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Abstract

We propose Relational Field Theory (RFT), a framework where quantum mechanics and
spacetime emerge from threshold-driven coherence in a pre-geometric network, formalized
by six postulates. RFT yields: (i) a C∗-algebraic foundation with derived Hilbert space
dynamics and Born probabilities, (ii) spectral threshold conditions, and (iii) a Franson-type
interferometry protocol predicting hysteresis and critical slowing absent in decoherence models.
Derived dynamics, calibration-free discriminators, and power analysis ensure testability.

Contents
1 Introduction 1

1.1 Postulates of Relational Field Theory . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Relational Substrate and Order Parameter 2

3 Emergence of Quantum Kinematics 3
3.1 On the Status of the Markov Process . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Threshold Conditions 4

5 Experimental Protocol: Franson-Type Bell Test 4

6 Preregistration, Baselines, and Controls 6

7 Worked Example: Harmonic Oscillator 6

8 Simulation (Finite-Size Scaling) 7

9 Falsifiability and Limitations 8

10 Conclusion 8

1 Introduction
The quest to derive spacetime and quantum theory from more fundamental structures has taken
many forms, from causal sets [2] and quantum graphity [3] to relational quantum mechanics [1].
Quantum mechanics assumes pre-existing spacetime and Hilbert space, yet their origins remain
unclear. Relational Field Theory (RFT) distinguishes itself by proposing coherence thresholds in
a dynamical phase network as the specific mechanism for emergence, positing that these emerge
from a non-dimensional network when coherence exceeds critical thresholds, as formalized by
Postulate 1. Unlike decoherence models [4] that explain preferred states within existing quantum
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formalism, RFT aims to explain the prior genesis of the Hilbert space and Born rule itself.
RFT predicts hysteresis and critical slowing in entanglement visibility (Postulate 6), testable
via Franson-type interferometry at 1550.000 nm [11], a platform recently advanced for robust,
integrated photonic certification of energy-time entanglement [7]. This paper develops RFT with
derived dynamics, emergent metric, and robust experimental discriminators.

1.1 Postulates of Relational Field Theory

RFT is defined by six postulates:

Postulate 1 (Dimensional Co-emergence). Physical dimensions emerge from coherent phase
relationships spanning at least one closed loop in the relational network. Energy scales E ∼
M/τrel, length scales L ∼ veffτrel, and mass scales m ∼ M/(veffL) co-emerge when R > Rc,
where τrel is the correlation time, M is the update count, and veff is an emergent velocity.

Postulate 2 (Pre-metric Substrate). The fundamental substrate is a non-dimensional network
of phase-bearing nodes and weighted links, defined by a quintuple (S, R, M, Θ, C). Metrics, coordi-
nates, or clocks emerge only when coherence exceeds Rc, quantified by R = (1/|R|) ∑

(i,j)∈R Cijf(θi−
θj).

Postulate 3 (Coherence Thresholds). Localized coherence crossing Rc triggers a Relational
Transition (RT), a discontinuous shift to a dimensional regime with emergent quantum kinematics,
driven by a Kuramoto-type bifurcation (gρ(TC) > 1).

Postulate 4 (Object Formation). Post-threshold, coherent subgraphs form boundary sets acting
as quantum objects, with stability depth τs ∝ τrel determining inertial mass via resistance to
phase disruption.

Postulate 5 (Quantum Dynamics). Quantum kinematics and dynamics emerge from a C∗-
algebra (einθi, Uij = ei(θi−θj)) via GNS construction, with a stationary state ω satisfying KMS
conditions at inverse β w.r.t. a Markov generator L, yielding Hilbert space Hω and Born
probabilities (Tr(ρP )) for dim Hω ≥ 3.

Postulate 6 (Falsifiability). RFT predicts hysteresis (Ahys ≥ 1.5 × 10−3) and critical slowing
(τrel ∝ (gc − g)−ν, ν ∈ [0.7, 1.3]) in Franson-type interferometry, absent in stationary noise.
Non-detection disfavors RFT.

2 Relational Substrate and Order Parameter
Per Postulate 2, the substrate is:

Definition 1 (Pre-geometric substrate). A relational substrate is a quintuple (S, R, M, Θ, C)
where:

• S is a finite set of sites;

• R ⊂ S × S is a symmetric relation;

• M counts relational updates;

• Θ : S → R/(2πZ) assigns phases θi;

• C : R → [0, 1] assigns weights Cij.

