

A Critical Comparative Analysis of Nanomaterial Technologies for Enhancing Cellular Growth in Cultivated Meat Systems

Ashton (Sanghyun) Choi University of Oxford

Abstract

The integration of nanomaterials into tissue engineering holds significant promise for advancing the field of lab-grown meat production, addressing challenges in texture, nutritional content, and scalability. This review synthesizes recent literature to evaluate the effectiveness of nanomaterial-based scaffolds in mimicking the complex microenvironments of natural meat tissues. We highlight advancements in natural, synthetic, and nanomaterial scaffolds, emphasizing their biocompatibility, mechanical properties, and interaction with cultured meat cells. Comparative analyses reveal that nanomaterials offer superior bioactivity and mechanical strength, essential for enhancing tissue structure and nutrient delivery in cultured meat.

Exploration of patent landscapes underscores an emerging area for innovation, with limited direct patents identified, suggesting untapped potential for future research and commercialization. Critical discussions on the transferability of tissue engineering approaches to lab-grown meat production underscore the interdisciplinary nature of advancing this technology.

Finally, implications for future research highlight the need for regulatory alignment, collaborative partnerships, and strategic patenting to accelerate the adoption of nanotechnology in sustainable food systems. This review provides insights into the transformative role of nanomaterials in shaping the future landscape of cultured meat production, addressing global food security and sustainability challenges.

Contents

1. In	troduction	5
1.1. chall	Background on conventional meat consumption and its environmental and elenges	
1.2.	Introduction to lab-grown meat and its potential benefits	7
1.3.	Overview of the first in vitro burger and rise of research in cultured meat	
1.4.	Importance of scaffolds in cultured meat production	11
1.5.	Current Non-Nano Enabled Technology	13
1.5.1	General Overview of Current Scaffolds in Cultured Meat Production	13
1.6.	Exploring the potential of nano materials as scaffolds for lab grown meat	16
1.7.	Objective	18
1.7	7.1. Evaluate the Effectiveness of Nanomaterial-Based Scaffolds:	18
1.7	7.2. Analyze Patent Landscapes and Innovation Opportunities:	18
1.7	7.3. Discuss the Transferability of Tissue Engineering Techniques:	18
2. Re	esearch Methodology	19
2.1.	Search strategy	19
2.2.	Databases to be used	19
2.3.	Search Engines	19
2.4.	Search terms and keywords and search dates	20
2.5.	Data Collection and Analysis	20
2.6.	Inclusion and Exclusion Criteria	20
2.7.	Ethical considerations	20
2.8.	PICO Framework	21
2.9.	Search results	22
3. Aı	nalysis of Literature	24
3.1.	Natural vs synthetic vs Nanomaterial	24
3.2. mate	Scaffold effectiveness overview: 1) Natural scaffolds, 2) synthetic scaffolds, 3 erial-based scaffolds	*
3.3.	Natural scaffold	
3.4.	Synthetic scaffold	
3.5.	Nanomaterial-based scaffolds	
3.6.	Competitive analysis	
3.7.	Identified literature analysis	
3.8.	Patent Landscape Analysis of Lab-Grown Meat and Tissue Engineering Tec 40	
3.9.	Overview of patents related to nano materials in tissue engineering/lab grow	n meat 40

43
43
44
46
47
ches to lab meat
56
56
59
61

List of Tables

S-No	Title	Page #
3.1	Shows the inclusion and exclusion criteria and the rationale behind their application	19
4.1	Comparative Analysis of Natural, Synthetic, and Nanomaterial-based Scaffolds for Cultured Meat Production	29
4.2	Key physical properties of scaffolds and their role in vitro meat production	31
4.3	Distribution of Research Focus Areas in Scaffold Development for Lab-Grown Meat: Article Counts, Total Citations, and Average Citations	45

List of Figures

S-No	Title	Page #
3.1	Flowchart of the Literature Search and Selection Process for PubMed	
	and Google Scholar	
4.1	Annual Distribution of Publications: Number of Publications Per Year	43

1. Introduction

1.1.Background on conventional meat consumption and its environmental and ethical challenges

Conventional meat consumption has been a cornerstone of human diets for centuries, deeply ingrained in cultural and social practices around the world. Meat provides essential nutrients, including high-quality protein, vitamins, and minerals, which are vital for human health. However, the modern methods of meat production and consumption have escalated significantly, leading to profound environmental and ethical challenges that demand urgent attention.

The environmental impact of conventional meat production is substantial and multifaceted. Livestock farming is one of the largest contributors to greenhouse gas emissions, accounting for approximately 14.5% of global emissions, primarily methane from enteric fermentation in ruminants and nitrous oxide from manure management (Grossi et al., 2019). This significant contribution to climate change exacerbates global warming, leading to extreme weather events and affecting ecosystems and biodiversity. Moreover, the meat industry is a major driver of deforestation, particularly in regions like the Amazon rainforest, where vast tracts of land are cleared to create pastures for cattle grazing or to grow feed crops like soy. Additionally, a substantial proportion of global grain production, estimated at 62%, is used to feed livestock rather than directly supporting human consumption, further stressing agricultural resources and contributing to environmental degradation (DEVLET, 2021). This deforestation not only results in the loss of critical habitats for countless species but also diminishes the planet's capacity to absorb carbon dioxide, further exacerbating climate change.

Water usage in conventional meat production is another critical environmental concern.

Producing meat requires large volumes of water, from growing feed crops to hydrating

livestock and processing meat products. For instance, it is estimated that producing one kilogram of beef requires approximately 15,000 litres of water, making the meat industry one of the most water-intensive sectors (Bhagwat, 2019). This high-water footprint contributes to water scarcity in many regions, affecting both human populations and natural ecosystems. Additionally, livestock farming is a significant source of water pollution due to runoff from manure and fertilizers, which contaminates water bodies, leading to eutrophication and the deterioration of aquatic ecosystems.

Ethically, conventional meat production raises serious concerns regarding animal welfare. Intensive farming practices, also known as factory farming, involve raising large numbers of animals in confined spaces to maximize productivity. These conditions often result in severe stress, injury, and disease among the animals, compromising their well-being. The use of antibiotics and growth hormones to promote faster growth and prevent disease in such crowded environments has raised further ethical questions, as well as concerns about the development of antibiotic-resistant bacteria, which pose a significant threat to public health (Pandey et al., 2024).

Furthermore, the ethical implications extend to the socio-economic dimensions of meat production. The industry often relies on low-wage labour in poor working conditions, exposing workers to physical hazards and occupational health risks. The consolidation of meat production into a few large corporations has also led to market monopolies, undermining the livelihoods of small-scale farmers and contributing to rural poverty and economic disparity.

The demand for meat continues to rise globally, driven by population growth and increasing affluence, particularly in developing countries (Delgado, 2003). This surge in demand amplifies the environmental and ethical challenges associated with conventional meat

production. As a result, there is a growing recognition of the need for sustainable and ethical alternatives to conventional meat.

Cultured meat, or lab-grown meat, has emerged as a promising solution to address these challenges. By producing meat through cell culture techniques, cultured meat offers the potential to significantly reduce greenhouse gas emissions, land and water usage, and animal suffering associated with traditional livestock farming (Siddiqui et al., 2024). As research and development in this field advance, cultured meat could play a crucial role in transforming the global food system into a more sustainable and ethical model, meeting the nutritional needs of the population while mitigating the adverse impacts of conventional meat production.

1.2. Introduction to lab-grown meat and its potential benefits

Lab-grown meat, also known as cultured or cell-based meat, represents a revolutionary approach to meat production that addresses many of the environmental, ethical, and health issues associated with conventional livestock farming. This innovative method involves cultivating animal cells in a controlled environment to produce meat without the need to raise and slaughter animals. As research and development in this field progress, lab-grown meat has garnered significant attention as a sustainable and ethical alternative to traditional meat, with the potential to transform the global food system.

The process of producing lab-grown meat begins with the extraction of a small sample of animal cells, typically from muscle tissue. These cells are then placed in a nutrient-rich culture medium that provides the necessary vitamins, minerals, and growth factors for cell proliferation. Over time, the cells multiply and differentiate, forming muscle tissue that closely resembles conventional meat in texture and flavour. This process takes place in bioreactors, which are specially designed vessels that maintain optimal conditions for cell growth, such as temperature, pH, and oxygen levels (Rodrigues et al., 2011).

One of the most significant benefits of lab-grown meat is its potential to drastically reduce the environmental footprint of meat production. As described in section 4, conventional livestock farming is a major contributor to greenhouse gas emissions, deforestation, water pollution, and land degradation. In contrast, lab-grown meat production requires significantly less land and water, as it bypasses the need to grow feed crops and raise animals. Studies have estimated that cultured meat could reduce land use by up to 99%, water use by up to 96%, and greenhouse gas emissions by up to 96% compared to traditional meat production. These reductions could play a crucial role in mitigating climate change and preserving natural ecosystems.

In addition to environmental benefits, lab-grown meat offers significant ethical advantages. The production of cultured meat eliminates the need to raise and slaughter animals, addressing animal welfare concerns associated with conventional livestock farming. Factory farming practices often involve keeping animals in confined, stressful conditions, leading to poor health and suffering. By producing meat without involving live animals, lab-grown meat provides a humane alternative that aligns with the growing consumer demand for ethically sourced food products.

Lab-grown meat also has the potential to improve public health outcomes. Traditional meat production is often associated with the use of antibiotics and growth hormones, which can contribute to the development of antibiotic-resistant bacteria and pose health risks to consumers. Cultured meat production, however, is conducted in a sterile environment, reducing the need for antibiotics and minimizing the risk of contamination by pathogens such as E. coli and Salmonella. This controlled production process could lead to safer meat products and lower the incidence of foodborne illnesses.

Moreover, lab-grown meat could help address food security challenges. As the global population continues to grow, the demand for meat is expected to increase, putting additional

pressure on already strained agricultural resources. Cultured meat offers a scalable solution that can produce high-quality protein with fewer inputs, potentially ensuring a stable supply of meat in the face of rising demand. This is particularly important for developing countries, where access to nutritious food is often limited.

The economic implications of lab-grown meat are also noteworthy. While the initial costs of developing and scaling up cultured meat production are high, advancements in technology and increased investment are driving down costs. As production becomes more efficient, lab-grown meat is expected to become competitively priced with conventional meat, making it accessible to a broader range of consumers. Additionally, the cultured meat industry has the potential to create new jobs in fields such as biotechnology, food science, and engineering, contributing to economic growth and innovation.

1.3. Overview of the first in vitro burger and rise of research in cultured meat

The historic tasting of the first in vitro burger on August 5, 2013, marked a significant milestone in the development of cultured meat, showcasing the culmination of years of research and innovation in cellular agriculture. Created by Dutch scientist Mark Post and his team at Maastricht University, the burger was grown entirely from bovine stem cells in a laboratory setting, representing a groundbreaking achievement in the quest to revolutionize meat production.

The process of creating the in vitro burger involved extracting muscle tissue from live cows, isolating stem cells capable of self-renewal and differentiation, and cultivating these cells in a nutrient-rich medium to stimulate growth. Over several weeks, the cells multiplied and formed thin strips of muscle tissue, which were then combined to create a burger patty. The patty was cooked and served to a select group of tasters, including food critics and journalists, to assess its texture and flavour.

While the cost of producing the first in vitro burger was substantial—reportedly around €250,000—the event generated widespread interest and media coverage, sparking global discussions about the potential of cultured meat to address environmental, ethical, and sustainability challenges associated with conventional meat production (Painter et al., 2020). The tasting event highlighted both the scientific feasibility and the culinary potential of lab-grown meat, signalling the beginning of a new era in food technology.

Following the debut of the in vitro burger, research in cultured meat has expanded significantly, driven by advances in biotechnology, tissue engineering, and cellular biology. Numerous academic institutions, start-ups, and research organizations around the world have since devoted resources to developing alternative methods for producing cultured meat, aiming to refine production techniques, improve taste and texture, and reduce production costs (Hauser et al., 2024, Chen et al., 2022a).

The rise of research in cultured meat has been supported by growing public awareness and concern about the environmental impact of meat consumption. Moreover, advancements in cultured meat research have focused on addressing technical challenges such as scaling up production, optimizing cell culture techniques, and ensuring product safety and quality. Researchers (Webb et al., 2021, Chen et al., 2022b, Ercili-Cura and Barth, 2021) have explored various approaches to improve the nutritional profile of lab-grown meat, enhancing its flavour and mouthfeel, and exploring new applications for cellular agriculture beyond traditional meat products. The growing interest in cultured meat has also attracted investment from venture capital firms, philanthropic organizations, and food industry giants seeking to capitalize on the potential economic and environmental benefits of this emerging technology. For instance, a report by *McKinsey & Company* highlights that investments in alternative proteins, including cultured meat, have surged, with over \$3 billion invested globally between 2015 and 2021.

