
	

Nanosecond Acceleration using FPGA Chips in HFT 
Systems	

Ashton Choi¹, JW Lim¹, Akhil Thakur¹, Heiner Litz² 
¹ Barclays Capital 

² University of Heidelberg 
{ashton.choi, jw.lim, akhil.thakur}@barclays.com 

heiner.litz@ziti.uni-heidelberg.de

Abstract—This paper presents the design of an application	
specific hardware for accelerating High Frequency Trading	
applications. It is optimized to achieve the lowest possible latency	
for interpreting market data feeds and hence enable minimal	
round-trip times for executing electronic stock trades. The	
implementation described in this work enables hardware	
decoding of Ethernet, IP and UDP as well as of the FAST	
protocol which is a common protocol to transmit market feeds.	
For this purpose, we developed a microcode engine with a	
corresponding instruction set as well as a compiler which enables	
the flexibility to support a wide range of applied trading	
protocols. The complete system has been implemented in RTL	
code and evaluated on an FPGA. Our approach shows a 4x	
latency reduction in comparison to the conventional Software	
based approach.	

Keywords-FPGA, high frequency trading; low latency; FAST;	
FIX; Ethernet; UDP	

I. INTRODUCTION	
High Frequency Trading (HFT) has received a lot of attention	
over the past years and has become an increasingly important	
element of financial markets. The term HFT describes a set of	
techniques within electronic trading of stocks and derivatives,	
where a large number of orders are injected into the market at	
sub-millisecond round-trip execution times [1]. High frequency	
traders aim to end the trading day “flat” without holding any	
significant positions and utilize several strategies to generate	
revenue, by buying and selling stock at very high speed. In	
fact, studies show that a high frequency trader holds stock for	
only 22 seconds in average [2]. According to the Aite Group,	
the impact of HFT on the financial markets is substantial,	
accounting for more than 50% of all trades in 2010 on the US-	
equity market with a growth rate of 70 % in 2009 [3].	

High frequency traders utilize a number of different	
strategies, including liquidity-providing strategies, statistical	
arbitrage strategies and liquidity detection strategies [2]. In	
liquidity-providing strategies, high frequency traders try to earn	
the bid-ask spread which represents the difference of what	
buyers are willing to pay and sellers are willing to accept for	
trading stock. High volatility and large bid-ask spreads can be	
turned into profits for the high frequency trader while in return	
he provides liquidity to the market and lowers the bid-ask	
spread for other participants, adopting the role of a market	
maker. Liquidity and low ask-bid spreads are desirable as they	

reduce trading costs and improve the informational efficiency	
of asset price [4]. Traders that employ arbitration strategies [5],	
on the other hand, try to correlate pricing information between	
related stocks or derivates and their underlying prices.	
Liquidity detection comprises strategies that seek to discover	
large orders by sending out small orders which can be	
leveraged by the traders. All strategies have in common that	
they require absolute lowest round-trip latencies as only the	
fastest HFT firm will be able to benefit from an existing	
opportunity.	

Electronic trading of stocks is conducted by sending orders	
in electronic form to a stock exchange. Bid and ask orders are	
then matched by the exchange to execute a trade. Outstanding	
orders are made visible to the market participants through so-	
called feeds. A feed is a compressed or uncompressed real time	
data stream provided by an independent institution like the	
Options Price Reporting Authority (OPRA). A feed carries	
pricing information of stocks and is multicasted to the market	
participants using standardized protocols which are generally	
transmitted over UDP over Ethernet. The standard protocol that	
is applied is the Financial Information Exchange (FIX)	
protocol Adapted for Streaming (FAST) which is used by	
multiple stock exchanges to distribute their market data [18].	

To enable minimal round-trip latencies, a HFT engine	
needs to be optimized on all levels. The required low latency	
connection to the feed handler can be achieved through	
collocation which allows servers to be deployed very close to	
the stock exchange. In addition, the feed needs to be internally	
distributed with minimum latency to the servers of the HFT	
firm. An efficient decoding of the UDP data stream as well as	
of the FAST protocol is mandatory. Finally, the decision to	
issue an order as well as its transmission needs to be carried out	
with lowest possible latency. To achieve these goals we present	
in this paper a novel HFT trading accelerator engine	
implemented in Field Programmable Gate Arrays (FPGAs). By	
using FPGAs we can offload UDP and FAST decoding tasks	
from the CPU to optimized hardware blocks. Our proposed	
system implements the complete processing stack except the	
decision making process in hardware including a highly	
flexible microcode engine to decode FAST messages. Our	
approach shows a significant latency reduction of more than	
70% compared to the standard software solution while	
maintaining the flexibility to support new and modified	
exchange protocols with low efforts in contrast to an	
Application Specific Integrated Circuit (ASIC) solution.	



