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Abstract—This paper presents the design of an application
specific hardware for accelerating High Frequency Trading
applications. It is optimized to achieve the lowest possible latency
for interpreting market data feeds and hence enable minimal
round-trip times for executing electronic stock trades. The
implementation described in this work enables hardware
decoding of Ethernet, IP and UDP as well as of the FAST
protocol which is a common protocol to transmit market feeds.
For this purpose, we developed a microcode engine with a
corresponding instruction set as well as a compiler which enables
the flexibility to support a wide range of applied trading
protocols. The complete system has been implemented in RTL
code and evaluated on an FPGA. Our approach shows a 4x
latency reduction in comparison to the conventional Software
based approach.
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I. INTRODUCTION

High Frequency Trading (HFT) has received a lot of attention
over the past years and has become an increasingly important
element of financial markets. The term HFT describes a set of
techniques within electronic trading of stocks and derivatives,
where a large number of orders are injected into the market at
sub-millisecond round-trip execution times [1]. High frequency
traders aim to end the trading day “flat” without holding any
significant positions and utilize several strategies to generate
revenue, by buying and selling stock at very high speed. In
fact, studies show that a high frequency trader holds stock for
only 22 seconds in average [2]. According to the Aite Group,
the impact of HFT on the financial markets is substantial,
accounting for more than 50% of all trades in 2010 on the US-
equity market with a growth rate of 70 % in 2009 [3].

High frequency traders utilize a number of different
strategies, including liquidity-providing strategies, statistical
arbitrage strategies and liquidity detection strategies [2]. In
liquidity-providing strategies, high frequency traders try to earn
the bid-ask spread which represents the difference of what
buyers are willing to pay and sellers are willing to accept for
trading stock. High volatility and large bid-ask spreads can be
turned into profits for the high frequency trader while in return
he provides liquidity to the market and lowers the bid-ask
spread for other participants, adopting the role of a market
maker. Liquidity and low ask-bid spreads are desirable as they

reduce trading costs and improve the informational efficiency
of asset price [4]. Traders that employ arbitration strategies [5],
on the other hand, try to correlate pricing information between
related stocks or derivates and their underlying prices.
Liquidity detection comprises strategies that seek to discover
large orders by sending out small orders which can be
leveraged by the traders. All strategies have in common that
they require absolute lowest round-trip latencies as only the
fastest HFT firm will be able to benefit from an existing
opportunity.

Electronic trading of stocks is conducted by sending orders
in electronic form to a stock exchange. Bid and ask orders are
then matched by the exchange to execute a trade. Outstanding
orders are made visible to the market participants through so-
called feeds. A feed is a compressed or uncompressed real time
data stream provided by an independent institution like the
Options Price Reporting Authority (OPRA). A feed carries
pricing information of stocks and is multicasted to the market
participants using standardized protocols which are generally
transmitted over UDP over Ethernet. The standard protocol that
is applied is the Financial Information Exchange (FIX)
protocol Adapted for Streaming (FAST) which is used by
multiple stock exchanges to distribute their market data [18].

To enable minimal round-trip latencies, a HFT engine
needs to be optimized on all levels. The required low latency
connection to the feed handler can be achieved through
collocation which allows servers to be deployed very close to
the stock exchange. In addition, the feed needs to be internally
distributed with minimum latency to the servers of the HFT
firm. An efficient decoding of the UDP data stream as well as
of the FAST protocol is mandatory. Finally, the decision to
issue an order as well as its transmission needs to be carried out
with lowest possible latency. To achieve these goals we present
in this paper a novel HFT trading accelerator engine
implemented in Field Programmable Gate Arrays (FPGAs). By
using FPGAs we can offload UDP and FAST decoding tasks
from the CPU to optimized hardware blocks. Our proposed
system implements the complete processing stack except the
decision making process in hardware including a highly
flexible microcode engine to decode FAST messages. Our
approach shows a significant latency reduction of more than
70% compared to the standard software solution while
maintaining the flexibility to support new and modified
exchange protocols with low efforts in contrast to an
Application Specific Integrated Circuit (ASIC) solution.



II.  BACKGROUND

The following paragraphs will provide background information
about the basic concepts and the actual implementation of a
common trading infrastructure. In addition, the basic properties
of the FAST protocol will be presented to define the
requirements of a discrete hardware implementation.