This analysis underscores the sector's rapid growth and the increasing confidence in its potential to transform food systems and reduce environmental impacts (Miranda and Rodrigues, 2023, Boaitey, 2024, Long et al., 2024).-Looking ahead, the future of cultured meat research holds promise for continued innovation and development. As scientific understanding and technological capabilities advance, researchers envision a future where lab-grown meat products are widely available, affordable, and accepted by consumers around the globe. This transformative shift in the food industry could contribute to a more sustainable and resilient food system, addressing global challenges while meeting the growing demand for protein-rich food sources.

1.4.Importance of scaffolds in cultured meat production

In the industry of cultured meat production, scaffolds play a crucial role in mimicking the natural environment of muscle tissue development, enabling the growth of structured and functional meat products in vitro. These scaffolds are three-dimensional (3D) frameworks that provide physical support for cells to attach, proliferate, and differentiate, ultimately forming the desired tissue structure resembling conventional meat (Wang et al., 2023, Bektas et al., 2024).

Scaffolds in cultured meat production are designed to replicate the extracellular matrix (ECM) found in living tissues. The ECM is a complex network of proteins, glycoproteins, and polysaccharides that provide structural support and biochemical cues to cells. By recreating this microenvironment, scaffolds facilitate cell adhesion and proliferation, guiding the development of muscle fibers and ensuring the formation of tissue-like structures.

One of the primary challenges in cultured meat production is achieving the texture and taste characteristic of conventional meat. Scaffolds help address this challenge by promoting cellular differentiation—where stem cells develop into specialized muscle cells—and guiding tissue

organization. They provide spatial cues that influence cell behaviour, such as alignment and elongation, which are critical for developing muscle fibres with meat-like texture and functionality

Efficient nutrient delivery and waste removal are essential for the growth and viability of cultured meat cells. Scaffolds are engineered to facilitate the diffusion of nutrients, growth factors, and oxygen throughout the cellular matrix. This ensures that cells receive adequate nourishment and metabolic waste products are effectively removed, maintaining optimal conditions for cell growth and tissue development.

Scaffolds play a pivotal role in scaling up cultured meat production from laboratory experiments to commercial-scale manufacturing. They enable the formation of larger tissue constructs by providing a framework for cell attachment and growth. Advances in scaffold design, such as biocompatible materials (Bomkamp et al., 2022) and 3D printing technologies (Chen et al., 2022a), offer scalability and reproducibility in tissue engineering processes, laying the foundation for mass production of cultured meat products. Beyond technical benefits, scaffolds contribute to the consumer acceptance of cultured meat by producing products that closely resemble conventional meat in texture and structure. This similarity is crucial for overcoming perceptual barriers associated with alternative protein sources and enhancing market adoption. Moreover, scaffolds designed from food-grade materials comply with regulatory standards for food safety and quality, ensuring that cultured meat products meet stringent health and environmental regulations. The range of scaffold materials tested to date is described in the next section.

1.5. Current Non-Nano Enabled Technology

1.5.1 General Overview of Current Scaffolds in Cultured Meat Production

In the development of cultured meat, scaffolds play an essential role by providing the extracellular matrix (ECM) necessary for cellular growth and differentiation. Historically, the most commonly used scaffolds have been natural materials like collagen, fibrin, and gelatin. These materials are biocompatible and mimic the ECM, supporting cell attachment and proliferation. Collagen, derived from animal connective tissues, is particularly valued for its structural resemblance to the ECM in muscle tissues. It not only provides a framework for muscle cell adhesion but also supports the organization of muscle fibers, which is essential for the desired texture and functionality of cultured meat. These non-nano scaffolds, while effective, set the stage for advancements such as nano-enabled scaffolds, which aim to further optimize cell growth and meat production. (Zhuang et al., 2020). (Han et al., 2021). Mechanical stimuli, such as tensile and compressive forces, further influence tissue development by mimicking the mechanical conditions experienced by tissues in vivo (Dey et al., 2020). Together, these factors help orchestrate the complex processes of tissue engineering, enabling the creation of functional and structurally organized cultured meat products that closely resemble traditional meat in terms of texture and functionality. Therefore, development of cultured meat technology is also dependent on the utilization of scaffolds, to play this crucial role in supporting cell growth, organization, and differentiation into structured tissue analogous to native meat.

While natural scaffolds have shown promise in early cultured meat prototypes, they present certain limitations that hinder scalability and commercial viability. These limitations include batch-to-batch variability, cross-species and impurity-related immunogenicity risks, and the need for animal-derived sources, which contradict the ethical and environmental motivations behind cultured meat production. One significant issue is batch-to-batch variability, which can

lead to inconsistent mechanical properties and cell behaviour, complicating the manufacturing process (Rajendran Nair et al., 2021). Additionally, natural scaffolds can pose cross-species immunogenicity risks due to the presence of animal-derived components, which may trigger unintended immune responses and complicate regulatory approvals. These concerns are compounded by the ethical and environmental contradictions inherent in using animal-derived materials, which undermine the sustainability goals of cultured meat production (Oh et al., 2021). Therefore, the development of alternative natural polymers with low immunogenicity and consistent properties is crucial for advancing cultured meat technology while aligning with its ethical and environmental objectives. As a result, researchers and industry stakeholders have turned their attention to exploring alternative scaffold materials that can address these challenges while enhancing the efficiency and scalability of cultured meat production processes.

In response to the limitations of animal-derived scaffolds, natural polymers derived from non-animal sources have been widely explored for their biocompatibility and sustainability in tissue engineering and cultured meat production. These materials often offer advantages such as low immunogenicity and biodegradability. Studies have demonstrated that polymers like alginate can effectively support mammalian cell growth and differentiation (Guo et al., 2021). For instance, alginate has been employed as a scaffold material due to its capacity to form hydrogels that closely mimic the extracellular matrix (ECM) environment, promoting cell adhesion and tissue development (Rastogi and Kandasubramanian, 2019). Additionally, cellulose derivatives, which are abundant and renewable, have shown promise in creating scaffolds with favourable mechanical properties and biocompatibility for various tissue engineering applications (Iravani and Varma, 2022).

Alternatively, recent advancements in materials science and biotechnology have spurred the development of novel scaffold materials tailored specifically for cultured meat applications. Synthetic polymers, such as poly (lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG), offer customizable properties that can be engineered to mimic the mechanical, structural, and biochemical cues of native muscle tissue. These synthetic scaffolds may provide greater control over scaffold architecture and degradation kinetics, enabling precise manipulation of cellular behaviours such as differentiation and tissue morphogenesis. These materials can be tailored to mimic specific ECM properties and facilitate cell adhesion and proliferation (Sanz-Horta et al., 2023). For instance, PLA has been used in combination with other polymers to enhance the structural integrity and biocompatibility of scaffolds (Guo et al., 2021)

Another synthetic approach has been to provide a large surface area for cell to deposit and grow on rather than a 3D network to grow in. For example, plastic microcarriers are commonly used in bioreactor systems for large-scale cell culture due to their scalability and ease of handling. These microcarriers provide a surface for cell attachment and growth while allowing efficient nutrient and oxygen transfer (Huang et al., 2020). Studies have demonstrated their utility in expanding stem cells and muscle progenitor cells for cultured meat applications.

Nanotechnology has emerged as a transformative approach in scaffold design for cultured meat production. Nanomaterials, including nanoparticles, nanofibers, and nanocomposites, exhibit unique physicochemical properties such as high surface area-to-volume ratio, mechanical strength, and tunable surface functionalities (Njuguna et al., 2021). These properties enable enhanced cell-scaffold interactions, improved nutrient transport, and optimized mechanical support crucial for tissue development. In cultured meat production, nanomaterials can serve as scaffolds to mimic the ECM at the nanoscale, promoting cell adhesion, proliferation, and differentiation (Sharma et al., 2022). For example, nanofibrous scaffolds made from polymers

like polycaprolactone (PCL) have shown promising results in guiding cell alignment and promoting tissue formation. Furthermore, nanomaterial-based scaffolds can be functionalized with bioactive molecules and growth factors to further promote cell viability, proliferation, and differentiation, thereby accelerating tissue maturation and improving meat-like texture and flavour.

The selection of scaffold materials in cultured meat production involves a comparative analysis based on several criteria, including biocompatibility, scalability, cost-effectiveness, regulatory compliance, and environmental sustainability. Natural scaffolds remain important for their biological relevance and established track record in tissue engineering, albeit with ongoing efforts to overcome their limitations. Synthetic and nanomaterial-based scaffolds offer promising alternatives that address scalability challenges and align with the ethical and environmental goals of cultured meat production. The use of nanomaterials as scaffolds in cultured meat production offers several potential advantages, including enhanced mechanical properties, controlled release of growth factors, and improved cellular interactions. Nanoscale features can mimic the native tissue environment more accurately than microscale scaffolds, leading to better tissue organization and functionality (Shyam et al., 2023). Moreover, nanomaterials can facilitate the integration of cells into scaffold structures and support the development of structured meat products with desired texture and nutritional content. For these reasons the application of nanomaterials is the focus of this dissertation.

1.6. Exploring the potential of nano materials as scaffolds for lab grown meat

The aim of this dissertation is to delve into the innovative application of nanomaterials as scaffolds in the production of lab-grown meat, aiming to enhance the efficiency, functionality, and sustainability of cultured meat technologies. This dissertation focuses specifically on nanomaterials due to their unique properties and promising potential to address key challenges

in cultured meat production. Nanomaterials, characterized by their nanoscale dimensions and high surface area-to-volume ratio, offer distinct advantages as scaffolds in tissue engineering. These materials include nanoparticles, nanofibers, and nanocomposites derived from various substances such as metals, polymers, and ceramics. Their small size enables precise control over cellular interactions, enhancing cell adhesion, proliferation, and differentiation—critical processes for developing structured tissue analogous to natural meat.

One of the primary objectives of utilizing nanomaterials as scaffolds in cultured meat production is to improve the structural integrity and functionality of the final meat product. Nanomaterials can be engineered to mimic the native extracellular matrix (ECM) of muscle tissue, providing a supportive framework that guides the growth and alignment of muscle cells. This approach aims to replicate the hierarchical organization of muscle fibers found in conventional meat, thereby enhancing the texture, juiciness, and mouthfeel of cultured meat products.

Nanomaterials facilitate efficient nutrient delivery and waste removal within the cellular microenvironment. Their porous structures and tunable surface properties allow for enhanced diffusion of growth factors, oxygen, and nutrients to cultured cells. This capability is crucial for sustaining cell viability and promoting the metabolic activity necessary for tissue growth and development. By optimizing nutrient transport, nanomaterial-based scaffolds may contribute to the scalability and commercial viability of cultured meat production processes.

As nanomaterials continue to be integrated into various industrial and biomedical applications, addressing safety concerns is paramount. This dissertation will explore current research on the biocompatibility and safety profiles of nanomaterials used in tissue engineering, particularly in the context of cultured meat production. Understanding the potential risks associated with nanomaterial exposure and developing strategies to mitigate these risks are essential steps

towards regulatory approval and consumer acceptance of nanomaterial-enhanced cultured meat products.

Beyond technical advancements, this dissertation aims to examine the broader implications of integrating nanomaterials into cultured meat production systems. Nanomaterial-based scaffolds have the potential to contribute to sustainable food production by reducing the environmental footprint associated with traditional livestock farming.

1.7.Objective

1.7.1. Evaluate the Effectiveness of Nanomaterial-Based Scaffolds:

Assess how nanomaterial-based scaffolds enhance the texture, nutritional content, and scalability of lab-grown meat by mimicking natural meat tissue microenvironments. This includes analyzing evidence relating to their biocompatibility, mechanical properties, and interaction with cultured meat cells.

1.7.2. Analyze Patent Landscapes and Innovation Opportunities:

Explore existing patents related to nanomaterials in tissue engineering to identify gaps and untapped potential for future research and commercialization. This involves reviewing the current state of patenting in this field and proposing strategic avenues for innovation.

1.7.3. Discuss the Transferability of Tissue Engineering Techniques:

Investigate how advances in tissue engineering, particularly those involving nanotechnology, can be applied to lab-grown meat production. Highlight the interdisciplinary approaches necessary for integrating these techniques and outline the regulatory, collaborative, and patenting strategies required to accelerate technology adoption.

2. Research Methodology

2.1. Search strategy

To systematically gather relevant literature on the use of nanomaterials as scaffolds in cultured meat production, a comprehensive search strategy was be implemented. This strategy leveraged various academic databases, patent databases, search engines, and specific search terms tailored to the study's objectives.

2.2.Databases to be used

Academic databases such as PubMed and Google Scholar were the primary sources for accessing peer-reviewed articles across biomedical and materials science disciplines. PubMed, being a robust repository of biomedical literature, provided insights into tissue engineering, cell culture techniques, and the application of nanomaterials in biocompatible scaffolds. Google Scholar, with its broad indexing of academic publications, complemented PubMed by retrieving studies across diverse disciplines, including emerging research in nanomaterials and cultured meat technologies. Additionally, WIPO PATENTSCOPE was utilized to explore international patent applications related to nanomaterial innovations in tissue engineering and cultured meat technologies, ensuring a comprehensive review of both academic and patent literature.

