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Abstract

The purpose of this research is to answer the question, ‘can analytics software measure end user computing electricity
consumption?’ The rationale being that the success of traditional methodologies, such as watt metres, is limited by newly
evolved barriers such as mobility and scale (Greenblatt et al., in Field data collection of miscellaneous electrical loads
in Northern California: initial results. Ernest Orlando Lawrence Berkeley National Laboratory research paper, pp 4-5,
2013). Such limitations significantly reduce the availability of end user computing use phase energy consumption field data
(Karpagam and Yung, in J Clean Prod 156:828, 2017). This causes computer manufacturers to instead rely upon no-user
present energy efficiency benchmarks (Energy Star, in Product finder, product, certified computers, results. Washington,
D.C.: United States Department of Energy. https://www.energystar.gov/productfinder/product/certified-computers/results,
2021) to act as baseline data for product carbon footprint reports. As the benchmark approach is previously tested to cause
scope 2 greenhouse gas emissions quantification to be inaccurate by —48% to+ 107% (Sutton-Parker, in Determining end
user computing device Scope 2 GHG emissions with accurate use phase energy consumption measurement, 1877-0509.
Amsterdam: Science Direct, Elsevier B.V., 2020), testing a new methodology that includes the impact of human—computer
interaction is arguably of value. As such, the proposed method is tested using a distributed node based analytics software
to capture both computer asset and human use profile data sets from one hundred and eleven computer users operating in
a subject organisation for 30-days. The simple rationale is that the node, unlike a watt metre, is not restricted by location,
can be deployed and monitored globally from a centralised location and can move with the computer to ensure constant
measurement. The resulting data sets are used to populate a current use phase electricity consumption calculation data flow
(Kawamoto et al., in Energy 27:255, 2001; Roth et al., in Energy consumption by office and telecommunications equipment
in commercial buildings: energy consumption baseline, 2002) in order to examine for omissions. Additionally, to test for
data accuracy, one computer user acts as a control subject, measuring electricity consumption with both a watt-metre and
the analytics software. The rationale being that the watt-metre data is extensively proven to be accurate (Energy Star, in
Energy star computers final version 8.0 Specification, Washington D.C., United States Department of Energy. https://www.
energystar.gov/products/spec/computers_version_8_0_pd, 2020) and will therefore expose errors produced by the software
in relation to power draw, on-time and resulting kilo-watt hours (kWh) values. Further to the data capture period, the find-
ings are mixed. Positively, the new method overcomes the barriers of numerous, assorted devices (scale) operating in ever
changing locations (mobility). This is achieved by the node reporting in real-time make and model asset data together with
device specific electricity consumption and location data via internet technologies. Negatively, the control subject identifies
that the electricity consumption values produced by the software are inaccurate by a relatively constant 48%. Furthermore,
data omissions are experienced including the exclusion of computer displays caused by the node requiring an operating
system to collect data. This latter point would exclude the energy consumption measurement and therefore concomitant
greenhouse gas emissions of any displays connected to desktop or mobile computers. Consequently, whilst the research
question is answered, the identification of the software exaggerating use phase energy consumption by 48% and excluding
peripheral devices, determines the analytics methodology to be in need of further development. The rationale being that use
phase consumption quantification is key to lifecycle assessment and greenhouse gas accounting protocol and both require
high levels of accuracy (WBCSD and WRYI, in The greenhouse gas protocol. A corporate accounting and reporting standard,
Geneva, Switzerland and New York, USA. https://ghgprotocol.org/corporate-standard, 2004). It is therefore recommended
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that further research be undertaken to specifically address omissions and to reduce the over reporting aspect identified as
caused by algorithms in the software used to calculate hardware power draw.
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Introduction

End user computing generates in excess 1% of global green-
house gas annual emissions (Andraea and Edler 2015; Beka-
roo et al. 2014; Belkhir and Elmeligi 2017; GeSI 2008, 2012,
2015, 2019; Malmodin et al. 2010) and therefore potentially
represents a rich source of pollution abatement in order to
tackle global warming. Life cycle assessment research indi-
cates these greenhouse gases are predominantly generated by
embodied emissions created by raw material extraction and
manufacturing plus use phase emissions generated by elec-
tricity consumed by the devices during operation (Andrae
and Andersen 2010; Andre et al. 2018; Arushanyan et al.
2014; Subramanian and Yung 2016). Whilst this is agreed,
the proportionate representation of each value varies consid-
erably between findings. As an example, the embodied phase
ranges from 12 to 97% of the total and conversely use phase
emissions from 3 to 88% (Atlantic Consulting and IPU 1998;
Choi et al 2006; Duan et al. 2009; Hart 2016; IVF 2007;
Kemna et al. 2005; Kim et al. 2001; Lu et al. 2005; PE Inter-
national 2008; Sahni et al. 2010; Socolof et al. 2005, 2017;
Tekawa et al. 1997; Teehan and Kandliker 2012; Williams
2004). From an embodied perspective, incongruity is caused
by differences in the way lifecycle inventory data sources are
calculated (Sonderegger et al. 2017; Steen 2006) meaning
that depending on which database is accessed during calcu-
lation, the embodied value may change in prominence whilst
remaining theoretically accurate (Finnveden et al. 2016;
Peters and Weil 2016; Rigamonti et al. 2016; Rorbech et al
2014). From a use phase perspective, unlike the embodied
emissions the total electricity consumed during a device life