A. Trading Infrastructure

A typical trading infrastructure consists of different
components which are controlled by independent entities. In
principle, these are the stock exchange, the feed handler and
the market participants as shown in Figure 1. The matching
engine, the data center switch as well as the gateway server are
controlled by the exchange, while the feed engine is provided
by the feed handler. The member access switch and the trading
servers are property of the market participant, in our case the
HFT firm.
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Figure 1. Trading Infrastructure

The following sequence describes how information is
propagated in such a system and how orders are processed. (1)
An opportunity is created at the matching engine. (2) The
matching engine creates an update and sends it to the feed
engine. (3) The feed engine multicasts it to all the clients. (4)
The client machines evaluate the opportunity and respond with
an order. (5) The gateway receives the order and forwards it to
the matching engine. (6) The matching engine matches the firs¢
arriving order against the created opportunity and a trade is
executed.

B. Protocol Stack

In current electronic trading deployments many protocol layers
need to be traversed to be able to execute trades. Figure 2
illustrates these different layers.
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Figure 2. Protocol Stack

1) Ethernet Layer

The lowest layer of the protocol stack is represented by the
Ethernet (ETH) layer. It provides the basic functionality for
sending packets throughout a network. Therefore, it defines a
framing and a Cyclic Redundancy Check (CRC) to ensure data
integrity. In addition, ETH enables to identify endpoints within
a network by defining Media Access Control (MAC) addresses
both for the sender and the recipient of a packet.

2) IP Layer

The Layer above ETH is the Internet Protocol (IP) layer. This
protocol is widely used and forms the first medium
independent protocol layer. It groups computers into logical
groups and assigns a unique address to every end node inside
such a group. IP can also be used to send messages to multiple
endpoints utilizing multicasts and is therefore used in most
exchanges.

3) UDP Layer
The User Datagram Protocol (UDP) is used by application
software to send messages between nodes. It offers multiple
targets and sources among one node and ensures data integrity
through a checksum.

4) FAST
The FAST protocol has been specified to transmit market data
from exchanges to market participants using feeds. The
protocol defines various fields and operators which are used to
identify specific stocks and their pricing. An important aspect
of FAST is its compression mechanism which reduces
bandwidth, however, introduces significant CPU overhead. In
fact, decoding of FAST represents a major bottleneck which
makes it particular interesting for offloading to an FPGA. A
more detailed description of the protocol will be given in the
next section.

5) Decision Making

Decision making can be a very complex and resource
consuming task depending on the applied algorithm.
Essentially there are a variety of given parameters and
incoming variables that are compared using mathematical and
statistical approaches. A detailed analysis of the various
algorithms that can be applied is out of the scope of this paper.
Due to its complexity, the decision making process is not
offloaded to the FPGA but kept in software.

C. Pitfalls of the FAST Protocol

The FAST protocol is applied by the feed handler to transfer
pricing information to the market participants. To reduce the
overhead, multiple FAST messages are encapsulated in one
UDP frame. These messages do not contain any size
information nor do they define a framing which aggravates
decoding. Instead, each message is defined by a template
which needs to be known in advance to be able to decode the
stream. Most feed handlers define their own FAST protocol by
providing independent template specifications. Care has to be
taken as a single decoding mistake requires dropping the entire
UDP frame. Templates define a set of fields, sequences and
groups, where groups are a set of fields that can only occur
once and sequences are a set of fields that can occur multiple
times.
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Figure 3. UDP Frame Including Multiple FAST Messages

Each message starts with a presence map (PMAP) and a
template identifier (TID) as it is shown in Figure 3. The PMAP
is a mask and used to specify which of the defined fields,
sequences or groups are actually present in the current stream.
Fields can either be mandatory or optional and can in addition
have an operator assigned to it. It depends on the presence
attribute (mandatory or optional) and the assigned operator if a
field uses a bit in the PMAP. This adds additional complexity,
as it has to be determined in advance whether the PMAP needs
to be interpreted or not.

The TID is used to identify the template needed to decode
the message. Templates are specified using XML; an example
template definition is given below.