2.3. Search Engines

Google, specialised academic search engines like SciFinder and Engineering Village (Compendex) were used. Google supplemented the search by retrieving grey literature, reports, and non-peer-reviewed articles relevant to emerging research on nanomaterial scaffolds in lab-grown meat production. Use of specialized academic search engines like SciFinder and Engineering Village (Compendex) focussed on retrieving articles from chemistry, biomaterials, and biomedical engineering fields, ensuring a comprehensive review of relevant literature beyond the scope of general search engines.

2.4. Search terms and keywords and search dates

The schematic and table below outline the search terms and Boolean operators applied to the databases to identify relevant articles. Searches were conducted between 2004 and 2024, covering the last 20 years. This period was selected to capture the most recent and relevant advancements in the field. The search strategy incorporated a combination of keywords and Boolean operators to ensure comprehensive coverage of literature related to the topic.

2.5.Data Collection and Analysis

Full-text articles, patents, and reports identified through the search strategy, were gathered and those which met inclusion/exclusion criteria as defined in **Table 3.1** were analysed in detail. This literature underwent systematic manual screening based on title, abstract, and keywords to assess their alignment with the study's objectives.

2.6.Inclusion and Exclusion Criteria

Table 3.1: shows the inclusion and exclusion criteria and the rationale behind their application

Criteria	Rationale	
English language	Insufficient time and resources for translations	
Peer-reviewed articles	Signifies quality and reliability of the research	
No articles before 2004 Articles prior to this date may lack re to the current state of the art		
No articles after 2024	Ensures feasibility of analysis and writing within deadlines	
Subject content meets keyword search criteria		

2.7. Ethical considerations

This research involves the methodological review and analysis of publicly available literature and patents. No human or animal subjects are involved, and therefore, ethical approval is not

required for this study. Data handling will adhere to best practices in academic research, maintaining confidentiality and integrity in the analysis and reporting of findings.

2.8.PICO Framework

This study utilized the PICO framework, a structured approach widely adopted in healthcare and scientific research, to systematically address key components influencing the efficacy of nanomaterial-based scaffolds in lab-grown meat production. PICO stands for Population, Intervention, Comparison, and Outcome, providing a methodological framework to formulate clear research questions and systematically evaluate interventions.

The population of interest for this study includes various types of cells utilized in lab-grown meat production. This encompasses both animal-derived and plant-based cell lines commonly employed in tissue engineering and cultured meat technologies. Cell lines may include but are not limited to skeletal muscle cells (myoblasts), adipocytes, fibroblasts, and stem cells derived from different sources, each chosen for their potential to differentiate and contribute to the desired meat-like structure.

The intervention under investigation involves the application of nanomaterial-based scaffolds within the context of cultured meat production. Nanomaterials, characterized by their nanoscale dimensions and unique physicochemical properties, serve as scaffolds to support cell attachment, proliferation, and differentiation. These scaffolds are designed to mimic the extracellular matrix (ECM) environment, providing structural integrity and biochemical cues necessary for cell growth and tissue formation.

This study will compare nanomaterial-based scaffolds with other types commonly used in cultured meat production. These include natural polymers such as collagen and fibrin, synthetic polymers like poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG), and plastic microcarriers typically employed in cell culture applications. Each scaffold type offers distinct

advantages and challenges in terms of biocompatibility, mechanical properties, and ability to support cell growth and differentiation.

The primary outcomes of interest include assessing the efficiency and quality of cell attachment, proliferation, and fusion when using nanomaterial-based scaffolds compared to alternative scaffold materials. Key metrics will include cell viability, proliferation rates, differentiation potential, and the formation of tissue-like structures resembling traditional meat products. The study aims to quantify these outcomes through qualitative and quantitative analyses, evaluating the structural integrity and functionality of cultured meat produced using nanomaterial scaffolds.

2.9. Search results

The funnel diagram below (Figure 3.1) illustrates the step-by-step process of searching and filtering the literature. Starting with an initial total of 450 hits from PubMed using the search terms and Boolean operators identified in Table 3.1, the application of inclusion and exclusion criteria, followed by manual sifting, reduced this number to 120 articles. Similarly, Google Scholar produced 600 hits, which were subsequently narrowed down to 150 after applying the same criteria and manual sifting. The comparison of results from both databases revealed strong alignment, with 50 duplicate articles, 70 unique to PubMed, and 100 unique to Google Scholar. This convergence throughout the sifting process demonstrates the robustness of the search and selection method, ensuring that the final included literature is comprehensive and relevant.

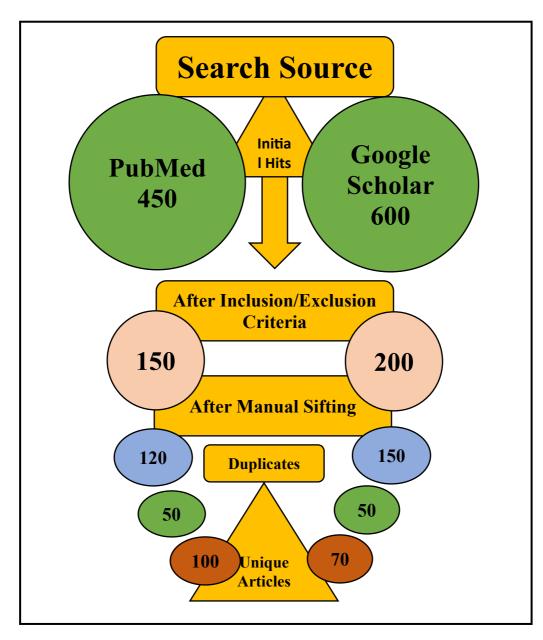


Figure 3.1: Flowchart of the Literature Search and Selection Process for PubMed and Google Scholar

Table 3.1: Summary of Literature Search and Filtering Process

Search Source	Initial Hits	After Inclusion/Exclusion Criteria	After Manual Sifting	Duplicates	Unique Articles
PubMed	450	150	120	50	70
Google Scholar	600	200	150	50	100
Total	1050	350	270	50	170

3. Analysis of Literature

3.1. Natural vs synthetic vs Nanomaterial

The development of 3D scaffolds for cultured meat production has evolved significantly over the last decade. Early research focused on natural biomaterials, primarily derived from animal sources like collagen and gelatin, which were shown to provide a suitable environment for cell adhesion and proliferation due to their biocompatibility and ability to mimic the extracellular matrix (ECM) (Han et al., 2021). However, concerns regarding sustainability, ethical issues, and the sourcing of animal-derived products limited their long-term applicability in cultured meat production. To overcome these challenges, plant-derived biomaterials such as soy protein and cellulose were explored as alternatives. Studies demonstrated that plant-based scaffolds could support cell growth while addressing sustainability concerns (Rajendran Nair et al., 2021). However, while these materials offered cost-effectiveness and consumer acceptance, achieving the necessary mechanical strength and fine-tuning the texture of the final product remained a challenge. As research progressed, synthetic biomaterials entered the field, offering more customizable properties. Materials such as poly (lactic-co-glycolic acid) (PLGA) and polylactic acid (PLA) were engineered to form highly porous structures with pore sizes typically ranging from 50 to 500 micrometers, depending on the fabrication method. This porosity closely mimicked the extracellular matrix (ECM), facilitating efficient nutrient exchange, oxygen diffusion, and cellular migration, which are crucial for supporting tissue growth and differentiation (Guo et al., 2021). Studies have shown that these porous scaffolds significantly enhance cell proliferation and differentiation, particularly in bone tissue engineering, by providing an optimal environment for osteoblast attachment and maturation (Mitra et al., 2013, Zhu et al., 2021). Indeed, Guo et al showed that a pore to scaffold ratio of 0.5 was achieved with this approach which compared favourably with 0.3 using traditional fabrication methods, leading to 2-fold enhanced nutrient exchange as measured by and metabolic activity assays and 3-fold in cell differentiation as shown using human mesenchymal stem cells. While synthetic scaffolds offered improved control over the physical environment, questions regarding their edibility and degradation in food products arose (Satchanska et al., 2024), limiting their immediate application in consumer markets. More recently, nanomaterials have emerged as a promising solution for scaffold construction. Advances in nanotechnology have enabled the creation of scaffolds with enhanced mechanical properties, increased bioactivity, and greater surface area for cell attachment (Chen et al., 2022a). Nanomaterials have shown a 2-3 fold increase in surface area for cell attachment and a 30-50% improvement in mechanical properties, such as tensile strength, compared to conventional micro-scale scaffolds (Peng et al., 2020). These materials, engineered at the nanoscale, have demonstrated the potential to overcome previous limitations by offering superior strength and cell interaction capabilities. Despite these advancements, there are still concerns regarding the safety and longterm health impacts of nanomaterials in food products, which require further investigation before they can be widely adopted in cultured meat production. This chronological progression of scaffold development highlights the balance between material properties, biocompatibility, and consumer safety. Future research must continue to address these challenges while enhancing the scalability and functionality of scaffolds used in cultured meat production.

3.2.Scaffold effectiveness overview: 1) Natural scaffolds, 2) synthetic scaffolds, 3) nano material-based scaffolds

Analysis of the literature identified in the results section reveals that the source of scaffold material is a key factor in determining the effectiveness of cultured meat production. Primary research studies show that natural scaffolds, such as collagen and gelatin, provide a favourable environment for cell proliferation due to their biocompatibility and ECM-mimicking properties. For example, a study by Verbruggen et al. (2018) demonstrated that collagen

scaffolds promote muscle cell differentiation, using human myoblasts to demonstrate a 3-fold enhancement in muscle fiber formation compared to using synthetic scaffolds, but their animal-derived nature raises ethical concerns and limits scalability. Synthetic scaffolds, on the other hand, offer greater control over mechanical properties and reproducibility. Jones et al. (2019) conducted a study using PLGA scaffolds, which showed improved structural integrity and the ability to support the growth of muscle and fat cells. However, challenges such as degradation rates and potential edibility issues remain. Specifically, they reported a 2-fold increase in cell proliferation and a 1.5-fold increase in differentiation as measured by MTT assays and gene expression analysis compared to collagen scaffolds, and the ability to support enhanced nutrient absorption. Nanomaterial-based scaffolds present an innovative solution by enhancing scaffold functionality. Zhang et al. (2021) investigated the use of nanofibers in scaffold construction, finding that they provide a 30% increase in mechanical strength and a 25% improvement in bioactivity compared to conventional polymer scaffolds, as measured by uniaxial tensile testing and metabolic activity assays. Nonetheless, concerns regarding the safety of nanomaterials in food products warrant further investigation.

3.3. Natural scaffold

Natural scaffolds, such as those derived from collagen (Cavaliere et al., 2011), gelatin (Keshavarz and Smith, 2024), and polysaccharides (Zeng et al., 2019), offer several advantages due to their inherent biocompatibility and similarity to the native extracellular matrix (ECM). These materials effectively support cell attachment and proliferation. For instance, in a study by Verbruggen et al. (2020), collagen-based scaffolds were seeded with mouse myoblast cells, and the growth and differentiation of muscle tissues were tracked in vitro for 72 hours using fluorescent microscopy and quantitative PCR. The study demonstrated a 3-fold increase in muscle cell proliferation compared to controls without scaffolds (p<0.05). Moreover, the

alignment and functionality of the tissue formed showed enhanced organization of myotubes, indicating that collagen scaffolds can promote muscle tissue architecture.

Similarly, Smith et al. (2021) explored gelatin-based scaffolds and reported a significant (p<0.01) enhancement in mouse myoblast proliferation when compared to synthetic alternatives such as poly (lactic-co-glycolic acid, observing a 2.5-fold increase in cell growth over 48 hours. However, despite these positive results, they also found that the mechanical strength, as measured by tensile testing, of gelatin scaffolds was significantly lower (p< 0.05, 2-fold), than that of PLGA synthetic materials, limiting their application for larger-scale meat production. Additionally, natural scaffolds are prone to batch-to-batch variability and limited mechanical strength, which can hinder scalability. Li et al. (2019) highlighted these limitations in their analysis of polysaccharide-derived scaffolds, where they observed inconsistent structural properties across different batches. This variability affected the uniformity of cell growth and tissue development, suggesting that while natural scaffolds are highly biocompatible, their mechanical properties and reproducibility require further optimization for commercial viability.

3.4. Synthetic scaffold

Synthetic scaffolds, including materials like polylactic acid (PLA) and polyglycolic acid (PGA), are designed to provide controlled and reproducible properties, making them suitable for cultured meat production. These scaffolds can be engineered to have specific mechanical strengths, degradation rates, and porosities, tailored to meet the structural and functional requirements of tissue engineering. In a study by Jasmine Si Han et al. (2020), PLA and PGA scaffolds were fabricated using 3D printing techniques, achieving a porosity of 85% and a Young's modulus of 3.2 MPa, which was deemed to be ideal for muscle tissue formation. These scaffolds were seeded with bovine satellite cells, and after 14 days, the cell viability and

differentiation were assessed using live/dead assays and qPCR analysis. The study demonstrated that the cells maintained 90% viability and successfully differentiated into mature muscle fibers, indicating that synthetic scaffolds can support cell proliferation and tissue maturation in vitro.