	

II. BACKGROUND 1) Ethernet Layer	
The following paragraphs will provide background information	
about the basic concepts and the actual implementation of a	
common trading infrastructure. In addition, the basic properties	
of the FAST protocol will be presented to define the	
requirements of a discrete hardware implementation.	
A. Trading Infrastructure	
A typical trading infrastructure consists of different	
components which are controlled by independent entities. In	
principle, these are the stock exchange, the feed handler and	
the market participants as shown in Figure 1. The matching	
engine, the data center switch as well as the gateway server are	
controlled by the exchange, while the feed engine is provided	
by the feed handler. The member access switch and the trading	
servers are property of the market participant, in our case the	
HFT firm.	

Figure 1. Trading Infrastructure	
The following sequence describes how information is	

propagated in such a system and how orders are processed. (1)	
An opportunity is created at the matching engine. (2) The	
matching engine creates an update and sends it to the feed	
engine. (3) The feed engine multicasts it to all the clients. (4)	
The client machines evaluate the opportunity and respond with	
an order. (5) The gateway receives the order and forwards it to	
the matching engine. (6) The matching engine matches the first	
arriving order against the created opportunity and a trade is	
executed.	
B. Protocol Stack	
In current electronic trading deployments many protocol layers	
need to be traversed to be able to execute trades. Figure 2	
illustrates these different layers.	

Figure 2. Protocol Stack	

The lowest layer of the protocol stack is represented by the	
Ethernet (ETH) layer. It provides the basic functionality for	
sending packets throughout a network. Therefore, it defines a	
framing and a Cyclic Redundancy Check (CRC) to ensure data	
integrity. In addition, ETH enables to identify endpoints within	
a network by defining Media Access Control (MAC) addresses	
both for the sender and the recipient of a packet.	

2) IP Layer	
The Layer above ETH is the Internet Protocol (IP) layer. This	
protocol is widely used and forms the first medium	
independent protocol layer. It groups computers into logical	
groups and assigns a unique address to every end node inside	
such a group. IP can also be used to send messages to multiple	
endpoints utilizing multicasts and is therefore used in most	
exchanges.	

3) UDP Layer	
The User Datagram Protocol (UDP) is used by application	
software to send messages between nodes. It offers multiple	
targets and sources among one node and ensures data integrity	
through a checksum.	

4) FAST	
The FAST protocol has been specified to transmit market data	
from exchanges to market participants using feeds. The	
protocol defines various fields and operators which are used to	
identify specific stocks and their pricing. An important aspect	
of FAST is its compression mechanism which reduces	
bandwidth, however, introduces significant CPU overhead. In	
fact, decoding of FAST represents a major bottleneck which	
makes it particular interesting for offloading to an FPGA. A	
more detailed description of the protocol will be given in the	
next section.	

5) Decision Making	
Decision making can be a very complex and resource	
consuming task depending on the applied algorithm.	
Essentially there are a variety of given parameters and	
incoming variables that are compared using mathematical and	
statistical approaches. A detailed analysis of the various	
algorithms that can be applied is out of the scope of this paper.	
Due to its complexity, the decision making process is not	
offloaded to the FPGA but kept in software.	
C. Pitfalls of the FAST Protocol	
The FAST protocol is applied by the feed handler to transfer	
pricing information to the market participants. To reduce the	
overhead, multiple FAST messages are encapsulated in one	
UDP frame. These messages do not contain any size	
information nor do they define a framing which aggravates	
decoding. Instead, each message is defined by a template	
which needs to be known in advance to be able to decode the	
stream. Most feed handlers define their own FAST protocol by	
providing independent template specifications. Care has to be	
taken as a single decoding mistake requires dropping the entire	
UDP frame. Templates define a set of fields, sequences and	
groups, where groups are a set of fields that can only occur	
once and sequences are a set of fields that can occur multiple	
times.	



	

To make things even more complicated, fields also have to	
be decoded differently depending on their presence attribute.	