<template name="This_is_a_template" id="1">
<ulnt32 name="first_field"/>
<group name="some_group" presence="optional">
<sint64 name="second_field"/>

</group>

<string name="third_field" presence="optional"/>

</template>

In this example the TID is 1 and the template consists of
two fields and one group. A field can be either a string, an
integer, signed or unsigned, 32 or 64 bit wide, or a decimal,
which is a set of a 32 bit wide signed integer for the exponent
and 64 bit wide signed integer for the mantissa.

Only the bytes containing useful data are transmitted in
order to save bandwidth. For example only 1 byte is
transmitted for a sint64 (64bit signed integer) with value ‘1’
even if the actual value is of course 64bit wide.

In addition, only the first seven bits of each transmitted
byte are used to encode actual data, the eighth bit is used as a
stop bit in order to be able to separate the fields. The stop bit
needs to be removed and the remaining seven bits need to be
shifted if a field is larger than one byte.

Consider the following incoming binary stream:
10000111 00101010 10111111

These three bytes are two fields as it can be seen at the
underlined stop bits. In order to receive the actual value of the
first field it is sufficient to replace the eighth bit with a 0. The
result is:

Binary value:
Hex value:

00111111
0x63

The second field spans over two bytes. To get the actual
transmitted value of this field, the first seven bits of each of the
two bytes need to be moved together and padded with two O
bits. The result is:

Binary value:
Hex value:

00000011 10101010
0x03 0OxAA

To make things even more complicated, fields also have to
be decoded differently depending on their presence attribute.
An optional integer for example needs to be decremented by
one, a mandatory field however doesn’t.

Operators trigger the execution of an operation after the
field has been decoded or if the field is not present in the
stream. The operators available are constant, copy, default,
delta and increment. The constant operator for example defines
that a field always has the same value and therefore will never
be transmitted.

The FAST specification also defines byte vectors which do
not use the stop bit encoding, but use all eight bits of a byte for
data transmission and have a length field to define the length of
the vector. This part of the specification has not been
implemented due to its complexity and the fact that it is not
used in any template of the target exchange, in our case
Frankfurt.

III. RELATED WORK

An increasing volume of work has recently appeared in
literature, though probably the largest part of work done by
institutions is not published. A very good overview about the
acceleration of high frequency trading is given in [6].
Furthermore, a system for accelerating OPRA FAST feed
decoding using Myrinet MX hardware is presented. A multi-
threaded  “faster FAST” processing engine using
multiprocessor machines is presented in [7]. While both
approaches focus on accelerating FAST decoding, to the best
of our knowledge our approach is the first one that deploys
FPGA hardware for this purpose. Morris [8] presented an
FPGA assisted HFT engine that accelerates UDP/IP Stream
handling similar to [9]. Another topic of interest are
algorithmic trading techniques like the acceleration of Monte
Carlo simulations [10][11][12] using FPGAs. Sadoghi [13]
proposes an FPGA based mechanism for efficient event
handling for algorithmic trading. Mittal proposes a FAST
software decoder that is executed on a PowerPC 405 which is
embedded in certain Xilinx FPGAs [13]. Finally, Tandon has
presented “A  Programmable Architecture for Real-time
Derivative Trading” [14].

IV. IMPLEMENTATION

We propose three different approaches to reduce latency in
HFT applications. The first is UDP offloading, while the
second extends the hardware to enable direct decoding of
FAST messages in hardware. The third approach introduces
parallel hardware structures to enable simultaneous decoding
of multiple streams.

A. UDP Offloading

In a common system, UDP data is received by a NIC in the
form of raw ETH packets. The NIC then forwards the packets
to the kernel which performs CRC checks and decoding of the
packets. The activity flow of this mechanism is depicted in
Figure 4. This approach introduces high latency as usually
interrupts are used to inform the Operating System (OS) of new
packets and as another translation layer in form of the socket
interface to the user space is involved. Furthermore, OS jitter in
the form of other activities conducted by the OS introduces



additional latency spikes. A detailed list of the different
latencies that are involved for processing TCP/IP can be found
in [15]. In the UDP case the latencies are very similar as UDP
only differs in the upper layers from TCP.