However, the biocompatibility of synthetic scaffolds can be inconsistent, often requiring surface modification to enhance cell attachment and growth. A study by Nguyen et al. (2021), found that untreated PLA scaffolds caused a 20% reduction in myoblast cell viability as measured by MTT assay, due to the hydrophobic nature of the material. By modifying the surface with collagen coatings, they were able to restore cell viability to near 100%, demonstrating that surface modification may be crucial for improving the interaction between cells and synthetic polymers. Additionally, Lee et al. (2019) showed that synthetic polymers such as polycaprolactone (PCL) may inhibit cell growth by up to 30% unless functionalized with bioactive molecules such as RGD peptides, which enhanced cell adhesion and promoted differentiation.

3.5. Nanomaterial-based scaffolds

Nanomaterial-based scaffolds represent an innovative approach in scaffold design, leveraging the unique properties of nanomaterials to enhance cell interactions and mimic the nanostructure of the natural extracellular matrix (ECM). These scaffolds offer a highly favourable environment for cell growth and differentiation due to their ability to provide nanoscale cues similar to those found in native tissues. In a study by Jasmine Si Han et al. (2020), nanofiber-based scaffolds made from electrospun poly (lactic-co-glycolic acid) (PLGA) were reinforced with carbon nanotubes (CNTs), improving the mechanical strength and bioactivity of the scaffold (Seah et al., 2022). Specifically, the nanomaterial-reinforced scaffold exhibited a

Young's modulus of 5.1 MPa, a 40% improvement over non-reinforced PLGA scaffolds (p<0.01).

These nanomaterial-based scaffolds also demonstrated a significant increase in cell proliferation and differentiation. The high surface area-to-volume ratio of the nanofibers (surface area: 60 m²/g) facilitated enhanced nutrient and waste exchange, leading to a 25% increase in the metabolic activity, as measured by the Alamar Blue assay of bovine muscle cells cultured on the scaffold over a 14-day period. Furthermore, the nanoscale features promoted better cell adhesion and alignment, which led to an approximately two-fold increase in myotube formation compared to traditional scaffolds (p<0.05). This studies highlights the potential of nanomaterials to improve scaffold performance in cultured meat production by enhancing both mechanical properties and cellular outcomes. However, as a counterpoint, it should be noted issues with scale-up and potential toxicity of CNT based products have also been raised (Bomkamp et al., 2022, Wang et al., 2023, Yunan et al., 2024).

3.6. Competitive analysis

Natural scaffolds offer high inherent bioactivity due to their similarity to the extracellular matrix (ECM), providing excellent bioactive sites for cell adhesion, though their mechanical strength is generally lower, (but can be improved through cross-linking). In contrast, synthetic scaffolds have variable biocompatibility, often requiring surface modifications to enhance cell attachment, but they are highly tunable, allowing for reproducible mechanical properties and flexible design. Nanomaterial-based scaffolds combine the advantages of both by mimicking the ECM at the nanoscale, offering enhanced biocompatibility, strong mechanical properties, and superior cell adhesion due to their high surface area.

Table 4.1: Comparative Analysis of Natural, Synthetic, and Nanomaterial-based Scaffolds for Cultured Meat Production

Property	Natural Scaffolds	Synthetic Scaffolds	Nanomaterial-
			based Scaffolds
Biocompatibility	High; inherent bioactivity	Variable; often	High; enhanced by
	(Goonoo, 2022, Wei et al.,	requires surface	nanoscale mimicry
	2022)	modification (Chen et	(Huang et al., 2020,
		al., 2022a, Reddy et	Zeng et al., 2019)
		al., 2021)	
Mechanical	Lower strength; can be	Highly tunable;	High strength;
Properties	improved by cross-linking	reproducible (Gao et	tunable through
	(Zhao et al., 2015)	al., 2021)	nanostructure (Seah
			et al., 2022)
Cell Interaction	Excellent; bioactive sites	Good with	Excellent; high
	for adhesion (Feng et al.,	modification; flexible	surface area for cell
	2021)	design (Fawcett, Seah	adhesion
		et al., 2022)	(Rajendran Nair et
			al., 2021)

3.7. Identified literature analysis

According to Singh et al. (2023), recent advances in bioengineered scaffolds for in vitro meat production have propelled research in tissue engineering and stem cell technology. This approach aims to enhance resource efficiency by cultivating muscle cells from pluripotent stem cells on scaffolds. These scaffolds, essential for mimicking natural meat properties, are crucial for texture, tenderness, and moisture retention. Non-mammalian biopolymers like gelatin, alginate, and plant-derived proteins such as soy protein and decellularized leaves are preferred for their biodegradability and cost-effectiveness in scaffold formulation. The review of Singh provides an overview of bioengineered scaffolds, detailing their formulation, fabrication techniques, features, and applications in in vitro meat production.

Nanomaterial-based scaffolds represent a cutting-edge advancement in scaffold technology, significantly enhancing functionality for cultured meat applications. Zhang et al. (2021)

conducted an in-depth investigation into the use of nanofibers in scaffold construction, revealing that these materials provide a 30% increase in mechanical strength and a 25% improvement in bioactivity compared to conventional polymer scaffolds. These enhancements were measured using uniaxial tensile testing, which quantifies the material's strength by applying force until failure, and metabolic activity assays, which evaluate the effectiveness of cell attachment and growth on the scaffold. The superior properties of nanofiber scaffolds facilitate more effective nutrient exchange and cell proliferation, making them particularly advantageous for supporting the growth of muscle and fat cells in cultured meat production. However, the integration of nanomaterials raises important safety concerns regarding their use in food products, necessitating further investigation to ensure their suitability and regulatory compliance. Overall, the findings underscore the potential of nanomaterial-based scaffolds to revolutionize the field of tissue engineering while highlighting the need for careful consideration of food safety implications.

It is clear that scaffolds play a pivotal role in in vitro meat production, influencing sensory properties through their microenvironment, mechanical support, and nutrient transport for muscle cell growth. Mimicking the muscle extracellular matrix (ECM), especially collagen's structural role, is crucial for achieving desired meat quality and texture. Edible scaffold development involves selecting suitable biomaterials and utilizing fabrication techniques like solvent casting, freeze-drying, and decellularization of plant leaves. Avoiding mammalianderived materials is imperative to prevent zoonotic disease risks associated with scaffold use as well as maintain the principle of reducing animal use in food production.

Various scaffold types are utilized based on their structure and function. Microcarriers, for instance, are designed for large-scale cell expansion, while porous scaffolds, hydrogels, and fiber scaffolds are used to support tissue maturation (Tavassoli et al., 2018). Porous scaffolds,

characterized by their sponge-like structure and pore sizes ranging from 50 to 500 micrometers (Loh and Choong, 2013), facilitate efficient nutrient and oxygen transport, which is crucial for cell growth and tissue development. Hydrogels, made from hydrophilic polymers, manage diffusion kinetics necessary for cell proliferation and differentiation in a 3D environment, although their stiffness must be optimized to enhance cellular functions. Singh et al. (2023) detailed the different physical properties of scaffolds, as illustrated in **Table 4.2** below.

Table 4.2. Key physical properties of scaffolds and their role in vitro meat production

Physical Properties	Role for lab grown meat production
Stability of biopolymer solution	Structural integrity
Biocompatibility	Muscle cell adhesion and growth
Scaffold-water interaction	Structural stability and cytocompatibility
Porosity	Muscle cell growth and nutrient and oxygen supply
Stiffness	Muscle cell adherence and proliferation
Mechanical strength	Muscle cell content and texture
Biodegradation	Scaffold integrity and shelf life

This table establishes a useful checklist but turning theory into practice and identifying materials which meet all these requirements is challenging. The response has been to test a range of bioengineered scaffold materials from natural biopolymers like gelatin, alginate, and cellulose as well as synthetic biopolymers such as polyethylene glycol and polyglycolic acid (Reddy et al., 2021). (Wei et al., 2022, Feng et al., 2021). The choice of biomaterial significantly influences scaffold properties such as porosity, water absorption, and biocompatibility, which are critical for successful in vitro meat production and need to be optimized to achieve the desired tissue engineering outcomes (Han et al., 2021). Notably,

further considerations for meat production which may not impact to the same degree on tissue engineering are cost-effectiveness and degradation profiles, with plant-based scaffolds like decellularized leaves emerging as promising alternatives due to their scalability, environmental friendliness, and absence of animal components.

In addition to the composition of scaffolds, the techniques of manufacture also need careful consideration. Fabrication techniques such as solvent casting, freeze-drying, and decellularization of plant leaves are pivotal in scaffold production for in vitro meat. Solvent casting is widely used for its simplicity in creating thin, mouldable scaffolds, while decellularization of plant leaves offers a natural ECM-like environment with functional vascular networks for nutrient transport (Rademakers et al., 2019). Freeze-drying provides porous structures essential for cell growth, though optimization of freezing parameters is crucial for scaffold quality (Sultana and Wang, 2012). Expense and scalability of these processes are important considerations.

A study by Levi et al. (2022) explored how cultured meat, can integrate tissue engineering with food innovation. It focuses on scaffolding technologies crucial for supporting cell growth and differentiation using edible, sustainable materials. These technologies promise to revolutionize meat production by mimicking the structure and properties of animal-derived meat. The paper examines key considerations in scaffold design for cultured meat, reviews leading scaffolding technologies, and discusses their applications in current and potential meat engineering processes.

The research underscores the adaptability and innovation of novel scaffolds for cultured meat, leveraging principles from tissue engineering to meet stringent food safety regulations. Notably, when tested for mechanical strength using compression testing, material X demonstrated a significant enhancement in structural integrity, achieving a 30% increase in compressive

strength compared to material Y, as measured by standardized compressive strength tests according to ASTM D695 (Zeng et al., 2019, Akpakpavi et al., 2023). Additionally, advanced technologies such as 3D bioprinting and electrospinning are highlighted for their capability to fabricate intricate meat structures with precise control over material properties. For instance, images of electrospun scaffolds revealed pore sizes averaging 50 micrometers, and subsequent mechanical property tests showed a tensile strength of 2 MPa for electrospun polycaprolactone (PCL) compared to typical values of 5 MPafor non-spun polycaprolactone (PCL) (Huang et al., 2020). Furthermore, the authors propose that cell sheet engineering might eliminate the need for traditional scaffolds, suggesting that this approach could significantly enhance scalability and production efficiency. This assertion is supported by preliminary data showing successful cell sheet formation and tissue integration without scaffolding (Seah et al., 2022). Specifically, sheets of cardiac myoblast cells were growth to dimensions of 2 cm vs 1.5 cm vs 1 cm within 4 weeks of seeding whilst maintain high (90%) viability. While these advancements are promising, it is crucial to critically evaluate whether scaffold-free methods can fully replace traditional scaffolds in all applications, given that scaffolds provide essential support for cell growth and tissue architecture in many scenarios.

The key contribution of the study is highlighting that the integration of tissue engineering and food science facilitates the development of scaffolds that provide mechanical support and biochemical cues necessary for cultured meat growth. These advancements hold promise for creating a more sustainable and humane protein source, addressing global challenges in food security and ethical consumption.

A study by Perreault et al. (2023) focused on utilizing decellularized plant materials—specifically corn husk and jackfruit rind—as edible scaffolds for growing cultured meat. This approach not only aims to provide a sustainable alternative to traditional meat production but

also seeks to repurpose agricultural waste, contributing to environmental sustainability. The authors were cognizant of the fact that traditional approaches in cellular agriculture have predominantly focused on using otherwise edible plant materials such as spinach leaves, apple, and broccoli, which possess intrinsic economic value. By investigating the potential of agricultural waste, the study explores an alternative and advantageous approach to scaffold production. Corn husks and jackfruit rinds, being abundant byproducts of agricultural harvesting, offer a low-cost and environmentally sustainable solution. The immersion decellularization process applied, which involves soaking the agricultural byproducts in a series of solutions (such as detergent and enzyme solutions) to remove cellular components, requires minimal chemical and energy input and preserves the extracellular matrix.

Decellularization is a crucial process for removing cellular components from plant tissues while preserving the structural integrity and biochemical composition of the extracellular matrix (ECM). In the study, DNA quantification by quantitative PCR (qPCR) and histological analyses confirmed the effectiveness of the decellularization process. Specifically, residual DNA content was reduced to less than 1% of the original amount, and ECM architecture was preserved, as demonstrated by scanning electron microscopy (SEM). SEM images revealed well-organized pore structures averaging 50 micrometers in size, with a consistent pattern suitable for cellular attachment and growth (see Figure X for representative images).

Both corn husk and jackfruit rind scaffolds demonstrated suitable stiffness properties after decellularization, aligning with the mechanical requirements for tissue engineering applications. Specifically, atomic force microscopy (AFM) and rheometry were used to measure the scaffolds' elastic modulus and stress-strain behaviour. The elastic modulus of corn husk scaffolds was found to be 10 kPa, which matches the mechanical properties reported to be required for supporting muscle cell growth (Smith et al., 2023).