Weighted adjacency: Aij = Cij if (i, j) ∈ R, zero otherwise. Define D = diag(di), di = ∑
j Aij ,

and T = D−1A.
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Remark 1 (Time in RFT). RFT distinguishes between the correlation time τrel that emerges
from the substrate’s internal update rhythm M, and the laboratory time t used as an external
coordinate in the effective dynamics (Eqs. (1)–(2)). These become functionally equivalent (t ∼ τrel)
at the coherence threshold, where the internal correlation time of coherent clusters becomes the
dynamical time of their emergent quantum mechanics.

Definition 2 (Coherence order parameter). For f(∆) = 1
2(1 + cos ∆),

R = 1
|R|

∑
(i,j)∈R

Cij f(θi − θj) ∈ [0, 1].

A cluster is coherent when R ≥ Rc.

Remark 2 (Notation). We use t for laboratory time and σ = πVrms/Vπ for RMS phase drive.

3 Emergence of Quantum Kinematics
Postulates 4 and 5 govern quantum objects and dynamics. Coherent subgraphs (Postulate 4)
form quantum objects with τs ∝ τrel. The C∗-algebra (Postulate 5) is:

A = C∗
(
einθi , Uij = ei(θi−θj) : n ∈ Z, (i, j) ∈ R

)
.

Assumption 1 (Update process and detailed balance). The pair (Θ(t), C(t)) is a continuous-
time Markov process with generator L such that for the free-energy F (Section 4),

d

dt
E[F (Θ(t), C(t))] ≤ 0, π(a Lb) = π(b La),

for the Gibbs-like functional π(·) ∝
∫

· e−βF dΘ dC.

3.1 On the Status of the Markov Process

The use of a Markovian update rule and Gibbs-type functional π(·) in Assumption 1 requires
clarification regarding its conceptual status within a pre-geometric framework. We do not posit
this as a fundamental law of the substrate. Rather, it serves as an effective, coarse-grained
description of the underlying dynamics, which are assumed to be local and information-preserving.
The Markov generator L and the associated “emergent temperature” β−1 are not primitive
concepts but emerge from the statistics of more fundamental, discrete relational updates counted
by M. This parallels the emergence of thermodynamics from microscopic mechanics: the
master equation describes the stochastic evolution of macroscopic order parameters (Θ, C)
whose deterministic dynamics would be intractable to model from first principles. The KMS
condition then arises not as an assumption but as a consequence of this effective thermodynamic
description at the transition point, providing the necessary structure for the GNS construction
of quantum state space.

Lemma 1 (Stationary KMS state). Under Assumption 1 and phase space compactness, there
exists β > 0 such that ω(a) =

∫
a dπ is positive, normalized, αt-invariant, and satisfies the KMS

condition at inverse temperature β for the automorphism group generated by L [6].

Theorem 1 (Emergent canonical pair). Let ΘΛ = 1√
|Λ|

∑
i∈Λ θi and ΠΛ = 1√

|Λ|

∑
i∈Λ

∑
j Tij sin(θj−

θi) for blocks Λ with diameter ≪ ξ. In the limit |Λ| → ∞, g ↑ gc, the GNS commutator converges
in distribution to:

[Θ̂, Π̂] = i µeff, µeff = lim
Λ

β−1Varω(ΘΛ).

Sketch: Martingale CLT and fluctuation-dissipation at the KMS state yield canonical pairs,
recovering the Hamiltonian of Section 6.
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The GNS triple (πω, Hω, Ω) gives ⟨aΩ|bΩ⟩ = ω(a∗b). Dynamics: {ατ } implies a self-adjoint
H. Probabilities: For dim Hω ≥ 3, noncontextual σ-additive probabilities are P(P ) = Tr(ρP )
[8, 9].

4 Threshold Conditions
Postulate 3 states that coherence crossing Rc triggers an RT via a Kuramoto-type bifurcation.
Dynamics minimize:

F = −
∑

(i,j)∈R
Cijf(θi − θj) +

∑
(i,j)∈R

λC2
ij ,

yielding (in Itô form):

θ̇i = ωi + g
∑
j∼i

Tij sin(θj − θi) + ηi(t), (1)

Ċij = α(1 − Cij) − βCij [1 − f(θi − θj)] + γηij(t). (2)

Assumption 2 (Regularity). TC is irreducible, aperiodic; |ωi| ≤ Ω < ∞; noise ηi, ηij is
zero-mean, bounded variance; f is smooth, even, with f ′(0) = 0, f ′′(0) < 0.

Proposition 1 (Spectral threshold). Under Assumption 2, R > Rc when g ρ(TC) > 1 [15, 17].