@ Springer

span is not fixed and can vary between identical devices.
This is due to the use profile generated by each user and the
location of use. As an example, whilst power draw meas-
ured in watts differs between device types due to component
specification, the resulting kilowatt hour value used to meas-
ure energy consumption is influenced by human—computer
interaction. Specifically, the type of computing activities
conducted and the regularity and duration of those activities
will alter the energy consumption result. Additionally, the
use phase emissions are calculated by multiplying the elec-
tricity consumed value (kWh) by the greenhouse gas conver-
sion factor published annually by each government where
the energy is consumed (DoBEIS 2021). The factor is cre-
ated to reflect the carbon intensity of the electricity supply
grid. As such it is reasonable to state that the same research
conducted in different geographies will generate different
proportionate emissions results. As an example, in North
America, where transition to solar, wind and water sourced
energy has been slow, a conversion factor of 0.45322 exists
(Carbon Footprint 2020). Comparatively, where adoption of
green energy has proved faster, such as the UK, the result-
ing conversion factor is 0.21233 (DoBEIS 2021). As such,
10 kWh of electricity consumed in the former will create 4.5
kgCO,e greenhouse gas emissions compared to the latter of
2.1 kgCO,e, thus increasing or decreasing the percentage
contribution of end user computing use phase emissions.
Legacy sources of use phase electricity consumption
data from the late twentieth century exist in relative abun-
dance due to the fact that the majority of end use computers
were desktop bound. As such, large user samples could be
measured in situ using watt metre methodologies pioneered
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by prevailing researchers to capture the kWh values (Pie-
tte et al. 1985, 1991, 1995; Yu et al. 1986; Norford et al.
1988; Nguyen et al. 1988; Dandridge 1989; Lovins and
Heede 1990; Norford et al. 1990; Newsham and Tiller 1992;
Johnson and Zoi 1992; Smith et al. 1994; Szydlowski and
Clivala 1994; Koomey et al. 19935, 1996; Routurier et al.
1994). However, current use phase data sets are recog-
nised as highly limited (Greenblatt et al 2013; Karpagam
and Yung 2017; Malmodin et al 2010) due to 86% of end
user computers becoming mobile (Gartner 2021; Statistica
2020, 2021) meaning that the immobile watt metre can no
longer track the influence of human interaction. Greenblatt
et al. (2013) emphasise that consequently, widespread use
phase field measurement is now avoided due to scale and
mobility creating unsurmountable logistical complexities.
Such is the limited availability of contemporary field data,
Karpagam and Yung (2017) note that whilst conducting end
user computing device lifecycle assessments their work was
made all the more difficult by what is described as a field
that is ‘data starved’. Belkhir and Emeligi, (2017) concur,
conceding that electricity consumption findings are subject
to error as validity of use profile variations is sought from
sources predominantly tied to the desktop era between 1988
to 2002 (Norford et al 1988; Koomey et al. 1995, Kunz 1997,
Komor 1997, Hosni et al. 1999, Roth et al. 2002). Intellect
(2016) consequently echo Malmodin’s et al. (2010) concerns
concluding that using legacy source data to calculate modern
day end user computing emissions is unreliable due to data
being obsolete.

To compensate for the recent limitation, a second source
of use phase electricity consumption data offers a contempo-
rary baseline value in the form of pre-sale energy efficiency
Energy Star benchmarks (Energy Star 2021). Conducted
under strict test set-up and conduct regulations, the pro-
gramme accurately measures newly manufactured comput-
ing devices for power draw in no-user present operational
modes such off, sleep and idle (Energy Star 2020 ). The
results are published online (Energy Star 2020) and include
a typical energy consumption value to represent an antici-
pated annual kWh value. Whilst used as the basis for manu-
facturer carbon footprint publications (Apple 2021; Dell
2021; HP 2021; Lenovo 2021; Microsoft 2020) the values
are ultimately without validity in the context of a life cycle
assessment as they do not include the active operation mode
when a user is interacting with the device. Prior research
determines (Sutton-Parker 2020) that this causes the typical
energy consumption value to be inappropriate as a substitute
for field measurements as the additional power required as
the device carries out useful work is excluded from any cal-
culations (Sutton-Parker 2020). Specifically, the inaccuracy
ranges from —48% to+ 107% (Sutton-Parker 2020) conse-
quently causing calculations reliant upon the benchmark

method to under estimate the proportionate representation
of use phase electricity consumption by an average of 30%.

Whilst the issue of embodied emissions incongruity
is beyond the scope of this research, previous research
designed to address key issues such as scale and mobility
affecting the accuracy of use phase consumption values have
been undertaken. Notably, in response to increasing legisla-
tion and policy to reduce scope 2 emissions in the public
sector, Cartledge (2008) and Hopkinson and James (2009)
produced the SustIT/JISC tool. Essentially an end user com-
puting device specific version of the use phase emissions
consumption input tables from the Kenma et al. (2005) life
cycle assessment energy consumption calculator, the tool
enables any organisation wishing to complete computer use
phase emissions quantification to do so following a few sim-
ple steps. First the organisation simply conducts an asset
profile exercise and then inputs the high level results (e.g.
20X notebooks) into the tool. An annual energy consump-
tion value is then applied to each device type, having been
generated by use profile field data measured within the rele-
vant universities where the original research was conducted.
The resulting value is then multiplied by the relevant carbon
emissions factor and a kgCO,e unit value is produced. Whilst
logical, again the limitation of the imposed use profile based
upon a fixed seventy active hours per week may address the
inclusion of an active value, it does introduce error of non-
specificity raised by Malmodin et al (2010). The issue lies
within the uniform use phase electricity consumption value
applied to device types (e.g. notebooks) rather than the spe-
cific notebook used by an organisation. As an example, the
field measured annual electricity consumption in the work-
place for an Acer Chromebook is 11.93 kWh (Sutton-Parker
2020) generating 2.53 kgCO,e of annual scope 2 emissions
if used in the UK (DoBEIS 2021). Conducting the same
calculation using the estimation tool (Hopkinson and James
2009), an average electricity consumed value of 30 kWh
is applied (JISC 2019). This value is translated to scope 2
greenhouse gas emissions of 6.37 kgCO,e per device. As
such, the inaccuracy introduced is equal to+ 152%.

To overcome this non-specificity and the mobility barriers
software has previously been trialled to achieve the similar
action of a watt metre. The approach was called Joulemeter
(Kansell 2010) and was capable of measuring and reporting
real time energy consumption of both physical information
technology hardware, virtual machines (VM) and software
applications. Whilst the idea of moving to software based
measurement would have offered scope for wide scale end
user computing and use phase electricity consumption data
to be generated, the tool suffered a setback for two reasons.
Firstly, it required a watt meter for a calibration phase, thus
re-introducing the issue it was designed to overcome plus
upon scrutiny (Bekaroo et al 2014) it proved to only achieve
59% accuracy. Subsequently, the software failed to progress
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and is noted only by Microsoft as no longer publicly avail-
able and deprecated.

