
THE BEGINNERS GUIDE TO

noSQL

THE

WHY WE ARE STORING MORE DATA
NOW THAN WE EVER HAVE

BEFORE

THE

WHY WE ARE STORING MORE DATA
NOW THAN WE EVER HAVE

BEFORE

CONNECTIONS BETWEEN OUR
DATA ARE GROWING ALL THE

TIME

THE

WHY WE ARE STORING MORE DATA
NOW THAN WE EVER HAVE

BEFORE

CONNECTIONS BETWEEN OUR
DATA ARE GROWING ALL THE

TIME

WE DON’T MAKE THINGS
KNOWING THE STRUCTURE

FROM DAY 1

THE

WHY WE ARE STORING MORE DATA
NOW THAN WE EVER HAVE

BEFORE

CONNECTIONS BETWEEN OUR
DATA ARE GROWING ALL THE

TIME

WE DON’T MAKE THINGS
KNOWING THE STRUCTURE

FROM DAY 1

SERVER ARCHITECTURE IS NOW
AT A STAGE WHERE WE CAN

TAKE ADVANTAGE OF IT

salary lists

most web applications

social networks

semantic trading

SiZE

Complexity

relational databases

NOSQL

USE CASES
LARGE DATA VOLUMES

MASSIVELY DISTRIBUTED ARCHITECTURE
REQUIRED TO STORE THE DATA

GOOGLE, AMAZON, FACEBOOK, 100K SERVERS

NOSQL

USE CASES
LARGE DATA VOLUMES

MASSIVELY DISTRIBUTED ARCHITECTURE
REQUIRED TO STORE THE DATA

GOOGLE, AMAZON, FACEBOOK, 100K SERVERS

EXTREME QUERY WORKLOAD
IMPOSSIBLE TO EFFICIENTLY DO JOINS AT THAT

SCALE WITH AN RDBMS

NOSQL

USE CASES
LARGE DATA VOLUMES

MASSIVELY DISTRIBUTED ARCHITECTURE
REQUIRED TO STORE THE DATA

GOOGLE, AMAZON, FACEBOOK, 100K SERVERS

EXTREME QUERY WORKLOAD
IMPOSSIBLE TO EFFICIENTLY DO JOINS AT THAT

SCALE WITH AN RDBMS

SCHEMA EVOLUTION
SCEMA FLEXIBILITY IS NOT TRIVIAL AT A LARGE

SCALE BUT IT CAN BE WITH NO SQL

NOSQL

PROS AND CONS
PROS

MASSIVE SCALABILITY
HIGH AVAILABILITY

LOWER COST
SCHEMA FLEXIBILITY

SPARCE AND SEMI STRUCTURED DATA

NOSQL

PROS AND CONS
PROS

MASSIVE SCALABILITY
HIGH AVAILABILITY

LOWER COST
SCHEMA FLEXIBILITY

SPARCE AND SEMI STRUCTURED DATA

CONS
LIMITED QUERY CAPABILITIES

NOT STANDARDISED (PORTABILITY MAY BE AN ISSUE)
STILL A DEVELOPING TECHNOLOGY

NOSQL NOSQL NOSQL NOSQL NOSQL
NOSQL BIGTABLE NOSQL NOSQL NOSQL
NOSQL NOSQL NOSQL NOSQL NOSQL

NOSQL NOSQL KEY VALUE NOSQL NO
NOSQL NOSQL NOSQL NOSQL NOSQL

NOSQL NOSQL NOSQL NOSQL NOSQL
NOSQL NOSQL NOSQL NOSQL NOSQL

NOSQL NOSQL NOSQL NOSQL NOSQL
NOSQL GRAPHDB NOSQL NOSQL NOSQL

NOSQL NOSQL NOSQL NOSQL NOSQL

NOSQL NOSQL NOSQL NOSQL NOSQL
NOSQL NOSQL DOCUMENT NOSQL

FOUR
EMERGING TRENDS IN

NOSQL DATABASES

BUT FIRST…
IMAGINE A LIBRARY

LOTS OF DIFFERENT FLOORS

DIFFERENT SECTIONS ON EACH FLOOR

DIFFERENT BOOKSHELVES IN EACH SECTION

LOTS OF BOOKS ON EACH SHELF

LOTS OF PAGES IN EACH BOOK

LOTS OF WORDS ON EACH PAGE

EVERYTHING IS WELL ORGANISED
AND EVERYTHING HAS A SPACE

BUT FIRST…
IMAGINE A LIBRARY

WHAT HAPPENS IF WE
BUY TOO MANY BOOKS!?

(THE WORLD EXPLODES AND THE KITTENS WIN)

BUT FIRST…
IMAGINE A LIBRARY

WHAT HAPPENS IF WE WANT TO
STORE CDS ALL OF A SUDDEN!?

(THE WORLD EXPLODES AND THE KITTENS WIN)

BUT FIRST…
IMAGINE A LIBRARY

WHAT HAPPENS IF WE WANT
TO GET RID OF ALL BOOKS
THAT MENTION KITTENS

(KITTENS STILL WIN)

BIG
BEHAVES LIKE A STANDARD RELATIONAL
DATABASE BUT WITH A SLIGHT CHANGE

http://research.google.com/archive/bigtable.html

http://research.google.com/archive/spanner.html

DESIGNED TO WORK WITH A LOT OF
DATA…A REALLY BIG CRAP TON

CREATED BY GOOGLE AND NOW USED
BY LOTS OF OTHERS

TABLE

http://research.google.com/archive/bigtable.html
http://research.google.com/archive/spanner.html

THIS IS A STANDARD
RELATIONAL
DATABASE

BIG
TABLE

THIS IS A BIG
TABLE DATABASE

(AND NOW THE NAME MAKES SENCE!)