Figure 3. UDP Frame Including Multiple FAST Messages	
Each message starts with a presence map (PMAP) and a	

template identifier (TID) as it is shown in Figure 3. The PMAP	
is a mask and used to specify which of the defined fields,	
sequences or groups are actually present in the current stream.	
Fields can either be mandatory or optional and can in addition	
have an operator assigned to it. It depends on the presence	
attribute (mandatory or optional) and the assigned operator if a	
field uses a bit in the PMAP. This adds additional complexity,	
as it has to be determined in advance whether the PMAP needs	
to be interpreted or not.	

The TID is used to identify the template needed to decode	
the message. Templates are specified using XML; an example	
template definition is given below.	

<template name="This_is_a_template" id="1">	
 <uInt32 name="first_field"/>	
 <group name="some_group" presence="optional">	

 <sint64 name="second_field"/>	
 </group>	
 <string name="third_field" presence="optional"/>	
</template>	
In this example the TID is 1 and the template consists of	

two fields and one group. A field can be either a string, an	
integer, signed or unsigned, 32 or 64 bit wide, or a decimal,	
which is a set of a 32 bit wide signed integer for the exponent	
and 64 bit wide signed integer for the mantissa.	

Only the bytes containing useful data are transmitted in	
order to save bandwidth. For example only 1 byte is	
transmitted for a sint64 (64bit signed integer) with value ‘1’	
even if the actual value is of course 64bit wide.	

In addition, only the first seven bits of each transmitted	
byte are used to encode actual data, the eighth bit is used as a	
stop bit in order to be able to separate the fields. The stop bit	
needs to be removed and the remaining seven bits need to be	
shifted if a field is larger than one byte.	

Consider the following incoming binary stream:	
10000111 00101010 10111111	

These three bytes are two fields as it can be seen at the	
underlined stop bits. In order to receive the actual value of the	
first field it is sufficient to replace the eighth bit with a 0. The	
result is:	

Binary value: 00111111	
Hex value: 0x63	

The second field spans over two bytes. To get the actual	
transmitted value of this field, the first seven bits of each of the	
two bytes need to be moved together and padded with two 0	
bits. The result is:	

Binary value: 00000011 10101010	
Hex value: 0x03 0xAA	

An optional integer for example needs to be decremented by	
one, a mandatory field however doesn’t.	

Operators trigger the execution of an operation after the	
field has been decoded or if the field is not present in the	
stream. The operators available are constant, copy, default,	
delta and increment. The constant operator for example defines	
that a field always has the same value and therefore will never	
be transmitted.	

The FAST specification also defines byte vectors which do	
not use the stop bit encoding, but use all eight bits of a byte for	
data transmission and have a length field to define the length of	
the vector. This part of the specification has not been	
implemented due to its complexity and the fact that it is not	
used in any template of the target exchange, in our case	
Frankfurt.	

III. RELATED WORK	
An increasing volume of work has recently appeared in	
literature, though probably the largest part of work done by	
institutions is not published. A very good overview about the	
acceleration of high frequency trading is given in [6].	
Furthermore, a system for accelerating OPRA FAST feed	
decoding using Myrinet MX hardware is presented. A multi-	
threaded “faster FAST” processing engine using	
multiprocessor machines is presented in [7]. While both	
approaches focus on accelerating FAST decoding, to the best	
of our knowledge our approach is the first one that deploys	
FPGA hardware for this purpose. Morris [8] presented an	
FPGA assisted HFT engine that accelerates UDP/IP Stream	
handling similar to [9]. Another topic of interest are	
algorithmic trading techniques like the acceleration of Monte	
Carlo simulations [10][11][12] using FPGAs. Sadoghi [13]	
proposes an FPGA based mechanism for efficient event	
handling for algorithmic trading. Mittal proposes a FAST	
software decoder that is executed on a PowerPC 405 which is	
embedded in certain Xilinx FPGAs [13]. Finally, Tandon has	
presented “A Programmable Architecture for Real-time	
Derivative Trading” [14].	

