
Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

ISBN: 978-1-60845-677-2

9 781608 456772

90000

Series ISSN: 2153-5418 G
AN

TI • SH
ARM

A
D

ATA C
LEAN

IN
G

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Data Cleaning
A Practical Perspective
Venkatesh Ganti, Alation, Inc. and Anish Das Sarma, Google, Inc.
Data warehouses consolidate various activities of a business and often form the backbone for generating reports
that support important business decisions. Errors in data tend to creep in fora variety of reasons. Some of
these reasons include errors during input data collection and errors while merging data collected independently
across different databases. These errors in data warehouses often result in erroneous upstream reports, and
could impact business decisions negatively. Therefore, one of the critical challenges while maintaining large
data warehouses is that of ensuring the quality of data in the data warehouse remains high. The process of
maintaining high data quality is commonly referred to as data cleaning.

In this book, we first discuss the goals of data cleaning. Often, the goals of data cleaning are not well defined
and could mean different solutions in different scenarios. Toward clarifying these goals, we abstract out a
common set of data cleaning tasks that often need to be addressed. This abstraction allows us to develop
solutions for these common data cleaning tasks. We then discuss a few popular approaches for developing
such solutions. In particular, we focus on an operator-centric approach for developing a data cleaning platform.
The operator-centric approach involves the development of customizable operators that could be used as
building blocks for developing common solutions. This is similar to the approach of relational algebra for
query processing. The basic set of operators can be put together to build complex queries. Finally, we discuss
the development of custom scripts which leverage the basic data cleaning operators along with relational
operators to implement effective solutions for data cleaning tasks.

Data Cleaning
A Practical Perspective

Venkatesh Ganti
Anish Das Sarma

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

ISBN: 978-1-60845-677-2

9 781608 456772

90000

Series ISSN: 2153-5418 G
AN

TI • SH
ARM

A
D

ATA C
LEAN

IN
G

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Data Cleaning
A Practical Perspective
Venkatesh Ganti, Alation, Inc. and Anish Das Sarma, Google, Inc.
Data warehouses consolidate various activities of a business and often form the backbone for generating reports
that support important business decisions. Errors in data tend to creep in fora variety of reasons. Some of
these reasons include errors during input data collection and errors while merging data collected independently
across different databases. These errors in data warehouses often result in erroneous upstream reports, and
could impact business decisions negatively. Therefore, one of the critical challenges while maintaining large
data warehouses is that of ensuring the quality of data in the data warehouse remains high. The process of
maintaining high data quality is commonly referred to as data cleaning.

In this book, we first discuss the goals of data cleaning. Often, the goals of data cleaning are not well defined
and could mean different solutions in different scenarios. Toward clarifying these goals, we abstract out a
common set of data cleaning tasks that often need to be addressed. This abstraction allows us to develop
solutions for these common data cleaning tasks. We then discuss a few popular approaches for developing
such solutions. In particular, we focus on an operator-centric approach for developing a data cleaning platform.
The operator-centric approach involves the development of customizable operators that could be used as
building blocks for developing common solutions. This is similar to the approach of relational algebra for
query processing. The basic set of operators can be put together to build complex queries. Finally, we discuss
the development of custom scripts which leverage the basic data cleaning operators along with relational
operators to implement effective solutions for data cleaning tasks.

Data Cleaning
A Practical Perspective

Venkatesh Ganti
Anish Das Sarma

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

ISBN: 978-1-60845-677-2

9 781608 456772

90000

Series ISSN: 2153-5418 G
AN

TI • SH
ARM

A
D

ATA C
LEAN

IN
G

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Data Cleaning
A Practical Perspective
Venkatesh Ganti, Alation, Inc. and Anish Das Sarma, Google, Inc.
Data warehouses consolidate various activities of a business and often form the backbone for generating reports
that support important business decisions. Errors in data tend to creep in fora variety of reasons. Some of
these reasons include errors during input data collection and errors while merging data collected independently
across different databases. These errors in data warehouses often result in erroneous upstream reports, and
could impact business decisions negatively. Therefore, one of the critical challenges while maintaining large
data warehouses is that of ensuring the quality of data in the data warehouse remains high. The process of
maintaining high data quality is commonly referred to as data cleaning.

In this book, we first discuss the goals of data cleaning. Often, the goals of data cleaning are not well defined
and could mean different solutions in different scenarios. Toward clarifying these goals, we abstract out a
common set of data cleaning tasks that often need to be addressed. This abstraction allows us to develop
solutions for these common data cleaning tasks. We then discuss a few popular approaches for developing
such solutions. In particular, we focus on an operator-centric approach for developing a data cleaning platform.
The operator-centric approach involves the development of customizable operators that could be used as
building blocks for developing common solutions. This is similar to the approach of relational algebra for
query processing. The basic set of operators can be put together to build complex queries. Finally, we discuss
the development of custom scripts which leverage the basic data cleaning operators along with relational
operators to implement effective solutions for data cleaning tasks.

Data Cleaning
A Practical Perspective

Venkatesh Ganti
Anish Das Sarma

Data Cleaning
APractical Perspective

Synthesis Lectures onData
Management

Editor
M.TamerÖzsu,University of Waterloo

Synthesis Lectures on Data Management is edited by Tamer �zsu of the University of Waterloo. e
series will publish 50- to 125 page publications on topics pertaining to data management. e scope
will largely follow the purview of premier information and computer science conferences, such as
ACM SIGMOD, VLDB, ICDE, PODS, ICDT, and ACM KDD. Potential topics include, but not
are limited to: query languages, database system architectures, transaction management, data
warehousing, XML and databases, data stream systems, wide scale data distribution, multimedia
data management, data mining, and related subjects.

Data Cleaning: A Practical Perspective
Venkatesh Ganti and Anish Das Sarma
2013

Data Processing on FPGAs
Jens Teubner and Louis Woods
2013

Perspectives on Business Intelligence
Raymond T. Ng, Patricia C. Arocena, Denilson Barbosa, Giuseppe Carenini, Luiz Gomes, Jr.
Stephan Jou, Rock Anthony Leung, Evangelos Milios, Renée J. Miller, John Mylopoulos, Rachel A.
Pottinger, Frank Tompa, and Eric Yu
2013

Semantics Empowered Web 3.0: Managing Enterprise, Social, Sensor, and Cloud-based
Data and Services for Advanced Applications
Amit Sheth and Krishnaprasad irunarayan
2012

Data Management in the Cloud: Challenges and Opportunities
Divyakant Agrawal, Sudipto Das, and Amr El Abbadi
2012

Query Processing over Uncertain Databases
Lei Chen and Xiang Lian
2012

iii

Foundations of Data Quality Management
Wenfei Fan and Floris Geerts
2012

Incomplete Data and Data Dependencies in Relational Databases
Sergio Greco, Cristian Molinaro, and Francesca Spezzano
2012

Business Processes: A Database Perspective
Daniel Deutch and Tova Milo
2012

Data Protection from Insider reats
Elisa Bertino
2012

Deep Web Query Interface Understanding and Integration
Eduard C. Dragut, Weiyi Meng, and Clement T. Yu
2012

P2P Techniques for Decentralized Applications
Esther Pacitti, Reza Akbarinia, and Manal El-Dick
2012

Query Answer Authentication
HweeHwa Pang and Kian-Lee Tan
2012

Declarative Networking
Boon au Loo and Wenchao Zhou
2012

Full-Text (Substring) Indexes in External Memory
Marina Barsky, Ulrike Stege, and Alex omo
2011

Spatial Data Management
Nikos Mamoulis
2011

Database Repairing and Consistent Query Answering
Leopoldo Bertossi
2011

Managing Event Information: Modeling, Retrieval, and Applications
Amarnath Gupta and Ramesh Jain
2011

iv

Fundamentals of Physical Design and Query Compilation
David Toman and Grant Weddell
2011

Methods for Mining and Summarizing Text Conversations
Giuseppe Carenini, Gabriel Murray, and Raymond Ng
2011

Probabilistic Databases
Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch
2011

Peer-to-Peer Data Management
Karl Aberer
2011

Probabilistic Ranking Techniques in Relational Databases
Ihab F. Ilyas and Mohamed A. Soliman
2011

Uncertain Schema Matching
Avigdor Gal
2011

Fundamentals of Object Databases: Object-Oriented and Object-Relational Design
Suzanne W. Dietrich and Susan D. Urban
2010

Advanced Metasearch Engine Technology
Weiyi Meng and Clement T. Yu
2010

Web Page Recommendation Models: eory and Algorithms
Sule Gündüz-Ögüdücü
2010

Multidimensional Databases and Data Warehousing
Christian S. Jensen, Torben Bach Pedersen, and Christian omsen
2010

Database Replication
Bettina Kemme, Ricardo Jimenez-Peris, and Marta Patino-Martinez
2010

Relational and XML Data Exchange
Marcelo Arenas, Pablo Barcelo, Leonid Libkin, and Filip Murlak
2010

v

User-Centered Data Management
Tiziana Catarci, Alan Dix, Stephen Kimani, and Giuseppe Santucci
2010

Data Stream Management
Lukasz Golab and M. Tamer Özsu
2010

Access Control in Data Management Systems
Elena Ferrari
2010

An Introduction to Duplicate Detection
Felix Naumann and Melanie Herschel
2010

Privacy-Preserving Data Publishing: An Overview
Raymond Chi-Wing Wong and Ada Wai-Chee Fu
2010

Keyword Search in Databases
Jeffrey Xu Yu, Lu Qin, and Lijun Chang
2009

Copyright © 2013 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Data Cleaning: A Practical Perspective

Venkatesh Ganti and Anish Das Sarma

www.morganclaypool.com

ISBN: 9781608456772 paperback
ISBN: 9781608456789 ebook

DOI 10.2200/S00523ED1V01Y201307DTM036

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DATAMANAGEMENT

Lecture #36
Series Editor: M. Tamer Özsu, University of Waterloo
Series ISSN
Synthesis Lectures on Data Management
Print 2153-5418 Electronic 2153-5426

www.morganclaypool.com

Data Cleaning
APractical Perspective

Venkatesh Ganti
Alation Inc.

Anish Das Sarma
Google Inc.

SYNTHESIS LECTURES ON DATAMANAGEMENT #36

C
M
&

cLaypoolMorgan publishers&

ABSTRACT
Data warehouses consolidate various activities of a business and often form the backbone for
generating reports that support important business decisions. Errors in data tend to creep in for
a variety of reasons. Some of these reasons include errors during input data collection and er-
rors while merging data collected independently across different databases. ese errors in data
warehouses often result in erroneous upstream reports, and could impact business decisions neg-
atively. erefore, one of the critical challenges while maintaining large data warehouses is that
of ensuring the quality of data in the data warehouse remains high. e process of maintaining
high data quality is commonly referred to as data cleaning.

In this book, we first discuss the goals of data cleaning. Often, the goals of data cleaning are
not well defined and could mean different solutions in different scenarios. Toward clarifying these
goals, we abstract out a common set of data cleaning tasks that often need to be addressed. is
abstraction allows us to develop solutions for these common data cleaning tasks. We then discuss
a few popular approaches for developing such solutions. In particular, we focus on an operator-
centric approach for developing a data cleaning platform. e operator-centric approach involves
the development of customizable operators that could be used as building blocks for developing
common solutions. is is similar to the approach of relational algebra for query processing. e
basic set of operators can be put together to build complex queries. Finally, we discuss the devel-
opment of custom scripts which leverage the basic data cleaning operators along with relational
operators to implement effective solutions for data cleaning tasks.

KEYWORDS
data cleaning, deduplication, record matching, data cleaning scripts, schema match-
ing, ETL, clustering, record matching, deduplication, data standardization, ETL
data flows, set similarity join, segmentation, parsing, string similarity functions, edit
distance, edit similarity, jaccard similarity, cosine similarity, soundex, constrained
deduplication, blocking

ix

Contents
Preface . xiii

Acknowledgments . xv

1 Introduction . 1
1.1 Enterprise Data Warehouse . 1
1.2 Comparison Shopping Database . 2
1.3 Data Cleaning Tasks . 2
1.4 Record Matching . 3
1.5 Schema Matching . 4
1.6 Deduplication . 4
1.7 Data Standardization . 5
1.8 Data Profiling . 6
1.9 Focus of this Book . 6

2 Technological Approaches . 7
2.1 Domain-Specific Verticals . 7
2.2 Generic Platforms . 8
2.3 Operator-based Approach . 8
2.4 Generic Data Cleaning Operators . 8

2.4.1 Similarity Join . 9
2.4.2 Clustering . 9
2.4.3 Parsing . 10

2.5 Bibliography . 11

3 Similarity Functions . 13
3.1 Edit Distance . 13
3.2 Jaccard Similarity . 14
3.3 Cosine Similarity . 15
3.4 Soundex . 15
3.5 Combinations and Learning Similarity Functions . 16
3.6 Bibliography . 16

x

4 Operator: Similarity Join . 17
4.1 Set Similarity Join (SSJoin) . 17
4.2 Instantiations . 20

4.2.1 Edit Distance . 21
4.2.2 Jaccard Containment and Similarity . 22

4.3 Implementing the SSJoin Operator . 23
4.3.1 Basic SSJoin Implementation . 24
4.3.2 Filtered SSJoin Implementation . 25

4.4 Bibliography . 28

5 Operator: Clustering . 29
5.1 Definitions . 29
5.2 Techniques . 32

5.2.1 Hash Partition . 32
5.2.2 Graph-based Clustering . 33

5.3 Bilbiography . 34

6 Operator: Parsing . 35
6.1 Regular Expressions . 36
6.2 Hidden Markov Models . 36

6.2.1 Training HMMs . 37
6.2.2 Use of HMMs for Parsing . 41

6.3 Bibliography . 42

7 Task: RecordMatching . 43
7.1 Schema Matching . 44
7.2 Record Matching . 45

7.2.1 Bipartite Graph Construction . 46
7.2.2 Weighted Edges . 46
7.2.3 Graph Matching . 48

7.3 Bibliography . 48

8 Task: Deduplication . 49
8.1 Graph Partitioning Approach . 50

8.1.1 Graph Construction . 51
8.1.2 Graph Partitioning . 51

8.2 Merging . 51

xi

8.3 Using Constraints for Deduplication . 52
8.3.1 Candidate Sets of Partitions . 53
8.3.2 Maximizing Constraint Satisfaction . 54

8.4 Blocking . 54
8.5 Bibliography . 55

9 Data Cleaning Scripts . 57
9.1 Record Matching Scripts . 57
9.2 Deduplication Scripts . 58
9.3 Support for Script Development . 59

9.3.1 User Interface for Developing Scripts . 60
9.3.2 Configurable Data Cleaning Scripts . 61

9.4 Bibliography . 62

10 Conclusion . 63

Bibliography . 65

Authors’ Biographies . 69

xiii

Preface
Data cleaning is the process of starting with raw data from one or more sources and maintaining
reliable quality for your applications. We were motivated to write this book since we found a gap
in technical material that clearly explained the goals and capabilities of a data cleaning solution;
in general, data cleaning is usually thought of as a solution for an individual problem. One of the
prominent issues we had was that there was no guide offering practical advice on options available
for building or choosing a data cleaning solution. In this book, we fill this gap.

Our approach toward this book was to conceptualize data cleaning solutions as being com-
posed of tasks and operators. Each solution is a composition of multiple high-level tasks, and each
task may have one or more operator-based solutions. In this book we elaborate on the most com-
mon tasks, and their implementations leveraging critical operators. Our book can be seen as a
practitioner’s guide to understand the space of options for evaluating or building a good data
cleaning solution. We provide an overview of the capabilities required in such a system, which
are the set of tasks described in this book. People building complete solutions may use the set
of tasks described here, and choose from the space of operators. erefore, this book is ideally
suited for practitioners of data cleaning and students interested in the topic. Although our book
lists the useful tools, techniques, and pointers, some of them require custom implementations
with no open-source components available. erefore, if students or engineers are looking for
good abstractions for plugins to build, we hope that our book provides some options.

For beginners interested in data cleaning, we suggest reading the material sequentially from
the first chapter. Advanced readers may directly jump to any relevant chapter for reference; each
chapter is self contained and provides further pointers to existing research.

We enjoyed writing this book and gained new insights in the process that we’ve shared in
this material. We sincerely wish we had more time, in which case we would have been able to
add more depth on several directly related topics. For example, the user-interface aspects of data
cleaning have not received due attention in this book.

Venkatesh Ganti and Anish Das Sarma
September 2013

xv

Acknowledgments
e structure and material in this book has been significantly influenced by people that both of
us have worked with closely on several topics related to data cleaning. Prominently, some of them
are Surajit Chaudhuri, Raghav Kaushik, Arvind Arasu, Eugene Agichtein, and Sunita Sarawagi.
We are grateful to Tamer Ozsu and the publisher for the opportunity to explain our view on data
cleaning in this book.

We also thank our families for their patience while we spent long hours outside of work
writing this book, which should have been devoted to them instead.

Venkatesh Ganti and Anish Das Sarma
April 2013

1

C H A P T E R 1

Introduction
Databases are ubiquitous in enterprise systems, and form the backbone for systems keeping track
of business transactions and operational data. ey also have become the defacto standard for
supporting data analysis tasks generating reports indicating the health of the business operations.
ese reports are often critical to track performance as well as to make informed decisions on
several issues confronting a business. e reporting functionality has become so important on its
own that businesses often create consolidated data repositories. ese repositories can be observed
in several scenarios such as data warehousing for analysis, as well as for supporting sophisticated
applications such as comparison shopping.

1.1 ENTERPRISEDATAWAREHOUSE
Data warehouses are large data repositories recording interactions between various entities that an
enterprise deals with: customers, products, geographies, etc. By consolidating most of the relevant
data describing the interactions into one repository, data warehouses facilitate canned and adhoc
data analysis over such interactions.

e results of such analysis queries often form the backbone of several critical reports, which
help evaluate and monitor performance of various business projects. ese reports may often be
useful for prioritizing among various business initiatives. erefore, accuracy of data in these data
warehouses is critical. Errors in these databases can result in significant downstream reporting
errors. Sometimes, such errors can result in bad decisions being taken by the executives.

Errors in data tend to creep in from a variety of sources, say when new sales records are
inserted. For instance, enterprises routinely obtain resellers’ sales interactions with customers from
resellers. Data entry at the point of sales is often performed in a rush and causes many errors in
data. Sometimes, these errors are introduced because the sales agent does not try to find out the
correct data, and enters a default or a typical value. So, the data about the customer sent by the
reseller may not match with the current record in the data warehouse.

Alternatively, a large number of errors are often introduced into the data warehouse when
data from a new source database is merged with it. Such data consolidation is required when sales
transactions from a new data feed (say, an OLTP database) are inserted into the data warehouse.
If some of the new records in both the source and target describe the same entities, then it is often
possible that the data merger results in several data quality issues because interactions with the
same entity are now distributed across multiple records.