Consequently, the objective of this research is to test
an alternative method of capturing end user computing
use phase data regardless of scale, mobility and location
parameters. This is attempted by using remotely deployed
analytics software. The rationale being that the reliance upon
fixed position watt metering that has continued since the
late 1980s may be overcome by utilising such a node based
distributed data base approach that allows for mobile energy
metering. In doing so, the holistic value of the research is
that contemporary computer use profile field data can be
generated by researchers or manufacturers without restric-
tion and in abundance. Such untethered capability would
produce data that both reflects the electricity consumption
efficiency of today’s end user computers and captures the
real time evolution of emerging human—computer interaction
that may affect power draw, such as video conferencing. If
proven feasible, a field described as data starved (Karpa-
gam and Yung 2017) and consequently reliant on aged data
(Belkhir and Elmeligi 2017) could once again be populated
with contemporary data. The impact of this will potentially
enhance substantiation and accuracy for future research
papers attempting to quantify the impact of end user com-
puting upon global greenhouse gas emissions. The rationale
being that it is accepted that the data currently used for the
use phase energy consumption and concomitant pollution
is difficult to validate due to the lack of available field data
(Andraea and Edler 2015; Bekaroo et al. 2014; Belkhir and
Elmeligi 2017; GeSI 2008, 2012, 2015, 2019; Malmodin
et al. 2010). At a product level, achieving the objective will
also refine quantification as to the contribution of electricity
consumption to the total carbon footprint of end user com-
puting devices that is subject to divided opinion (Atlantic
Consulting and IPU 1998; Choi et al 2006; Duan et al. 2009;
Hart 2016; IVF 2007; Kemna et al. 2005; Kim et al. 2001;
Lu et al., 2005; PE International 2008; Sahni et al. 2010;
Socolof et al. 2005, 2017; Tekawa et al. 1997; Teehan and
Kandliker 2012; Williams 2004). This improvement may in
turn speculatively, support emerging government procure-
ment policy and legislation created to abate the environmen-
tal impact of information technology in the workplace (HM
Government 2020, 2021; European Commission 2021a, b).
As an example, the new legislations require evidence to be
delivered that increases accountability and reporting related
to the procurement and subsequent carbon footprint of infor-
mation technology. As such, validating the use phase con-
tribution with widespread field data may potentially act as a
vehicle to enable compliance in relation to this requirement.

As such, in order to achieve the objective and prove the
value of the research, the following sections describe the
methodology used to conduct the field experiment and the
results and discussion generated by the undertaking.
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Methodology

The objective of the experiment is twofold. Firstly, to test
the feasibility of using analytics software to capture both
asset and use profile data regardless of scale, mobility and
location. Secondly, to measure the accuracy of the result-
ing use phase electricity consumption values. To achieve
this the following structure is used:

1. Identify a candidate organisation

2. Determine a suitable time horizon

3. Determine a test set-up and conduct for the organisa-

tion

Determine a test set-up and conduct for the control user

5. Determine a comparison test for the asset profile data
collection

6. Measure the electricity consumption of end user com-

puting devices for both the organisation and control

subject

Document the results

Discuss the results

Summarise and conclude

10. Make recommendations and state limitations.

b

o N

Selecting the subject organisation

Three considerations influenced the selection of the sub-
ject organisation. Firstly, more than fifty mobile users were
required to test the capability of the software in relation
to scale and mobility. The rationale being that the number
is sufficiently significant to produce both device type and
model variety. Secondly, operations within multiple coun-
tries was preferable to enable location capture to support
the feasibility of identifying national based greenhouse
conversion factors. Thirdly, a company already using the
software for its intended use of digital experience manage-
ment to avoid reluctance or delay related to the installation
of new software that may be perceived as an unplanned
cost or network security issue. To meet the criteria, the
analytics software vendor was contacted and asked if they
could propose a customer willing to participate in the
research. The rationale being that Lakeside has over three
thousand active customers and the likelihood of a positive
response was high. Perhaps surprisingly, Lakeside them-
selves agreed to be the test organisation as they obviously
use the analytics software as part of their business opera-
tions and were highly interested in exploring sustainability
options both internally and to promote to customers. The
profile of the candidate organisation subsequently met all
proposed criteria.
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Time horizon

The time horizon of the experiment is thirty days. This is
determined by certain predefined reporting aspects built into
the analytics software that offers both a daily and monthly
cumulative report. Additionally, 30 days represents one
month and as such can be extrapolated during the results and
discussion to create annual values. It is recognised that the
optimum duration would be one year although this experi-
ment is to test feasibility plus the accuracy of the control
subject. As such, it proved unfeasible for the control subject
to remain in one location and connected to a watt metre for
a period any longer than one month.

Test set-up and conduct for the organisation

The test set-up was relatively simple as Lakeside already
use the analytics software and as such analytic database
nodes resident on the end user computing devices were pre-
installed and already collecting the required data at ten sec-
ond intervals. To ensure that the asset and use profile data
inputs identified as critical to the use phase consumption and
concomitant greenhouse gas quantification were captured, a
specific dashboard was created within the software’s visual-
izer capability. As such, data sets including computer name,
device manufacturer, model, serial, chassis format and age,
power average in waitts, energy consumption in kilo watt
hours (kWh), on time (OT) observed, and location were able
to be extracted at the end of the 30-day period. The format
is a simple Microsoft.xIs Excel binary file.

The conduct for the main body of users required no inter-
vention or awareness. This was decided upon to ensure that
the automatically captured data reflected the extraneous vari-
ables such as a multitude of unique user profiles experienced
in a real life setting. The rationale being, that if the user
was made aware that measurement was occurring, then this
may change natural use patterns. However, as the control
user was required to adhere to certain conditions to ensure
comparison between the active time and watt metre readings,
the following approach was employed in this instance only.