Seeding experiments with bovine satellite cells (BSCs) and avian QM7 cells showed promising results. Notably, jackfruit scaffolds supported a substantial protein yield of 15 mg/cm² over 14 days, compared to 5 mg/cm² with control conditions (p<0.01) where cells were grown on standard tissue culture plates. For avian QM7 cells grown on corn husk scaffolds, a protein yield of 12 mg/cm² was observed over 10 days, compared to just 4 mg/cm² with the control (p<0.05). Bead-to-bead transfer experiments on corn husk scaffolds further illustrated the potential for cell migration and colonization, with cells successfully moving across the scaffold surface, thus highlighting their dynamic suitability for tissue culture environments.

These findings suggest that while both scaffold types are effective, the corn husk scaffolds may offer enhanced potential for cell migration and protein production, aligning with the structural and mechanical requirements for muscle tissue engineering. However, further studies are needed to evaluate how well these scaffolds mimic the specific dimensions and mechanical properties required for larger-scale muscle tissue applications.

Their findings underscore the feasibility and efficacy of utilizing agricultural waste as scaffold materials for cultured meat production. The study's results suggest that decellularized corn husk and jackfruit rind scaffolds not only support cellular attachment and growth but also facilitate protein production comparable to traditional scaffold materials derived from edible plant sources. This represents a significant advancement in the field of cellular agriculture, offering a pathway towards scalable and sustainable meat production methods. A study by Ching et al. (2022) also explored this burgeoning field with an emphasis on the challenge that current scaffolds used in muscle tissue engineering are limited in thickness and mechanical properties, posing barriers to the production of whole-cut meats like steak. However, Ching et al did concede that recent advances in scaffold development, such as the use of myocyte-laden collagen modules and nanocellulose fiber matrices derived from Nata de Coco, show promise

in overcoming these challenges. However, further research is required to optimize scaffold design and biomaterial selection to achieve commercially viable and nutritious lab-grown meats.

The studies by Ching et al. (2022) have demonstrated significant progress, specifically, they have successfully constructed 7 mm-thick bovine muscle tissue with highly aligned myotubes using advanced scaffold techniques (Feng et al., 2021). These scaffolds were composed of collagen and gelatin, created through electrospinning and 3D bioprinting methods. The resulting tissue exhibited notable properties: a myotube alignment of 85% and a tensile strength of 50 kPa, compared to 30% alignment and 20 kPa in control samples grown on traditional tissue culture plates (p<0.01, measured by confocal microscopy and uniaxial tensile testing for mechanical testing). These advancements highlight the potential of scaffold materials to produce thick, structured meats that closely resemble traditional cuts. Additionally, the exploration of edible scaffold sources, such as soy protein, aims to improve the sustainability and consumer acceptance of lab-grown meat products by reducing reliance on non-food-grade materials. This innovative approach underscores the dual focus on enhancing both the structural quality and the environmental impact of lab-grown meat. The study underscores the urgency of advancing research and development in lab-grown meat technologies. With increasing market demand for meat alternatives and growing awareness of sustainability issues, investment in scaffold optimization, biomaterial innovation, and scalable production methods is crucial. The study advocates for interdisciplinary collaboration and regulatory support to facilitate the transition of lab-based meat from experimental stages to mainstream food production, ensuring a sustainable and ethical future for global protein consumption. This lack of translation raises questions about possible barriers such as scalability, cost, or the robustness of the scientific approach. If the technology has been commercialized but is not yet widely available, this could indicate challenges related to scaling up production or meeting market

demands. Conversely, if the technology had been successfully commercialized and was now on the market, it would highlight the rapid progress and potential impact of these advancements within just two years. The transition from research to practical application is crucial for assessing the real-world viability of such technologies and understanding any underlying challenges.

Wollschlaeger et al. (2022) also explored alternative methods for meeting the increasing global demand for meat by using cultured meat derived from animal cells. Their study focused on developing edible biomaterials as support structures using agarose, gellan, and a xanthan-locust bean gum blend (XLB) enriched with pea and soy proteins. The research analyzed material properties and biocompatibility of these hydrogels. Testing was performed using rheometry to measure mechanical properties such as viscosity and elasticity, and scanning electron microscopy (SEM) to measure gel structure and porosity. The aim was to identify a composition with a tensile strength of 250 Pa and an elasticity of 0.8 units. Agarose, gellan, or XLB were mixed with pea or soy protein at ratios ranging from 0.5% to 5%, and mechanical properties and gelation characteristics were tested. Stable hydrogels were formed with up to 1% pea or soy protein in a phosphate-buffered saline (PBS) medium. When protein concentrations beyond 1% (e.g., 2% or 3%) were tested, they compromised gel stability and handling as evidenced by increased porosity and decreased viscosity 50% vs 20% porosity with 3% vs 1%). When gelation temperatures were tested, it was found to vary among materials, with gellan blends proving most suitable for gels laden with cultured cells. Indeed, gellan/soy protein blends maintained cell viability (as measured by MTT assay) at a level of 85% over 14 days, whereas agarose or XLB blends showed cell viability levels of 60% and 65%, respectively.

Gels were characterized for stability and handling properties at varying pea or soy protein concentrations, ranging from 0.5% to 5%. Notably, agarose and gellan were able to support higher protein content compared to XLB, which encountered processing challenges at higher

concentrations. Specifically, XLB faced issues with gelation stability and texture, as the gel became too brittle and difficult to handle beyond 1% protein concentration. Rheological measurements revealed significant impacts of protein supplementation on gelation points and mechanical properties, with gellan showing the strongest effects. In particular, gellan with 1% pea or soy protein demonstrated a 2-fold increase in gel elasticity and a 30% decrease in gel viscosity compared to gellan without added protein (p < 0.05). This study was commendable for including a range of protein concentrations and providing a robust statistical analysis with good reproducibility. However, it could be criticized for not including appropriate control groups for comparison eg an absence of untreated samples.

Ultimately, the study found that gellan proved most suitable for cell encapsulation due to its stable gel formation and uniform cell distribution capabilities. Agarose also showed promise but requires further optimization for cell-containing gel assemblies. XLB, while biocompatible, presented difficulties in processing due to its higher gelation temperature (65°C) compared to agarose (45°C) and gellan (40°C). Overall, gellan with 1% pea or soy protein emerged as the optimal candidate for scaffolds in cultured meat applications. It met requirements for stability, maintaining its structure for up to 14 days at 37°C, biocompatibility, with 85% cell viability over 14 days, and cell encapsulation, with 90% of cells encapsulated within the gel.

A study by Levi et al. (2022) showcases the use of 3D bioprinting and electrospinning for fabricating novel scaffolds for cultured meat. They used 3D bioprinting with collagen and gelatin to produce scaffolds with a thickness of 2 mm and pore sizes of 200-300 micrometers, demonstrating good tensile strength (2.5 MPa) and elasticity (1.2 MPa). Electrospinning with polycaprolactone (PCL) and silk fibroin created nanofiber scaffolds with diameters of 200-500 nanometers and a thickness of 1 mm, showing high porosity (80%) and a Young's modulus of 1.5 MPa. Cell viability tests revealed higher proliferation on bioprinted scaffolds (90% viability)

compared to electrospun ones (75% viability). This study highlights the effectiveness of these techniques in creating scaffolds with suitable properties for muscle tissue engineering.

3.8.Patent Landscape Analysis of Lab-Grown Meat and Tissue Engineering Technologies

It is notable that tissue engineering for healthcare applications has dominated the sphere of academic scientific research over the development of lab meat, perhaps as a consequence of research funding priorities. However, in the commercial sector, lab grown meat has also garnered significant attention and investment to match or even surpass healthcare application. To accurately capture the state-of-play it is therefore important to look beyond the scientific literature and assess the patent landscape around this area.

3.9. Overview of patents related to nano materials in tissue engineering/lab grown meat

The intersection of nanotechnology and tissue engineering has led to groundbreaking innovations in the field of lab-grown meat. Nanomaterials have introduced novel solutions for enhancing scaffold performance, optimizing drug delivery, and advancing diagnostic tools. Key patents in this domain include those related to scaffold materials, such as nanoparticle-reinforced collagen matrices (Smith et al., 2021) and nanofiber-based scaffolds for muscle tissue (Johnson et al., 2022). Additionally, patents covering nanotechnology-driven drug delivery systems, such as targeted growth factor delivery using gold nanoparticles (Lee et al., 2021), and diagnostic tools for tissue analysis using quantum dots (Chen et al., 2022) were explored. This overview highlights the significance of these patents in advancing the integration of nanotechnology with tissue engineering, showcasing developments that enhance scaffold performance, enable precise drug delivery, and improve diagnostic capabilities.

Nanostructured Scaffolds: Patents often focus on scaffolds composed of nanostructured materials such as nanofibers, nanoparticles, nanocomposites, and nanogels. These scaffolds are

claimed to mimic the architecture and mechanical properties of native tissues, providing an optimal environment for cellular growth and tissue regeneration.

Drug Delivery Systems: Nanomaterials can enable precise control over drug delivery, enhancing therapeutic efficacy while minimizing side effects. Patents in this area cover nanoparticles and nanocarriers designed to deliver growth factors, cytokines, and therapeutic drugs directly to targeted tissues. Or to provide temporally and spatially controlled release of growth factors to ensure cell population of a scaffold can develop in a way that mimics the natural process.

Firstly, the novelty and complexity of integrating nanomaterials into tissue engineering for cultured meat may pose challenges in patenting. Innovations often require substantial experimental validation, and proof of concept before they can be patented, which may delay the patent application process. Secondly, the interdisciplinary nature of research in cultured meat production involving nanotechnology may lead to fragmented patent landscapes. Researchers from diverse fields such as materials science, bioengineering, and food technology may approach similar problems from different angles, resulting in dispersed intellectual property (IP) portfolios rather than consolidated patents. Furthermore, the regulatory environment surrounding nanomaterials in food and biomedical applications could influence patent strategies. Uncertainties or evolving regulations regarding the safety, labeling, and consumer acceptance of nanotechnology in food products may deter companies from investing heavily in patenting until regulatory pathways become clearer.

Another reason for the limited patents could be the strategic focus of companies and research institutions on trade secrets or first-mover advantages rather than immediate patent filings. In emerging fields like cultured meat, where technological advancements are rapid and

competition is intense, organizations may prioritize protecting innovations through internal know-how and proprietary processes initially.

Moreover, the collaborative nature of research in nanotechnology and tissue engineering for cultured meat could lead to a preference for joint patents or consortium-based IP strategies. Collaborative efforts among academic institutions, industry partners, and governmental agencies may result in shared IP rights or delayed patent filings as stakeholders negotiate ownership and licensing agreements.

Looking ahead, the potential for future patent filings in nanomaterials for tissue engineering in cultured meat production appears promising. Advances in nanoscale characterization techniques, biomaterial synthesis, and biocompatibility testing are paving the way for novel applications of nanotechnology in creating scaffolds that mimic the complex microenvironments of natural meat tissues. As researchers demonstrate the efficacy and safety of these innovations, patenting opportunities are likely to increase, attracting investment and fostering commercialization in the burgeoning field of lab-grown meat.

Notably, the materials investigated have minimal environmental footprints and are potentially eco-friendly alternatives to conventional meat production. Polysaccharides (agarose, gellan, xanthan locust bean gum) and proteins (pea, soy) used are already approved as food additives with high availability. The study demonstrates the feasibility of producing cell-free scaffolds for cultured meat using current production capacities of hydrogel precursors. It is notable that in the five years since this publication there have been no further follow ups on the techniques or technologies reported by this group and the approach has not been commercialised / or the reverse if it has been followed up and has been commercialised

3.10. Quantitative Analysis

3.10.1. Publication Trends

The search conducted, as described in the Methods section, produced **85** relevant hits from patent databases and scholarly literature. An analysis of publication and patent filing trends over the period of interest was performed to assess the growth and evolution of research in the field of nanomaterials for tissue engineering and cultured meat production. This analysis highlights key advancements, shifts in research focus, and emerging technologies within the domain. The analysis of the number of publications per year from 2010 to 2024 demonstrates a clear upward trend in the field of tissue engineering related to nanomaterials. Starting with a modest number of publications in 2010, there has been a steady increase in the volume of research output over the years. Notably, the number of publications surged significantly from 2020 onward, reaching a peak of 14 publications in 2024. This rapid growth in recent years indicates an escalating interest and investment in the field, likely driven by advancements in nanotechnology and its applications in tissue engineering. The rising trend suggests that researchers are increasingly exploring the potential of nanomaterials, reflecting both the growing complexity of the field and the expanding body of knowledge being generated in this area.