IV. IMPLEMENTATION	
We propose three different approaches to reduce latency in	
HFT applications. The first is UDP offloading, while the	
second extends the hardware to enable direct decoding of	
FAST messages in hardware. The third approach introduces	
parallel hardware structures to enable simultaneous decoding	
of multiple streams.	
A. UDP Offloading	
In a common system, UDP data is received by a NIC in the	
form of raw ETH packets. The NIC then forwards the packets	
to the kernel which performs CRC checks and decoding of the	
packets. The activity flow of this mechanism is depicted in	
Figure 4. This approach introduces high latency as usually	
interrupts are used to inform the Operating System (OS) of new	
packets and as another translation layer in form of the socket	
interface to the user space is involved. Furthermore, OS jitter in	
the form of other activities conducted by the OS introduces	



	

additional latency spikes. A detailed list of the different	
latencies that are involved for processing TCP/IP can be found	
in [15]. In the UDP case the latencies are very similar as UDP	
only differs in the upper layers from TCP.	

Figure 4. Activity Flow with a Standard NIC	
The first and most efficient approach to reduce latency is to	

bypass the OS kernel and directly decode the received frames	
in hardware as it is depicted in Figure 5. Therefore, a	
rudimentary support for the Address Resolution Protocol	
(ARP) is necessary in order to be able to receive frames and	
send frames to the correct receiver. ARP is used to map IP	
addresses to physical MAC addresses of the recipient.	

For receiving multicasts it is also necessary to support the	
Internet Group Management Protocol (IGMP), which is	
required to join and leave multicast groups. Other protocols	
that need to be supported are ETH, IP and UDP. All of these	
protocols are implemented in an efficient pipelined design,	
which focuses on lowest possible latency for ETH, IP and	
UDP. IGMP and ARP frames on the other hand are not timing	
critical for trading, since they are not used to actually deliver	
data. All header checksums of the different protocols and the	
ETH CRC are checked in parallel while the results of all these	
checks are interpreted at the last pipeline stage.	

Figure 5. Activity Flow with UDP Offloading	
The checked frame is then forwarded to the FAST decoder	

or the DMA engine, which is able to directly write the raw	
UDP payload in the address space of the trading software. In	
the case of FAST offloading shown in Figure 6 a similar DMA	
engine is utilized to deliver decoded packets into main	
memory.	

Figure 6. Activity Flow with FAST Decoding in Hardware	

B. FAST decoding in Hardware	
The FAST decoder is composed of three independent units due	
to the complexity of the FAST protocol. As it is shown in	

Figure 7, all three units are decoupled by FIFO buffers to	
compensate for different and sometimes non deterministic	
latencies of the units. As decompression increases the amount	
of data that needs to be processed, the FAST processor can be	
clocked at a higher frequency than the ETH core, which	
increases throughput and can therefore compensate the higher	
data volume.	

Figure 7. Schematic View of FAST Processor	
1) FAST Decompressor	

The FAST Decompressor detects stop bits and aligns all	
incoming fields to a multiple of 64 bit. This is done to have	
fixed size fields, which alleviates decoding for the following	
units.	

2) FAST Microcode Engine	
As FAST messages differ substantially depending on the	
applied template, it was chosen to develop a microcode engine	
which is flexible enough to decode any variation of the FAST	
protocol. Using partial reconfiguration instead of implementing	
microcode engine was dismissed due to the high	
reconfiguration latency of several ms.	

The microcode engine runs a program that is loaded into	
the FPGA on startup with a subroutine for each template. A	
jump table provides the pointers to be able to jump to the right	
subroutine depending on the template ID that is defined at the	
start of each FAST message. All fields in the FAST messages	
are decoded according to the corresponding subroutine.	
Depending on the subroutine the content of the fields is either	
discarded or forwarded to the next unit in the pipeline. The	
binary code for the Microcode Engine is produced by an	
assembler from a simple domain specific language that has	
been designed for this purpose. The assembler code for the	
template presented in the introduction above would look like	
the following.	

NOP STORE_PRES	
SET_TID 0 STORE_TEMP	

NOP JUMP_TEMP	
CON_U32_MAN 1 INCR_PC_DATA	

NOP JUMP_PRES 1	
CON_S64_MAN 2 INCR_PC_DATA	

CON_ASCII 3 INCR_PC_PM_DATA	



	

As can be seen, the proposed domain specific language	
defines four columns. The two left most columns describe the	
data value which is processed in that specific time step; while	
the two right most columns specify the command that shall be	
executed by the microcode engine. In particular, the first	
column defines the field with its presence attribute, while the	
second column maps the field to a unique identifier such that it	
can be later interpreted by software. The third column defines	
the control command, which increments the program pointer,	
jumps over some commands, shifts out data from the data	
FIFO or checks the PMAP. The last column is used to specify	
the jump target.	