Test set-up and conduct for the control user

The control user was a single mobile user measured by both
the analytics software and an accurate watt meter for use
profile values to enable future comparison of results. This
extra measure is undertaken to determine whether the elec-
tricity consumption values produced by the analytics soft-
ware matched the accurate watt metre kWh results. Similar
to the main cohort of users, the software was previously
loaded and automatically reporting whereas the watt metre
required specific set-up. To ensure that the notebook energy
consumption measured by the watt meter was not altered

by any additional power demands such as plug sharing or
peripheral devices, elements of the Energy Star benchmark-
ing test set-up (Energy Star 2020) were incorporated in the
test set-up as they are proven to enable accuracy. These
include:

A. The ‘Input Power’ using alternating current (AC) mains
supply must be connected to a voltage source appropri-
ate for the intended market (country). In this case the
UK where nominal supply voltage is 230 V+ 10%/ — 6%
to accommodate transformer settings of 240 V

B. Connected to a watt meter meeting the IEC 62301 stand-
ards plugged in between the input power and the mains
supply.

C. No peripheral devices were used or attached during the
experiment

D. The notebook was connected to the power source for
24 h per day for the duration of the experiment

It is noted that as per the Energy Star recommendations
the notebook remains connected to a power source. This
is undertaken to ensure the watt metre continues to collect
energy data. The rationale being that unplugging the device
from the power source will register a pause in power draw
by the watt meter but not by the software. As such, removing
the device from the power source would invalid the com-
parison of both data sources. As such, the notebook can be
considered the equivalent to a desktop in this instance by
the fact that it is required to remain static throughout the
process. To safeguard that the notebook energy consump-
tion measured by the software was not affected by the loss
of Wi-Fi signal during the experiment a local area network-
ing (LAN) cable was connected directly to the broadband
router via the Ethernet port. It was confirmed by the software
vendor that the network interface card (NIC) is included
in power monitoring. The notebook was operated by one
consistent user throughout. To mirror real world use, no
restrictions were placed upon when the notebook could be
used during each twenty-four-hour measurement period
with the exception noted below. As both the watt meter and
software are capable of measuring the time per day that the
notebook is ‘on’ and drawing energy the following modes
were measured.

A. ‘On Time’ (OT) representing the period of time in hours
and minutes that the notebook was ‘on’ and drawing
electricity. This is not to be confused with the ‘active’
measurement used in experiment 2 as it also includes
periods of time when the notebook has transitioned to
other modes such as short or long idle.

B. ‘Off” representing the period of time that the notebook
was either switched off or had powered down and was
potentially no longer drawing energy.
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To enable comparison to existing TEC and active use
comparative research, Energy Star recommendations were
used for most part of the experiment as follows:

C. Display Sleep Mode was to initiate after 15 min of user
inactivity as per Energy Star recommendations.

D. Sleep mode was set to initiate after 20 min of user inac-
tivity as per Energy Star recommendations.

Deviations to this test set-up were included in the experi-
ment on certain days to test the capability and accuracy of
the software. These included changing the power settings
for the device to disable the sleep and/or ‘turn off the dis-
play function’. The rationale was to test if certain aspects of
the software required the user to be actively logged in and
working for energy consumption reporting to occur. This is
explained in full in the results discussion.

Whilst the software data collection is automated, the watt
meter daily energy consumption (kWh) values and on time
(hours and minutes) were noted manually from the LCD
screen at the same time to maintain consistency.

Asset profile test comparison

As the experiment include testing both the use phase emis-
sions data capture and the asset profile data capture capabili-
ties of the software a comparison of capability for the latter
is required in addition to the electricity consumption control
user. The rationale being that without alternative methods
of asset profile capture against which to compare the results
to, any findings may prove less meaningful. As such, two
further asset profile exercises are undertaken at two sepa-
rate large organisations using existing survey and asset

Asset Profile Data

management techniques. The results of all three approaches
are then compared for ease and accuracy.

Measurement

The measurement occurred during March 2021 following
the conduct previously documented, and the results are dis-
cussed in the following section.

Results

The results are discussed in two categories of feasibility and
accuracy. As such the following sections firstly document
the ability of the analytics software to capture asset and use
profile data in relation to the majority of users, before dis-
cussing the accuracy of the use profile data as determined
by the control user.

Feasibility testing asset and use profile data capture

The data flow created by Kawamoto et al (2001) and refined
by Roth et al (2002) defines inputs required to calculate the
use phase consumption of computer device types within
large install bases such as companies, sectors and geogra-
phies. Effectively the model creates two data sets called asset
profile data and use profile data. The first data set determines
the types and number of devices used by various user types
to create a stock unit quantity. The second captures user
usage time and computer power demand in watts to calcu-
late a unit energy consumption (UEC) value. The two values
are then multiplied by one another to create a total end user
computing device use phase electricity consumption value.
As an example, Fig. 1 shows the data flow utilised to enable

Quanity (units) by
Type (e.g. notebook) & n— Total Stock (units)
Model (spec.) \

Staff Saturation (units/employee) mmm—
Facilities Saturation (units/room) e
Student Saturation (units/student)

User Usage (hours/week) by Active,
Short Idle, Long Idle, Sleep, & Off —
modes

Model Power Requi (W) by
Active, Short Idle, Long Idle, Sleep, &
Off modes

___J Staff Stock (units)
ey Facilities Stock (units)
e Students Stock (units) \

m— Staff UEC (kWh) _”’::"—;
et Facilities UEC (kW) /

Students UEC (kWh)

University EUC Energy Use (KWh/year)

|

Use Profile Data

Fig. 1 Modified Kawamoto et al (2001) and Roth et al (2002) end user computing kWh data flow
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the kWh consumption quantification of all end user comput-
ing devices within a University. In this instance, the educa-
tional establishment is able to not only understand the total
energy consumption caused by devices such as notebooks,
tablets and desktop computers but also sources of specific
consumption such as student or staff notebooks further to
population of the data.