2 1. INTRODUCTION

1.2 COMPARISONSHOPPINGDATABASE

Many popular comparison shopping search engines (e.g., Bing Shopping, Google Products,
ShopZilla) are backed by comprehensive product catalog and offer databases consisting, respec-
tively, of products and offers from multiple merchants to sell them at specific prices. e cat-
alog and offer databases enable a comparison shopping engine to display products relevant to
a user’s search query and for each product the offers from various merchants. ese databases
are populated and maintained by assimilating feeds from both catalog providers (such as CNet,
PriceGrabber) as well as from merchants (e.g., NewEgg.com, TigerDirect.com). ese feeds are
consolidated into a master catalog along with any other information per product received from
merchants or from other sources. When a user searches for a product or a category of products,
these comparison shopping sites display a set of top-ranking items for the specific user query.
When a user is interested in a specific product, the user is then shown the list of merchants along
with offers for each of them.

ese product catalog and merchant feeds are obtained from independently developed
databases. erefore, identifiers and descriptions of the same product and those in the corre-
sponding offers will very likely be different across each of the input feeds. Reconciling these
differences is crucial for enabling a compelling useful comparison shopping experience to a user.
Otherwise, information about the same product would be split across multiple records in the
master catalog. Whichever record is shown to the user, the user is only shown a part of the infor-
mation in the master catalog about the product. erefore, one of the main goals is to maintain a
correctly consolidated master catalog where each product sold at several merchants has only one
representation.

Similar data quality issues arise in the context of Master Data Management (MDM). e
goal of an MDM system is to maintain a unified view of non-transactional data entities (e.g.,
customers, products) of an enterprise. Like in the data warehousing and comparison shopping
scenarios, these master databases often grow through incremental or batch insertion of new en-
tities. us, the same issues and challenges of maintaining a high data quality also arise in the
context of master data management.

1.3 DATACLEANINGTASKS

Data cleaning is an overloaded term, and is often used loosely to refer to a variety of tasks aimed
at improving the quality of data. Often, these tasks may have to be accomplished by stitching
together multiple operations. We now discuss some common data cleaning tasks to better un-
derstand the underlying operations. We note that this list includes commonly encountered tasks,
and is not comprehensive.

1.4. RECORDMATCHING 3

1.4 RECORDMATCHING

Informally, the goal of record matching is to match each record from a set of records with records
in another table. Often, this task needs to be accomplished when a new set of entities is imported
to the target relation to make sure that the insertion does not introduce duplicate entities in the
target relation.
Enterprise Data Warehousing Scenario: Consider a scenario when a new batch of customer
records is being imported into a sales database. In this scenario, it is important to verify whether
or not the same customer is represented in both the existing as well as the incoming sets and
only retain one record in the final result. Due to representational differences and errors, records
in both batches could be different and may not match exactly on their key attributes (e.g., name
and address or the CustomerId). e goal of a record matching task is to identify record pairs,
one in each of two input relations, which correspond to the same real-world entity. Challenges to
be addressed in this task include (i) identification of criteria under which two records represent
the same real-world entity, and (ii) efficient computation strategies to determine such pairs over
large input relations.

Table 1.1: Two sets of customer records

ID Name Street City Phone
r1 Sweetlegal Investments Inc 202 North Redmond 425-444-5555
r2 ABC Groceries Corp Amphitheatre Pkwy Mountain View 4081112222
r3 Cable television services One Oxford Dr Cambridge 617-123-4567
s1 Sweet legal Invesments Incorporated 202 N Redmond
s2 ABC Groceries Corpn. Amphitheetre Parkway Mountain View
s3 Cable Services One Oxford Dr Cambridge 6171234567

Comparison Shopping Scenario: Recall the comparison shopping scenario, where the target
comparison shopping site maintains a master catalog of products. Suppose a merchant sends a
new feed of products, as shown in Table 1.2. Each of these products has to be matched with a
target in the master, or if there is no such matching product, add it as a new product to the master
catalog.

Ideally, the merchant could also send a unique identifier that matches a global identifier in
the master catalog. In the case of books, ISBN is an identifier that everyone agrees to and uses.
However, in other categories of products, there is no such global identifier that can be used for
matching. e main challenge here is that the description often used by the merchant may not
match with the description at the target comparison shopping site. Hence, matching products
“correctly” requires several challenges to be addressed.

e hardness is further exacerbated in the case of products where the underlying product
description is often a concatenation of several attribute values. e individual values may them-

4 1. INTRODUCTION

selves be equal while the concatenation of these values in different orders could cause the two
strings to look very different.

Table 1.2: Product catalog with a new set of products

ID Title
r1 Canon EOS 20D Digital SLR Body Kit (Req. Lens) USA
r2 Nikon D90 SLR
s1 Canon EOS 20d Digital Camera Body USA - Lens sold separately
s2 Nikon D90 SLR Camera

Record matching is discussed further in Chapter 7.

1.5 SCHEMAMATCHING
A task that often precedes record matching is that of Schema Matching: the task of aligning
attributes from different schemas. As an example, suppose the information from our ware-
house example were organized as a relation R.Name; C ityAddress; Country; P hone; : : :/,
which stores most of the address (except Country) in a single attribute in textual for-
mat. Now suppose you obtain another relation with data represented in the format
S.Company; Apt; St reet; C ity; Zip; Nation; P honeNumber/, which breaks the address
into individual components. To populate tuples in S into R, we need a process to convert each
S tuple into the format of R. Schema matching provides: (1) attribute correspondences describing
which attributes in S correspond to attributes in R; e.g., Country corresponds to Nation, Phone-
Number corresponds to Phone, Company corresponds to Name, and City Address corresponds
to the remaining four attributes in S (2) transformation functions give concrete functions to obtain
attribute values in R from attribute values in S ; e.g., a transformation process gives a mecha-
nism to concatenate all attributes to form City Address (or extract attributes like Zip code when
converting R to S).

Schema matching is discussed along with record matching in Chapter 7.

1.6 DEDUPLICATION
e goal of deduplication is to group records in a table such that each group of records represents
the same entity. e deduplication operation is often required when a database is being populated
or cleaned the first time.

Informally, the difference between deduplication and record matching is that deduplication
involves an additional grouping of “matching” records, such that the groups collectively partition
the input relation. Since record matching is typically not transitive (i.e., record pairs .r1; r2/

1.7. DATA STANDARDIZATION 5

and .r2; r3/ may be considered matches but .r1; r3/ may not be), the grouping poses additional
technical challenges.

For example, consider the enterprise data warehousing scenario. When the data warehouse
is first populated from various feeds, it is possible that the same customer could be represented
by multiple records in one feed, and even more records across feeds. So, it is important for all
records representing the same customer to be reconciled. In Table 1.3, records {g11, g12, g13}
are “duplicate” records of each other while {g21, g31} is another set of duplicate records.

Table 1.3: Table showing records with {g11, g12, g13} being one group of duplications, and {g21,
g31} another set of duplicate records

ID Name Street City Phone
g11 Sweetlegal Investments Inc 202 North Redmond 425-444-5555
g12 Sweet legal Invesments Incorporated 202 N Redmond
g13 Sweetlegal Inc 202 N Redmond
g21 ABC Groceries Corp Amphitheatre Pkwy Mountain View 4081112222
g31 Cable television services One Oxford Dr Cambridge 617-123-4567

Let us consider the task of maintaining a shopping catalog in the comparison shopping
scenario. Once again, it is possible that a set of records received from a merchant may have mul-
tiple records representing the same entity. In the following Table 1.4, {g21, g22, g23, g24} all
represent the same entity, a Nikon DSLR camera.

Table1.4: Table showing grouping, with {g21, g22, g23, g24} all representing the same entity, a Nikon
DSLR camera

ID Title
g1 Canon EOS 20D Digital SLR Body Kit (Req. Lens) USA
g21 Nikon D90 SLR
g22 Nikon D90 SLR Camera
g23 Nikon D90
g24 D90 SLR

Deduplication is discussed in detail in Chapter 8.

1.7 DATA STANDARDIZATION
Consider a scenario where a relation contains several customer records with missing zip code or
state values, or improperly formatted street address strings. It is important to fill in missing values
and adjust the format of the address strings so as to return correct results for analysis queries. For

6 1. INTRODUCTION

instance, if a business analyst wants to understand the number of customers for a specific product
by zip code, it is important for all customer records to have the correct zip code values.

e same task is also often required in the maintenance of product catalog databases. For
example, ensuring that all dimensions for a set of products are expressed in the same units, and
that these attribute values are not missing is very important. Otherwise, search queries on these
attributes may not return correct results.

e task of ensuring that all attribute values are “standardized” as per the same conventions
is often called data standardization.

Data standardization is often a critical operation required before other data cleaning tasks
such as record matching or deduplication. Standardizing the format and correcting attribute val-
ues leads to significantly better accuracy in other data cleaning tasks such as record matching and
deduplication.

1.8 DATAPROFILING
e process of cleansing data is often an iterative and continuous process. It is important to
evaluate quality of data in a database before one initiates data cleansing process, and subsequently
assesses its success. e process of evaluating data quality is called data profiling, and typically
involves gathering several aggregate data statistics which constitute the data profile. An informal
goal of data quality is to ensure that the values match up with expectations. For example, one
may expect the customer name and address columns uniquely determine each customer record in
a Customer relation. In such a case, the number of unique [name, address] values must be close
to that of the total number of records in the Customer relation.

A subset of elements of a data profile may each be obtained using one or more SQL queries.
However, the data profile of a database may also consist of a large number of such elements.
Hence, computing them all together efficiently is an important challenge here. Also, some of the
data profile elements (say, identifying histograms of attribute values which satisfy certain regular
expressions) may not easily be computed using SQL queries.

1.9 FOCUSOFTHIS BOOK
In this book, we focus our discussion on solutions for data cleaning tasks. However, data cleaning
is just one of the goals in an enterprise data management system. For instance, a typical extract-
transform-load (ETL) process also encompasses several other tasks some of which transform data
from sources into the desired schema at the target before merging all data into the target. In this
survey, we do not discuss all the goals of ETL.

In particular, we do not discuss the topic of data transformation which is one of the goals
of ETL. We also do not discuss the issue of data or information integration, which also requires
transforming (perhaps, dynamically) the source data into the schema required by the user’s query,
besides data cleaning.

7

C H A P T E R 2

Technological Approaches
In this chapter, we discuss common technological approaches for developing data cleaning solu-
tions. Several approaches exist to enable the development and deployment of effective solutions
for data cleaning. ese approaches differ primarily in the flexibility and the effort required from
the developer implementing the data cleaning solution. e more flexible approaches often re-
quire the developer to implement significant parts of the solution, while the less flexible are often
easier to deploy provided they meet the solution’s requirements.

2.1 DOMAIN-SPECIFIC VERTICALS

e first category consists of verticals such as Trillium http://www.trilliumsoftware.com/
that provide data cleaning functionality for specific domains. Since they understand the domain
where the vertical is being applied they can tune their solution for the given domain. However,
by design, these are not generic and hence cannot be applied to other domains.

e main advantage of these domain-specific solutions is that they can incorporate knowl-
edge of the domain while developing the solution. Because the domain is known, the flow of
operations to be performed are often decidable upfront. Hence, these solutions can often be
comprehensive and are easier to deploy. For example, a data cleaning package for addresses can
incorporate the format of a typical address record. In fact, they often try to “standardize” the
formats of address records in that they transform input records to a standard format specific to a
location. Subsequent operations are then applied to these standardized records. Such data trans-
formations require knowledge about the input data characteristics, and often are only available
for domain-specific solutions.

e downside of this approach of developing domain-specific solutions is that they are
not generic and cannot be ported to other domains. For example, a solution developed for U.S.
addresses cannot be applied to the domain of electronic products, because the characteristics of
the data are very different across these two domains. Sometimes, the solutions are also sensitive
to sub-categories within a domain. For instance, a solution for U.S. addresses may not be applied
to clean the addresses from India or other Asian countries because the data characteristics across
these countries are significantly different.

http://www.trilliumsoftware.com/

8 2. TECHNOLOGICALAPPROACHES

2.2 GENERIC PLATFORMS
e second category of approaches relies on horizontal ETL Platforms such as Microsoft SQL
Server Integration Services (SSIS – http://msdn.microsoft.com/sql) and IBM Websphere Infor-
mation Integration. ese platforms provide a suite of operators including relational operators
such as select, project, and equi-join. A common feature across these frameworks is extensibility,
where applications can plug in their own custom operators. ese platforms provide support to
implement the data and control flow easily, and to execute the resulting program efficiently. A
data transformation and cleaning solution is built by composing the default and custom operators
to obtain an operator tree or a graph. is extensible operator-centric approach is also adopted in
research initiatives such as Ajax and Morpheus.

While this category of software can in principle support arbitrarily complex logic by virtue
of being extensible, it has the obvious limitation that most of the data cleaning logic potentially
needs to be incorporated as custom components. And, creating such optimized custom compo-
nents for data cleaning software is nontrivial. erefore, this approach requires significant amount
of effort from developers.

2.3 OPERATOR-BASEDAPPROACH
e third approach builds upon the extensible ETL platforms by extending their repertoire of the
default operators beyond traditional relational operators with a few core data cleaning operators
such that withmuch less extra effort and code, we can obtain a rich variety of efficient and effective
data cleaning solutions. e advantages of this approach include those of retaining much of the
flexibility of the generic ETL platforms while also having the heavy lifting done by the optimized
but flexible data cleaning operators. So, effective solutions can be relatively easily developed. Note
that, however, solutions still have to be developed for any given domain and scenario.

is approach is similar to query processing, which derives its power from compositionality
over a few basic operators, and is in sharp contrast with the earlier approaches which focused
on the development of monolithic data cleaning solutions. e challenge however would be to
identify such generic data cleaning operators which can then be customized to build solutions for
specific domains and scenarios.

2.4 GENERICDATACLEANINGOPERATORS
We continue the discussion on the operator-centric approach for developing data cleaning solu-
tions. e goal is to identify and define a few critical operators, which can be used (along with
standard relational operators) to build fairly general and accurate data cleaning solutions. As an
analogy, consider relational database systems where a very rich set of queries can be posed using
very few primitive operators. We can take a similar approach for data cleaning as well and enable
easy programmability of data cleaning solutions over a basic set of primitive data cleaning op-
erators and relational operators. e primitive operators may be implemented within extensible

2.4. GENERICDATACLEANINGOPERATORS 9

horizontal platforms such as IBM Ascential, SQL Server Integration Services or even database
query processing engines to achieve the power through compositionality with other relational
operators.

We now informally introduce a few critical primitive operators. We discuss each of these
in detail in subsequent chapters.

2.4.1 SIMILARITY JOIN
A very important data cleaning operation is that of “joining” similar data. is operation is useful
in record matching as well as deduplication. For example, consider a sales data warehouse. Ow-
ing to various errors in the data due to typing mistakes, differences in conventions, etc., product
names and customer names in sales records may not match exactly with master product catalog
and reference customer registration records respectively. In these situations, it would be desirable
to perform similarity joins. For instance, we may join two products (respectively, customers) if the
similarity between their part descriptions (respectively, customer names and addresses) is high.
is problem of joining similar data has been studied in the context of record linkage, of identi-
fying approximate duplicate entities in databases. It is also relevant when identifying for a given
record the best few approximate matches from among a reference set of records. e similarity
join is the fundamental operation upon which many of these techniques are built.

Current approaches exploit similarity between attribute values to join data across relations,
e.g., similarities in part descriptions in the above example. A variety of string similarity functions
have been considered, such as edit distance, jaccard similarity, cosine similarity, and generalized
edit distance, for measuring similarities. However, no single string similarity function is known to
be the overall best similarity function, and the choice usually depends on the application domain.
For example, the characteristics of an effective similarity function for matching products based
on their part names where the errors are usually spelling errors would be different from those
matching street addresses because even small differences in the street numbers such as “148thAve”
and “147th Ave” are crucial, and the soundex function for matching person names. erefore, we
need a similarity join operator that employs customizable similarity functions.

2.4.2 CLUSTERING
Clustering is another critical operation that is useful inmany data cleaning tasks. Informally speak-
ing, clustering refers to the operation of taking a set of items, and putting them into smaller groups
based on “similarity.” For example, a list of restaurants may be clustered based on similar cuisines,
or based on their price, or some combination of price and cuisine. Clustering is often used in a
pre-processing step of deduplication called blocking: When the set of records to be deduplicated is
very large, blocking performs a crude clustering to bring similar “blocks” of records together, and
a finer-grained pairwise comparison is only performed within each block. Another application of
clustering is in deduplication itself. Once we have pairwise similarities between pairs of records

10 2. TECHNOLOGICALAPPROACHES

in a block, clustering based on the pairwise similarities is used to obtain the final deduplicated set
of records.

In addition to the “similarity” measure, clustering may be guided by constraints that restrict
which set of items may or may not be grouped together, and an objective function that determines
the best possible clustering among all that satisfy the constraints. Chapter 5 gives a formal def-
inition of clustering, and how constraints and objective functions are modeled. We then present
two main approaches to clustering: (1) A hash-based approach where each item is placed in a
cluster based on the value it produces based on some hash function; (2) a graph-based approach
that translates the clustering problem into finding structures in a graph.

2.4.3 PARSING
e differences in schema between the source and destination databases often makes the data
cleaning operations such as record matching and deduplication fairly challenging. Due to these
schema differences, an attribute at the source may actually correspond to a concatenation of at-
tribute values at the destination schema. In such cases, it becomes important to “parse” the at-
tribute values from the source into the corresponding attribute values at the destination.

Consider a scenario where a customer relation is being imported to add new records to a
target customer relation. Suppose the address information in the target relation is split into its
constituent attributes [street address, city, state, and zip code] while in the source relation they are
all concatenated into one attribute. Before the records from the source relation could be inserted
in the target relation, it is essential to segment each address value in the source relation to identify
the attribute values at the target.

For example, an input address string “15633 148th Ave Bellevue WA 98004” has to be split
into the following sub-components before populating the destination table.
House Number : 15633 Street Name : 148th Ave.
City : Bellevue
State : WA Zip : 98004

e goal of a parsing task is to split an incoming string into segments each of which may
be inserted as attribute values at the target. Informally:

Definition 2.1 Parsing. Given a string text T and a relation schema S D fA1; : : : ; Ang, the
goal of parsing is to construct a tuple t with schema S from T subject to the constraint that t is
considered a valid and accurate tuple in the target relation.

A significant challenge to be addressed by this task is to efficiently and accurately identify
sub-strings of an input string which form the attribute values of the destination schema.

Such scenarios also arise in the context of product databases where the source may not
have split individual attribute values, say, the main technical attributes of a digital camera (zoom,
focal length, etc.). Note that some product attribute parsing scenarios may require the following

2.5. BIBLIOGRAPHY 11

generalization. e generalization involves the extraction of individual attribute values from an
input string but with the following relaxation: not all of the input string is consumed by individual
attribute values.

2.5 BIBLIOGRAPHY
An example of a fairly comprehensive data cleaning solution for a specific vertical is that of Tril-
lium address cleansing software. Examples for ETL platforms that enable users to utilize ex-
isting operators along with the incorporation of custom operators include IBM Data Integra-
tion (http://www-01.ibm.com/software/data/integration/) and Microsoft SQL Server Integra-
tion Services. e proposals for operator-centric approaches for data cleaning and ETL have been
made in several research projects, e.g., [Chaudhuri et al., 2006a, Dohzen et al., 2006, Galhardas
et al., 2000].