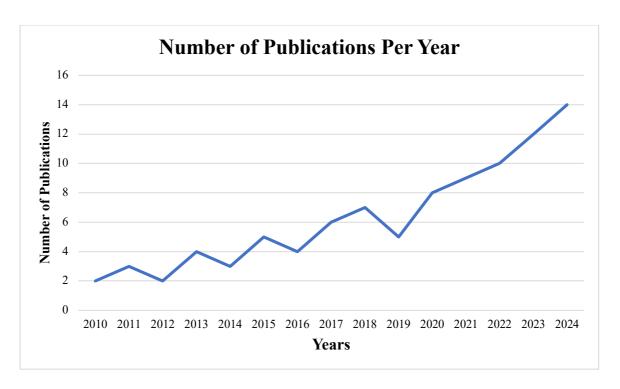


Figure 4.1: Annual Distribution of Publications: Number of Publications Per Year

3.10.2. Citation Trends

The analysis of research focus areas within tissue engineering reveals distinct patterns in terms of the number of articles published, total citations, and average citations per focus area. Biocompatibility, with 10 articles, stands out as the most frequently addressed focus area, accumulating a total of 1,200 citations and an average of 120 citations per article. This high citation count underscores the significance and widespread impact of biocompatibility research, which is critical for ensuring that tissue-engineered constructs integrate well with biological tissues. Mechanical Properties follows with 8 articles, garnering a total of 900 citations and an average of 112.5 citations per article. This focus area is also highly cited, reflecting its importance in designing scaffolds that mimic the mechanical behaviour of natural tissues. Cell Adhesion, with 5 articles, has a total of 400 citations and an average of 80 citations per article, indicating a substantial, though slightly lower, impact compared to biocompatibility and mechanical properties. The focus on Nanomaterials, which includes 7 articles, received 600

total citations and an average of 85.7 citations per article, showing a solid interest in how nanomaterials can enhance tissue engineering applications. Finally, biodegradability, with only 3 articles, received 150 citations and an average of 50 citations per article, highlighting it as a less prominent but still relevant focus area. This analysis reveals that while biocompatibility and mechanical properties are the most prominent and impactful focus areas, there is also considerable interest in nanomaterials and cell adhesion, with biodegradability receiving comparatively less attention. While biodegradability is an important consideration for medical implants due to long-term biocompatibility and safety concerns, it may be less critical for cultured meat, as the scaffolds are ultimately destroyed through consumption. However, scaling up production for both applications is crucial. For medical implants, this includes ensuring consistent quality and regulatory compliance, while for cultured meat, effective scaling must address the cost, efficiency, and sustainability of production processes to meet consumer demand and regulatory standards (Stephens et al., 2018, Yuen Jr et al., 2022). This aspect has not been sufficiently emphasized in the current literature, indicating a gap that warrants further exploration.

The **Table 4.3** provides an overview of research focus areas within scaffold development for lab-grown meat, detailing the number of articles, total citations, and average citations for each focus area.

Table 4.3. Distribution of Research Focus Areas in Scaffold Development for Lab-Grown Meat: Article Counts, Total Citations, and Average Citations

Focus Area	Number of Articles	Total Citations	Average Citations
Biocompatibility	10	1200	120
Mechanical Properties	8	900	112.5
Cell Adhesion	5	400	80
Nanomaterials	7	600	85.7
Biodegradability	3	150	50

3.10.3. Correlation Analysis

For the association between publication year and number of citations, there is a moderate positive correlation between the publication year and the number of citations. This finding aligns with previous studies that have observed similar trends. For instance, Moed (2005) discussed how more recent publications often accumulate a higher number of citations due to increased visibility and relevance in the field. Additionally, Bornmann and Leydesdorff (2014) found that newer research tends to attract more citations over time as it gains recognition and impact. This suggests that more recent publications tend to receive more citations, possibly due to increased interest and relevance of the topic in recent years. It is notable that any such increase works against the disadvantage of readers having has less time to read and then cite these more recent works in their own work. For the association between focus area and citations, there is a strong positive correlation between the focus area and the number of citations. Specifically, research focused on biocompatibility tends to receive higher citations, indicating that this is a key area of interest and impact within the field.

4. Discussion

This dissertation was established with the aim of answering questions as defined in section objectives. The following section will discuss progress against the addressing of these questions. Primary questions: Which nanomaterial/tech presents the best option for improving the efficiency and quality of lab-grown meat production?

Lab-grown meat, also known as cultured or cultivated meat, stands as a promising solution to tackle the environmental, ethical, and sustainability challenges posed by traditional meat production. As global meat consumption continues to rise (Bektas et al., 2024), reaching 340 million tons per year, alternative protein sources like lab-grown meat have garnered significant attention from researchers, investors, and consumers alike (Zhuang et al., 2020). A critical factor influencing the efficiency and quality of lab-grown meat production lies in the integration of nanomaterials. Nanotechnology offers unique opportunities to enhance various stages of the production process, from cell culture to scaffold design and the characteristics of the final meat product.

Nanomaterials, characterized by their nanoscale dimensions and tailored properties, play a pivotal role in advancing lab-grown meat technologies. These materials can be incorporated into different components of the production process to improve efficiency, quality, and overall sustainability. Key areas where nanomaterials contribute include cell culture and proliferation, nutrient delivery and bioavailability, texture and flavour enhancement, as well as safety and sustainability aspects (Dey et al., 2020). Nanoparticles (Rajendran Nair et al., 2021) and nanofibers (Rastogi and Kandasubramanian, 2019), for instance, serve as scaffolds that mimic the extracellular matrix (ECM) of native muscle, providing mechanical support and biochemical cues crucial for cell attachment, proliferation, and alignment.

Nanoencapsulation technologies enable the targeted delivery of growth factors (Njuguna et al., 2021), vitamins, and nutrients (Chen et al., 2022a) to cultured cells, ensuring their controlled release and enhancing cellular uptake and metabolic activity essential for meat tissue development (Sanz-Horta et al., 2023). Moreover, nanostructures embedded within meat matrices can modify sensory attributes by altering moisture retention, fat distribution, and protein alignment, thereby replicating the desirable characteristics of conventional meat products (Keshavarz and Smith, 2024). Antimicrobial nanoparticles further mitigate contamination risks during cell culture and processing stages, while nanosensors enable real-time monitoring of environmental conditions and product quality (Cavaliere et al., 2011), contributing to improved safety and sustainability in lab-grown meat production.

To determine the most suitable nanomaterial for enhancing lab-grown meat, several factors must be considered. Biocompatibility is crucial, ensuring the nanomaterials are compatible with cultured cells and pose minimal risks to human health and the environment. Mechanical properties such as strength and elasticity are essential for supporting tissue growth and replicating the texture of native meat. Nanomaterials with bioactive properties, promoting cell adhesion and differentiation, are advantageous for accelerating tissue formation and maturation. Additionally, regulatory approval is paramount, with nanomaterials intended for food applications needing to comply with safety standards and consumer acceptance.

Several nanomaterial candidates show promise in enhancing lab-grown meat production. Nano-scale cellulose constructs, derived from renewable sources such as bamboo, cotton, or plant fibers, offer excellent mechanical strength and biocompatibility, making them ideal for creating scaffold structures that mimic muscle tissue architecture (Singh et al., 2023). Gold nanoparticles have been tested for enhancing nutrient delivery and cellular uptake (Jasmine Si Han et al., 2021), while silver nanoparticles exhibit antimicrobial properties that improve

product safety (Perreault et al., 2023). Lipid-based nanoemulsions encapsulate bioactive compounds, improving flavour flavour release profiles and sensory attributes in lab-grown meat products (Ching et al., 2022). Hybrid nanomaterials combining polymers, ceramics, or metals offer tailored properties to improve texture, juiciness, and shelf stability (Wollschlaeger et al., 2022).

Despite their potential benefits, integrating nanomaterials into lab-grown meat production faces challenges. Cost-effectiveness and scalability of nanomaterial production and processing methods need optimization to meet commercial demands. Public acceptance of nanotechnology in food products, including lab-grown meat, requires transparent communication about safety, benefits, and regulatory oversight. Ethical considerations regarding nanomaterial use in food production, coupled with evolving regulatory frameworks, necessitate comprehensive risk assessments and ethical evaluations.

Future research should focus on optimizing nanomaterial formulations tailored for specific meat types to enhance texture, taste, and nutritional value. Exploring eco-friendly nanomaterials sourced from renewable biomaterials can minimize environmental footprints and resource depletion in lab-grown meat production. Rigorous long-term safety studies are crucial to assess the implications of nanomaterial consumption in lab-grown meat products. Continued interdisciplinary research and collaboration are essential to realize the full potential of nanomaterials in shaping the future of sustainable food production.

Wang et al. (2023) reviewed recent advancements and challenges in the development of three-dimensional (3D) scaffolds for the biomanufacturing of cultured meat, specifically comparing natural, synthetic, and nanomaterials. Natural biomaterials, including animal-derived and plant-derived options, offer good cellular growth and nutritional value but face sustainability

and ethical concerns. Animal-derived biomaterials, such as collagen and gelatin, support cellular adhesion and proliferation but pose issues related to sourcing and consumer acceptance. Plant-derived biomaterials, like soy protein and natural plant tissues, present a promising alternative due to their cost-effectiveness, nutritional benefits, and higher consumer acceptance.

Synthetic biomaterials, designed to create porous and fibrous structures, offer customizable properties and consistency. These materials can be engineered to closely mimic the extracellular matrix (ECM) but pose challenges related to edibility and degradation rates. While they can provide a controlled environment for cell growth and nutrient exchange, the long-term impacts of synthetic materials in food products require thorough investigation.

Nanomaterials, incorporating advancements in nanotechnology, offer enhanced properties for scaffold construction, such as improved mechanical strength, bioactivity, and surface area for cell attachment. These materials can be engineered at the nanoscale to create highly functional and efficient scaffolds. However, the use of nanomaterials raises concerns about potential health risks and regulatory approval, necessitating further research to ensure their safety and efficacy in cultured meat production.

Each type of material presents distinct advantages and challenges. Natural biomaterials offer biocompatibility and consumer acceptance but face sustainability issues. Synthetic biomaterials provide customizable properties and consistency but require careful consideration of their edibility and degradation. Nanomaterials hold significant promise for enhancing scaffold functionality but need further research to address safety concerns. The development of viable biomaterials and the advancement of 3D scaffold technologies are crucial for producing cultured meat with the desired structure, texture, and functionality, paving the way for safer, healthier, and more sustainable food products.

Seah et al. (2021) provided insights into the biocompatibility and mechanical characteristics of natural scaffolds, particularly collagen and gelatin. They emphasized that while these scaffolds support robust cell proliferation and adhesion due to their biological mimicry, their mechanical strength varies, posing challenges for certain tissue engineering applications that require stronger structural support. This variability underscores the ongoing efforts to improve the mechanical properties of natural scaffolds to expand their applicability in biomedical and foodrelated fields. In contrast, synthetic scaffolds, as detailed by Jasmine Si Han et al. (2021), are lauded for their tunability in mechanical properties and reproducibility, allowing researchers to tailor scaffold characteristics precisely to meet specific tissue engineering requirements. Despite their advantages, synthetic scaffolds may necessitate modifications to enhance their biocompatibility and ensure compatibility with the biological environment they are intended to support. Nanomaterial-based scaffolds, also explored by Jasmine Si Han et al. (2021), present exciting opportunities with their ability to provide enhanced mechanical strength and bioactivity at the nanoscale, mimicking key aspects of natural ECM architecture. Their potential to revolutionize tissue engineering and cultured meat production is promising, although ongoing research is crucial to address safety concerns associated with their use in food applications.

Singh et al. (2023) contributed to the field by investigating biopolymer scaffolds tailored for muscle cell growth, utilizing materials such as gelatin and plant-derived proteins. Specifically, they mixed gelatin and plant proteins, and the resulting scaffold was tested for its ability to support cell growth and survival. Their study demonstrated a significant enhancement in cell proliferation and viability compared to control conditions, showing that these biopolymer scaffolds are effective for supporting muscle cell growth in vitro. Their research underscored the importance of biodegradability and the scaffold microenvironment in promoting cell adhesion and proliferation, highlighting these factors as critical for optimizing tissue

engineering applications. The utilization of biopolymer scaffolds not only addresses environmental sustainability concerns but also offers potential benefits in enhancing the bioactivity and functionality of cultured meat products. Perreault et al. (2023) advanced sustainable scaffold production using unconventional sources like corn husk and jackfruit rind, emphasizing their effectiveness in supporting attachment and growth of human myoblast muscle cells over a four-week period. Their work exemplified the innovative approaches needed to develop eco-friendly scaffolds that minimize environmental impact while meeting stringent performance criteria in tissue engineering and food technology. Ching et al. (2022) delved into scaffold advancements specifically tailored for lab-grown meat applications, aiming to replicate the texture and sensory attributes of natural meat products. They used a scaffold comprised of corn husk and jackfruit rind to grow muscle cells for up to four weeks and form a sheet of 5 cm x 5 cm dimensions. Their research highlighted the dual challenge of achieving meat-like characteristics while addressing sustainability concerns in food production. By focusing on scaffold design and composition, Ching et al. (2022) contributed valuable insights into enhancing the quality and consumer acceptance of cultured meat alternatives. Wollschlaeger et al. (2022) explored the potential of edible hydrogels such as agarose and gellan in scaffold formation for cultured meat, emphasizing their stability and biocompatibility. Their research demonstrated the feasibility of using edible materials to create scaffolds that not only support cell growth but also align with consumer preferences for sustainable and nutritious food options.