Simplified, the calculation flow is represented by the
equation Asset profile (units) X Use profile (kWh)=Total
use phase energy consumption (kWh). Consequently, in
order to accurately quantify end user computing device use
phase electricity consumption values required for scope 2
greenhouse gas emissions calculation, the analytics software
must first capture the following data:

e Asset profile data—quantity (unit), type (description),
model (description) and user (description)

e Use profile data—power draw (watts), usage (hours and
minutes)

Whilst the asset profile data is self-explanatory, the use
profile data arguably requires explanation as to how the
quantification of watts and time produce kWh. As such, the
energy value (kWh) is produced, as would be the case with
any electrical item, by multiplying power (watts) supplied to
the device by the length of time (hours) the device is used,
divided by equivalent energy used by a 1000 W electrical
device for one hour. As an example a 50 W personal com-
puter would take 20 h to consume 1 kWh. Therefore, the
same 50 W device would consume 1.2 kWh if left in opera-
tion for twenty-four hours. Consequently, measured energy
in kWh is expressed as follows:

Table 1 Analytics asset and use profile data extract

_ Watts x Time (h)

kWh
W 1000

In order to inspect the data captured by the analytics
software, three separate reports within the digital experi-
ence monitoring solution were accessed including hardware
(computer name, manufacturer, model, chassis), computer
performance (computer name, user name, location) and
power (computer name, power draw, kWh, OT). To eradi-
cate the complexity of cross referencing and possible intro-
duction of error, a browser accessed dashboard was created
within the software’s visualizer function to isolate and dis-
play only the required data sets structured in a.xls format.
In order to also ensure anonymity during the experiment,
employee and computer names were intentionally obfuscated
and replaced with alpha numeric sequenced descriptions
(Table 1).

Asset profile data capture—quantity, type, model and user

Documenting the exact quantity of devices by type, model
and associated users represents the foundation data required
to complete the capture of asset profile data. As highlighted
by the discussed JISC methodology (2019) previously, fail-
ure to produce device specific results generates inaccuracy.
The original Kawamoto et al (2001) research utilised the cal-
culation flow to calculate the number of devices in operation
at a national scale generating stock unit quantities for resi-
dential, commercial and industrial computer installations.
As the asset capture is undertaken within a single company,
the market input is replaced with a job role. The rationale
being that when examining identified areas of high end user
energy consumption and therefore concomitant greenhouse

Computer Power Av. OT observed  Elec monthly = Manufacturer Model Chassis Country loca- Role
name W) (%) (KWH) tion
Computer 1 17 15.9 2 Dell Inc Latitude Laptop NL Not collected
E7450
Computer 2 54 42 17 Dell Inc XPS 159570  Notebook us Not collected
Computer 3 Not collected  Not collected Not collected Not collected  Not collected  Not collected US Technical
Support
Computer 4 47 70.5 24 Dell Inc XPS 139370  Notebook us Not collected
Computer 5 10 21.4 2 Apple Inc Not collected  Laptop Not collected  Not collected
Computer 6 39 333 Dell Inc XPS 137390 Notebook us Not collected
Computer 7 32 69.6 16 Dell Inc XPS 139370  Notebook uUsS Not collected
Computer 8 55 31.5 13 Dell Inc XPS 139370  Notebook usS Not collected
Computer 9 30 91.7 21 Hewlett- HP EliteBook Notebook IL Not collected
Packard Folio 1040
Gl
Computer 10 34 244 6 HP HP EliteBook Notebook PL Not collected
840 G6
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gas emissions, an organisation is enabled to understand if it
is a job role causing excessive OT. Additionally, to ensure
appropriate national electricity conversion factors can be
applied, an additional input of location is captured by the
software. Further to the data capture period, the analytics
software collected asset profile data from all one hundred
and eleven end user devices. In relation to type, seven manu-
facturers were noted, consisting a total of forty-six different
models of devices. Notably, no categorisation was achieved
for 10% of devices, with a further 4.5% being tablets, 10%
desktops and 75.5% notebooks. As demonstrated in the use
profile section, type is vital to the data flow as a notebook
will have a very different power draw to a desktop computer.
The user role identified 17 sales people, 6 corporate work-
ers, 1 professional services consultant, 7 technical support
representatives and 2 technical services engineers. As such,
78 (70%) of employees were simply listed as ‘not collected’.
Location was captured successfully in 90 instances across
eight countries with 23 entries registered as ‘not collected’.
Of the captured location data, 43% were based in the USA,
26% in the UK, 10% in India, 2.2% in each of the Nether-
lands, Poland, and the United Arab Emirates and 0.9% in
both Israel and South Africa.

Further to the findings, it is notable that whilst asset data
was captured for 100% of devices, the success rate of each
metric suffered omissions. The 10% omission of type was
discovered to be due to the software application programme
interface (API) accessing basic meta-information from the
Microsoft Windows Management Instrumentation (WMI)
database. The WMI stores definitions of products to work
in conjunction with the Windows Driver Model (WDM) to
allow for update and management of the device by acting
as a repository of software drivers, applications and exten-
sions available in the Windows operating system (OS). As
the inventory data populates automatically using the WMI
data when the analytics agent is installed on the device, then
the issue of type omission would require to be addressed
within the WMI and is therefore arguably surmountable. The
issue of only collecting 30% of job roles was defined as the
role based attributed not being defined within the company’s
active directory. Consequently, to improve accuracy simply
updating the employee role details on the domain network
would theoretically rectify the issue. Of location, no definite
reason for 21% lacking in data although the hypothesis was
suggested that users exhibiting this lack of granularity may
be using internet protocol (IP) masking software therefore
denying the function access to information identifying which
country the device is being used in.