13

C H A P T E R 3

Similarity Functions
A common requirement in several critical data cleaning operations is to measure the closeness
between pairs of records. Similarity functions (or, similarity measures) between atomic values con-
stituting a record form the backbone of measuring closeness between records.

No single similarity function is universally applicable across all domains and scenarios. For
example the characteristics of an effective similarity function for comparing products based on
their part names—where the errors are typically spelling errors—would only pardon a few char-
acters being misspelt. However, in the context of names being entered into a web form based
on phone conversations, or voice detection systems, even large differences in the spellings with
similar pronunciations (e.g., “Rupert” and “Robert”) may be considered very similar. So, several
similarity functions are required and have been used.

In the subsequent sections, we enumerate various similarity functions that have been ex-
plored in the context of data cleaning tasks, and illustrate them using examples. Our goal is to
present a list of popularly used similarity functions, with a focus on string similarity, and our list
is by no means comprehensive. In Section 3.6, we present a brief bibliography on the topic.

3.1 EDITDISTANCE
One of the most commonly used string similarity measures is based on edit distance, also known
as the Levenshtein distance: Given two strings s1 and s2, the edit distance (denoted ed.s1; s2/)
between the strings is given by the number of “edit” operations required to transform s1 to s2

(or vice versa). e edit distance is defined by a set of edit operations that are allowed for the
transformation. Typical edit operations are insert, delete, and replacement of one character at any
position in the string.

Definition 3.1 Given two strings �1 and �2, the edit distance ED.�1; �2/ between them is the
minimumnumber of edit operations—insertion, deletion, and replacement—to transform �1 into
�2. We define the edit similarity ES.�1; �2/ to be 1:0 �

ED.�1;�2/
max.j�1j;j�2j/

.

Example 3.2 Consider strings s1 D“Sweet” and s2 D“Sweat.” If we only consider the insert and
delete edit operations, we can translate s1 to s2 by first deleting the fourth character ‘e’, and then
inserting ‘a’ at the same position. Since we needed two edit operations, the edit distance between
s1 and s2 is two. With the replacement operation allowed, the edit distance between s1 and s2

in the example above becomes one.

14 3. SIMILARITY FUNCTIONS

A further generalization of the edit distance incorporates costs (or weights) on edit opera-
tions. Each edit operation incurs a positive cost, and the cost of a sequence of operations is given
by the sum of costs of each operation in the sequence. en, the edit distance between two strings
is given by the cost of the cost-minimizing sequence of edit operations that translates one string
to another.

Example 3.3 Let us again consider strings s1 D“Sweet” and s2 D“Sweat.” Suppose we have
three edit operations: insert and delete with a cost of 2 and replacement with a cost of 3. Now the
edit distance between s1 and s2 is three, since we can transform s1 to s2 with one edit. Note that
using a delete followed by an insert will incur a cost of 4.

Note that depending on the set and costs of operations allowed, the edit distance function
may or may not be symmetric. However, we often use a slight modification that makes the func-
tion symmetric: the revised goal is to perform a sequence of transformations of least total cost on
one or both of the strings s1 and s2 so as to reach some same string s.

3.2 JACCARDSIMILARITY
Another common string similarity measure is based on the well-known jaccard set similarity. In-
formally, the jaccard similarity is the ratio of the size of the intersection over the size of the union.
Hence, two sets that have a lot of elements in common are closer to each other.

Definition 3.4 Let S1 and S2 be two sets.

1. e jaccard containment of S1 in S2, JC .S1; S2/ is defined to be jS1\S2j

jS1j
.

2. e jaccard similarity between S1 and S2, JR.S1; S2/, is defined to be jS1\S2j

jS1[S2j
.

e above definition can be extended to also consider weighted sets by replacing the sizes
of the various sets (including those obtained by intersection and union) with their weighted coun-
terparts.

To apply the jaccard set similarity between two strings, we need to transform the two input
strings s1 and s2 into sets. A standard approach for this conversion is to obtain the set of all q-
grams of the input string: A q-gram is a contiguous sequence of q characters in the input. Given
the two input strings s1 and s2, we obtain all q-grams of each string to obtain sets Q.s1/ and
Q.s2/. e similarity between s1 and s2 is then given by the jaccard similarity J.Q.s1/; Q.s2//

between the two sets of q-grams.

Example 3.5 Let us again consider strings s1 D“Sweet” and s2 D“Sweat.” Using q D 2, we ob-
tain Q.s1/ D fSw; we; ee; etg and Q.s2/ D fSw; we; ea; atg. erefore, we have the similarity
between s1 and s2 given by J.Q.s1/; Q.s2// D

jQ.s1/\Q.s2/j
jQ.s1/[Q.s2/j

D
1
3
.

3.3. COSINE SIMILARITY 15

Q-grams based jaccard similarities are very useful in slightly longer strings, such as addresses or
documents.

ere are many variants of jaccard-based similarity, such as incorporating edit distances or
synonyms into the jaccard distance. For instance, we may consider forming sets of tokens from
the input strings, and then modifying the jaccard similarity by also considering synonyms as being
equal in the set union/intersection computation. Another common approach is to assign weights
to q-grams based on IDF. We could compute the IDF of each relevant q-gram directly based on
the set of all q-grams for a given set of strings; another alternative is to inherit the IDF of the
parent token from which the q-gram is derived and applying an aggregate function in cases where
a q-gram appears in multiple tokens.

3.3 COSINE SIMILARITY
Cosine similarity is a vector-based similarity measure between strings where the input strings
s1 and s2 are translated to vectors in a high-dimensional space. Informally, closer strings are
also closer to each other in the vector space. Typically, the transformation of the input strings to
vectors is done based on the tokens that appear in the string, with each token corresponding to
a dimension and the frequency of the token in the input being the weight of the vector in that
dimension. e string similarity is then given by the cosine similarity of the two vectors (i.e., the
cosine of the angle between the two vectors).

Example 3.6 Consider strings s1 D“Sweet Inc” and s2 D“Sweet.” Assuming each token is a
different dimension and treating “Sweet” as the first dimension and “Inc” as the second, we get
the following vectors: v.s1/ D f1; 1g and v.s2/ D f1; 0g. Computing the cosine of the angle (45
degrees) between these two vectors, we get a similarity between s1 and s2 to be 0:707.

Cosine similarity is typically useful for larger strings such as web documents, addresses, or
text records. To avoid high-dimensionality and noise due to irrelevant words, stop-words (such
as “the,” “an,” etc.), and commonly occurring words are often eliminated before constructing the
two vectors.

3.4 SOUNDEX
Soundex is a phonetic approach formeasuring the similarity between strings.e idea is to convert
any string to some code based on the pronunciation of the word, and then compare the codes
of the strings. e exact method for conversion of strings to the code depends on the variant
of the language being used, but a common approach for American English is as follows (see
http://en.wikipedia.org/wiki/Soundex):

• Retain the first letter of the string and drop all other occurrences of all a, e, i, o, u, y, h, w.

• Replace consonants with numbers as per the following mapping:

16 3. SIMILARITY FUNCTIONS

– b, f, p, v) 1

– c, g, j, k, q, s, x, z) 2

– d, t) 3

– l) 4

– m, n) 5

– r) 6

• e following constraints are applied in the replacement described in the step above:

– If more than one consecutive letters (before elimination of letters described in the first
step above) get replaced to the same number, only retain the first number. Further, if
such letters were separated by ‘h’ or ‘w’, still retain only one number.

– However, if two such letters are separated by a vowel, retain both numbers in the code.

• Retain the first letter and the subsequent three numbers to obtain the code for the string.
If there are fewer than three numbers, append 0s at the end.

Example 3.7 Using the approach described above, “Robert” and “Rupert” get converted to the
same code “R163.”

3.5 COMBINATIONSANDLEARNINGSIMILARITY
FUNCTIONS

Each of the similarity measures is most suitable for certain types of strings, and no single string
similarity measure is perfect for any pair of strings. erefore, we commonly need to combine
multiple string similarities, such as using a linear weighted combination. Given some training
data, one can use standard machine-learning algorithms to learn a suitable combined similarity
function for a given dataset.

3.6 BIBLIOGRAPHY
String similarity has a long history with lots of past work. erefore, we don’t provide a com-
prehensive reference here. Instead, we refer the reader to the surveys by Koudas et al. [2006],
and by Cohen et al. [2003]. ese surveys study and compare several similarity functions,
even beyond the ones discussed in this chapter. Further, the SecondString similarity pack-
age (http://secondstring.sourceforge.net/) is a very useful practical string similarity library.

17

C H A P T E R 4

Operator: Similarity Join
Recall that the goal of the record matching task is to match pairs of records across two relations.
e matching function may involve several predicates. However, one of the crucial predicates
often is to measure closeness in terms of textual context between records. is similarity is often
quantified by a textual similarity function which compares the content of the two records. ere
are a variety of common similarity functions as discussed in the previous chapter. As in record
matching, the deduplication task typically involves many predicates. However, a critical one is
often based on textual similarity between records.

In this chapter, we discuss the similarity join operator, which forms the backbone of both
the record matching and deduplication tasks. e goal of the similarity join is to identify all pairs
of very similar records across two relations, where the similarity between records is measured by
a customizable similarity function. e similarity join can be expressed as a relational join where
the join condition is specified using the given similarity function as follows.

Definition 4.1 e similarity join of two relations R and S , both containing a column A, is the
join R ‰� S where the join predicate � is sim.R:A; S:A/ > ˛, for a given similarity function
sim and a threshold ˛.

Although similarity joins may be expressed in SQL by defining join predicates through
user-defined functions (UDFs), their evaluation would be very inefficient as database systems
usually are forced to apply UDF-based join predicates only after performing a cross product.
We introduce the Set-Similarity Join (SSJoin) operator, which is a basic primitive and show that
it can be used for supporting similarity joins based on several string similarity functions (e.g.,
edit similarity, jaccard similarity, hamming distance, soundex, as well as similarity based on co-
occurrences), some of which we saw in the previous chapter.

4.1 SET SIMILARITY JOIN (SSJOIN)
In defining the SSJoin operator, we exploit the following observations:

1. As we saw in the previous chapter, there are several well-known methods of mapping a
string to a set, such as the set of words partitioned by delimiters, the set of all substrings of
length q, i.e., its constituent q-grams, etc. For example, the string “Sweetlegal Investments”
could be treated as a set of words 0Sweetlegal 0;0 Investments0g or as a set of 3-grams,

18 4. OPERATOR: SIMILARITY JOIN

f‘Swe’, ‘wee’, ‘eet’, ‘etl’, ‘tle’, ‘leg’, ‘ega’, ‘gal’, ‘al ’, ‘l I’, ‘ In’, ‘Inv’, ‘nve’, ‘ves’, ‘est’, ‘stm’, ‘tme’,
‘men’, ‘ent’, ‘nts’g.

2. e overlap between sets can be used to effectively support a variety of similarity functions;
for example, we saw that cosine similarity and jaccard similarity defined in the previous
chapter fall in this category.

e SSJoin operator compares values based on sets associated with (or explicitly constructed
for) each input string. Henceforth, we refer to the set corresponding to a string � as Set.�/. is
set could be obtained by any method, including the aforementioned ones. Also, whenever we refer
to sets, we mean multi-sets. Hence, when we refer to the union and intersection of sets, we mean
the multi-set union and multi-set intersection respectively.

In general, elements may be associated with weights. is is intended to capture the in-
tuition that different portions of a string have different importance. For example, in the string
“Sweetlegal Investments,” we may want to associate more importance to the portion “Sweetlegal.”
ere are well-known methods of associating weights to the set elements, such as the notion of
Inverse Document Frequency (IDF) commonly used in Information Retrieval. We assume that
the weight associated with an element of a set, such as a word or q-gram, is fixed and that it is
positive. Formally, all sets are assumed to be drawn from a universe U . Each distinct value in U
is associated with a unique weight. e weight of a set s is defined to be the sum of the weights
of its members and is denoted as wt .s/. Henceforth, in this chapter, we talk about weighted sets,
noting that in the special case when all weights are equal to 1, we reduce to the unweighted case.

Given two sets s1; s2, we define their overlap similarity, denoted Overlap.s1; s2/, to be the
weight of their intersection, i.e., wt .s1 \ s2/. e overlap similarity between two strings, �1; �2,
Overlap.�1; �2/ is defined as Overlap.Set.�1/; Set.�2//.

Example 4.2 Consider strings “Sweetlegal Investments” and “Sweeltegal Investment.” Consider
the corresponding sets of 3-grams, f‘Swe’, ‘wee’, ‘eet’, ‘etl’, ‘tle’, ‘leg’, ‘ega’, ‘gal’, ‘al ’, ‘l I’, ‘ In’, ‘Inv’,
‘nve’, ‘ves’, ‘est’, ‘stm’, ‘tme’, ‘men’, ‘ent’, ‘nts’g and f‘Swe’, ‘wee’, ‘eet’, ‘elt’, ‘lte’, ‘leg’, ‘ega’, ‘gal’, ‘al
’, ‘l I’, ‘ In’, ‘Inv’, ‘nve’, ‘ves’, ‘est’, ‘stm’, ‘tme’, ‘men’, ‘ent’g. Assume all weights are 1. e overlap
similarity between the two strings is the size of the intersection of the two sets of 3-grams, which
is 17.

Given relations R and S , each with string valued attribute A, consider the similarity join
between R and S that returns all pairs of tuples where the overlap similarity between R:A and
S:A is above a certain threshold. We expect that when two strings are almost equal, their overlap
similarity is high, and hence this is a natural similarity join predicate to express. We next introduce
the SSJoin operator that can be used to express this predicate.

We shall use the standard relational data model for simplicity of presentation. However, the
techniques described in this chapter are also applicable to other models allowing inline represen-
tation of set-valued attributes. We assume that all relations are in the First Normal Form, and do

4.1. SET SIMILARITY JOIN (SSJOIN) 19

Figure 4.1: Example sets from strings.

not contain set-valued attributes. Sets and hence the association between a string and its set are
also represented in a normalized manner. For example, the set of rows in relation R of Figure 4.1
represents the association between the string “Sweetlegal Investments” and its 3-grams; the third
Norm column denotes the length of the string.

We describe the SSJoin operator next. Consider relations R.A; B/ and S.A; B/ where A

and B are subsets of columns. Each distinct value ar 2 R:A defines a group, which is the subset of
tuples in R where R:A D ar . Call this set of tuples Set.ar/. Similarly, each distinct value as 2 S:A

defines a set Set.as/. e simplest form of the SSJoin operator joins a pair of distinct values
har ; asi, ar 2 R:A and as 2 S:A, if the projections on column B of the sets Set.ar/ and Set.as/

have a high overlap similarity. e formal predicate is Overlap.�B.Set.ar/; �B.Set.as/// � ˛

for some threshold ˛. We denote Overlap.�B.Set.ar/; �B.Set.as/// as OverlapB.ar ; as/.
Hence, the formal predicate is OverlapB.ar ; as/ � ˛. We illustrate this through an example.

Example 4.3 Let relation R.OrgName; 3-gram; Norm/ and S.OrgName; 3-gram; Norm/

shown in Figure 4.1 associate the strings “Sweetlegal Investments” and “Sweeltegal Investment”
with their 3-grams. DenotingOrgName by A and 3-gram by B , the SSJoin operator with the pred-
icate OverlapB.ar ; as/ � 15 returns the pair of strings h“Sweetlegal Investments,” “Sweeltegal
Investment”i since the overlap between the corresponding sets of 3-grams is 10.

In general, we may wish to express conditions such as: the overlap similarity between the
two sets must be 80% of the set size, akin to the jaccard string similarity measure we have seen.
us, in the above example, we may wish to assert that the overlap similarity must be higher
than 80% of the number of 3-grams in the string “Sweetlegal Investments.” We may also wish to
be able to assert that the overlap similarity be higher than say 80% of the sizes of both sets. We
now formally define the SSJoin operator as follows, which addresses these requirements.

Definition 4.4 Consider relations R.A; B/ and S.A; B/. Let pred be the predicateV
ifOverlapB.ar ; as/ � eig, where each ei is an expression involving only constants and

20 4. OPERATOR: SIMILARITY JOIN

columns from either R:A or S:A. We write R SSJoin
pred
A S to denote the following result:

fhar ; asi 2 R:A � S:Ajpred.ar ; as/ is true g.
We also write pred as fOverlapB.ar ; as/ � eig.

We illustrate this through the following examples based on Figure 4.1. e third column
Norm denotes the length of the string. In general, the norm denotes either the length of the string,
or the cardinality of the set, or the sum of the weights of all elements in the set. Several similarity
functions use the norm to normalize the similarity.

Example 4.5 As shown in Figure 4.1, let relations R.OrgName; 3-gram; Norm/ and
S.OrgName; 3; Norm/ associate the organization names with (1) all 3-grams in each organization
name, and (2) the number of 3-grams for each name. e predicate in the SSJoin operator may
be instantiated in one of the following ways to derive different notions of similarity.

• Absolute overlap: OverlapB.ar ; as/ � 15 joins the pair of strings h“Sweetlegal Invest-
ments,” “Sweeltegal Investment”i since the overlap between the corresponding sets of 3-
grams is 17.

• 1-sided normalized overlap: OverlapB.ha; normir ; ha; normis/ � 0:80 � R:norm joins the
pair of strings h“Sweetlegal Investments,” “Sweeltegal Investment”i since the overlap be-
tween the corresponding sets of 3-grams is 17, which is more than 80% of 20.

• 2-sided normalized overlap: OverlapB.ha; normir ; ha; normis/ � f0:8 � R:norm; 0:8 �

S:normg also returns the pair of strings h“Sweetlegal Investments,” “Sweeltegal
Investment”i since 17 is more than 80% of 20 and 80% of 19.

In the next section, we show how the intuitive notion of set overlap can be used to capture
various string similarity functions.

4.2 INSTANTIATIONS
In this section, we fix unary relations Rbase.A/ and Sbase.A/ where A is a string-valued attribute.
e goal is to find pairs hRbase:A; Sbase:Ai where the textual similarity is above a threshold ˛.
Our approach (outlined in Figure 4.2) is to first convert the strings Rbase.A/ and Sbase.A/ to
sets, construct normalized representations R.A; B; norm.A// and S.A; B; norm.A//, and then
suitably invoke the SSJoin operator on the normalized representations. e invocation is chosen
so that all string pairs whose similarity is greater than ˛ are guaranteed to be in the result of the
SSJoin operator. Hence, the SSJoin operator provides a way to efficiently produce a small superset
of the correct answer. We then compare the pairs of strings using the actual similarity function,
declared as a UDF within a database system, to ensure that we only return pairs of strings whose
similarity is above ˛.

4.2. INSTANTIATIONS 21

Figure 4.2: String similarity join using SSJoin.