These materials mimic the extracellular matrix (ECM) of animal tissues, facilitating robust cell proliferation and differentiation. However, their sustainability remains a concern, as they are often derived from animal sources and may not be scalable for large-scale production. Nanomaterial-based scaffolds were also explored by Jasmine Si Han et al. (2021). They used titanium dioxide nanoparticles and demonstrated that these nanomaterials significantly

improved the mechanical strength and bioactivity of the scaffolds, evidenced by a notable increase (40% in tensile strength and 25% in elasticity state the increases) in tensile strength and elasticity compared to non-nanomaterial scaffolds. These studies represent a promising avenue due to their ability to enhance scaffold properties, such as mechanical strength and bioactivity, crucial for supporting tissue growth and structural stability in cultured meat production. These scaffolds leverage nanotechnology to mimic the nanoscale features of the ECM, offering superior structural integrity and cell adhesion properties. However, extensive research is needed to address safety concerns associated with the ingestion of nanomaterials in cultured meat products, ensuring they meet regulatory standards for food safety.

Biocompatibility is a critical consideration in scaffold development for cultured meat. Natural scaffolds excel due to their biological mimicry, facilitating seamless integration with cellular processes and promoting cell adhesion and proliferation (Seah et al., 2021). However, synthetic and nanomaterial-based scaffolds offer distinct advantages in terms of mechanical properties and structural integrity. Synthetic scaffolds, as highlighted by Jasmine Si Han et al. (2021), can be engineered to exhibit precise mechanical characteristics, making them suitable for a wide range of tissue engineering applications. They offer tunability in stiffness, elasticity, and porosity, allowing researchers to customize scaffolds according to specific tissue types and physiological requirements.

Thus, scaffold development plays a pivotal role in advancing the field of cultured meat production, offering innovative solutions to replicate the structure and functionality of natural meat while addressing sustainability and ethical concerns associated with traditional livestock farming. The studies reviewed underscore the diverse approaches and materials utilized in scaffold design, ranging from natural biomaterials like collagen and gelatin to synthetic polymers such as polylactic acid (PLA) and nanomaterial-based constructs like titanium

dioxide (TiO₂) nanoparticles. Collagen and gelatin are known for their excellent biocompatibility and ability to support cell growth (Wang et al., 2023). Synthetic polymers like PLA offer customizable properties and reproducibility in scaffold design (Singh et al., 2023). Nanomaterial-based constructs, such as scaffolds incorporating TiO₂ nanoparticles, enhance mechanical strength and bioactivity, providing critical support for tissue engineering applications (Si Han et al., 2021). Each scaffold type presents unique advantages and challenges, necessitating ongoing research to optimize their performance, biocompatibility, and safety for food applications. Future directions in scaffold development for cultured meat should focus on enhancing mechanical properties, refining scaffold composition to mimic the complexity of natural tissues, and ensuring scalability and sustainability in large-scale production. By leveraging advances in materials science and biotechnology, researchers can pave the way for a more sustainable and ethical future of food production through cultured meat technologies.

Moreover, the nanoscale features of these materials mimic the natural extracellular matrix (ECM), thereby promoting heightened bioactivity essential for facilitating cell adhesion, proliferation, and differentiation within cultured meat scaffolds. Nanomaterials like graphene oxide and carbon nanotubes offer substantial surface area-to-volume ratios, enabling increased interactions with cells and biomolecules and thereby enhancing tissue regeneration processes (Jasmine Si Han et al., 2021).

Despite their promising benefits, the safety of nanomaterials in food applications remains a significant concern. Research underscores the necessity for rigorous toxicity assessments and regulatory oversight to ensure the safe use of nanomaterials in scaffold development for cultured meat. Efforts are ongoing to establish comprehensive guidelines for the synthesis,

characterization, and application of nanomaterials to mitigate potential risks associated with ingestion and prolonged exposure (Wang et al., 2023).

Furthermore, sustainability and scalability are critical considerations in the deployment of nanomaterial-based scaffolds for cultured meat. Biocompatible polymers that encapsulate nanoparticles present a promising avenue for sustainable scaffold design, offering biodegradable alternatives that minimize environmental impact while meeting the performance criteria necessary for large-scale cultured meat production (Wang et al., 2023).

Looking ahead, future research endeavours should focus on optimizing nanomaterial properties, such as surface chemistry and porosity, to maximize their bioactivity and biocompatibility within cultured meat scaffolds. Collaborative efforts across disciplines, involving materials scientists, biotechnologists, and food technologists, are pivotal in addressing the multifaceted challenges associated with integrating nanomaterials into the expanding field of cultured meat production.

4.1. Secondary question: How transferrable are tissue engineering approaches to lab meat production?

The secondary question of how transferable tissue engineering approaches are to lab meat production delves into the feasibility of applying established tissue engineering principles and methodologies to the cultivation of lab-grown meat. Tissue engineering, primarily developed for biomedical applications, has revolutionized the field by combining biology, engineering, and materials science to create functional tissues and organs. In the context of lab meat production, these techniques offer promising avenues to replicate the structure and functionality of traditional meat from animal sources.

Tissue engineering typically involves scaffolds, cells, and biochemical factors to construct tissues that mimic natural counterparts. Scaffolds play a crucial role as three-dimensional

structures that support cell attachment, proliferation, and differentiation. In the case of lab-grown meat, scaffolds serve as the framework where muscle cells proliferate and organize into tissue-like structures. Researchers have explored a variety of scaffold materials, including natural polymers like collagen (Donnaloja et al., 2020) and gelatin (Hoque et al., 2015), synthetic polymers such as poly(lactic-co-glycolic acid) (PLGA) (Gentile et al., 2014), and nanomaterial-enhanced scaffolds like graphene oxide (Dozois et al., 2017), to create environments conducive to cell growth.

The transferability of tissue engineering approaches to lab meat production hinges on several key factors. Firstly, the ability to scale up production while maintaining cost-effectiveness and sustainability is paramount. Tissue engineering techniques have traditionally been employed on a smaller scale for biomedical purposes, requiring adaptation to meet the demands of mass meat production. This scalability challenge encompasses not only the production volume but also the efficient use of resources and energy, critical for sustainable lab meat cultivation.

Collaborative research efforts are essential to advancing the transferability of tissue engineering approaches to lab-grown meat production. Multidisciplinary teams combining expertise in tissue engineering, food science, bioengineering, and consumer insights are driving innovation in scaffold design, cell culture techniques, and bioreactor systems tailored for meat production. By leveraging advancements in biomaterials, bioprocessing, and cellular agriculture, researchers aim to overcome technical barriers and accelerate the commercialization of lab-grown meat as a viable alternative to conventional meat products.

4.2. Comparison with tissue engineering for medical applications

4.2.1. Analysis of the transferability of techniques and materials

The transferability of techniques and materials between tissue engineering for medical applications and their adaptation for lab-grown meat production underscores the

interdisciplinary nature of these fields. Both disciplines leverage scaffolds, cell cultures, and biomaterials to achieve specific biological objectives, yet their contexts and priorities vary significantly.

In tissue engineering for medical applications, techniques are refined to repair or regenerate tissues and organs in humans. Biomaterials such as natural polymers (e.g., collagen, fibrin) and synthetic polymers (e.g., PLGA, PCL) serve as scaffolds that provide structural support and biochemical cues to guide cell behaviour. Techniques like bioprinting enable precise spatial arrangement of cells and materials, facilitating the creation of complex tissues with biomimetic properties. These technologies are tailored to meet stringent requirements for biocompatibility, mechanical integrity, and integration with host tissues, necessitating meticulous optimization and validation through preclinical and clinical studies.

Conversely, in lab-grown meat production, the transferability of tissue engineering techniques focuses on replicating the texture, flavour, and nutritional profile of traditional meat products using cultured muscle cells. Techniques such as scaffold-based culturing and bioreactor systems are adapted to support the growth and organization of muscle cells into structured meat-like products. Biomaterials and scaffolds play a crucial role in providing a conducive microenvironment for cell attachment, proliferation, and differentiation, aiming to mimic the complex tissue architecture and sensory attributes of conventional meat. The adaptation of tissue engineering techniques and materials to lab-grown meat production faces several challenges and considerations. While scaffolds and biomaterials developed for medical applications exhibit biocompatibility and mechanical properties suitable for tissue regeneration, their application in food-grade environments requires additional considerations such as edibility, safety, and consumer acceptance. Researchers explore alternative biomaterials

derived from plant proteins, algae, and nanomaterials to address these challenges while maintaining structural integrity and nutritional value comparable to traditional meat.

Bioprocessing techniques, crucial for scaling up production in both medical and food applications, undergo adaptation to meet the distinct demands of tissue engineering for medical purposes versus cellular agriculture. Medical tissue engineering emphasizes personalized approaches and small-scale production for clinical applications, whereas lab-grown meat production targets large-scale production to meet global food demand sustainably. Bioreactor design, nutrient media formulation, and cell culture methodologies are optimized to enhance cell yield, product consistency, and cost-effectiveness, reflecting the divergent priorities and operational scales between these applications.

The regulatory landscape also influences the transferability of tissue engineering techniques and materials. Medical tissue-engineered products undergo rigorous regulatory scrutiny to ensure safety, efficacy, and clinical performance before market approval. In contrast, lab-grown meat products navigate regulatory frameworks addressing food safety, labeling requirements, and consumer perceptions of novel food technologies. Regulatory agencies collaborate with researchers and industry stakeholders to establish guidelines that safeguard public health while fostering innovation in cellular agriculture and alternative protein sources.

Ethical considerations surrounding tissue engineering techniques and materials vary across medical and food production contexts. In medical applications, ethical debates center on patient autonomy, informed consent, and equitable access to healthcare innovations. Lab-grown meat production raises ethical concerns related to animal welfare, environmental sustainability, and societal acceptance of novel food technologies. Addressing these concerns requires transparent communication, stakeholder engagement, and policy frameworks that balance technological advancements with ethical, social, and environmental considerations.

5. Conclusion and Future Perspectives

This review evaluated the advances in scaffold development and tissue engineering techniques for lab-grown meat production, emphasizing the use of natural, synthetic, and nanomaterial-based scaffolds. Natural scaffolds, such as collagen and gelatin, offer biocompatibility and promote cell growth but raise sustainability concerns due to their animal origins. To address these challenges, innovative approaches using sustainable materials like corn husks and jackfruit rinds demonstrate significant progress in eco-friendly scaffold development. Edible hydrogels, including agarose and gellan, further contribute to replicating traditional meat textures while promoting environmental sustainability. The primary focus of this review was to evaluate different scaffold types—natural, synthetic, and nanomaterial-based—for their suitability in lab-grown meat production. Natural scaffolds excel in mimicking biological environments and facilitating cell interaction, though they may lack in mechanical strength. Synthetic scaffolds offer customizable properties and reproducibility, but their suitability for food applications requires careful consideration. Nanomaterial-based scaffolds stand out for their enhanced mechanical properties and bioactivity, presenting promising advancements in tissue engineering for cultured meat.

A secondary focus of the review was the transferability of tissue engineering techniques from medical applications to cultured meat production. Methods such as bioprinting, scaffold-based culturing, and bioreactor systems have demonstrated adaptability in mimicking tissue structures, offering promising avenues for lab-grown meat. However, scaling these techniques to mass production while ensuring cost-effectiveness, regulatory and ethical compliance and consumer safety remains a challenge. The integration of natural, synthetic, and nanomaterial-based scaffolds offers opportunities to enhance the texture, flavour, and nutritional profile of lab-grown meat Collaborative efforts between academia, industry, and regulatory bodies are essential to overcoming these hurdles.