BIG
TABLE

“A Bigtable is a sparse, distributed, persistent
multidimensional sorted map. The map is indexed by a

row key, column key, and a timestamp; each value in
the map is an uninterpreted array of bytes.”

BIG
TABLE

“A Bigtable is a sparse, distributed, persistent
multidimensional sorted map. The map is indexed by a

row key, column key, and a timestamp; each value in
the map is an uninterpreted array of bytes.”

BIG
TABLE

“A Bigtable is a sparse, distributed, persistent
multidimensional sorted map. The map is indexed by a

row key, column key, and a timestamp; each value in
the map is an uninterpreted array of bytes.”

KEY
VALUE

AGAIN, DESIGNED TO WORK WITH A LOT
OF DATA

EACH BIT OF DATA IS STORED IN A
SINGLE COLLECTION

EACH COLLECTION CAN HAVE DIFFERENT
TYPES OF DATA

KEY
VALUE

A CB D E

KEY
VALUE

A C D E

OUR VALUES ARE HIDDEN INSIDE THE KEYS

TO FIND OUT WHAT THEY ARE WE NEED TO
QUERY THEM

What is in Key B?

The Triangle

B

KEY
VALUE

(VOLDERMORT)

DOCUMENT
STORE

DESIGNED TO WORK WITH A LOT OF
DATA (BEGINNING TO NOTICE A THEME?)

VERY SIMILAR TO A KEY VALUE DATABASE

MAIN DIFFERENCE IS THAT YOU CAN
ACTUALLY SEE THE VALUES

DOCUMENT
STORE

A CB D E

DOCUMENT
STORE

A CB D E

Bring me the triangles

Yes m’lord.

S
ID

E
 N

O
T

E

REMEMBER HOW SQL
DATABASES ARE LIBRARIES?

NO SQL IS MORE LIKE A BAG
OF CATS!

S
ID

E
 N

O
T

E

colour: tabby
name: Gunther

colour: ginger
name: Mylo

colour: grey
name: Ruffus
age: kitten

colour: ginger(ish)
name: Fred
age: kitten

colour: ginger(ish)
name: Quentin
legs: 3

WE CAN ADD IN
FIELDS AS AND

WHEN WE
NEED THEM

DOCUMENT
STORE

A CB D E

Bring me the KITTENS!

Of course m’lord.

DOCUMENT
STORE

GRAPH
DATABASE

FOCUS HERE IS ON MODELLING THE
STRUCTURE OF THE DATA

INSPIRED BY GRAPH THEORY (GO MATHS!)

SCALES REALLY WELL TO THE
STRUCTURE OF THE DATA

GRAPH
DATABASE

GRAPH
DATABASE

GRAPH
DATABASE

WORKS_WITH
WORKS_WITH

OWNS

OWNS

CARSHARES IN

GRAPH
DATABASE

name: “Michael”
twitter: “@mrmike

name: “John”
twitter:”@mrjohn”

brand: “Toyota”
currentState: “Broken”

brand: “Vauxhall”
currentState: “Working”

WORKS_WITH
WORKS_WITH

OWNS

OWNS

CARSHARES IN

GRAPH
DATABASE

name: “Michael”
twitter: “@mrmike

name: “John”
twitter:”@mrjohn”

brand: “Toyota”
currentState: “Broken”

brand: “Vauxhall”
currentState: “Working”

WORKS_WITH
WORKS_WITH

OWNS
propertyType: “car”

OWNS
propertyType: “car”CARSHARES IN

GRAPH
DATABASE

key/value store

bigtable clone

document database

graph database

SiZE

Complexity

key/value store

bigtable clone

document database

graph database

SiZE

Complexity

>90% of use cases

WHEN TO USE

NOSQL
AND WHEN TO USE

SQL

THE BASICS
High availability and disaster recovery are a must

Understand the pros and cons of each design model

Don’t pick something just because it is new
Do you remember the zune?

Don’t pick something based JUST on performance

SQL
High performance for transactions. Think ACID

Highly structured, very portable

Small amounts of data
SMALL IS LESS THAN 500GB

Supports many tables with different types of data

Can fetch ordered data

Compatible with lots of tools

THE GOOD

ATOMICITY

CONSISTENCY

ISOLATION

DURABILITY

SQL

SQL
High performance for transactions. Think ACID

Highly structured, very portable

Small amounts of data
SMALL IS LESS THAN 500GB

Supports many tables with different types of data

Can fetch ordered data

Compatible with lots of tools

THE GOOD

SQL
Complex queries take a long time

The relational model takes a long time to learn

Not really scalable

Not suited for rapid development

THE BAD

noSQL
Fits well for volatile data

High read and write throughput

Scales really well

Rapid development is possible

In general it’s faster than SQL

THE GOOD

BASICALLY

AVAILABLE

SOFT STATE

EVENTUALLY CONSISTENT

noSQL

noSQL
Fits well for volatile data

High read and write throughput

Scales really well

Rapid development is possible

In general it’s faster than SQL

THE GOOD

noSQL
Key/Value pairs need to be packed/unpacked all the time

Still working on getting security for these working as well as SQL

Lack of relations from one key to another

THE GOOD

tl;dr

so use both, but think about when you want to use them!

works great, can’t scale for large data

works great, doesn't fit all situations

SQL

noSQL

A lot of this content is loving ripped from
lots of other (more impressive)

presentations that are already on
SlideShare - you should check them out!

FINALLY