Note that a direct implementation of the UDF within a database system is most likely to
lead to a cross-product where the UDF is evaluated for all pairs of tuples. On the other hand, an
implementation using SSJoin exploits the support within database systems for equi-joins to result
in a significant reduction in the total number of string comparisons.

4.2.1 EDITDISTANCE
As defined in Chapter 3, recall that the edit distance between strings is the least number of edit
operations (insertion and deletion of characters, and replacement of a character with another)
required to transform one string to the other. For example, the edit distance between strings
‘sweetlegal’ and ‘sweeltegal’ is 2, the number of edits (deleting and inserting ‘t’) required to match
the second string with the first. e edit distance may be normalized to be between 0 and 1 by
the maximum of the two string lengths. Hence, the notion of edit similarity can also be defined
as follows.

We consider the form of edit distance join that returns all pairs of records where the edit
distance is less than an input threshold ˛. is implementation can be easily extended to edit sim-
ilarity joins. We illustrate the connection between edit distance and overlap through the following
example.
Definition 4.6 Consider the strings “Sweetlegal Investments” and “Sweeltegal Investment.”
e edit distance between the two is 3 (deleting and inserting ‘t’ and deleting ‘s’). e overlap
similarity between their 3-grams is 17, more than 80% of the number of 3-grams in either string.

22 4. OPERATOR: SIMILARITY JOIN

Figure 4.3: Edit distance join.

e intuition is all q-grams that are “far away” from the place where the edits take place
must be identical. Hence, if the edit distance is small, then the overlap on q-grams must be high.
We formalize this intuitive relationship between edit distance and the set of q-grams:

Property 4.7 Consider strings �1 and �2, of lengths j�1j and j�2j, respectively. Let QGSetq.�/

denote the set of all contiguous q-grams of the string � . If �1 and �2 are within an edit distance
of �, then Overlap.QGSetq.�1/; QGSetq.�2// � max.j�1j; j�2j/ � q C 1 � � � q

us, in the above example, the edit distance is 3, and Property 4.7 asserts that at least nine
3-grams have to be common.

From the above property, we can implement the edit similarity join through the op-
erator tree shown in Figure 4.3. We first construct the relations R.A; B; norm.A// and
S.A; B; norm.A// containing the norms and q-gram sets for each string. We then invoke the
SSJoin operator over these relations in order to identify hR:A; S:Ai pairs which are very similar.
Note that we further require a filter based on edit similarity (possibly as a user-defined function)
in order to filter out pairs whose overlap similarity is higher than that given by Property 4.7 but
edit similarity is still less than the required threshold.

4.2.2 JACCARDCONTAINMENTANDSIMILARITY
As defined in Chapter 3, recall that the jaccard containment and similarity between strings is
defined through the jaccard containment and similarity of their corresponding sets. We then
illustrate the use of the SSJoin operator for jaccard containment using the following example.

Example 4.8 Suppose we define the jaccard containment between two strings by using the
underlying sets of 3-grams. Consider strings �1 D “Sweetlegal Investments” and �2 D “Sweelte-
gal Investment.” We show how a jaccard containment predicate on these strings translates to a
SSJoin predicate. Suppose we want to join the two strings when the jaccard containment of �1 in
�2 is more than 0.8.

4.3. IMPLEMENTINGTHE SSJOINOPERATOR 23

Figure 4.4: Jaccard containment and similarity joins.

As shown in Figure 4.1, let R.OrgName; 3�gram; norm/ and S.OrgName; 3�gram; norm/

associate the strings “Sweetlegal Investments” and ”Sweeltegal Investment” with (1) the actual
3-grams in column 3 � gram, and (2) the number of 3-grams in column norm.

We can see that the jaccard containment predicate is equivalent to the following
SSJoin predicate: OverlapB.ha; normir ; ha; normis/ � 0:8 � R:norm.

In general, we construct relations RhA; B; norm.A/i and ShA; B; norm.A/i from Rbase
and Sbase respectively, that associates a string with (1) the weight of the underlying set, and
(2) the set of elements in its underlying set. e jaccard containment condition can then be
expressed using the operator tree shown in Figure 4.4. Note that because jaccard containment
like the SSJoin operator measures the degree of overlap, this translation does not require a post-
processing step.

Observe that for any two sets s1 and s2, JC .s1; s2/ � JR.s1; s2/. Hence, JR.s1; s2/ �

˛) Max.JC .s1; s2/; JC .s2; s1// � ˛.erefore, as shown on the right hand side in Figure 4.4,
we use the operator tree for jaccard containment and add the check for jaccard similarity as
a post-processing filter. In fact, we check for the jaccard containment of JC .R:A; S:A/ and
JC .S:A; R:A/ being greater than ˛.

4.3 IMPLEMENTINGTHE SSJOINOPERATOR
In this section, we discuss the implementation of the SSJoin operator. We consider various
strategies, each of which can be implemented using relational operators. e idea is to exploit
the property that SSJoin has to only return pairs of groups whose similarity is above a certain
threshold, and that thresholds are usually high. In this section, we talk mostly about execut-
ing the operation R SSJoin

pred
A S over relations R.A; B/ and S.A; B/ where the predicate is

OverlapB.ar ; as/ � ˛ for some positive constant ˛. e implementation extends to the case
when OverlapB.ar ; as/ is required to be greater than a set of expressions.

24 4. OPERATOR: SIMILARITY JOIN

Figure 4.5: Basic implementation of SSJoin.

4.3.1 BASIC SSJOIN IMPLEMENTATION
Since ˛ > 0, we can conclude that for a pair <ar ; as> to be returned, at least one of the values
in the column B related to ar and as must be the same. Indeed, by computing an equi-join on
the B column(s) between R and S and adding the weights of all joining values of B , we can
compute the overlap between groups on R:A and S:A. Figure 4.5 presents the operator tree for
implementing the basic overlap-SSJoin. We first compute the equi-join between R and S on the
join condition R:B D S:B . Any hR:A; S:Ai pair whose overlap is non-zero would be present in
the result. Grouping the result on hR:A; S:Ai and ensuring, through the having clause, that the
overlap is greater than the specified threshold ˛ would yield the result of the SSJoin.

e size of the equi-join on B varies widely with the joint-frequency distribution of B .
Consider the case when the SSJoin operator is used to implement the jaccard similarity between
strings. Here, the values in the attribute B represent tokens contained in strings. Certain tokens
like “the” and “inc” can be extremely frequent in both R and S relations. In such scenarios, which
occur often, the size of the equi-join on B is very large. e challenge, therefore, is to reduce the
intermediate number of hR:A; S:Ai groups compared. Next, we describe our approach to address
this problem.

4.3. IMPLEMENTINGTHE SSJOINOPERATOR 25

Figure 4.6: Prefix-filter implementation of SSJoin.

4.3.2 FILTEREDSSJOIN IMPLEMENTATION
e intuition we exploit is that when two sets have a large overlap, even smaller subsets of the
base sets overlap. To make the intuition concrete, consider the case when all sets are unweighted
and have a fixed size h. We can observe the following property.

Property 4.9 Let s1 and s2 be two sets of size h. Consider any subset r1 of s1 of size h � k C 1.
If js1 \ s2j � k, then r1 \ s2 ¤ �.

For instance, consider the sets s1={1,2,3,4,5} and s2={1,2,3,4,6} which have an overlap of 4.
Any subset of s1 of size 2 has a non-zero overlap with the set s2. erefore, instead of performing
an equi-join on R and S , we may ignore a large subset of S and perform the equi-join on R

and a small filtered subset of S . By filtering out a large subset of S , we can reduce, often by very
significant margins, the size of the resultant equi-join.

e natural question now is whether or not we can apply such a prefix-filter to both rela-
tions R and S in the equi-join. Interestingly, we find that the answer is in the affirmative. We
illustrate this as follows. Fix an ordering O of the universe U from which all set elements are
drawn. Define the k-prefix of any set s to be the subset consisting of the first k elements as per
the ordering O. Now, if js1 \ s2j � k, then their .h � k C 1/-prefixes must intersect. For exam-
ple, consider s1 D f1; 2; 3; 4; 5g and s2 D f1; 2; 3; 4; 6g as before. Assume the usual ordering of

26 4. OPERATOR: SIMILARITY JOIN

Figure 4.7: Prefix-filter with inline set representation.

natural numbers. Since the overlap between s1 and s2 is 4, their size .5 � 4 C 1/ D 2-prefixes
must intersect, which is the case—the size-2 prefixes of both s1 and s2 is f1; 2g. erefore, an
equi-join on B on the filtered relations will return all pairs that satisfy the SSJoin predicate. e
result would be a superset of all pairs of < R:A; S:A > groups with overlap greater than the given
threshold. And the number of candidate groups of pairs is significantly (sometimes, by orders of
magnitude) smaller than the number of pairs from the equi-join on the full base relations.

is intuition can be extended to weighted sets. Consider any fixed ordering O of the
domain from which R:B and S:B are drawn. Given a weighted set r drawn from this domain,
define prefixˇ .r/ to be the subset corresponding to the shortest prefix (in sorted order), the weights
of whose elements add up to more than ˇ. We have the following result:

Lemma 4.10 Consider two weighted sets s1 and s2, such that wt.s1 \ s2/ � ˛. Let ˇ1 D

wt.s1/ � ˛ and ˇ2 D wt.s2/ � ˛. en prefixˇ1
.s1/ \ prefixˇ2

.s2/ ¤ �.

Suppose that for the set defined by value ar 2 R:A, Set.ar/ (respectively for as 2 S:A),
we extract a ˇar

D .wt .Set.ar// � ˛/ prefix under O (respectively, a ˇas
prefix). From the above

lemma, performing the equi-join B on the resulting relations will result in a superset of the result
of the SSJoin. We can then check the SSJoin predicate on the pairs returned. Since the filter is
letting only a prefix under a fixed order to pass through, we call this filter the prefix-filter. We
refer to the relation obtained by filtering R as prefix-filter(R; ˛).

e filtered overlap implementation of the SSJoin operator is illustrated in Figure 4.6. We
first join the prefix-filtered relations to obtain candidate pairs hR:A; S:Ai groups to be compared.
We join the candidate set of pairs with the base relations R and S in order to obtain the groups
so that we can compute the overlap between the groups. e actual computation of the overlap is
done by grouping on hR:A; S:Ai and filtering out groups whose overlap is less than ˛.

We need to extend this implementation to address the following issues.

• Normalized Overlap Predicates: Instead of a constant ˛ as in the discussion above, if we have
an expression of the form ˛ � R:Norm, then we extract a ˇar ;norm.ar / D .wt .Set.ar// � ˛ �

4.3. IMPLEMENTINGTHE SSJOINOPERATOR 27

norm.ar// prefix of the set Set.ar/. is generalizes to the case when we have an expression
involving constants and R:Norm.

• For a 2-sided normalized overlap predicate OverlapB.ar ; as/ � ˛ �

Max.R:Norm; S:Norm/, we apply different prefix-filter to relations R and S . We
apply the filter prefix-filter(R; ˛ � R:Norm) to R and prefix-filter(S; ˛ � S:Norm) to S .

• For the evaluation of a 1-sided normalized overlap predicate OverlapB.ar ; as/ � ˛ �

R:Norm, we can apply the prefix-filter only on sets in R.

We also need to address the following issues for implementing the prefix-filter approach.

• MappingMulti-set Intersection to Joins: Observe that the form of predicate we consider
here involves multi-set intersection when any R:A (or S:A) group contains multiple values
on the R:B attributes. In order to be able to implement them using standard relational
operators, we convert these multi-sets into sets; we convert each value in R:B and S:B into
an ordered pair containing an ordinal number to distinguish it from its duplicates. us,
for example, the multi-set f1; 1; 2g would be converted to fh1; 1i; h1; 2i; h2; 1ig. Since set
intersections can be implemented using joins, the conversion enables us to perform multi-
set intersections using joins.

• Determining the Ordering: Note that the prefix-filter is applicable no matter what or-
dering O we pick. e question arises whether the ordering picked can have performance
implications. Clearly, the answer is that it does. Our goal is to pick an ordering that mini-
mizes the number of comparisons that the ordering will imply. One natural candidate here
is to order the elements by increasing order of their frequency in the database. is way, we
try to eliminate higher frequency elements from the prefix filtering and thereby expect to
minimize the number of comparisons. Since many common notions of weights (e.g., IDF)
are inversely proportional to frequency, we can implement this using the element weights.
Several optimization issues arise such as to what extent will prefix-filtering help, whether
it is worth the cost of producing the filtered relations, whether we should proceed by parti-
tioning the relations and using different approaches for different partitions, etc.
We note that the following is a reasonably good choice: we order R:B values with respect
to their IDF weights. Since high frequency elements have lower weights, we filter them
out first. erefore, the size of the subset (and hence the subsequent join result) let through
would be the smallest under this ordering.

• InlinedRepresentationofGroups: A property of the prefix-filter approach is that when we
extract the prefix-filtered relations, we lose the original groups. Since the original groups are
required for verifying the SSJoin predicate, we have to perform a join with the base relations
again in order to retrieve the groups, as shown in Figure 4.6. ese retrieval joins can clearly
add substantially to the cost of the SSJoin operation.

28 4. OPERATOR: SIMILARITY JOIN

Next, we discuss a new implementation which can avoid these retrieval joins. e idea is
to “carry” the groups along with each R:A and S:A value that pass through the prefix-
filter. is way, we can avoid the joins with the base relations. e intuition is illustrated in
Figure 4.7. In order to do so, we either require the capability to define a set-valued attribute
or a method to encode sets as strings or clobs, say by concatenating all elements together
separating them by a special marker.
Now, measuring the overlap between hR:A; S:Ai groups can be done without a join with the
base relations. However, we require a function, say a UDF, for measuring overlap between
inlined sets. is implementation goes beyond the capabilities of standard SQL operators
as it requires us to compute set overlaps. However, the UDF we use is a simple unary op-
erator that does not perform very sophisticated operations internally, especially when the
sets are bounded. Hence, this alternative is usually more efficient than the prefix-filtered
implementation since it avoids the redundant joins.

4.4 BIBLIOGRAPHY
Given the importance of the string similarity join for record matching, deduplication and other
data cleaning tasks, the similarity join operation has received a lot of attention. e set similarity
join abstraction, which is designed to support joins based on a variety of similarity functions,
has been proposed by Chaudhuri et al. [2006b]. Some of the ideas for optimizing this join for
particular similarity functions, such as edit distance and cosine similarity, have been discussed
by Gravano et al. [2001], Sarawagi and Kirpal [2004], Bayardo et al. [2007], and Xiao et al.
[2008]. Further optimizations on the implementation of the SSJoin operator have been proposed
by Arasu et al. [2006]. A survey of several algorithms for performing similarity join have also been
discussed in a survey by Koudas et al. [2006]. More recently, a parallel implementation of the set
similarity join using the mapreduce framework has been developed by Vernica et al. [2010].

29

C H A P T E R 5

Operator: Clustering
Recall that the goal of the deduplication task is to “group” records in a relation that represents the
same entity. e grouping typically requires that the records in a group be closer to each other,
especially to each other than to records in other groups. A custom deduplication task may require
that other constraints beyond similarity be satisfied as well. However, closeness to each other by
textual similarity is a critical predicate, which needs to be satisfied.

In this chapter, we discuss the clustering operator, which is useful for deduplication and
other data cleaning tasks. Informally speaking, clustering refers to the operation of taking a set of
items, and putting them into smaller groups based on “similarity.” For example, a list of restaurants
may be clustered based on similar cuisines, or based on their price, or some combination of price
and cuisine.

We start by presenting formal definitions of clustering in Section 5.1, then present some
common clustering techniques used in data cleaning in Section 5.2, and conclude with a brief
bibliography in Section 5.3.

5.1 DEFINITIONS
We start with a generic definition of clustering to capture the general intuition behind clustering.
We then progressively refine the definition to guide the solution toward a desirable solution.

Definition 5.1 Clustering. Given a set S D fI1; : : : ; Ing of items, a clustering C of S is defined
by a set of subsets C D fC1; : : : ; Cmg, where:

• each Cj � S

• S D
Sm

j D1 Cj

• for i ¤ j , Ci ¤ Cj

Each Cj is called a cluster.

Obviously the definition above is too generic to be useful by itself. erefore, clustering
tasks are guided by a similarity measure, sim, that is expressed in a pairwise fashion and gives the
similarity between a pair of items.¹ Intuitively, the goal of clustering is to group S into multi-
ple clusters fC1; : : : ; Cmg, where each cluster Cj contains similar items based on the similarity
¹Sometimes the input to clustering is a distance measure, instead of a similarity measure, which can be turned into a similarity
measure.

30 5. OPERATOR: CLUSTERING

measure sim. ere are multiple ways in which the similarity measure may be used to guide the
clustering process, and the “goodness” of clustering is often formally captured using an objective
function:

Definition 5.2 Clustering Objective Function. Given a set S D fI1; : : : ; Ing of items and a
similarity measure sim W S � S ! Œ0; 1�, a clustering objective function Obj is a function that
associates a numeric value Obj.C; sim/ to every clustering C.

Intuitively, the goal is to find a clustering that optimizes the value of the objective function.

Example 5.3 One example of a clustering objective is based on the average intra-cluster simi-
larity. We can define cluster similarity as the average pairwise similarity of all items in a cluster:

CSim.Cj ; sim/ D avgIp ;Iq2Cj
sim.Ip; Iq/

e clustering objective is then defined as the minimum cluster similarity among all clus-
ters:

Obj.C; sim/ D max
Cj 2C

CSim.Cj ; sim/

Note that the objective function above is presented only as an example. However, just by
itself the objective function may admit an extreme solution, such as creating n clusters, each
consisting of a single item Ii since that wouldmaximize the value of the objective above.erefore,
to be used in practice the objective function or clustering specification needs to be refined further.
To avoid such extreme solutions, and optionally to encode domain knowledge, clustering is also
frequently guided by a set of constraints that restricts the valid set of clusterings:

Definition5.4 ClusteringConstraint. Given a set S D fI1; : : : ; Ing of items, a similaritymea-
sure sim W S � S ! Œ0; 1�, a clustering constraint is a boolean function that returns true or false
for any clustering C of S . Intuitively, a clustering is valid if all constraints imposed are satisfied
(true), and invalid otherwise.

Example 5.5 One simple example of a constraint is to restrict the size of each cluster: we might
want to restrict the clustering of a set of restaurants into clusters of between 5 and 10 restaurants.
Or, given a set of images, we might want to cluster into exactly two clusters, grouping them
into good/bad images. In more general cases, we may have complex aggregate functions based on
attributes associated with each item and impose constraints on the aggregate value of attributes
within each cluster.

5.1. DEFINITIONS 31

A specific constraint that is often useful in data cleaning (and other tasks) is that of imposing
disjointness among all clusters, i.e., each item can only belong to one cluster.

Definition 5.6 Disjoint Clustering. A clustering C D fC1; : : : ; Cmg is said to be disjoint if
81 � r < s � m W .Cr \ Cs/ D ;.

Disjointness is particularly useful when future decisions on each cluster is made in an independent
fashion, such as in deduplication tasks where each cluster may be operated on in a distributed
fashion.