Using an assembler in collaboration with a microcode	
engine makes it easy to adapt the FPGA to template changes of	
an exchange or even adapt the FPGA to different exchanges	
without the need of developing a whole new design. This	
speeds up the adaption of the FPGA to protocol modifications	
significantly.	

3) FAST DMA Engine:	
To provide the trading software with the decoded FAST	
stream, a DMA engine has been developed. Each field in the	
different templates is tagged with an eight bit tag to allow	
efficient and unique identification by the trading software. The	
DMA engine forwards the received data into a ring buffer that	
resides in the address space of the trading software. Each write	
consists of eight quadwords, as this is the size of a cache-line	
on the utilized x86 CPU architecture. Seven of this quadwords	
are used for the content of fields; the eighth quadword contains	
the seven tags for the identification of the fields presented in	
column two and additional status information. The status	
information also incorporates a bit that is inverted every time	
the ring buffer wraps around. Using this bit the software can	
efficiently detect if new data has arrived without overwriting	
the ring buffer.	

These implementations allow the lowest possible latency by	
allowing the software to make use of polling. Polling provides	
much lower latency than interrupts. The major reason for the	
high latency in the case of the using interrupts lies in the	
necessity of performing a context switch. The lower latency	
significantly outweighs the higher CPU overhead and increased	
power consumption that may be caused by this approach.	
C. Parallelization	
The FAST protocol itself is strictly linear because the	
beginning of each field in the stream depends on the prior field.	
Even after the FAST Decompressor has aligned the data it is	
still impossible to process a single stream of FAST messages in	
parallel. This is a limitation imposed by the protocol.	

Fortunately the assembly of data provided by the stock	
exchange is consisting of multiple FAST streams. Therefore it	
is possible to improve the throughput and reduce the latency by	
implementing multiple FAST Processors in parallel. Each of	
the FAST processors is working on its own FAST stream. By	
deploying this technique the throughput of the system can be	
greatly improved. Each FAST Processor uses post place and	
route 5630 LUTs.	

Figure 8. Schematic View of the HFT Accelerator	

D. Host Interface	
To further reduce the latency in the nanosecond scale the very	
low latency HyperTransport host interface, as offered by	
AMDs Opteron processor family, is used. HyperTransport	
offers much lower latencies compared to PCI Express due to	
the fact that the FPGA is directly connected to the CPU	
without intermediate bridging [16] using an HTX slot in AMD	
Opteron based systems.	
E. Final Architecture	
Our complete design has been implemented in synthesizable	
verilog RTL code and tested on an FPGA card based on a	
Xilinx Virtex-4 FX100.	

Figure 8 illustrates the overall architecture of the	
accelerator. On the far left is the HT-core, which runs at 200	
MHz. Followed by the HTAX on chip network connecting the	
Fast Processors, the UDP bypass and the Register File to the	
HT-core and the units itself. This part of the design runs at a	
maximum frequency of 160 MHz. The right hand side in red	
shows the packet decoding infrastructure connected to a	
Gigabit Ethernet MAC which runs at 125 MHz. The complete	
design, including four FAST Processors uses 77 percent of the	
available slices.	

V. EVALUATION	
To perform our measurements, a recorded data stream provided	
by the feed handler has been sent to a standard network	
interface controller (NIC) in a top of the line server to measure	
the base line for our evaluation. Figure 9 shows the flow of the	
messages in such a standard system. Measured latencies for the	
NIC part is 9 us, for the kernel space 1.8 us and for the user	
space 2 us. This results in an aggregated latency of 12.8 us.	

Figure 9. Latency of a the Baseline System	



	

The same recorded stream has then been sent to the FPGA	
based trading accelerator. In the first run only the kernel bypass	
option has been enabled as it is shown in Figure 10. The	
measured latency of the NIC implemented on the FPGA is 2 us	
followed by a user space application with an additional latency	
of 2.1 us. Thus the latency already can be reduced to 4.1 us,	
which represents a 62 percent reduction in respect to the	
standard implementation.	

Figure 10. Latency with Kernel Bypass	
In a second run the FAST Processor has been enabled,	

allowing to decode the messages in hardware and to deliver the	
decoded data directly to the user-level software as shown in	
Figure 11. The measured latency of the NIC and FAST	
decoding both on the FPGA shows a further reduction of 28	
percent resulting in a latency of only 2.6 us, for reception and	
decoding of FAST packets. In total, this results in a 4 times	
latency reduction in respect to the standard NIC solution.	

