20 as
the highest in-order fragment, plus a bit-vector (SelAck) with the third (23=20+3), fifth (25=20+5), and
sixth (26=20+6) bits turned on. So as to support an (almost) arbitrarily long bit vector, the size of the vector
(measured in 32-bit words) is given in the Se1AckLen field.

Given DCE-RPC’s support for very large messages—the FragmentNum field is 16 bits long, meaning it
can support 64K fragments—it is not appropriate for the protocol to blast all the fragments that make up
a message as fast as it can since doing so might overrun the receiver. Instead, DCE-RPC implements a

270 Chapter 5. End-to-End Protocols

Computer Networks: A Systems Approach, Release Version 6.1

Client Server
19
20
21
22
23
24
§ 25 Type=Fack
‘u.:'; 26
g) FragmentNum =20
i : 6+20
WindowSize=10 5+20
A .
-=7 . |7 3+20
21 SelAckLen=1 |_
SelAck[1]=0x34 —p—= 110100

%

Figure 5.20.: Fragmentation with selective acknowledgments.

5.3. Remote Procedure Call 271

Computer Networks: A Systems Approach, Release Version 6.1

flow-control algorithm that is very similar to TCP’s. Specifically, each Fack message not only acknowl-
edges received fragments but also informs the sender of how many fragments it may now send. This is
the purpose of the WindowSize field in Figure 5.20, which serves exactly the same purpose as TCP’s
AdvertisedWindow field except it counts fragments rather than bytes. DCE-RPC also implements a
congestion-control mechanism that is similar to TCP’s. Given the complexity of congestion control, it is
perhaps not surprising that some RPC protocols avoid it by avoiding fragmentation.

In summary, designers have quite a range of options open to them when designing an RPC protocol. SunRPC
takes the more minimalist approach and adds relatively little to the underlying transport beyond the essentials
of locating the right procedure and identifying messages. DCE-RPC adds more functionality, with the
possibility of improved performance in some environments at the cost of greater complexity.

gRPC

Despite its origins in Google, gRPC does not stand for Google RPC. The “g” stands for something different
in each release. For version 1.10 it stood for “glamorous” and for 1.18 it stood for “goose”. Googlers are
wild and crazy people. Nonetheless, gRPC is popular because it makes available to everyone—as open
source—a decade’s worth of experience within Google using RPC to build scalable cloud services.

Before getting into the details, there are some major differences between gRPC and the other two exam-
ples we’ve just covered. The biggest is that gRPC is designed for cloud services rather than the simpler
client/server paradigm that preceded it. The difference is essentially an extra level of indirection. In the
client/server world, the client invokes a method on a specific server process running on a specific server
machine. One server process is presumed to be enough to serve calls from all the client processes that might
call it.

With cloud services, the client invokes a method on a service, which in order to support calls from arbitrarily
many clients at the same time, is implemented by a scalable number of server processes, each potentially run-
ning on a different server machine. This is where the cloud comes into play: datacenters make a seemingly
infinite number of server machines available to scale up cloud services. When we use the term “scalable”
we mean that the number of identical server processes you elect to create depends on the workload (i.e.,
the number of clients that want service at any given time) and that number can be adjusted dynamically
over time. One other detail is that cloud services don’t typically create a new process, per se, but rather,
they launch a new container, which is essentially a process encapsulated inside an isolated environment
that includes all the software packages the process needs to run. Docker is today’s canonical example of a
container platform.

Back to the claim that a service is essentially an extra level of indirection layered on top of a server, all this
means is that the caller identifies the service it wants to invoke, and a load balancer directs that invocation
to one of the many available server processes (containers) that implement that service, as shown in Figure
5.21. The load balancer can be implemented in different ways, including a hardware device, but it is typically
implemented by a proxy process that runs in a virtual machine (also hosted in the cloud) rather than as a
physical appliance.

There is a set of best practices for implementing the actual server code that eventually responds to that
request, and some additional cloud machinery to create/destroy containers and load balance requests across
those con