Example 5.7 Consider deduplicating a list of tennis players in a table that provides information
on the number of grand slams won by each tennis player, as shown in Table 5.1.

Table 5.1: Table listing player names with number of grand slams won. e player names need to be
deduplicated

Player Name Grand SlamsWon
R. Federer 13
D. Ferrer 4

Rafa Nadal 6
Rafael Nadal 3

Suppose our task is to deduplicate the player names, we can formulate a clustering problem
as follows: Each resulting cluster would represent a distinct player. e pairwise similarity be-
tween records is given by the 3-grams jaccard string similarity we’ve seen in Chapter 3. We may
also impose the following constraints: (1) Disjointness, since the same tuple in the table cannot
represent two different people; (2) Suppose we know that no player has won more than 15 grand
slam titles, we impose the constraint that the sum of grand slams won of all records in a given
cluster is at most 15; (3) e average intra-cluster similarity must be at least 0.5. We may then
solve the clustering with the objective of minimizing the number of clusters. We may then obtain
the result as shown in Table 5.2. Note, however, if we didn’t impose the second constraint above,
we may have grouped “D. Ferrer” and “R. Federer” together if they have a string similarity greater
than 0:5.

We shall later also study an important example of clustering in an operation called block-
ing as a pre-processing step in deduplication: intuitively, the set of all items to be deduplicated
are divided into disjoint clusters, and fine-grained deduplication is performed only within each
cluster.

32 5. OPERATOR: CLUSTERING
Table 5.2: List of grouped tennis players obtained after deduplicating records from Table 5.1 based
on the constraints in Example 5.7

Player ID Names of Players
1 R. Federer
2 D. Ferrer
3 Rafa Nadal, Rafael Nadal

5.2 TECHNIQUES
Clustering is a very widely studied topic and many techniques have been proposed (see Section 5.3
for pointers to bibliography). In this section, we present a brief overview of some basic clustering
techniques that are used in the context of data cleaning.

5.2.1 HASHPARTITION
One technique for clustering is to assign items to clusters based on a hash function defined over
attributes of items. Intuitively, the hash function should be such that similar items (based on a
similarity function sim) are more likely to be get the same hash value based on H . Each hash
value then corresponds to a distinct cluster in the clustering. Suppose our goal is to cluster a set
S of items, where each item is from a domain D. We define a hash function H W D ! DH , with
a finite domain DH . We can then construct a clustering of items S D fI1; : : : ; Ing as equivalence
classes of hash values:

8h 2 DH W let C.h/ D fIi 2 S jH.Ii / D hg

en, the clustering is defined as:

C D
[

h2DH

fC.h/g

Example 5.8 In order to cluster a set of restaurants based on their expense, we can define a
hash function that produces an integer value by dividing the average expense per person at the
restaurant by 10, rounding to the nearest dollar. We can then use the process above and we will
obtain a clustering where all restaurants are placed in clusters based on the following groups of
average prices: Œ$0; $10�, .$10; $20�, and so on. (Note that strictly speaking the domain of hash
values is infinite here, but for a given dataset of restaurants, we obtain a finite number of clusters.)

Note that the clustering process described above generated a disjoint clustering, and this is
a common process used in blocking, which we shall study in Chapter 8.

5.2. TECHNIQUES 33

Further, we can impose constraints on the clustering by incorporating constraints on the
hash function. e following example shows how to impose a restriction on the number of clus-
ters.

Example 5.9 If we have a constraint that the number of clusters must be at most 4, we can revise
the hash function from above and define the hash function to produce four possible values based
on the average prices being in ranges of say Œ0; 20�; .20; 40�; .40; 100�; .100; 1/.

Imposing a constraint on the size of clusters in a hash-based clustering is a little trickier,
but doable as illustrated by the example below.

Example 5.10 Continuing with the restaurants example, if we want to restrict the size of each
cluster to at most 100 restaurants, we may start with one specific clustering, and iteratively “split”
large clusters. For instance, if all clusters except the one corresponding to Œ0; 10� are under the
size of 100. We may create a finer partition of the average price to the ranges Œ0; 5�; .5; 10�, and
if needed refine further. In this fashion we can “drill-down” the hash function until the size con-
straint is met.²

Finally, we can also extend the hash-based partitioning discussed above to obtain non-
disjoint clusters if desired. We may use a family of hash functions and place items in clusters based
on each of the hash values. In such a case, each cluster will be placed in K clusters, where K is the
number of hash functions being used. In the blocking process, we often want to use multiple hash
functions so that if two records are similar, they will match on at least one hash value. For example,
we can preprocess a large set of restaurants by creating (non-disjoint) clustering based on hash
functions on each of price, cuisine, location, name. We are then likely to catch most duplicates
by a pairwise comparison within each cluster, assuming all duplicates have a matching hash value
on at least one of the above attributes. We shall discuss this process further in Chapter 8.

5.2.2 GRAPH-BASEDCLUSTERING
Next we briefly present clustering techniques, based on picturing the set of items in the form of
a graph, which are useful for deduplication. e set of items S D fI1; : : : ; Ing form the nodes of
our graph, and there is a weighted edge between nodes Ii and Ij with weight given by the pairwise
similarity sim.Ii ; Ij /. e first step in clustering is to threshold the graph above, by only retaining
edges whose weight is above some threshold � . Let the resultant graph be denoted G.V; E/, where
V corresponds to items in I , and E is the set of unweighted edges such that .Ii ; Ij / 2 E if and
only if sim.Ii ; Ij / � � . We can now cluster the set S using standard graph clustering techniques
such as:
²A minor point is that if there are more than 100 restaurants with an identical price, we will either violate the constraint, or
need to arbitrarily split the cluster into smaller ones.

34 5. OPERATOR: CLUSTERING

Connected Components: Compute all connected components of G, with each connected compo-
nent forming a cluster. Note that we obtain disjoint clustering using this approach.

Cliques: Compute all maximum cliques of G, and each maximum clique forms a cluster. Note
that here we may obtain non-disjoint clusters, as maximal cliques of a graph G are not necessarily
disjoint.

In both the mechanisms above, or in other graph-based algorithm, we may choose to op-
tionally impose constraints. As an example, if there is a constraint on the maximum number of
clusters, we may choose to combine multiple connected components (or equivalently, lower the
threshold �) so as to obtain fewer clusters.

5.3 BILBIOGRAPHY
Clustering is a very widely studied topic in various domains, and therefore, it is im-
practical to present a comprehensive bibliography of clustering. Instead, we refer the
reader to the book by Han and Kamber [2006] as well as to the Wikipedia article
(http://en.wikipedia.org/wiki/Cluster_analysis), which provides a great taxonomy of clustering
approaches. A detailed study of hash-based clustering, one of the approaches we discussed ear-
lier, was the subject of Das Sarma et al. [2012]. Our focus in this chapter was to synthesize the
basic approaches of clustering as applicable to data cleaning.

35

C H A P T E R 6

Operator: Parsing
In this chapter, we discuss the parsing operator for segmenting an input string into its constituent
attribute values. Recall that the task of inserting new records into a target data warehouse often
requires the reconciliation of schema of the input records and that of the target records. e pro-
cess of reconciliation would often involve “segmenting” a column of an input record into multiple
target columns. e segmented input records may then be compared and, if needed, inserted into
the target table. We now discuss an example to illustrate the goal, and the challenges. Revisiting
our earlier example, an input address string “15633 148th Ave Bellevue WA 98004” has to be
split into the following sub-components before populating a destination customer address table:

House Number: 15633
Street Name: 148th Ave.
City: Bellevue
State: WA Zip: 98004

A similar requirement arises in product databases where a product description has to be
parsed into sub-components involving specification of the product’s attributes. For example,
“Canon EOS Rebel T3i 18-55 mm IS II Kit” has to be segmented as follows.

Brand: Canon
Model: EOS Rebel T3i
Lens: 18-55 mm
Modifier: IS II Kit

In general, the goal of a parsing operator is to split an incoming string into segments each
of which may be inserted as attribute values at the target. e following definition formalizes the
goal of the parsing operator.

Definition 6.1 Parsing. Given a string T and a relational schema S D fA1; : : : ; Ang, construct
a tuple t with schema S from T .

e main technical challenge is to identify the points in the input string that define its
segments, and to assign the segments to attributes in the target schema so that each segment is a
valid attribute value.

36 6. OPERATOR: PARSING

An alternative attribute extraction formulation is to allow fragments of the input string to be
ignored, and view this problem as extracting fragments from the input to fill in attribute values.
In the example string involving Canon camera, the extraction of the attribute Modifier may not
be required, and this particular fragment could be ignored. It is conceivable to modify the seg-
mentation formulation to insert extraneous attributes between real attributes in order to consume
unimportant fragments. A formulation of this generalization has been extensively explored in the
context of information extraction. In the following, we only focus on the parsing formulation.

6.1 REGULAREXPRESSIONS
One approach we can adopt is to use regular expressions to achieve the desired segmentation. For
example, consider the regular expression:

(\d*) (.*[a|A]ve[.]) (.*), ([A-Z][A-Z]) (\d\d\d\d\d)
e expression above would accept the string “18100 New Hamshire Ave. Silver Spring, MD
20861.”e segment of the string accepted by each group (within parenthesis) defines an attribute
value. Notice that we would have to develop many such regular expressions to deal with the variety
of addresses that may be used in USA (e.g., allow street names, states to be completely spelled out,
zipcode to include the 4-digit extension). e development would require deep domain expertise
as well as the ability to correctly develop such regular expressions. When we expand the domain
of addresses to be beyond USA, then the task of specifying regular expressions for segmentation
becomes significantly more complex.

Let us consider the string “18100 New Hamshire, Silver Spring, MD 20861” where the
token “Ave” is missing the street name attribute value. e above example regular expression
cannot accept this input string, since it is not robust to tolerate errors in the input. We can try to
make the regular expression more general and robust to tolerate such input errors. For example,
the following modified regular expression is a candidate:

(\d*) (.*[\.]) (.*), ([A-Z][A-Z]) (\d\d\d\d\d)
Making regular expressions tolerant to errors adds significant complexity to the development task.
To deal with errors, we would have to add more general regular expressions along with specific
ones, which accept correctly specified input.

A consequence of having a large set of regular expressions is that an input string may be
accepted bymany regular expressions. Further, each of themmay result in a different segmentation
and attribute value assignment. Which one of these is the correct or the most likely to be correct
segmentation? is particular challenge of choosing the optimal segmentation is not easily solved
by the use of regular expressions.

6.2 HIDDENMARKOVMODELS
Based on the challenges observed above, we essentially require a mechanism to “score” a segmen-
tation of an input string. is is effectively addressed by the use of hidden markovmodels (HMMs).

6.2. HIDDENMARKOVMODELS 37

Intuitively, HMMs encode a set of regular expressions along with the score associated with a reg-
ular expression accepting an attribute value. A regular expression that is more indicative of an
attribute value will have a higher score than one that is generic and can accept values from dif-
ferent attributes. Further, HMMs enable efficiently identifying the “best scoring” segmentation
among all acceptable segmentations. We first briefly summarize HMMs before discussing how
we can use HMMs for parsing.

An HMM is a probabilistic finite state automaton which encodes the probability distribu-
tion of sequences of symbols, each drawn from a finite input dictionary. Given a sequence s of
input symbols, we can compute the probability of observing s. A HMM comprises a set of states
and a dictionary of output symbols. Each state can emit symbols from the output dictionary with
different probabilities per symbol. States are connected by directed edges which encode possible
transitions between states. ere are two special states: a start state and an end state. Beginning
from the start state, a HMM generates an output sequence O D o1; : : : ; ok by making k tran-
sitions from one state to the next until the end state is reached. e i th symbol oi is generated
by the i th transition in the path based on that state’s probability distribution of the dictionary
symbols. In general, an output sequence can be generated through multiple paths each with some
probability. e sum of these probabilities is the total probability with which the HMM generates
the output sequence. us, the HMM induces a probability distribution on sequences of symbols
chosen from a discrete dictionary.

ere are two primary issues that we need to address. First, how does one build appropriate
HMMs for custom domains? Second, how do we use them to segment input strings? We now
discuss these two issues.

6.2.1 TRAININGHMMS
A HMM model consists of a structural component defining the set of states and the possible
transitions. e second component defines the emission and transition probabilities over the pre-
determined structure. Informally, a HMM model consists of

• a set of n states

• a dictionary of m output symbols

• an n � n edge transition matrix A where the ij th element aij is the probability of making a
transition from state i to state j , and

• a n � m emissionmatrixB where entry bjk denotes the probability of emitting the kth output
symbol in state j .

e training of an HMM has two phases. In the first phase we choose the structure of the
HMM, that is, the number of states n and edges amongst states and train the dictionary. In the
second phase we learn the transition and emission probabilities assuming a fixed structure of the
HMM.

38 6. OPERATOR: PARSING

Structural Components
In general, a good structure of the HMM depends on the problem and the domain it is supposed
to be applied upon. ere are two typical approaches. e first unified approach relies on one
HMM for parsing all attribute values. e second hierarchical approach first determines the order
among attribute values in a given string, and then extracts fragments of each attribute value.

We first illustrate an example HMM structure for the unified approach. Figure 6.1 illus-
trates the structure of such an HMM for parsing attribute values from an address string.

Apt #

House #

Start

Street

Road

Suf!x City

State

 Zipcode

End
0.55

0.45

0.75

0.25

0.75

0.25
0.88

0.87

0.13

0.12

0.93

0.07

0.95

0.05

1.0

Figure 6.1: A unified HMM model for parsing addresses.

A common limitation of the unified approach is that the single HMM has to be cognizant
of the structure (order and patterns of tokens) among attribute values as well as that within each
attribute value. is sometimes is hard if token patterns across attribute values overlap. e fol-
lowing hierarchical approach addresses this issue.

e hierarchical approach adopts a two-level model, as shown in Figure 6.2. e higher
level model decides on the ordering, probabilistically, among individual attributes. We have one
lower level model per attribute, and each of them decides the best fragment of the input string
that belongs to the attribute.

Outer HMM: e outer HMM has as many states as the number of attributes. e transitions
between states reflect the probabilistic ordering expected among attributes in the input strings.

For learning the outer HMM, the training data is treated as a set of sequences of attribute
values, ignoring the inner details of each attribute value. ese sequences are then used to learn
the outer HMM.

Inner HMM: We have several choices to decide from for the inner HMM’s structure of each
attribute. We illustrate a general class of such inner HMMs.

6.2. HIDDENMARKOVMODELS 39

Figure 6.2: A hierarchical HMM model for parsing addresses.

Each inner HMM has a start and an end state. For a given value of k.� 1/ there are k

independent paths between the start and end states. For each i; .1 � i � k/ there is a path with
exactly i states between the start and the end states. e intuition is that a path with i states
would capture the characteristics of attribute values with i tokens. All values with more k tokens
would be captured by the path with k states—the last state has a transition to itself besides to
the end state. Deciding on the correct value of k is dependent on the domain, and could be done
experimentally.

An extreme instance of this structure is one where k D 1. at is, each inner HMM
consists of a chain of start, middle, and end states with the following transitions: start to middle,
middle to middle, and middle to end.

Taxonomy on dictionary elements: We have discussed the structure of the HMMs. One issue
during the training phase is what constitutes the symbols in the dictionary. A reasonable approach
is to treat each distinct word, number, or delimiter in the training data as a token. us, in the
address 18100 New Hampshire Ave. Silver Spring, MD 20861 we have 10 tokens: six words,
two numbers, and two delimiters “,” and “.”. Intuitively, though we expect the specific number
“18100” to be unimportant as far as we know that it is a number and not a word. Similarly, for
the zip code field the specific value “20816” is not important; what matters perhaps is that it is a
5-digit number.

40 6. OPERATOR: PARSING

Figure 6.3: A taxonomy of dictionary elements.

An example taxonomy is where at the top-most level, there is no distinction amongst sym-
bols; at the next level they are divided into “Numbers,” “Words,” and “Delimiters;” “Numbers” are
divided based on their length as “3-digit,” “5-digit,” or any other length numbers; and so on. A
more generalized taxonomy is shown in Figure 6.3. Here, all numbers are generalized to a single
special token representing numbers. All delimiters are generalized to another special symbol.

Learning Probabilities
e goal of the probability learning process is to learn matrices A and B such that the probability
of the HMM generating these training sequences is maximized. Each training sequence consists
of a series of element-symbol pairs. e structure of the HMM is fixed and each state is marked
with one of the E elements. is restricts the states to which the symbols of a training sequence
can be mapped. e transition probabilities can be calculated using the Maximum Likelihood
approach on all training sequences. Accordingly, the probability of making a transition from state
i to state j is the ratio of the number of transitions made from state i to state j in the training
data to the total number of transitions made from state i. is can be written as:

aij D
Number of transitions from state i to state j
Total number of transitions out of state i

(6.1)

e emission probabilities are computed similarly. e probability of emitting symbol k in
state j is the ratio of the number of times symbol k was emitted in state j to the total number of
symbols emitted in the state. is can be written as:

bjk D
Number of times the k-th symbol emitted at state j

Total number of symbols emitted at state j
(6.2)

Computationally, training the A and B matrix involves making a single pass over all input
training sequences, mapping each sequence to its unique path in the HMM and adding up the
counts for each transition that it makes and output symbol it generates.

6.2. HIDDENMARKOVMODELS 41

e above formula for emission probabilities needs to be refined when the training data is
insufficient. Often during testing we encounter words that have not been seen during training.
e above formula will assign a probability of zero for such symbols causing the final probability
to be zero irrespective of the probability values elsewhere in the path. Hence assigning a correct
probability to the unknown words is important. e traditional method for smoothing is Laplace
smoothing according to which Equation 6.2 will be modified to add one to the numerator and
m to the denominator. us, an unseen symbol k, in state j will be assigned probability 1

Tj Cm

where Tj is the denominator of Equation 6.2 and stands for the total number of tokens seen in
state j .

A potentially better alternative is based on the following intuition. An element like “road
name,” that during training has seen more distinct words than an element like “Country,” is
expected to also encounter unseen symbols more frequently during testing. Laplace smoothing
does not capture this intuition. We use a method called absolute discounting. In this method we
subtract a small value, say x from the probability of all known mj distinct words seen in state j .
We then distribute the accumulated probability equality amongst all unknown values. us, the
probability of an unknown symbol is mj x

m�mj
and for a known symbol k is bjk � x where bjk is as

calculated in Equation 6.2. ere is no theory about how to choose the best value of x, but we
may x as 1

Tj Cm
.