Figure 11. Latency with Kernel Bypass and FASTFix Offloading	

VI. CONCLUSION	
We have shown the implementation of an HFT accelerator	
which is able to significantly reduce the time needed to receive	
and decode FAST based trading information. In particular, the	
latency has been reduced by a factor of four which leads to	
substantially reduced round-trip times for executing trades.	

The special nature of the FAST protocol which aggravates	
efficient parsing on a general purpose CPU makes it highly	
attractive to design FPGA based dedicated logic to decode it	
with significantly reduced latency. We have successfully	
shown the feasibility of this approach.	

VII. REFERENCES	
[1] J.A. Brogaard, “High Frequency Trading and its Impact on Market	

Quality,” 5th Annual Conference on Empirical Legal Studies, 2010.	
[2] M. Chlistalla, “High-frequency trading Better than its reputation?,”	

Deutsche Bank research report, 2011.	
[3] A. Group, New World Order: The High Frequency Trading Community	

and Its Impact on Market Structure, 2009.	
[4] K.H. Chung and Y. Kim, “Volatility, Market Structure, and the Bid-Ask	

Spread,” Asia-Pacific Journal of Financial Studies, vol. 38, Feb. 2009.	
[5] J. Chiu, D. Lukman, K. Modarresi, and A. Velayutham, “High-	

frequency trading,” Stanford University Research Report, 2011.	
[6] H. Subramoni, F. Petrini, V. Agarwal, and D. Pasetto, “Streaming, low-	

latency communication in on-line trading systems,” International	
Symposium on Parallel & Distributed Processing, Workshops	
(IPDPSW), 2010.	

[7] V. Agarwal, D. a Bader, L. Dan, L.-K. Liu, D. Pasetto, M. Perrone, and	
F. Petrini, “Faster FAST: multicore acceleration of streaming financial	

data,” Computer Science - Research and Development, vol. 23, May.	
2009.	

[8] G.W. Morris, D.B. Thomas, and W. Luk, “FPGA Accelerated Low-	
Latency Market Data Feed Processing,” 2009 17th IEEE Symposium on	
High Performance Interconnects, Aug. 2009.	

[9] F. Herrmann and G. Perin, “An UDP/IP Network Stack in FPGA,”	
Electronics, Circuits, and Systems (ICECS), 2009.	

[10] G.L. Zhang, P.H.W. Leong, C.H. Ho, K.H. Tsoi, C.C.C. Cheung, D.	
Lee, R.C.C. Cheung, and W. Luk, “Reconfigurable acceleration for	
Monte Carlo based financial simulation,” IEEE International	
Conference on Field-Programmable Technology, 2005.	

[11] D.B. Thomas, “Acceleration of Financial Monte-Carlo Simulations	
using FPGAs,” Workshop on High Performance Computational Finance	
(WHPCF), 2010.	

[12] N. a Woods and T. VanCourt, “FPGA acceleration of quasi-Monte Carlo	
in finance,” 2008 International Conference on Field Programmable	
Logic and Applications, 2008, pp. 335-340.	

[13] M. Sadoghi, M. Labrecque, H. Singh, W. Shum, and H.-arno Jacobsen,	
“Efficient Event Processing through Reconfigurable Hardware for	
Algorithmic Trading,” Journal Proceedings of the VLDB Endowment,	
2010.	

[14] S. Tandon, “A Programmable Architecture for Real-time Derivative	
Trading,” Master Thesis, University of Edinburgh, 2003.	

[15] S. Larsen and P. Sarangam, “Architectural Breakdown of End-to-End	
Latency in a TCP/IP Network,” International Journal of Parallel	
Programming, Springer, 2009.	

[16] D. Slogsnat, A. Giese, M. Nüssle, and U. Brüning, “An open-source	
HyperTransport core,” ACM Transactions on Reconfigurable	
Technology and Systems, vol. 1, Sep. 2008, pp. 1-21.	

[17] G. Mittal, D.C Zaretsky, P. Banerjee, “Streaming implementation of a	
sequential decompression algorithm on an FPGA,” International	
Symposium on Field Programmable Gate Arrays – FPGA09, 2009.	

[18] FIX adapted for Streaming, www.fixprotocol.org/fast	