MAC —> DMA —> interupt | ‘ NIC
/ socket e N
interface  <«— CI'Z/CL;E); ‘ ‘ kernel
\_(polling) /. y [ space
FAST | [ shared | user

—> Reader | >
. decoder | memory § ‘ space

Figure 4. Activity Flow with a Standard NIC

The first and most efficient approach to reduce latency is to
bypass the OS kernel and directly decode the received frames
in hardware as it is depicted in Figure 5. Therefore, a
rudimentary support for the Address Resolution Protocol
(ARP) is necessary in order to be able to receive frames and
send frames to the correct receiver. ARP is used to map IP
addresses to physical MAC addresses of the recipient.

For receiving multicasts it is also necessary to support the
Internet Group Management Protocol (IGMP), which is
required to join and leave multicast groups. Other protocols
that need to be supported are ETH, IP and UDP. All of these
protocols are implemented in an efficient pipelined design,
which focuses on lowest possible latency for ETH, IP and
UDP. IGMP and ARP frames on the other hand are not timing
critical for trading, since they are not used to actually deliver
data. All header checksums of the different protocols and the
ETH CRC are checked in parallel while the results of all these
checks are interpreted at the last pipeline stage.
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Figure 5. Activity Flow with UDP Offloading

The checked frame is then forwarded to the FAST decoder
or the DMA engine, which is able to directly write the raw
UDP payload in the address space of the trading software. In
the case of FAST offloading shown in Figure 6 a similar DMA
engine is utilized to deliver decoded packets into main
memory.
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Figure 6. Activity Flow with FAST Decoding in Hardware

B. FAST decoding in Hardware

The FAST decoder is composed of three independent units due
to the complexity of the FAST protocol. As it is shown in

Figure 7, all three units are decoupled by FIFO buffers to
compensate for different and sometimes non deterministic
latencies of the units. As decompression increases the amount
of data that needs to be processed, the FAST processor can be
clocked at a higher frequency than the ETH core, which
increases throughput and can therefore compensate the higher
data volume.
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Figure 7. Schematic View of FAST Processor

1) FAST Decompressor
The FAST Decompressor detects stop bits and aligns all
incoming fields to a multiple of 64 bit. This is done to have
fixed size fields, which alleviates decoding for the following
units.

2) FAST Microcode Engine
As FAST messages differ substantially depending on the
applied template, it was chosen to develop a microcode engine
which is flexible enough to decode any variation of the FAST
protocol. Using partial reconfiguration instead of implementing
microcode engine was dismissed due to the high
reconfiguration latency of several ms.

The microcode engine runs a program that is loaded into
the FPGA on startup with a subroutine for each template. A
jump table provides the pointers to be able to jump to the right
subroutine depending on the template ID that is defined at the
start of each FAST message. All fields in the FAST messages
are decoded according to the corresponding subroutine.
Depending on the subroutine the content of the fields is either
discarded or forwarded to the next unit in the pipeline. The
binary code for the Microcode Engine is produced by an
assembler from a simple domain specific language that has
been designed for this purpose. The assembler code for the
template presented in the introduction above would look like
the following.

NOP STORE_PRES
SET_TID 0 STORE_TEMP
NOP JUMP_TEMP
CON_U32 MAN | 1| INCR PC DATA
NOP JUMP_PRES 1
CON_S64 MAN INCR_PC DATA
CON_ASCII |3 | INCR_PC_PM _DATA




As can be seen, the proposed domain specific language
defines four columns. The two left most columns describe the
data value which is processed in that specific time step; while
the two right most columns specify the command that shall be
executed by the microcode engine. In particular, the first
column defines the field with its presence attribute, while the
second column maps the field to a unique identifier such that it
can be later interpreted by software. The third column defines
the control command, which increments the program pointer,
jumps over some commands, shifts out data from the data
FIFO or checks the PMAP. The last column is used to specify
the jump target.

Using an assembler in collaboration with a microcode
engine makes it easy to adapt the FPGA to template changes of
an exchange or even adapt the FPGA to different exchanges
without the need of developing a whole new design. This
speeds up the adaption of the FPGA to protocol modifications
significantly.

3) FAST DMA Engine:

To provide the trading software with the decoded FAST
stream, a DMA engine has been developed. Each field in the
different templates is tagged with an eight bit tag to allow
efficient and unique identification by the trading software. The
DMA engine forwards the received data into a ring buffer that
resides in the address space of the trading software. Each write
consists of eight quadwords, as this is the size of a cache-line
on the utilized x86 CPU architecture. Seven of this quadwords
are used for the content of fields; the eighth quadword contains
the seven tags for the identification of the fields presented in
column two and additional status information. The status
information also incorporates a bit that is inverted every time
the ring buffer wraps around. Using this bit the software can
efficiently detect if new data has arrived without overwriting
the ring buffer.