6.2.2 USEOFHMMSFORPARSING
Wenow discuss howHMMs are used to actually segment an input string. Given an output symbol
sequence O D o1; o2; : : : ; ok , we want to associate each symbol with a state in the HMM—the
state that emitted the symbol. Hence we need to find a path of length k from the start state
to the end state, such that the i th symbol oi is emitted by the i th state in the path. In general,
an output sequence can be generated through multiple paths, each with some probability. We
assume the Viterbi approximation and say that the path having the highest probability is the one
which generated the output sequence. Given n states and a sequence of length k, there can be
O.kn/ possible paths that the sequence can go through. is exponential complexity is cut down
to O.kn2/ by the famous dynamic programming-based Viterbi Algorithm. We now discuss the
Viterbi algorithm.

eViterbi algorithm
Given an output sequence O D o1; o2; : : : ; ok of length k and an HMM having n states, we want
to find out the most probable state sequence from the start state to the end state which generates
O . Let 0 and n C 1 denote the special start and end states. Let vs.i/ be the probability of the
most probable path for the prefix o1; o2; : : : ; oi of O that ends with state s. We begin at the start
state labeled 0. us, initially

v0.0/ D 1; vk.0/ D 0; k ¤ 0

42 6. OPERATOR: PARSING

Subsequent values are found using the following recursive formulation:

vs.i/ D bs.oi / max1�r�nfarsvr.i � 1/g; 1 � s � n; 1 � i � k

where bs.oi / is the probability of emitting the i th symbol oi at state s and ars is the transition
probability from state r to state s. e maximum is taken over all states of the HMM.

e probability of the most probable path that generates the output sequence O is given by
the following equation.

vnC1 D max1�r�nar.nC1/vr.k/

e actual path can be found by storing the argmax at each step. is formulation can be imple-
mented as a dynamic programming algorithm running in O.kn2/ time.

6.3 BIBLIOGRAPHY
e use of regular expressions for segmenting and extracting sub-strings which exhibit certain
known patterns has been a common practice for many years. As mentioned earlier, this approach
requires deep understanding of the patterns in the domain, and could also be brittle if the input
contains small errors. e problem of segmentation has been formalized by Borkar et al. [2001],
which also introduced the use of Markov models for robustly segmenting input records into target
schema. e problem of segmenting input strings into records is closely related to that of infor-
mation extraction, where the broad goal is to extract records of information from text documents.
Many approaches, such as rule-based extraction [Chiticariu et al., 2010], Markov models [Mccal-
lum and Freitag, 2000], relational learning [Califf and Mooney, 1999], and conditional random
fields [Sarawagi and Cohen, 2004], have been applied to address this problem.

43

C H A P T E R 7

Task: RecordMatching
We discuss the record matching task in this chapter. Recall that the goal of record matching is to
ascertain whether records across two relations represent the same real-world entity, often referred
to as “matching.” is important task needs to be solved while importing new customer sales
records into the customer relation in a data warehouse. e customer records in the incoming
sales need to be matched with existing customers to avoid subsequent issues with duplicating the
same customer across multiple records. In the comparison shopping scenario, matching offers
on products with the master catalog of products also requires matching the product referred to
in the offer with the master catalog’s product. Further, the record matching task may have to
be solved while deduping records (say, customers or products) in a particular relation. While
record matching may be formally defined in multiple ways, below we present a commonly used
abstraction:

Definition 7.1 Record Matching. Given a relation R.IDR; A1; : : : ; An/ and
S.IDS ; B1; : : : ; Bm/ where ID is a key of each of the relations, construct a rela-
tion Matches.IDR; IDS / � .�IDR

.R/ � �IDS
.S// such that for any r 2 R; s 2 S ,

.r:IDR; s/ 2 Matches.IDR; IDS / iff r and s represent the same real-world entity.

Naturally, it is not always possible to obtain Matches exactly without human curation; there-
fore, the quality of any record matching result is generally measured empirically using standard
precision, recall metrics. As described above, record matching poses two major challenges: (1)
Given a pair .r; s/ of tuples, r 2 R and s 2 S , how do we determine whether to include .r; s/ in
Matches. Typically, this is done using a similarity measure sim, which assigns a numeric score
sim.r; s/ 2 Œ0; 1� to a pair, and then we may include all pairs with sim.r; s/ > � for some thresh-
old � . (2) Since relations R and S may be very large, a second challenge is that of pruning the
number of pairs .r; s/ for which to invoke the similarity measure. One option is to rely on hashing
(possibly multiple times) records from R and S into buckets based on their attribute values, and
only comparing pairs of records within buckets. Another option, when applicable, is to rely on
the set similarity join to efficiently determine pairs of similar records from R and S . In general,
record matching is applied to relations R and S , where the individual relations don’t contain any
duplicates; we describe a separate process to eliminate duplicates from one relation in Chapter 8.

Record matching is usually performed after schema matching, which ensures that the at-
tributes in the two relations have been aligned. We start by discussing Schema Matching (in

44 7. TASK: RECORDMATCHING

Section 7.1). en, we study record matching assuming R and S have the same schema (in Sec-
tion 7.2); in other words, Section 7.2 assumes that the two input datasets have been converted to
one single format.

7.1 SCHEMAMATCHING
Schema matching is the process of aligning schemas between multiple relations. While there are
multiple formulations of schema matching, we focus on the specific version of schema match-
ing that is relevant for the overall task of record matching: Given a relation S.B1; : : : ; Bm/,
obtain a mapping of S to a relation R.A1; : : : ; Am/. As an example, we may want to pop-
ulate tuples from S.Company; Apt; St reet; C ity; Zip; Nation; P honeNumber/ into rela-
tion R.Name; C ityAddress; Country; P hone/. Broadly, this task involves two challenges: (1)
e first challenge is in determining attribute correspondences between the two relations, captur-
ing which pairs of attributes in S and R refer to similar concepts. For example, we would like
attribute correspondences .Company; Name/, .Apt; C ityAddress/, .St reet; C ityAddress/,
.C ity; C ityAddress/, .Nation; Country/, and so on. (2) e second challenge is to use the
attribute correspondences and compose them to obtain a function to convert tuples of S into tu-
ples of R. For example, this would involve determining that the C ityAddress in R is obtained
from an S tuple by concatenating the Apt , Street , and C ity, or that the P hone in R is obtained
by directly taking the P honeNumber from S . e first subtask above is usually referred to as
schema matching while the second task is referred to as schema mapping. We confine our attention
to matching in this book, which is performed using a (semi-)automatic process. Once a match-
ing (or candidate matchings) are obtained, a programmer inspects the matchings, constructs a
mapping, and implements it to convert S into R’s format.

Attribute correspondences between R and S are obtained by considering every pair of at-
tributes and computing a similarity or relatedness score. en, pairs with a high score are retained.
e similarity score between a pair of attributes, say Bi and Aj , are typically obtained by com-
bining multiple signals such as those enumerated below:

• Attribute Name: We consider the similarity of the names of the attributes, by using a dis-
tance string distance measure from Chapter 3. Using similarity of attribute names enables
us to detect correspondences such as .P hone; P honeNumber/, but does not enable us to
capture similar concepts with completely different names, such as Country and Nation.

• Attribute Values: e next signal looks at the overlap in the set of values of the pair of
attributes in the two relations. For example, if the string values in the Country and Nation

column are similar, we may infer that they refer to the same concept. For similarity in the
set of values, we may use a similarity measure such as jaccard similarity. In some cases, we
may choose to apply some set expansion technique to enumerate a larger list of values before
applying jaccard similarity. For example, if a column has 15 countries, and we recognize
them to be countries, we could expand the list to all countries. Set expansion would ensure

7.2. RECORDMATCHING 45

that even if the values from the two attributes don’t have high overlap since each of them
list only a few distinct countries, the expanded sets are very similar.

• Attribute Labels: e next signal considers looking at any known labels or annotations on
the two relations’ attributes. If the relations are obtained from webpages or text documents,
looking at the context around the relation, and values in the table, we may be able to obtain
class labels on a column. For instance, by observing names of people in a column, we may
infer that an attribute refers to a person and assign the person label. We can use similarity
in labels as another signal; sometimes, labels may not be identical, e.g., company versus IT
company, in which case we must consider the relatedness of the labels.

• Co-occurrence: Co-occurrence of attribute names can provide a helpful signal in cases
where a pair of attributes refers to the same concept but has completely different names.
We can use the probabilities of other strings appearing together with attributes Bi and Aj

as a way of computing the similarity between Bi and Aj . For example, we may infer the
similarity of Nation and Country by combining the faces that: (1) the likelihood of at-
tributes such as Population, Capital , etc., appearing in a relation that contains Country

is roughly the same as the likelihood of the attributes appearing in a relation that contains
Nation; (2) Country and Nation co-occur in a relation very rarely. Obviously, using the
signal above requires gathering statistics ahead of time using a large corpus of schemas.

• FunctionalDependencies:We may use the knowledge of functional dependencies in mea-
suring the similarity of non-key attributes. For instance, suppose we know that Company

and Name correspond to each other and are keys of the relations S and R respectively. We
then know that if attributes Bi and Aj must match, then whenever the Company/Name

values of a tuple in S and R are the same, then their corresponding Bi /Aj values must be
similar. For instance, S and R must list the same phone number (or similar, if the formats of
the phone numbers are slightly different) for the same company (assuming there is a single
phone number per company).

Schema matching can be an easy task for well-formed and similar relations, or be an ex-
tremely difficult task for very different and/or poorly structured relations; therefore, in many cases,
signals such as those enumerated above are used as user-guidance, while the final schemamatching
is performed by a human who understands the two relations. Automatic generation of similarities
speeds up the process by minimizing the amount of human input required.

7.2 RECORDMATCHING
Next we present a high-level abstraction that is useful in thinking of the recordmatching problem:
Given relations R and S , our goal is to find pairs of records from R and S that correspond to the
same real-world entity. We can convert an instance of the record matching problem into an in-
stance of a bipartite graph matching problem. We show the main steps in this graph construction

46 7. TASK: RECORDMATCHING

in Section 7.2.1. We then describe the process of generating weighted edges in Section 7.2.2, and
describe how to solve the graph matching problem (and thereby the record matching problem)
in Section 7.2.3.

7.2.1 BIPARTITEGRAPHCONSTRUCTION
Given an instance of the record matching problem with relations R.IDR; A1; : : : ; An/ and
S.IDS ; A1; : : : ; An/,¹ we construct a weighted bipartite graph G.VR; VS ; E � VR � VS ; W /

where VR D fI j9r 2 R; r:ID D I g and VS D fI j9s 2 S; s:ID D I g. In other words, VR has a
vertex corresponding to each tuple in R, and VS has a vertex corresponding to each tuple in S .
Further, there is a weight function W W E ! Œ0; 1�, which assigns weights for edges between one
vertex in VR and one vertex in VS . Since there are no edges with both endpoints in VR or both
endpoints in VS , G constitutes a bipartite graph. Also, the weights of all edges need not be ma-
terialized, and E may be a proper subset of VR � VS ; we shall see later that only edges with high
weight are important for record matching.

Before demonstrating the connection between the bipartite graph and record matching, we
present the definition of graph matching, a well-studied notion in graph theory: A graph matching
M � E for the graph G.VR; VS ; E; W / is any subset of edges that don’t share an endpoint: If
.ir1; is1/; .ir2; is2/ 2 M , then r1 ¤ r2 and s1 ¤ s2.

We shall now see the connection between record matching and the graph G: Every record
matching result corresponds to a graph matching in G, and every graph matching in G corre-
sponds to a record matching result. Recall that we assume that individual relations R and S don’t
contain any duplicates. erefore, the output Matches.IDR; IDS / � .�IDR

.R/ � �IDS
.S//

of record matching satisfies the property that a specific IDR value, say ir , can appear with at
most one IDS value: If .ir ; is1/; .ir ; is2/ 2 Matches.IDR; IDS /, then s1 D s2. Conversely, if
.ir1; is/; .ir2; is/ 2 Matches.IDR; IDS /, then r1 D r2. erefore, every record matching result
Matches.IDR; IDS / in fact corresponds to a graphmatching M in G, and every graphmatching
result M in G corresponds to a record matching result Matches.IDR; IDS /. erefore, record
matching can be reduced to the graph matching problem. Next we shall see how to construct the
set of edges in G, followed by a solution to the graph matching problem.

7.2.2 WEIGHTEDEDGES
We need to address two challenges in construction of the weighted edges in the graph
G.VR; VS ; E � VR � VS ; W /: (1) Determining E, the set of edges for which we want to associate
a weight; (2) Determining the weight of the set of edges in E.

e first challenge above is relevant if the input relations R and S are very large, in which
case naively set E D VR � VS can be very expensive. Intuitively, we want to retain all edges that
potentially correspond to a recordmatching; therefore, we would like to have an edge .r:ID; s:ID/

in E if r and s are likely to be the same real-world entity. One approach is to consider a tuple
¹Note we use the same set of attributes for R and S now since we assume the same schema for the relations.

7.2. RECORDMATCHING 47

r , and perform a “nearest neighbor search” in S to obtain all candidate tuples in S that we would
like to form an edge with. Specifically, we could use the intuition that for a tuple r to match a
tuple s in S , it is very likely that at least one attribute value is shared by the two tuples. erefore,
given a tuple r , we can consider all tuples in S that share at least one attribute’s value with r to
form edges in E; these candidates in S can be looked up by means of an index. Conversely, we
could use a tuple s in S , and look up all tuples in R that share at least one attribute’s value in
R. Effectively, the constructions described above are obtained using the similarity join operator
described in Chapter 4.

e second challenge described above, that of obtaining weights on edges, is arguably a
significantly harder problem. Given a pair of tuples .r; s/, our goal is to obtain a weight in Œ0; 1�

that represents the similarity between the tuples; the higher the weight, the more likely it is
that r and s match. e basic idea used is to generate weights is: (1) generate a set of features,
corresponding to similarity in various attributes, and (2) combining the scores of all the features.

Features: For instance, given the relations R and S with the attributes in their schemas being
.A1; : : : ; An/, we consider features that correspond to the similarity in values of each of the at-
tributes. e similarity measures used may be any of the measures described in Chapter 3, and we
may apply multiple similarity measures on an attribute if desired. For example, we may use edit
distance for an address attribute, or a numerical distance on some age attribute of a person, or the
budget of a movie. A more sophisticated similarity measure may involve a jaccard similarity over
set-valued attributes, such as the genre of movies. We need to exercise caution in the similarity
measure for numerical attributes since the two relations may represent data in different units. For
example, one relation represents the budget in dollars while another represents it in millions of
dollars; in such cases, we would need to convert the data into the same unit and then apply the
similarity measure.

In addition to standard similarity measures, we may want to generate customized features
for a given domain or pair of relations. For instance, we want to apply transformations allowing
the string “Bob” to be equated with “Robert” if they appear in a name attribute. We may also
know that some parts of a string attribute are more important than another, the index at the end
of a movie name (representing the sequel number), and give it a high weight in a modified edit
distance computation.

Combining Features: Once the set of features is designed, for a pair of tuples .r; s/, we obtain a
feature vector Nv D fv1; : : : ; vmg corresponding to all the feature values for the pair of tuples. Our
next goal is to combine these into a single weight value. Broadly speaking, there are two high-
level ways to go about constructing a combination function: (1) Manually generated, hand-tuned
combiner; (2) Machine-learned combination. In the first approach, a human who understands
the domain of interest and the data in the two relations generates a combination function. An
example of a combination function is the weighted average of all the feature values, where the
weights can be hand-tuned based on the importance of attributes. e second approach is to use
machine-learning, which requires a training dataset giving examples of pairs of tuples that are

48 7. TASK: RECORDMATCHING

and are not real matches. Based on these known matches and non-matches, we can use machine-
learning to learn a model of how to combine various features. Some commonly used models are
SVMs, and binary decision trees. Note that these models can be used to give a binary output
(equivalent to weights of 0 and 1), or a score in the range Œ0; 1�.

7.2.3 GRAPHMATCHING
e final step in the record matching process is to perform graph matching on the constructed
weighted bipartite graph. e main challenges in the graph matching problem are twofold: (1)
determining which edges in the graph to retain as actual matches, (2) resolving conflicts among
the retained edges to ensure the resulting set of edges constitutes a matching, i.e., no two edges
share an endpoint.

e first challenge above is typically solved by applying a threshold � on the edges, and
retaining only edges with weights above � . Obviously, the choice of � is tricky and is either set by
a human, or again picked by the machine based on some training examples. A higher � generally
ensures higher precision (at the cost of lower recall), while a lower � generally increases recall (at
the cost of lower precision); therefore, the choice of � is determined by how much importance we
want to give to precision and recall.

Once the threshold is applied, we are left with a set of edges Et . If these edges represent a
matching, we return them as the record matching result. However, if they aren’t a matching, i.e.,
some edges share endpoints, we need to reduce the set of edges to a matching. Ideally, we would
like to remove as few edges as possible (with as little weight as possible) from Et to make it a
matching. In other words, we want to retain a subset Es � Et such that: (1) Es is a matching, (2)
the total weight of all edges in Es is as high as possible. is problem is a classical graph theory
problem known as the max. weight matching problem. erefore, we use known max. weight
matching techniques to obtain Es and return the result.

7.3 BIBLIOGRAPHY
e study of record matching dates all the way back to over 50 years to the seminal pieces of
work by Fellegi and Sunter [1969], Newcombe et al. [1959]. e problem continued to receive
attention in the literature of late with the focus on maintaining data quality in data warehouses.
Two more recent surveys discuss a set of topics relevant to record matching. e first one focuses
on similarity measures for record matching [Koudas et al., 2006], while the second covers string
similarity measures [Cohen et al., 2003]. Finally, see a recent study of record matching techniques
are discussed by Christen [2012a].

49

C H A P T E R 8

Task: Deduplication
In this chapter, we discuss the support that needs to be provided by a generic data cleaning plat-
form for the task of deduplication. As motivated in Chapter 1, the goal of deduplication is to
combine records that represent the same real-world entity.

Deduplication can be loosely thought of as a fuzzy or approximate variant of the relational
select distinct operation. It has as its input a table and a set of columns; the output is a partition
of this table where each individual group denotes a set of records that are approximately equal on
the specified columns. Consider the following example showing a table containing information
about people and a partition defined over all the textual columns, illustrating the output of dedu-
plication. e first three rows in the table form one group while the last two rows form another
group.

Example 8.1

Table 8.1: Table showing records with {g11, g12, g13} being one group of duplications, and {g21,
g22} another set of duplicate records

ID Name Country
g11 Roger Federrer Switzerland
g12 R. Federer Switzerland
g13 Roger Federer Swiss
g21 Novak Djokovic Serbia
g22 Novak Jokovic Serbia

Formally, the grouping process in deduplication can be defined as follows.

Definition 8.2 deduplication. Given a relation R.ID; A1; : : : ; An/, construct a partitioning
ı.R/ D fG1; : : : ; Dmg of the IDs in R, such that: (1) �ID.R/ D [iD1::mGi , (2) 81 � i < j �

m W .Gi \ Gj / D ;. Intuitively, 8r1; r2 2 R, r1:ID; r2:ID 2 Gi iff r1 and r2 represent the same
real-world entity.

Deduplication poses similar challenges as that of record matching: (1) Given a pair of records
r1; r2 2 R, how do I decide whether to place them in the same group? As with record matching,

50 8. TASK: DEDUPLICATION

this process is generally guided by a similarity measure sim.r1; r2/ 2 Œ0; 1�; however, the process
is more complicated here since the decision of whether to group r1 and r2 together depends on
other records. (2) Since R may be very large, we cannot always compare all pairs of records.