5 Experimental Protocol: Franson-Type Bell Test
Postulate 6 predicts hysteresis and critical slowing at 1550.000 nm. This prediction is tested
using a Franson interferometer [11], an established architecture for energy-time entanglement
tests which has been recently advanced through integrated photonic platforms [7]. Each photon
enters an unbalanced Mach–Zehnder with an EOM. Sweep σ, record V (σ), fit τrel.

EntangledSource

BS BS

EOM

Delay

Alice

BS BS

EOM

Delay

Bob

Phase drive

Phase drive

Figure 1: Franson setup: σ = πVrms/Vπ, g(σ) = κ0σF(Popt, V0).

Key Measurements and Predictions

Hysteresis: Sweep σ : σmin → σmax → σmin at rate r. Define:

Ahys =
∫ σmax

σmin
[V↑(σ) − V↓(σ)] dσ.
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Critical slowing: Fit V (t) = V∞ − (V∞ − V0)e−t/τrel , with τrel from R correlations. Predict:

Ahys ∼
(

g

gc
− 1

)β

, β ≈ 1, τrel ∼ (gc − g)−ν , ν ≈ 1.

For V0 ≈ 0.95, g/gc = 0.99, expect Ahys ∼ 0.01–0.03, τrel increase by ×5.

Parameter Estimation

Coupling g(σ) = κ0σF(Popt, V0), with:

κ0 ≈ M|R|
N⟨TC⟩

.

Calibration:

1. Classical laser (1550.000 nm) at σ = 0.

2. Gaussian fit for F(Popt, V0), V0 ≈ 0.95.

3. κ0 ≈ 0.1–0.5, error ±0.05 (BCa bootstrap, 95% CI).

Estimate gc ≈ 1.0 ± 0.1 from max ∂R/∂g. Error:

∆V (σ) ≈ ∂V

∂g
∆g, ∆g ∼ σ∆κ0.

Calibration-Free Discriminator

Define:
Ξ(g) = ∂V↑/∂σ − ∂V↓/∂σ

V↑ + V↓
.

Near gc, Ξ(g) ∼ (g/gc − 1)β−1, canceling κ0. Fit Ahys(r) = A0 + b1r + b2r2 (RFT) vs. a1r + a2r2

(null), reject null if A0 > 0 (95% BCa CI).

Power Analysis and Uncertainty

For Ahys ∼ 0.01, require N ≈ 1000 counts/σ. With 1.000 MHz source, ηeff ≈ 10−4 (Table 1),
10.000 s yields ∼ 103 counts. Uncertainties: thermal drift (±0.001), EOM nonlinearity (±0.002),
deadtime (±0.0005). Total: ±0.003. Power: 80% at 95% CI for Ahys ≥ 1.5 × 10−3.

Table 1: Loss budget for entangled photon detection.
Component Efficiency
Collection 0.5
Beam splitting 0.5
Fiber coupling 0.8
Detector QE 0.25
Deadtime 0.95

Null Model

Classical memory yields:
V (σ, t) = V0e−σ2

e−t/τmem ,

with Ahys → 0 as r → 0, no τrel power law. RFT predicts A0 > 0.
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6 Preregistration, Baselines, and Controls

Pre-registration

To test Postulate 6:

1. Outcomes: Ahys, ν from τrel ∝ (gc − g)−ν , gc from max ∂V/∂σ.

2. Thresholds: Ahys ≥ 1.5 × 10−3, ν ∈ [0.7, 1.3], R2 > 0.95.

3. Analysis: Fixed σ-grid, BCa bootstrap, outlier/drift criteria.

Baseline

Stationary noise: V (σ) = V0e−σ2 , Ahys = 0, no τrel divergence.

Table 2: Baseline and bounds.
Quantity Stationary model Bound (95% CI)
Ahys 0 ≤ 1.0 × 10−3

τrel No divergence No power-law, ν > 0.3

Controls

(i) Servo-off repeats; (ii) interleaved sweeps; (iii) detector linearity; (iv) bandwidth sweeps; (v)
classical-light surrogate; (vi) Ahys(r) → r = 0.

Data Policy

Raw data, scripts, and environment files at /experiment, /simulation, /analysis (seed=42)
released with DOI.

7 Worked Example: Harmonic Oscillator
For Postulate 1:

Hrel = −J
N−1∑
i=1

cos(θi − θi+1).

Near locking: Hrel ≈ −J(N − 1) + J
2

∑
i δ2

i . Continuum limit: δi → a∂xθ, with:

[Θ̂, Π̂] = iµeff, µeff = β−1Varω(ΘΛ).