Whilst it is anticipated that each omission may be
overcome with additional focus, to gauge if the proposed
analytics approach represents an improvement to existing
techniques, further asset profiling practices were under-
taken at two different organisations using survey and asset
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management software. The survey technique was under-
taken at the University of Sussex, having agreed to assist
the research due to an interest in wanting to better under-
stand the environmental impact of the current end user
computing estate with regards to use phase emissions. The
technique proved highly time consuming from a creation
process as it required sixty-eight specific questions to cap-
ture the required data via drop down, sliding scale and free
type inputs. As the results were populated manually by the
information technology manager, there was no ability to
identify location of devices and only hardware supplied by
the University could be included. As an example it was not
possible to account for any student owned devices used in
the campus. However, further to completion of the survey
online via a supplied quick response (QR) code, the results
identified 8,927 end user computing devices and 20,000
light-emitting diode (LED) displays. By type the devices
were noted as 5200 desktop computers, 1,840 integrated
desktop computers, 960 workstations, 927 notebooks and
20,000 monitors. Excluding the monitors, the devices are
dominated by 58% desktops, 21% integrated desktops, 11%
fixed workstations and 10% notebooks. Specifically, due to
the prominence of monitors within the University estate,
the survey technique highlighted that the analytics software
failed to capture peripheral devices such as displays. Upon
further investigation, it was found that the initial analytics
‘hardware’ report includes a column indicating the num-
ber of monitors detected as connected to the device at any
point during the measuring period rather than any associate
make, model or size. Further to speaking with the analytics
vendor, it was explained that as the condensed SQL node
requires an operating system to interface and as such report-
ing asset or power profile data for peripheral devices, such
as monitors, was not achievable currently. Considering that
157 monitors are listed as connected to the devices profiled
by the analytics software, the impact is significant as the
resulting electricity consumption would be excluded from
any calculations due to the lack of asset data. Comparing the
two practices, each suffers setbacks. The survey technique
lacks the automation of the analytics approach and cannot
generate location context. Although positively, the ability
to include peripheral devices is arguably essential for com-
plete representation of use phase emissions. From a time to
completion perspective, the lack of automation suffered by
the survey method is partially passed on to the person tasked
to populate the asset profile data as noted by the University
information technology manager:

‘I think the survey was very easy generally. There were
a couple of sections I had to go back over because
I'd not appreciated the whole breakdown of areas so
consolidated initially and then had to separate once I
realised, but this wasn’t bad and could be addressed
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by providing a list of the areas in advance. That would
probably help anyway to be honest as there is a fair
amount of info to gather which I happened to have
but I'm guessing not everyone would.” — P. Collier,
University of Sussex.

The comment highlights, however, that unless some
form of asset list already exists then, unlike the analytics
approach, the process may become unfeasible. Consequently,
in order to offer an automated comparison to the analytics
method, the same asset profile process was undertaken using
automated asset management software at a prosthetic limb
manufacturing company, Ossur. The company is an active
participant in the United Nations Global Compact work-
ing towards sustainable and socially responsible goals and,
similarly to the University, wished to assist the research in
testing methodologies. As asset management software called
Lan Sweeper was already installed at the company, a simi-
lar Microsoft Excel file extension spreadsheet was extracted
using the software report structuring capability. As before,
asset profile inputs such as quantity, manufacturer, model
and location were generated with the exception of chassis
(type) and role. This first exclusion was caused because the
type of device, such as notebook, was not available within
the report function as a criterion. To overcome this, a look
up table was created to compare the captured device brand
and model data with type data extracted from the Energy
Star (2021) online data base. With regard to role, it is fea-
sible within the software, although similar to the analytics
software the function had not been configured at the active
directory level. In order to overcome this in the short term,
the captured location data was used to create role based con-
text. Although not conclusive, this was achieved because
each Ossur site has a specific function such as manufactur-
ing and clinics. As such, a further lookup was created to
generate a ‘role’ defined by location column including sup-
port, manufacturing and clinician. With the exception of the
additionally created functions, unlike the survey method, the
data extraction was instantaneous thus mirroring the time
saving capabilities of the analytics solution. Arguably more
importantly, the asset management software also identified
peripheral devices such as monitors excluded by the analyt-
ics tool. Specifically, the asset management software method
identified 3,928 end user computing devices. Of these 30%
(1,160 units) were desktop computers, 67% (2,643 units)
notebooks, 1% (43 units) integrated desktop computers and
2% (82 units) workstations. A further 2,579 monitors were
identified ranging from 14" mobile screens to 92" presenta-
tion and information displays. From a role perspective, 20%
of devices were used by prosthetic, bracing and supports
business units, 20% by clinicians, 14% by manufacturing
and operations, 5% by research and development with 41%
unable to identify a specific role. Location data was captured

for 97.5% of the devices with only 95 devices indicating
neither region nor country. Proportionately, the devices were
located 62% in Europe, 32% in the Americas, and 6% in Asia
and Pacifica.

Summarising the asset profile data capture capability of
the analytics software, it is reasonable to state that when
compared to the existing methods of survey and asset man-
agement software it is certainly a more efficient approach in
terms of time spent. Contrarily, it is also reasonable to sug-
gest that having created the survey and the look up tables,
this advantage diminishes when conducted for a second
time. Undoubtedly, the survey method would fail if no prior
records existed and as such the asset management software
perhaps offers the ideal solution to populate the first half
of the Kawamoto data flow. With regard to accuracy, to
collect the key inputs of type, make, model, user and role
analytics again outperforms both options from a granular-
ity perspective by achieving the chassis categorisation and
location without intervention. However, the oversight of
not specifying peripherals such as monitors causes it to be
highly flawed considering that such devices consume often
higher electricity values annually than notebook devices.
Specifically, in both cases of the University and the medi-
cal manufacturer monitors constituted 69% and 40% of all
end user computing devices, respectively. Although argu-
ably not always utilised by mobile device users operating
notebooks and tablets within an organisation, considering
too that fixed thin clients, desktop and workstations cannot
operate without a monitor and represent 14% of all devices
manufactured, ignoring this category is not feasible if accu-
racy is sought.