A large amount of information can be brought to bear in order to perform deduplication,
namely the textual similarity between records, constraints that are expected to hold over clean
data such as functional dependencies and attribute correlations that are known to exist.

We start by addressing the first challenge above. In Section 8.1, we discuss an overall graph-
based approach for solving the deduplication problem. en, in Section 8.2, we discuss the merg-
ing of grouped records to obtain the deduplication output. In Section 8.3, we discuss a common
technique of guiding the deduplication process by providing external domain-specific constraints.
Finally, in Section 8.4 we discuss a pre-processing technique called blocking, used to partition the
graph into smaller groups from very large input relations, such that each group can be indepen-
dently deduced. We conclude with a brief bibliography in Section 8.5.

8.1 GRAPHPARTITIONINGAPPROACH
We now describe a sequence of steps used to convert the deduplication problem into a graph
clustering problem. Specifically, we shall convert the grouping problem from Definition 8.2 to
a graph partitioning problem. e key ingredients of the constructed graph are described in the
definition below:

Definition 8.3 Deduplication. Given an input instance of deduplication defined by the rela-
tion R.ID; A1; : : : ; An/, we construct a weighted graph G.V; E; W /, where:

• V is the set of nodes, where each node represents a unique tuple in R

• E � V � V is a set of edges

• W W E ! Œ0; 1� is a weight function assigning a weight for every edge. Intuitively, the weight
on an edge .v1; v2/ captures the similarity between the tuples corresponding to the nodes
v1 and v2.

Clearly, any partitioning of the graph G corresponds to a particular deduplication output: each
partition defines a group in Definition 8.3. Conversely, every deduplication output can be mod-
eled as a partition in G above. erefore, we can reduce the deduplication problem to—(1) con-
struction of G, (2) partitioning of G—which are discussed next.

In Section 8.1.1, we look at computing a similarity between a given pair of records, which
is at the heart of the graph construction. en, in Section 8.1.2, we describe how the constructed
graph is partitioned to obtain a grouping of records.

8.2. MERGING 51

8.1.1 GRAPHCONSTRUCTION
At the core of the graph construction is a similarity function that measures the similarity or
distance between a pair of records. It returns a similarity score which is typically a value between
0 and 1, a higher value indicating a larger similarity with 1 denoting equality. e techniques
used to obtain such a similarity function are the same as that for record matching (discussed in
Section 7.2.2 in Chapter 7); therefore, we don’t repeat a discussion of the techniques here.

Given an input table to be deduplicated, we can apply the similarity function to all pairs
of records to obtain a weighted similarity graph where the nodes are the tuples in the table and
there is a weighted edge connecting each pair of nodes, the weight representing the similarity.

In practice, the complete graph is rarely computed since this involves a cross-product.
Rather, only those edges whose weight is above a given threshold are materialized. As we have
described in Chapter 4, we can use the similarity join operator to efficiently compute pairwise
similarity scores only for pairs that meet a certain threshold.

8.1.2 GRAPHPARTITIONING
Let’s call the similarity graph where only edges with weights greater than a threshold are present
as the threshold graph. e grouping in our deduplication task is now performed by partitioning of
the nodes in the threshold graph. Intuitively, we desire a partition where nodes that are connected
with larger edge weights have a greater likelihood of being in the same group. Since similarity
functions often do not satisfy properties such as triangle inequality, there are multiple ways of par-
titioning the similarity graph. We may therefore use an implementation of the clustering operator
described in Chapter 5; however, we need a clustering operation that ensures a disjoint partition,
i.e., each node is in exactly one output cluster. Typical partitioning approaches for deduplication
either consider connected components (often called the single linkage partitioning) of the thresh-
old graph, or partitioning into cliques.

e above single linkage and clique partitioning approaches are applicable to several sce-
narios. But their applicability is restricted because the user cannot influence the result of dedu-
plication easily, other than setting the threshold while constructing the threshold graph. Beyond
that threshold and choosing one of single linkage or clique partitioning, a user cannot really influ-
ence the deduplication task in this approach. Setting thresholds and iteratively analyzing results
to determine a better threshold is quite hard. In Section 8.3, we discuss other mechanisms by
which users may influence the result of deduplication.

8.2 MERGING
One post-processing task of deduplication is to merge tuples in each group to identify or to even
create a canonical tuple that represents the entire group. In other words, given group Gi 2 ı.R/

as defined in Definition 8.3, we need to apply a process Merge.Gi / to obtain a single tuple t

combining the values of attributes from each tuple in Gi .

52 8. TASK: DEDUPLICATION

Example8.4 Going back to the example grouping fromExample 8.1, we can combine the group
G1 D fg11; g12; g13g to obtain a single tuple t as follows:

Table 8.2: Table showing the merged record t obtained from the group of records {g11, g12, g13}
from Example 8.1

ID Name Country
t Roger Federer Switzerland

e idea behind merging is to create a single record for each real-world entity, which is
challenging because of the discrepancies in the attribute values among the tuples constituting a
group. At a high level, there are two approaches in dealing with merging: (1) Maintain multiple
possible values for attributes if it is not clear which value is right, and leave it to downstream
processing to handle the uncertainty in the values. (2) Construct a tuple with no uncertainty by
obtaining the best value for each tuple, known as conflict resolution.

ere are multiple ways in which an attribute value may be picked during the conflict reso-
lution process. A common approach is to pick the “most likely” value among the ones that appear
in the tuples. e process of determining the most likely value depends on the type of attribute,
the domain, and available information. Below we give examples of cues that can be used:

• Frequency: If an attribute value appears more frequently among multiple input tuples, it is
more likely to be correct.

• SourceAuthority: If we know that one of the input tuples is obtained from a more author-
itative source database, e.g., the U.S. Census, it is more likely to contain correct values.

• Attribute Domain: We can use domains of attributes (e.g., age 2 Œ0; 100�) to weed out
incorrect values.
Also note that in order to compare values across tuples, we may first need to convert all of

them into the same type (e.g., convert all temperatures to Fahrenheit). In more complicated sce-
narios, we may construct a new attribute value that didn’t appear in any input tuple. For example,
if one tuple only had the first name and another tuple had the last name in a “Name” attribute,
we would like to concatenate them to construct the full name. In our example above, the output
name is “Sweet legal Investments Incorporated,” which is obtained by correcting the spelling of
investments in the input tuple. erefore, this output value is not present in any input tuple.

8.3 USINGCONSTRAINTS FORDEDUPLICATION
Beyond clustering and partitioning approaches for splitting a graph, deduplication can be further
guided by constraints on the groups resulting from partitioning. We now discuss a few examples
and types of constraints that are commonly considered for deduplication.

8.3. USINGCONSTRAINTS FORDEDUPLICATION 53

• Constraints on individual tuples: ese are constraints that express the condition that only
some tuples (for instance “products that have sold in December”) may participate in the
deduplication. Such constraints are easily enforced by pushing these filter conditions before
deduplication is invoked.

• Deduplication parameters as constraints: Several deduplication algorithms take parameters
such as the number of groups to be output as constraints. e idea here is roughly similar to
clustering in that a user may know the “approximate” number of unique records in a relation.
is knowledge can be leveraged for deduplication.

• Pairwise positive and negative examples: ese are constraints that require some pairs of
tuples be grouped together and that other pairs not be grouped together. Such example
pairs can be often be obtained either while browsing a sample of records in a relation or
while reviewing preliminary results from deduplication.

• Groupwise constraints: ese are constraints that are required to be satisfied by each group
in the output of deduplication. ese constraints are often based on the domain expertise.
For example, the total amount billed to all customer records being grouped together must
equal the total amount of goods shipped for each of them.

Our goal now is to incorporate these constraints along with the similarity function, and
achieve the best possible deduplication solution. Satisfying all constraints may not always be pos-
sible. In fact, even determining whether or not all constraints are satisfiable is NP-hard. So, the
typical approach has been to satisfy as many constraints as possible, over a “candidate set” of
partitions.

e separation of the candidate set of partitions from the algorithm for choosing the best
partition enables us to incorporate domain-specific constraints. In some scenarios, it is possi-
ble to consider connected components as candidate groups. at is, nodes which are connected
(indirectly through any chain of neighbors) may be considered duplicates. While in some other
scenarios, it is required that all nodes in a group must be connected directly. Separating the defi-
nition of a candidate set of partitions from the choice of the best partition enables this framework
to achieve both solutions, and the developer has to specify the desired one. We now discuss can-
didate sets of partitions and then using the constraints to identify the best partition from among
the candidate set.

8.3.1 CANDIDATE SETSOF PARTITIONS
We now discuss restricting the sets of candidate sets of groupings. e restriction enables us to
effectively use constraints and to efficiently find the right deduplication solution.

We describe this candidate space procedurally as follows. Note that this procedure is not
actually executed but only used to define the candidate sets of partitions. We begin with a coarse
initial partition of the tuples in R. Logically, we assume all tuples in R to be collapsed into one

54 8. TASK: DEDUPLICATION

group. We then split the individual groups by examining the similarity graph induced over the
tuples in the group and deleting low weight edges until the graph gets disconnected. e new
connected components define the split of the original group. We iterate in this manner with each
of the split groups till we are left with singleton groups.

Formally, we define the space of valid groups as follows. Given a group of tuples, its splitting
threshold is the lowest value of similarity ˛ such that thresholding the similarity graph (induced
over the group) at ˛ disconnects it. e split of a group of tuples is the resulting set of connected
components. We recurse on each individual component until each tuple forms its own group. is
procedure defines the set of all valid groups and is not actually executed.

We can procedurally define the space of valid groups as follows:
• Initialize the set of valid groups with the groups in a seed partition.

• For each group, add its split to the set.

• Recurse until we cannot add new groups.

8.3.2 MAXIMIZINGCONSTRAINT SATISFACTION
e goal now is to identify the best partition from among the candidate set of partitions. We now
describe the algorithm for choosing the “best” set of groups that satisfy the given set of constraints.
First, we have to define the notion of benefit, which quantifies the quality of a partition.

Definition 8.5 e benefit of a partition is the number of groups that satisfy all constraints.

Other notions of benefit such as the sum of the number of records in all groups which
satisfy constraints may also be considered in this framework.

Informally, the algorithm proceeds as follows. We first start with a seed partition (which
can be the entire relation), and then recursively split each group in the partition until the benefit
continues to improve. At any point, the current stage of the algorithm defines a frontier, which is
being expanded. Note that each group in the current frontier can be independently split further
without considering its impact on the rest of the groups. is independence allows us to efficiently
arrive at a desirable partition that maximizes the benefit. So, a developer can solely focus on setting
up the constraints that model an ideal deduplication of the given dataset.

8.4 BLOCKING
Since the input relation to be deduplicated may be very large, a pairwise comparison of all records
is often infeasible. To get around this problem, a process known as blocking is typically applied.
Blocking performs a coarser granularity clustering of R such that we only need to compare records
within each cluster for the final clustering.

Definition 8.6 Blocking. Given a relation R.ID; A1; : : : ; An/, construct a blocking B D

fB1; : : : ; Bmg such that: (1) 8i W Bi � R; (2) ı.R/ � [iD1::mı.Bi /.

8.5. BIBLIOGRAPHY 55

One commonly used blocking technique is to perform hashing of records based on attributes,
thereby resulting in disjoint blocks. In some cases, we may want to hash on multiple attributes,
leading to non-disjoint blocks, in which case groupings from each of the block may need further
processing (rather than just the union as described in Definition 8.6) to ensure that each tuple in
R is eventually place in only one group.

8.5 BIBLIOGRAPHY
Christen [2012a] is a generic study of deduplication. Arasu et al. [2009], Chaudhuri et al. [2007],
Guo et al. [2010], and Fan et al. [2011] have studied constraint-based deduplication; each of these
contain additional references on deduplication. Christen [2012b] surveys blocking, and Bilenko
et al. [2006], Michelson and Knoblock [2006], and Das Sarma et al. [2012] study in detail auto-
mated blocking techniques. Sarawagi and Bhamidipaty [2002] study interactive deduplication.

57

C H A P T E R 9

Data Cleaning Scripts
e operator-centric approach for data cleaning enables customized development of efficient and
accurate solutions to data cleaning tasks relatively easily.e heavy lifting is expected to be done by
the core operators while the custom solution may leverage operations such as standard relational
operators as well as other predicates, which are required for the specific data and domain being
considered. us, the development of custom data cleaning scripts is expected to be flexible, easy,
and efficient all at the same time.

In this chapter, we will discuss the development of custom data cleaning solutions based
on data cleaning operators discussed in the previous chapters. ese solutions can be viewed as
“scripts” involving the operators, or as plans in the traditional query processing representation.
Our goal is to illustrate the richness of the operator-based approach in developing customized
data cleaning solutions. We consider the record matching and deduplication tasks to illustrate
this.

9.1 RECORDMATCHINGSCRIPTS
Recall that the goal of record matching is to identify pairs of records across two relations that
identify the same real world entity. is is particularly useful while inserting new records into an
existing relation, say customers, or when matching product offers from merchants with a master
catalog of products.

Let us consider two input customer relations. Let C1’s schema be (Id, Name, Address, City,
State, Zip, Gender) and C2’s schema be (Id, First Name, Middle Initial, Last Name, Address,
Gender). In the case when C1.Id and C2.Id are from the same domain then a sample script for
matching C1 and C2 is shown in Figure 9.1. We first rely on the Ids matching to find matching
record pairs. We then also join records based on a similarity measure over the concatenation of
Name and Address columns in order to identify closely matching records. However, note that the
first and last names are in separate columns in C2 while they are concatenated together in C1.
So, we first concatenate the two columns before performing a similarity join. Also, notice that
the join for identifying matches has multiple join predicates: equality join on the City and Zip
columns followed by a similarity join on the Name and Address columns.

In the scenario when C1 and C2 are captured by two different databases, then matching on
Id may be meaningless. In this scenario, we cannot rely on individual attribute address attribute
values being specified correctly in all records. erefore, we primarily rely on the textual similarity
and use the SSJoin operator to identify such pairs. We then ensure that only pairs whose gender
values are equal are considered to match. We illustrate the script in Figure 9.2.

58 9. DATACLEANINGSCRIPTS

C1(Id, Name, Address, City, State, Zip, Gender) C2(Id, FName, MI, LName, Address, Gender)

JOIN (C1.Id == C2.Id)

Filter (C1.Id <> NULL) Filter (C2.Id <> NULL)

M1 Concat (FName, MI, LName)

Segment
(Address) -- (St. Address, City, State, Zip)

C1.City = C2.City and C1.zip = C2.zip and
SSJoin(Name, Address) (threshold > 0.9)

M2

Figure 9.1: Record matching: Example script 1.

C1(Id, Name, Address, City, State, Zip, Gender) C2(Id, FName, MI, LName, Address, Gender)

SSJoin[All columns] (threshold > 0.9)

M

C1.Gender = C2.Gender

Figure 9.2: Record matching: Example Script 2.

e flexibility of preparing an execution plan that suits the specific scenario is illustrated by
the above scripts trying to solve the same record matching task between two given relations. e
script can be targeted toward the scenario and the characteristics of the data thus allowing a lot
of flexibility and ability to comprehensively address the problem.

9.2 DEDUPLICATIONSCRIPTS

Recall that the goal of deduplication is to group records in a relation such that each group rep-
resents the same real-world entity. is operation is useful when merging multiple customer
databases into a single master customer repository. A similar task arises when merging product
catalogs from multiple sources into a single master product catalog.

9.3. SUPPORTFOR SCRIPTDEVELOPMENT 59

Let us consider an input relation of customer records with schema (Id,Name,Address, City,
State, Zip, Gender). e task of deduping customer records in this relation could be approached
through one of two scripts shown in Figures 9.3 and 9.4, respectively.

In the first script, we materialize the similarity graph and then apply a constrained clus-
tering in order to deduplicate customer records. We compare pairs of records in C based on the
Name, Address, City, State, Zip, and Gender values to construct a similarity graph with edges
between records with a high similarity. We then apply constraints based on the domain. Suppose
we know that each customer may be replicated in at most 10 records. And suppose we anticipate
the gender value is usually recorded accurately and hence most of the records in a groupmust share
the dominant value. en, we may stipulate the constraints shown in Figure 9.3. e output of
the script is a solution for the deduplication task.

SSJoin
(name, address, city, state, zip, gender):

threshold 0.8

C: [Id, Name, Address, City, State, Zip, Gender]

Clustering
Constraints:
- At most 10 records per cluster
- 90% of the records have equal Gender

Figure 9.3: Deduplication: Example script 1.

In a different scenario, suppose we knew based on the specific scenario that gender and
zip values in individual records are almost always correctly recorded, we can then approach the
deduplication task as follows (also depicted in Figure 9.4).We first group records based onGender
and Zip values. We then apply constraint-based clustering within each group to identify records
describing the same entity. is script better leverages the domain knowledge to be more efficient
and potentially more accurate as well. Once again, like in the case for record matching, these
scripts illustrate the power and flexibility of the operator-centric approach.

9.3 SUPPORTFOR SCRIPTDEVELOPMENT
Even though allowing the development of scripts in order to achieve a data cleaning task is fairly
general, the actual development of such scripts requires significant domain expertise and knowl-

60 9. DATACLEANINGSCRIPTS

Groupwise Edit Similarity Join
(name, address, city, state, zip, gender): threshold 0.8

C: [Id, Name, Address, City, State, Zip, Gender]

Groupwise Clustering
Constraints:
- At most 10 records per cluster
- 90% of the records have equal Gender

Blocking/Grouping
(Zip, Gender)

Figure 9.4: Deduplication: Example script 2.

edge of the data set at hand. Most developers require support for developing such scripts. Further,
even configuring some of the individual operators (say, the similarity threshold in the SSJoin op-
erator) could also involve a significant number of iterations to get the desired output quality, and
even efficiency.

9.3.1 USER INTERFACEFORDEVELOPINGSCRIPTS
Providing a great user interface where developers can easily write efficient and accurate data clean-
ing scripts with support for an extensive operator palette—including both pre-defined operators
such as data cleaning operators and standard relational operators—is critical. Further, this en-
vironment should allow users to define their own custom transformation operators so as to be
effective. e language in which custom operators are developed and registered with the palette
is important as well—choice that is popular among developers would be make the palette much
more compelling.

e interface could provide a graphical view of the resulting data flow. e graphical view
enables a developer to quickly get an overview of the data flow. Based on this view, they would be
able to easily adjust the data flow by either adding or modifying existing operators, or by re-wiring
the flow. Once the data flow is designed, the user interface must allow a developer to test the
script based on a small sample dataset. ey can use these test runs to validate their assumptions
on the data that their script is going to process. is functionality allows developers to fix errors

9.3. SUPPORTFOR SCRIPTDEVELOPMENT 61

in the script—both in the wiring of the operators as well as in the custom scripts they may have
developed.

Interactive data transformation environments for developing custom transformation scripts
and reusing scripts written by previous users would be tremendously useful. e transformation
scripts could involve a variety of operations including common relational operators such as joins
and a few important enhancements such as the following: (i) Splitting a string into attribute
values based on regular expressions or learning examples, as done by the parsing operator discussed
earlier. (ii) Extracting sub-strings from strings as attribute values; this is a generalization of the
parsing operator. (iii) Pivot and unpivot operators, which transform the structure of the data. e
interactive user interface allows users to combine these operators to develop scripts that transform
the input data as required.