H ≈
∫ 1

2

[
Π2 + J

a
(∂xΘ)2

]
dx.

Yields En = ω(n + 1
2), E ∼ M/τrel, L ∼ veff/ω, m ∼ M/(veffL).

Theorem 2 (Finite propagation speed). For local observables AX , BY on disjoint sets X, Y ,
there exist veff, µ0 > 0, c0 < ∞ such that:

∥[αt(AX), BY ]∥ ≤ c0∥AX∥∥BY ∥e−µ0(d(X,Y )−veff|t|).

Sketch: Following [18], bounded phase couplings yield a light-cone with veff ≈
√

J⟨TC⟩, supporting
Postulate 1.
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Table 3: Harmonic spectrum (µeff = 1, meff = 1), ω = 0.3.
n En Value ∆E

0 1
2ω 0.15 0.3

1 3
2ω 0.45 0.3

2 5
2ω 0.75 0.3

3 7
2ω 1.05 0.3

8 Simulation (Finite-Size Scaling)
To validate Postulates 2 and 3:

Listing 1: Threshold simulation
1 import numpy as np
2 def simulate_threshold (N, density =0.02 , steps =500 , g_max =1.5 , seed

=42):
3 """ Simulate relational substrate ."""
4 rng = np. random . default_rng (seed)
5 A = (rng. random ((N,N)) < density ). astype (float)
6 A = np.triu(A, 1); A = A + A.T
7 C = A.copy ()
8 d = A.sum (1); D = np.diag(d + 1e -12)
9 T = np. linalg .solve(D, A)

10 theta = rng. uniform (0, 2*np.pi , N)
11
12 # Parameters from Eq. (C): alpha =0.02 , beta =0.98 , gamma =0.01
13 def evolution_step (theta , C, g):
14 s = np.sin(theta [:, None] - theta[None ,:])
15 theta = (theta + g * np.sum(T * s, axis =1)) % (2* np.pi)
16 dt = theta [:, None] - theta[None ,:]
17 f = 0.5 * (1 + np.cos(dt))
18 alpha , beta , gamma = 0.02 , 0.98 , 0.01
19 C = np. minimum (1.0 , alpha *(1-C) + beta*C*f*A + gamma*rng.

standard_normal ((N,N))*A)
20 return theta , C
21 def order_parameter (theta , C, A):
22 dt = theta [:, None] - theta[None ,:]
23 f = 0.5 * (1 + np.cos(dt))
24 return (C * f).sum () / (A.sum () + 1e -12)
25 gs = np. linspace (0.0 , g_max , 20)
26 Rs = []
27 for g in gs:
28 th , CC = theta.copy (), C.copy ()
29 for _ in range(steps):
30 th , CC = evolution_step (th , CC , g)
31 Rs. append ( order_parameter (th , CC , A))
32 return gs , Rs
33
34 for N in [100 , 300, 1000]:
35 gs , Rs = simulate_threshold (N)
36 dR = np.diff(Rs); threshold_idx = np. argmax (dR)
37 g_c = gs[ threshold_idx ]
38 print(f"N = {N}: threshold {g_c :.3f}, max order = {max(Rs)

:.3f}")
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Universality Class

The Binder cumulant UN (g) = 1 − ⟨R4⟩N

3⟨R2⟩2
N

and scaled order parameter RN (g) = N−β/νR((g −
gc)N1/ν) collapse near gc ≈ 1.0, yielding β ≈ 1, ν ≈ 1 (±0.2, 95% CI), confirming Postulate 3’s
mean-field transition.

9 Falsifiability and Limitations

Falsification Criteria

Postulate 6 is disfavored if:

1. No simultaneous Ahys and ν > 0.3;

2. V (σ) = V0e−σ2 , Ahys ≈ 0, no τrel divergence;

3. Spoof checks show memory artifacts.

Limitations

Scope: No Standard-Model or gravity content. Technical: S1 phases model-specific; pre-threshold
drivers unspecified. Experimental: Modest effect sizes require careful control.

10 Conclusion
RFT offers a derived framework for quantum and spacetime emergence. Hysteresis (Ahys ≥
1.5 × 10−3) and critical slowing (ν ≈ 1) provide robust discriminators.

Code and Data
Simulation code (Section 7), experimental analysis, and raw data are in /experiment, /simulation,
/analysis (seed=42) at the Zenodo repository, https://doi.org/10.5281/zenodo.17127797 [20].
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