Use profile data capture—power draw, on time

Unlike the survey methodology and asset management
software practice, the analytics software has the ability to
collect use profile data required to populate second half of
the Kawamoto et al (2001) data flow. Leveraging a distrib-
uted database architecture that is stored on the endpoint, the
software captures thousands of end-user data points at five
second intervals. The results are transmitted by networking
technologies for compilation by a Microsoft SQL database
operated by a master server situated either on-premises at
the organisation’s data centre or in a cloud computing data
centre. The graphical user interface offers a configurable
dashboard that when configured, enables selected metrics
to be displayed either in summary or by detail such as a
single user device at any selected time. Among the available
metrics, the power reporting function captures power draw
(watts) per device and OT observed (hours and minutes)
in order to generate a kilowatt hour (kWh) calculation. As
discussed in the methodology, this capability is effectively
mimicking the actions of a watt metre without the restriction
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of being bound to a static power source. Consequently, the
use profile data captured for the subject organisation’s
devices is examined for completeness and tested for accu-
racy. Data quality assessment is achieved by ensuring the
use profile data generated by the organisation’s workforce is
complete and where appropriate the kWh data can be con-
verted to display location specific use phase greenhouse gas
emissions, whereas accuracy is validated using a single user
as a control subject measured by both a watt metre and the
analytics software’s power capability.

Data completeness was high with regard to capturing
the use profile values as only 7% of devices were excluded.
Examining these exclusions revealed that only the egress IP
location had been captured suggesting that the device had
been used at some point during the last year but not during
the measurement period. The rationale being that this data
is retained until refreshed. Whilst not confirmed in this spe-
cific case, this may be because the devices are surplus stock
awaiting assignment to new employees. Consequently, 103
devices reported power and OT observed metrics required
to complete the electricity consumption (kWh) calculation.
The power draw is represented as a watt (W) average value
for the entire period. This ranged from 10 W registered by
an Apple MacBook Pro notebook to 145 W for the HP Elit-
eDesk 800 G35, which is a tower form factor desktop simi-
lar to a small server. This created an average power draw
of 49 W for the entire end user estate. The demand was
elevated specifically by the desktop category, as would be
anticipated due to the component architecture of the devices.
As an example, the desktop power draw ranged from 59 W
required by a small form factor HP EliteDesk 800 G1, ris-
ing to the noted 145 W, creating a desktop computer cat-
egory average of 88 W. Comparatively, the notebook estate
ranged from the noted 10 W value to 93 W registered by a
Dell Latitude 5285 convertible notebook. As such, the meas-
ured notebooks averaged 39.66 W and 55% lower than the
desktop estate. Examining existing research (Sutton-Parker
2020), the notebook values in particular appear relatively
high adding emphasis to the examination of the control data
discussed below.

The second metric of ‘OT observed’ is represented by a
percentage of the 30-day period that the software node regis-
ters the computer as being used. As such, a 10% OT reading
means that the device is used for 72 h during the available
720-h measurement period. Consequently, if the average
power draw is 10 W, such a device would require 0.72 kWh
of electricity consumption for one month. As with the W
value, all but eight devices registered OT ranging from 2.4%
(1 h 45 min) to 100% (720 h). The average for all devices
was 41.42% OT during the thirty-day measurement period.
As the month in which the measurement occurred included
twenty work days this result indicated that the employees
were either spending an average of almost fifteen hours per
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working day operating devices or that other factors were
influencing use. These include the possibility of shared use,
additional leisure use such as streaming, standard power
management settings such as sleep being overridden or soft-
ware inaccuracy. As accuracy is investigated thoroughly by
the control device and leisure time and power management
are not tracked, shared use was examined. As such 10% of
the devices exhibited between 90 and 100% OT raising the
average value considerably. Of these devices, it was revealed
that 64% were desktops operated by technical support in
shifts that according to the organisation, enable the support
team to action requests twenty-four hours per day.
Applying the power average to the OT in the manner pre-
viously discussed produces a total of 1592 kWh electricity
consumption by the end user computing estate. Specifi-
cally, the data determines that eleven desktops representing
just 10% of all devices consumed 41% (657 kWh) of the
measured energy due to a combination of high W values
and extended OT as discussed. Comparatively, one hundred
notebooks representing 90% of the estate consumed 59%
(935 kWh). By location the UK consumed the highest value
of 699 kWh (24 units), followed by the USA 585 kWh (39
units), India 66 KkWh (9 units), Netherlands 29 kWh (2 units),
Poland 19 kWh (2 units), the United Arab Emirates 23 kWh
(2 units), Israel 21 kWh (1 unit) and South Africa 13 kWh
(1 unit). The representation by country as displayed in Fig. 2
allows for visual comparison as to the importance of loca-
tion when determining use phase emissions using national
specific electricity conversion factors. Clearly whilst the use
profile data determines the UK to be the highest consumer of
electricity even though it has 14 less devices than the USA

Units of end user computing electricity
consumption (kWh) & scope 2 greenhouse gas
emissions (CO,e) by country
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Fig.2 End user computing use phase electricity consumption (kWh)
and greenhouse gas emissions (CO,e) by country
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operations, in terms of actual emissions the USA proves to
be the highest polluter. This is as previously described, due
to less renewable energy being available in the US supply
grid and therefore generating a higher carbon intensity of
carbon per kWh consumed.

To summarise, with the exception of the surplus devices,
use profile data capture using the proposed analytics meth-
odology proved comprehensive. The key values of power
(W) and use (hours and minutes) were captured successfully
enabling concomitant greenhouse gas emissions values to be
generated. As such it is reasonable to state that the analytics
software achieved the same function as a watt metre whilst
overcoming the barriers of scale and mobility. The ration-
ale being that 103 devices were measured in near real time
across 4 continents, 8 countries, with 90% of the devices
being mobile. However, whilst the data is represented
cohesively, if proven inaccurate, then the advancement of
technique is diminished. As such the next section examines
accuracy via the control user results.

Determining the accuracy of analytics software
captured use profile data

Following the completion of the 30-day measurement
period, the control user results indicate that the analytics
software overestimates electricity consumption (kWh) by
an average of 48%. The range of error is between minus (+)
29% to 58% with minor anomalies of — 100% caused by long
period of ‘off mode’. At a summary level, the accurate watt
metre measured 4.25 kWh for the single device, whereas
the software measured 6.31 kWh of electricity consumed.
In order to determine the source of the disparity, the two
measured values used to generate the kWh result are exam-
ined for inconsistency. As noted in the use profile capture
section, these values are the time spent in operation and the
power drawn (W) during that period.