9.3.2 CONFIGURABLEDATACLEANINGSCRIPTS
One approach is to identify the most common domains and data characteristics and prepare cus-
tom scripts. Let us consider the popular domain of U.S. addresses. We could develop a templatized
configurable script for cleaning of data consisting of U.S. addresses. We refer to this as a templa-
tized script because the script must still be configurable to satisfy the requirements of the specific
dataset and application in consideration. Further, the custom script must include support for all
standard data cleaning tasks such as record matching, deduplication, and parsing. For example,
it must be possible to adjust the thresholds of similarity joins or other constraints that are typical
of a deduplication task. An application which is trying to identify ten thousand addresses to mail
a catalog would require a different configuration of constraints than an application which is at-
tempting to comprehensively group all unique addresses. erefore, these custom data cleaning
scripts must be enable such configuration.

In general, domains which are encountered across several applications and enterprises could
benefit from this approach. Once a comprehensive set of scripts are developed they can now be
used across many enterprises and applications. e domain of U.S. addresses has the potential,
since most enterprises in the U.S. would encounter this problem, and can benefit from these
scripts. e domain of electronics or other categories of products is another popular one which
could lend itself to adoption of configurable data cleaning scripts.

Note that the implementation of these scripts may internally leverage the operator-centric
approach. e scripts could exploit the knowledge of the domain they are intended to work for,
and rely on all these operators to develop the operator flow. And they would expose a limited set
of configurable parameters that are meaningful for the specific domain of choice.

A complementary approach to further help users choose the correct configuration param-
eters for a specific dataset is to leverage an example-based machine learning approach. A typical
approach here is to get users to label a set of input records and the expected output—depending
on the data cleaning task being considered—for the specific dataset. Based on the labels, learn the
parameters that would achieve the best accuracy as per the examples. is is a non-trivial problem

62 9. DATACLEANINGSCRIPTS

and there are many open technical challenges which need to be addressed in implementing this
approach accurately and robustly. How many examples would be required to learn the parameters
fairly accurately? How would the approaches deal with a small fraction of errors in the labeled
examples? ese are a few of the technical challenges which need to be addressed for each data
cleaning task.

9.4 BIBLIOGRAPHY
Many commercial ETL engines enable the development of graphs of operators—including pre-
defined and custom operators. Examples of such commercial ETL engines include IBM Ascen-
tial and SSIS. Many research prototypes have also proposed platforms for creating and executing
data flow scripts to develop custom solutions—transforming data to populate data warehouses as
well as to clean it [Chaudhuri et al., 2006a, Dohzen et al., 2006, Galhardas et al., 2000]. At the
same time, tools to help the creation of such data flow scripts over these platforms for specific
data cleaning tasks are also being developed. Many interactive tools for developing and reusing
data transformation scripts based on a rich set of operators have been developed [Kandel et al.,
2011, Raman and Hellerstein, 2001].

63

C H A P T E R 10

Conclusion
We discussed various aspects of data cleaning technology, including its goals, approaches to im-
plementing effective solutions, and several critical components of the technology. e goals of
data cleaning technology in typical enterprise scenarios, as illustrated by the examples in customer
and product databases, are to maintain the quality and consistency of data as the data warehouse is
either being populated with data for the first time or being updated with fresh data subsequently.
ese solutions are typically incorporated into an ETL process which is maintained in order to
populate and maintain a data warehouse. A data cleaning solution is expected to address to several
critical high level tasks. Some of these tasks include record matching, deduplication, and parsing.

e goal of record matching is to efficiently and accurately match pairs of records across
relations for evaluating whether or not they are semantically equivalent. e task could be cus-
tomized (by developers or custom applications) to use specific similarity functions or filters in
conjunction with a similarity function. e record matching task could be applied to check for
duplicates in an incoming batch of new customer or product records to avoid insertion of duplicate
entities into the data warehouse.

e goal of deduplication is to efficiently group records in a relation where each group of
records represent the same real-world entity. A developer of a deduplication task must be able to
influence the grouping to satisfy some expected constraints such as those between known pairs
of records or on the properties of the groups of records. e deduplication task could be applied
to merge multiple records representing the same logical entity. Such a merge will improve the
quality of downstream reporting.

e goal of the parsing task is to extract attribute values from an input record or string
before inserting them into the target relation, say customer or product. Often, input records are
pulled from an external source system and hence the formats could be very different. e parsing
task is critical to transform an input record or string from such a system into the target system’s
structure.

A few common approaches are usually adopted for solving these data cleaning tasks: (i)
domain-specific solutions which are customized to specific domains, (ii) generic platforms which
are very general but require the developer to domost of the work by implementing the logic behind
a data cleaning task, and (iii) an operator-based approach which provide generic operators using
which customized solutions for data cleaning tasks may be implemented.

We then discussed the operator-based approach and described several critical data cleaning
operators—set similarity join, clustering, and parsing. e set similarity join operator efficiently

64 10. CONCLUSION

matches pairs of records between relations and could be used to efficiently implement the simi-
larity join between relations using a variety of similarity functions. Hence, a developer can easily
build on top of the set similarity join to implement an efficient and accurate solution for the
record matching task. e clustering operator groups records in a relation and allows developers
to incorporate a rich class of constraints each group in the output or a collection of output groups
has to respect. Hence, developers can build on top of the clustering operator to implement an ef-
ficient and accurate solution for the deduplication task. e parsing operator allows a developer to
specify regular expressions or examples to illustrate the parsing of an input record into the target
structure. Hence, it may be used to implement an efficient and custom solution for the parsing
task.

All of the above critical data cleaning operators can be used with standard relational opera-
tors as well as other custom operators to develop efficient and accurate data cleaning technology.
We illustrated the flexibility of the operator-based approach with several example scripts to im-
plement record matching and deduplication tasks.

ere are several technical issues that we have not discussed. For instance, we haven’t dis-
cussed the integration of these operators or custom tasks into an ETL platform. We also have
skipped the discussion of some relevant technologies such as information extraction, which is use-
ful for extracting attribute values from strings, and schema mapping which is useful for ensuring
that the schema and semantics of columns across data sources are the same. We have also skipped
issues such as learning-based techniques for developing scripts. It is often easier for developers
to provide examples of desired output and we can bring to bear several machine learning tech-
nologies to help with the intermediate development of scripts. Another issue that we have not
discussed is that of collaboration among developers working with the same dataset in order to de-
velop effective data cleaning scripts. Often, developers often rewrite transformations and scripts
that people have already developed before. Developing tools which enable effective collaboration
on data transformation and data cleaning scripts is an active area of engineering and research.

In summary, we have provided a biased overview of the various problems, approaches, and
techniques that have been developed in the context of data cleaning. We anticipate that this area
of data cleaning will continue to evolve over the next several years, both in the research and in the
commercial domains.

65

Bibliography

Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient exact set-similarity joins. In
Proc. 32nd Int. Conf. on Very Large Data Bases, pages 918–929, 2006. 28

Arvind Arasu, Christopher Ré, and Dan Suciu. Large-scale deduplication with constraints us-
ing dedupalog. In Proc. 25th Int. Conf. on Data Engineering, pages 952–963, 2009. DOI:
10.1109/ICDE.2009.43. 55

Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs sim-
ilarity search. In Proc. 16th Int. World Wide Web Conf., pages 131–140, 2007. DOI:
10.1145/1242572.1242591. 28

Mikhail Bilenko, Beena Kamath, and Raymond J. Mooney. Adaptive blocking: Learning to scale
up record linkage and clustering. In Proc. 2006 IEEE Int. Conf. on Data Mining, pages 87–96,
2006. DOI: 10.1109/ICDM.2006.13. 55

Vinayak Borkar, Kaustubh Deshmukh, and Sunita Sarawagi. Automatic segmentation of text
into structured records. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
175–186, May 2001. DOI: 10.1145/376284.375682. 42

Mary Elaine Califf and Raymond J. Mooney. Relational learning of pattern-match rules for
information extraction. InProc. 16thNational Conf. onArtificial Intelligence and 11th Innovative
Applications of Artificial Intelligence Conf., pages 328–334, 1999. 42

Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. Data debugger: An operator-centric
approach for data quality solutions. Q. Bull. IEEE TC on Data Eng., 29(2):60–66, 2006a. 11,
62

Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A primitive operator for simi-
larity joins in data cleaning. In Proc. 22nd Int. Conf. on Data Engineering, 2006b. DOI:
10.1109/ICDE.2006.9. 28

Surajit Chaudhuri, Anish Das Sarma, Venkatesh Ganti, and Raghav Kaushik. Leveraging ag-
gregate constraints for deduplication. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 437–448, 2007. DOI: 10.1145/1247480.1247530. 55

Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan, Frederick Reiss, and
Shivakumar Vaithyanathan. SystemT: An algebraic approach to declarative information ex-

http://dx.doi.org/10.1109/ICDE.2009.43
http://dx.doi.org/10.1109/ICDE.2009.43
http://dx.doi.org/10.1145/1242572.1242591
http://dx.doi.org/10.1145/1242572.1242591
http://dx.doi.org/10.1109/ICDM.2006.13
http://dx.doi.org/10.1145/376284.375682
http://dx.doi.org/10.1109/ICDE.2006.9
http://dx.doi.org/10.1109/ICDE.2006.9
http://dx.doi.org/10.1145/1247480.1247530

66 BIBLIOGRAPHY

traction. In Proc. 48th Annual Meeting Assoc. for Computational Linguistics, pages 128–137,
2010. 42

Peter Christen. Data Matching - Concepts and Techniques for Record Linkage, Entity Resolution,
and Duplicate Detection. Springer, 2012a. DOI: 10.1007/978-3-642-31164-2. 48, 55

Peter Christen. A survey of indexing techniques for scalable record linkage and
deduplication. IEEE Trans. Knowl. and Data Eng., 24(9):1537–1555, 2012b. DOI:
10.1109/TKDE.2011.127. 55

W. Cohen, P. Ravikumar, and S. E. Fienberg. A Comparison of String Distance Metrics for
Name-Matching Tasks. In Proc. 18th Int. Joint Conf. on AI, pages 73–78, 2003. 16, 48

Anish Das Sarma, Ankur Jain, Ashwin Machanavajjhala, and Philip Bohannon. An au-
tomatic blocking mechanism for large-scale de-duplication tasks. In Proc. 21st ACM
Int. Conf. on Information and Knowledge Management, pages 1055–1064, 2012. DOI:
10.1145/2396761.2398403. 34, 55

Tiffany Dohzen, Mujde Pamuk, Seok-Won Seong, Joachim Hammer, and Michael Stonebraker.
Data integration through transform reuse in the morpheus project. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 736–738, 2006. DOI: 10.1145/1142473.1142571.
11, 62

Wenfei Fan, Hong Gao, Xibei Jia, Jianzhong Li, and Shuai Ma. Dynamic constraints for record
matching. VLDB J., 20(4):495–520, 2011. DOI: 10.1007/s00778-010-0206-6. 55

I. P. Fellegi and A. B. Sunter. A theory for record linkage. J. American Statistical Soc., 64(328):
1183–1210, 1969. DOI: 10.1080/01621459.1969.10501049. 48

Helena Galhardas, Daniela Florescu, Dennis Shasha, and Eric Simon. An extensible framework
for data cleaning. In Proc. 16th Int. Conf. on Data Engineering, pages 312–312, 2000. DOI:
10.1109/ICDE.2000.839429. 11, 62

Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukrishnan, and
Divesh Srivastava. Approximate string joins in a database (almost) for free. In Proc. 27th Int.
Conf. on Very Large Data Bases, pages 491–500, 2001. 28

Songtao Guo, Xin Luna Dong, Divesh Srivastava, and Remi Zajac. Record linkage with unique-
ness constraints and erroneous values. Proc. VLDB Endowment, 3(1–2), 2010. 55

Jiawei Han and Micheline Kamber. Data mining: concepts and techniques. Morgan Kaufmann,
2006. 34

Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wrangler: interactive vi-
sual specification of data transformation scripts. In Proc. SIGCHI Conf. on Human Factors in
Computing Systems, pages 3363–3372, 2011. DOI: 10.1145/1978942.1979444. 62

http://dx.doi.org/10.1007/978-3-642-31164-2
http://dx.doi.org/10.1109/TKDE.2011.127
http://dx.doi.org/10.1109/TKDE.2011.127
http://dx.doi.org/10.1145/2396761.2398403
http://dx.doi.org/10.1145/2396761.2398403
http://dx.doi.org/10.1145/1142473.1142571
http://dx.doi.org/10.1007/s00778-010-0206-6
http://dx.doi.org/10.1080/01621459.1969.10501049
http://dx.doi.org/10.1109/ICDE.2000.839429
http://dx.doi.org/10.1109/ICDE.2000.839429
http://dx.doi.org/10.1145/1978942.1979444

BIBLIOGRAPHY 67

Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. Record linkage: Similarity measures and
algorithms. Tutorial at SIGMOD Conference, 2006. 16, 28, 48

Andrew Mccallum and Dayne Freitag. Maximum entropy markov models for information ex-
traction and segmentation. In Proc. 17th Int. Conf. onMachine Learning, pages 591–598, 2000.
42

Matthew Michelson and Craig A. Knoblock. Learning blocking schemes for record linkage. In
Proc. 21st National Conf. on Artificial Intelligence and 18th Innovative Applications of Artificial
Intelligence Conf., pages 440–445, 2006. 55

H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James. Automatic linkage of vital
records. Science, 130(3381):954–959, 1959. DOI: 10.1126/science.130.3381.954. 48

Vijayshankar Raman and Joe Hellerstein. Potter’s wheel: An interactive data cleaning system. In
Proc. 27th Int. Conf. on Very Large Data Bases, pages 381–390, 2001. 62

Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication using active learning. In
Proc. 8th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 269–278,
2002. DOI: 10.1145/775047.775087. 55

Sunita Sarawagi andWilliamW.Cohen. Semi-markov conditional randomfields for information
extraction. In Advances in Neural Information Processing Systems 17, pages 1185–1192, 2004.
42

Sunita Sarawagi and Alok Kirpal. Efficient set joins on similarity predicates. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 743–754, 2004. DOI:
10.1145/1007568.1007652. 28

Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity joins using mapre-
duce. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 495–506, 2010. DOI:
10.1145/1807167.1807222. 28

Chuan Xiao, Wei Wang, and Xuemin Lin. Ed-join: an efficient algorithm for similarity joins
with edit distance constraints. Proc. VLDB Endowment, 1(1):933–944, 2008. 28

http://dx.doi.org/10.1126/science.130.3381.954
http://dx.doi.org/10.1145/775047.775087
http://dx.doi.org/10.1145/1007568.1007652
http://dx.doi.org/10.1145/1007568.1007652
http://dx.doi.org/10.1145/1807167.1807222
http://dx.doi.org/10.1145/1807167.1807222

69

Authors’ Biographies

VENKATESHGANTI
Venky Ganti is the co-founder and CTO of Alation Inc, where he is developing technology to
effectively search, understand, and analyze structured and semi-structured data. Prior to Alation,
he was a member of the Google Adwords engineering team for a few years. He helped develop
the Dynamic Search Ads (DSA) product, whose goal is to completely automate the configuration
and maintenance of AdWords campaigns based on an advertiser’s website and a few configuration
parameters. e main technical challenge is to mine for appropriate keywords and automatically
create high quality ads which match the accuracy and quality of manually configured campaigns.
Prior to Google, Venky was a senior researcher at Microsoft Research (MSR). While at MSR,
he worked extensively on data cleaning and integration technologies. Some of the technologies
he helped develop in this context are now part of Microsoft SQL Server Integration Services, the
ETL platform of Microsoft SQL Server. He also worked on leveraging rich structured databases
on products, movies, people, etc., to enrich user experience for web search. Some of the tech-
nologies he helped develop are now part of the Bing product search. He has a Ph.D. in database
systems and data mining from the University of Wisconsin-Madison.

ANISHDAS SARMA
Anish Das Sarma is currently a Senior Research Scientist at Google (since May 2010), before
which he was a Research Scientist at Yahoo (August 2009–April 2010). Prior to joining Yahoo
research, Anish did his Ph.D. in Computer Science at Stanford University, advised by Prof. Jen-
nifer Widom. Anish received a B.Tech. in Computer Science and Engineering from the Indian
Institute of Technology (IIT) Bombay in 2004, and an M.S. in Computer Science from Stan-
ford University in 2006. Anish is a recipient of the Microsoft Graduate Fellowship, a Stanford
University School of Engineering fellowship, and the IIT-Bombay Dr. Shankar Dayal Sharma
Gold Medal. Anish has written over 40 technical papers, filed over 10 patents, is associate edi-
tor of Sigmod Record, has served on the thesis committee of a Stanford Ph.D. student, and has
served on numerous program committees. Two SIGMOD and one VLDB paper co-authored by
Anish were selected among the best papers of the conference, with invitations to journals. While
at Stanford, Anish co-founded Shout Velocity, a social tweet ranking system that was named a
top-50 fbFund Finalist for most promising upcoming start-up ideas.

	Preface
	Acknowledgments
	Introduction
	Enterprise Data Warehouse
	Comparison Shopping Database
	Data Cleaning Tasks
	Record Matching
	Schema Matching
	Deduplication
	Data Standardization
	Data Profiling
	Focus of this Book

	Technological Approaches
	Domain-Specific Verticals
	Generic Platforms
	Operator-based Approach
	Generic Data Cleaning Operators
	Similarity Join
	Clustering
	Parsing

	Bibliography

	Similarity Functions
	Edit Distance
	Jaccard Similarity
	Cosine Similarity
	Soundex
	Combinations and Learning Similarity Functions
	Bibliography

	Operator: Similarity Join
	Set Similarity Join (SSJoin)
	Instantiations
	Edit Distance
	Jaccard Containment and Similarity

	Implementing the SSJoin Operator
	Basic SSJoin Implementation
	Filtered SSJoin Implementation

	Bibliography

	Operator: Clustering
	Definitions
	Techniques
	Hash Partition
	Graph-based Clustering

	Bilbiography

	Operator: Parsing
	Regular Expressions
	Hidden Markov Models
	Training HMMs
	Use of HMMs for Parsing

	Bibliography

	Task: Record Matching
	Schema Matching
	Record Matching
	Bipartite Graph Construction
	Weighted Edges
	Graph Matching

	Bibliography

	Task: Deduplication
	Graph Partitioning Approach
	Graph Construction
	Graph Partitioning

	Merging
	Using Constraints for Deduplication
	Candidate Sets of Partitions
	Maximizing Constraint Satisfaction

	Blocking
	Bibliography

	Data Cleaning Scripts
	Record Matching Scripts
	Deduplication Scripts
	Support for Script Development
	User Interface for Developing Scripts
	Configurable Data Cleaning Scripts

	Bibliography

	Conclusion
	Bibliography
	Authors' Biographies