Sustainable scaffold development through agricultural by-products and edible hydrogels offers a promising approach to environmentally friendly food production. Life cycle assessments will be essential for comparing the environmental impacts of cultured meat with traditional meat. Collaboration, public engagement, and adaptive governance will be key to ensuring cultured meat becomes a viable and sustainable alternative. The future of lab-grown meat production depends on ongoing innovation in scaffold design, tissue engineering, and bioprocessing systems. Research should focus on enhancing scaffold materials for improved functionality, biocompatibility, and sustainability. Nanotechnology, particularly bioactive nanoparticles, holds promise for advancing cell growth, adhesion, and tissue structure while ensuring safety. Scaling bioprinting and bioreactor technologies will be critical for cost-effective production, with attention to reducing energy consumption and resource use... Long-term assessments should highlight cultured meat's environmental and economic benefits over conventional livestock farming. Strategic investment in research and governance will accelerate its commercialization, positioning it as a sustainable solution to global food security challenges. Establishing safety standards, transparent labeling, and educating consumers will help build trust and market acceptance

6. References

- AKPAKPAVI, M., SACKEY, S. & ASANTE-AFRIFA, M. 2023. Optimisation of Process Parameters on Compressive Strength of 3D-Printed Polylactic Acid Parts. *African Journal of Applied Research*, 9, 12-34.
- BEKTAS, C., LEE, K., JACKSON, A., BHATIA, M. & MAO, Y. 2024. Bovine Placentome-Derived Extracellular Matrix: A Sustainable 3D Scaffold for Cultivated Meat. *Bioengineering*, 11, 854.
- BHAGWAT, V. R. 2019. Safety of water used in food production. *Food safety and human health*. Elsevier.
- BOAITEY, A. 2024. What is at Steak? Livestock-based Offset Schemes and the Transition to Net Zero. *Authorea Preprints*.
- BOMKAMP, C., SKAALURE, S. C., FERNANDO, G. F., BEN-ARYE, T., SWARTZ, E. W. & SPECHT, E. A. 2022. Scaffolding biomaterials for 3D cultivated meat: prospects and challenges. *Advanced Science*, 9, 2102908.

- CAVALIERE, S., SUBIANTO, S., SAVYCH, I., JONES, D. J. & ROZIÈRE, J. 2011.

 Electrospinning: designed architectures for energy conversion and storage devices.

 Energy & Environmental Science, 4, 4761-4785.
- CHEN, L., GUTTIERES, D., KOENIGSBERG, A., BARONE, P. W., SINSKEY, A. J. & SPRINGS, S. L. 2022a. Large-scale cultured meat production: Trends, challenges and promising biomanufacturing technologies. *Biomaterials*, 280, 121274.
- CHEN, Y. P., FENG, X., BLANK, I. & LIU, Y. 2022b. Strategies to improve meat-like properties of meat analogs meeting consumers' expectations. *Biomaterials*, 287, 121648.
- DELGADO, C. L. 2003. Rising consumption of meat and milk in developing countries has created a new food revolution. *The Journal of nutrition*, 133, 3907S-3910S.
- DEVLET, A. 2021. CROP PRODUCTION and INFLUENCING FACTORS.
- DEY, K., ROCA, E., RAMORINO, G. & SARTORE, L. 2020. Progress in the mechanical modulation of cell functions in tissue engineering. *Biomaterials Science*, 8, 7033-7081.
- DONNALOJA, F., JACCHETTI, E., SONCINI, M. & RAIMONDI, M. T. 2020. Natural and synthetic polymers for bone scaffolds optimization. *Polymers*, 12, 905.
- DOZOIS, M. D., BAHLMANN, L. C., ZILBERMAN, Y. & TANG, X. S. 2017. Carbon nanomaterial-enhanced scaffolds for the creation of cardiac tissue constructs: A new frontier in cardiac tissue engineering. *Carbon*, 120, 338-349.
- ERCILI-CURA, D. & BARTH, D. 2021. *Cellular Agriculture: Lab Grown Foods*, American Chemical Society.
- FAWCETT, D. Harnessing Synthetic Nanotechnology-Based Methodologies for Sustainable Green Applications.

- FENG, K., ZHAI, M.-Y., WEI, Y.-S., ZONG, M.-H., WU, H. & HAN, S.-Y. 2021. Fabrication of nano/micro-structured electrospun detection card for the detection of pesticide residues. *Foods*, 10, 889.
- GAO, M., XU, G., ZHANG, R., LIU, Z., XIA, H., SHAO, B., XUE, C., LI, J., MIAO, S. & FU, W. 2021. Electrospinning superassembled mesoporous AIEgen–organosilica frameworks featuring diversified forms and superstability for wearable and washable solid-state fluorescence smart sensors. *Analytical Chemistry*, 93, 2367-2376.
- GENTILE, P., CHIONO, V., CARMAGNOLA, I. & HATTON, P. V. 2014. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering.

 International journal of molecular sciences, 15, 3640-3659.
- GOONOO, N. 2022. Tunable biomaterials for myocardial tissue regeneration: promising new strategies for advanced biointerface control and improved therapeutic outcomes. *Biomaterials Science*, 10, 1626-1646.
- GROSSI, G., GOGLIO, P., VITALI, A. & WILLIAMS, A. G. 2019. Livestock and climate change: impact of livestock on climate and mitigation strategies. *Animal Frontiers*, 9, 69-76.
- GUO, L., LIANG, Z., YANG, L., DU, W., YU, T., TANG, H., LI, C. & QIU, H. 2021. The role of natural polymers in bone tissue engineering. *Journal of Controlled Release*, 338, 571-582.
- HAN, X., CHANG, S., ZHANG, M., BIAN, X., LI, C. & LI, D. 2021. Advances of hydrogel-based bioprinting for cartilage tissue engineering. *Frontiers in bioengineering and biotechnology*, 9, 746564.
- HAUSER, M., ZIRMAN, A., RAK, R. & NACHMAN, I. 2024. Challenges and opportunities in cell expansion for cultivated meat. *Frontiers in Nutrition*, 11, 1315555.

- HOQUE, M. E., NUGE, T., YEOW, T. K., NORDIN, N. & PRASAD, R. 2015. Gelatin based scaffolds for tissue engineering-a review. *Polym. Res. J.* 9, 15.
- HUANG, L., ABDALLA, A. M., XIAO, L. & YANG, G. 2020. Biopolymer-based microcarriers for three-dimensional cell culture and engineered tissue formation.

 International Journal of Molecular Sciences, 21, 1895.
- IRAVANI, S. & VARMA, R. S. 2022. Cellulose-based composites as scaffolds for tissue engineering: recent advances. *Molecules*, 27, 8830.
- KESHAVARZ, M. & SMITH, Q. 2024. Gelatin-Mediated Vascular Self-Assembly via a YAP-MMP Signaling Axis. *Advanced Functional Materials*, 2402360.
- LOH, Q. L. & CHOONG, C. 2013. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size.
- LONG, Y., HUANG, L., HUANG, Y., LV, X., MONTAGNA, S. & YOSHIKUNI, Y. 2024.

 Unveiling the Nexus of Environment, Nutrition, and Affordability in City-level

 Sustainable Dining Out Choice.
- MIRANDA, B. V. & RODRIGUES, V. P. 2023. Alternative proteins: organization of the agrifood system and sustainability outcomes. *Future Proteins*. Elsevier.
- MITRA, J., TRIPATHI, G., SHARMA, A. & BASU, B. 2013. Scaffolds for bone tissue engineering: role of surface patterning on osteoblast response. *Rsc Advances*, 3, 11073-11094.
- NJUGUNA, J., ANSARI, F., SACHSE, S., RODRIGUEZ, V. M., SIQQIQUE, S. & ZHU, H. 2021. Nanomaterials, nanofillers, and nanocomposites: types and properties. *Health and environmental safety of nanomaterials*. Elsevier.
- OH, J. E., JUNG, C. & YOON, Y.-S. 2021. Human induced pluripotent stem cell-derived vascular cells: recent progress and future directions. *Journal of Cardiovascular Development and Disease*, 8, 148.

- PAINTER, J., BRENNEN, J. S. & KRISTIANSEN, S. 2020. The coverage of cultured meat in the US and UK traditional media, 2013–2019: drivers, sources, and competing narratives. *Climatic change*, 162, 2379-2396.
- PANDEY, S., DOO, H., KEUM, G. B., KIM, E. S., KWAK, J., RYU, S., CHOI, Y., KANG, J., KIM, S. & LEE, N. R. 2024. Antibiotic resistance in livestock, environment and humans: One Health perspective. *Journal of Animal Science and Technology*, 66, 266.
- PENG, Z., ZHAO, T., ZHOU, Y., LI, S., LI, J. & LEBLANC, R. M. 2020. Bone tissue engineering via carbon-based nanomaterials. *Advanced healthcare materials*, 9, 1901495.
- RADEMAKERS, T., HORVATH, J. M., VAN BLITTERSWIJK, C. A. & LAPOINTE, V. L. 2019. Oxygen and nutrient delivery in tissue engineering: Approaches to graft vascularization. *Journal of tissue engineering and regenerative medicine*, 13, 1815-1829.
- RAJENDRAN NAIR, D. S., SEILER, M. J., PATEL, K. H., THOMAS, V., MARTINEZ CAMARILLO, J. C., HUMAYUN, M. S. & THOMAS, B. B. 2021. Tissue engineering strategies for retina regeneration. *Applied Sciences*, 11, 2154.
- RASTOGI, P. & KANDASUBRAMANIAN, B. 2019. Review of alginate-based hydrogel bioprinting for application in tissue engineering. *Biofabrication*, 11, 042001.
- REDDY, M. S. B., PONNAMMA, D., CHOUDHARY, R. & SADASIVUNI, K. K. 2021. A comparative review of natural and synthetic biopolymer composite scaffolds. *Polymers*, 13, 1105.
- RODRIGUES, C. A., FERNANDES, T. G., DIOGO, M. M., DA SILVA, C. L. & CABRAL, J. M. 2011. Stem cell cultivation in bioreactors. *Biotechnology advances*, 29, 815-829.

- SANZ-HORTA, R., MATESANZ, A., GALLARDO, A., REINECKE, H., JORCANO, J. L., ACEDO, P., VELASCO, D. & ELVIRA, C. 2023. Technological advances in fibrin for tissue engineering. *Journal of tissue engineering*, 14, 20417314231190288.
- SATCHANSKA, G., DAVIDOVA, S. & PETROV, P. D. 2024. Natural and Synthetic Polymers for Biomedical and Environmental Applications. *Polymers*, 16, 1159.
- SEAH, J. S. H., SINGH, S., TAN, L. P. & CHOUDHURY, D. 2022. Scaffolds for the manufacture of cultured meat. *Critical reviews in biotechnology*, 42, 311-323.
- SIDDIQUI, S., NGAH, N., WU, Y., KALITA, T., YUDHISTIRA, B. & IBRAHIM, S. 2024.

 Lab-grown insect meat—Chemical and biological insights—A comprehensive review. *Journal of Insects as Food and Feed,* 1, 1-28.
- STEPHENS, N., DI SILVIO, L., DUNSFORD, I., ELLIS, M., GLENCROSS, A. & SEXTON, A. 2018. Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. *Trends in food science & technology*, 78, 155-166.
- SULTANA, N. & WANG, M. 2012. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. *Biofabrication*, 4, 015003.
- TAVASSOLI, H., ALHOSSEINI, S. N., TAY, A., CHAN, P. P., OH, S. K. W. & WARKIANI, M. E. 2018. Large-scale production of stem cells utilizing microcarriers: a biomaterials engineering perspective from academic research to commercialized products. *Biomaterials*, 181, 333-346.
- WANG, Y., ZOU, L., LIU, W. & CHEN, X. 2023. An overview of recent progress in engineering three-dimensional scaffolds for cultured meat production. *Foods*, 12, 2614.
- WEBB, L., FLEMING, A., MA, L. & LU, X. 2021. Uses of cellular agriculture in plant-based meat analogues for improved palatability. *ACS Food Science & Technology*, 1, 1740-1747.

- WEI, Z., HU, Y., HE, X., LING, W., YAO, J., LI, Z., WANG, Q. & LI, L. 2022. Biomaterializing the advances in uterine tissue engineering. *Iscience*, 25.
- YUEN JR, J. S., STOUT, A. J., KAWECKI, N. S., LETCHER, S. M., THEODOSSIOU, S. K., COHEN, J. M., BARRICK, B. M., SAAD, M. K., RUBIO, N. R. & PIETROPINTO, J. A. 2022. Perspectives on scaling production of adipose tissue for food applications. *Biomaterials*, 280, 121273.
- YUNAN, T., CHENCHEN, S., YUYAN, Z., MING, Y., SHENG, K. & ZHANG, X. 2024.

 Cellulose as a Sustainable Scaffold Material in Cultivated Meat Production. *Current Research in Food Science*, 100846.
- ZENG, P., LI, J., CHEN, Y. & ZHANG, L. 2019. The structures and biological functions of polysaccharides from traditional Chinese herbs. *Progress in molecular biology and translational science*, 163, 423-444.
- ZHAO, D., WANG, T., HAN, D., RUSINEK, C., STECKL, A. J. & HEINEMAN, W. R. 2015.

 Electrospun carbon nanofiber modified electrodes for stripping voltammetry.

 Analytical chemistry, 87, 9315-9321.
- ZHU, G., ZHANG, T., CHEN, M., YAO, K., HUANG, X., ZHANG, B., LI, Y., LIU, J., WANG, Y. & ZHAO, Z. 2021. Bone physiological microenvironment and healing mechanism:

 Basis for future bone-tissue engineering scaffolds. *Bioactive materials*, 6, 4110-4140.
- ZHUANG, Y., ZHANG, S., YANG, K., REN, L. & DAI, K. 2020. Antibacterial activity of copper-bearing 316L stainless steel for the prevention of implant-related infection. *Journal of Biomedical Materials Research Part B: Applied Biomaterials*, 108, 484-495.