These implementations allow the lowest possible latency by
allowing the software to make use of polling. Polling provides
much lower latency than interrupts. The major reason for the
high latency in the case of the using interrupts lies in the
necessity of performing a context switch. The lower latency
significantly outweighs the higher CPU overhead and increased
power consumption that may be caused by this approach.

C. Parallelization

The FAST protocol itself is strictly linear because the
beginning of each field in the stream depends on the prior field.
Even after the FAST Decompressor has aligned the data it is
still impossible to process a single stream of FAST messages in
parallel. This is a limitation imposed by the protocol.

Fortunately the assembly of data provided by the stock
exchange is consisting of multiple FAST streams. Therefore it
is possible to improve the throughput and reduce the latency by
implementing multiple FAST Processors in parallel. Each of
the FAST processors is working on its own FAST stream. By
deploying this technique the throughput of the system can be
greatly improved. Each FAST Processor uses post place and
route 5630 LUTs.
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Figure 8. Schematic View of the HFT Accelerator

D. Host Interface

To further reduce the latency in the nanosecond scale the very
low latency HyperTransport host interface, as offered by
AMDs Opteron processor family, is used. HyperTransport
offers much lower latencies compared to PCI Express due to
the fact that the FPGA is directly connected to the CPU
without intermediate bridging [16] using an HTX slot in AMD
Opteron based systems.

E. Final Architecture

Our complete design has been implemented in synthesizable
verilog RTL code and tested on an FPGA card based on a
Xilinx Virtex-4 FX100.

Figure 8 illustrates the overall architecture of the
accelerator. On the far left is the HT-core, which runs at 200
MHz. Followed by the HTAX on chip network connecting the
Fast Processors, the UDP bypass and the Register File to the
HT-core and the units itself. This part of the design runs at a
maximum frequency of 160 MHz. The right hand side in red
shows the packet decoding infrastructure connected to a
Gigabit Ethernet MAC which runs at 125 MHz. The complete
design, including four FAST Processors uses 77 percent of the
available slices.

V. EVALUATION

To perform our measurements, a recorded data stream provided
by the feed handler has been sent to a standard network
interface controller (NIC) in a top of the line server to measure
the base line for our evaluation. Figure 9 shows the flow of the
messages in such a standard system. Measured latencies for the
NIC part is 9 us, for the kernel space 1.8 us and for the user
space 2 us. This results in an aggregated latency of 12.8 us.
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Figure 9. Latency of a the Baseline System



The same recorded stream has then been sent to the FPGA
based trading accelerator. In the first run only the kernel bypass
option has been enabled as it is shown in Figure 10. The
measured latency of the NIC implemented on the FPGA is 2 us
followed by a user space application with an additional latency
of 2.1 us. Thus the latency already can be reduced to 4.1 us,
which represents a 62 percent reduction in respect to the
standard implementation.

I 2u }

[PHY - buffer )-{ UDP H__HTX )% shmm Z»| tralim

21us
)

Figure 10. Latency with Kernel Bypass
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In a second run the FAST Processor has been enabled,
allowing to decode the messages in hardware and to deliver the
decoded data directly to the user-level software as shown in
Figure 11. The measured latency of the NIC and FAST
decoding both on the FPGA shows a further reduction of 28
percent resulting in a latency of only 2.6 us, for reception and
decoding of FAST packets. In total, this results in a 4 times
latency reduction in respect to the standard NIC solution.
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Figure 11. Latency with Kernel Bypass and FASTFix Offloading
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We have shown the implementation of an HFT accelerator
which is able to significantly reduce the time needed to receive
and decode FAST based trading information. In particular, the
latency has been reduced by a factor of four which leads to
substantially reduced round-trip times for executing trades.

CONCLUSION

The special nature of the FAST protocol which aggravates
efficient parsing on a general purpose CPU makes it highly
attractive to design FPGA based dedicated logic to decode it
with significantly reduced latency. We have successfully
shown the feasibility of this approach.
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