On time observed

As noted, ‘on time’ (OT) is defined as the period of time
measured in hours and minutes that the notebook is regis-
tered as drawing power and therefore consuming energy.
Due to the 30-day duration of the experiment the highest
feasible OT would be 720 h (30 days multiplied by 24 h).
OT represents one of the key values used to calculate a kWh
value. The results highlight that the watt meter reported a
total OT measurement of 44.3% or 318.95 h during the
30-day period. Comparatively, the software reported an
OT of 40.8% or 293.76 h. The results deliver an error of
OT underreporting by the software of —3.5% or —25.2 h.
Divided by the time horizon, this suggests that the software
is not reporting electricity consumption for an average of
close to 50 min per day. To identify the source of the OT

inconsistency, data relating to ‘off” and ‘sleep” modes were
examined.

‘Off Mode’ is defined (Energy Star 2020) as when the
power consumption level in the lowest power mode which
cannot be switched off (influenced) by the user and that
may persist for an indefinite time when the appliance is
connected to the main electricity supply. In context, off
mode is achieved when the user has shut down (not sleep
mode) the notebook yet it remains plugged into the power
source. In this state no ‘OT” should be registered by either
the watt meter or the software. The results indicated that the
watt meter did not register any OT when the notebook was
in off mode. It was however noted that a minimal draw of
0.005 kWh was recorded for a 24-h period. Reversing the
kWh equation indicates that 0.2 W ‘trickle feed’ of electric-
ity occurs when the notebook is in off mode as the battery
experiences a minor energy discharge. The standard Energy
Star benchmarks are calculated with ‘off mode’ assumed as
25% of annual use profile. Using this mode weighting and
the experiment results, the watt meter measured value would
be 0.456 kwh per annum. The official Energy Star published
benchmark results for the HP Elite Book notebook is 0.2 W
draw and 0.438 kWh. Consequently, the watt meter results
confirm that the source is 100% accurate for reporting ‘OT’
in ‘off mode” and 96% accurate with regard to kWh measure-
ment when extrapolated and compared to the typical energ
consumed benchmark.

Comparatively, the software also correctly measured no
‘OT’ when in the ‘off mode’. However, it was noted that
the software also measured no power draw nor energy con-
sumed. The impact of the software not reporting ‘off mode’
electricity consumption creates an under reporting disparity
ranging from zero to 2% maximum depending on the dura-
tion of ‘off mode” weightings. As an example, the maxi-
mum off time that could be attributed to the experiment’s
measured 30-day period is 55.7% or 16.7 days (401 h). As
such, the total energy not measured by the software in this
instance is equal to 0.0835 kWh or 1.9% of the total energy
consumption measured. However, as the test set-up and con-
duct methodology includes a requirement for the notebook
to be placed into sleep by the Energy Star governed power
settings, there is no influence to the results of this experi-
ment. In relation to ‘Time’ reported during off mode, it is
reasonable to state that both the software and watt meter are
100% accurate and therefore this metric does not contribute
to the 48% kWh disparity.

Having discounted ‘off mode’ as the source of error,
the ‘sleep mode’ results were examined. ‘Sleep Mode’ is
defined as a low power state that the computer is capable
of entering automatically after a period of inactivity or by
manual selection. As determined by the methodology the
sleep mode was set to initiate automatically after 20 min
for the predominant duration of the experiment. Exceptions
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did occur including setting the notebook to sleep instantly
at night and as described below in order to test the software
capability. The results indicated that the watt meter regis-
tered 90 min of OT during a 24-h period when the notebook
was in sleep mode consuming a maximum of 0.020 kWh per
full day. The standard Energy Star typical energy consump-
tion benchmarks are calculated with ‘sleep mode’ assumed
as 35% of annual use profile. Using this mode weighting
and the experiment results, the watt meter measured value
would be 0.895 kwh per annum. The official Energy Star
published benchmark results for the HP Elite Book notebook
(the equipment under test) is 0.3 W draw and 0.919 kWh.
Consequently, the watt meter results confirm that the source
is 97.4% accurate with regard to kWh measurement when
extrapolated and compared to the typical energy benchmark
and within the accepted 5% error range.

Comparatively, the software measured zero ‘OT’ during
sleep mode and no associated power draw nor electricity
consumption causing it to be determined unresponsive and
therefore inaccurate for all periods of time spent in sleep
mode. As the OT registered by the software is 40.8% and the
methodology dictates no ‘off time’, this finding indicates that
the notebook entered sleep mode for a maximum of 59.2% of
the experiment’s duration. This time period is equal to 426 h
and 14 min. The watt meter indicated that for each hour
the notebook spent in sleep mode 3.83 min were classified
as OT as the notebook was drawing a minimal amount of
energy. Combining the mode and duration values indicates
that 26.64 h of ‘OT” has occurred but not been reported by
the software due to sleep mode. Consequently, if the OT
measured during sleep mode by the watt meter is added to
the software OT reading, the result is 320.16 h of OT and is
correct to within 0.37% of the watt meter ‘Time’ reading. As
such, it is reasonable to state that the time disparity between
the two data sources has been identified and explained.

Power draw

Whilst the difference between ‘OT’ values was satisfacto-
rily addressed, the finding did not correct the 48% energy
consumption (kWh) disparity generated during the experi-
ment. Contrarily, if the additional kWh generated by the
extra OT generated by sleep mode (0.1278 kWh) were added

Fig.3 Energy consumption
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to the software results then the disparity would rise a fur-
ther 3-51%. As such, the second key value of power (W)
was examined for inconsistency. Having determined that
time reporting was consistent between sources to within an
error of -7.9%, and that the watt metre was accurate within
less than 3% compared to published TEC results, theoreti-
cally the over reporting error must be caused by inflated
Watt readings. As Fig. 3 shows the kWh daily reading from
both sources is relatively consistent in its disparity across
all 30 days. Both data sets follow one another’s peaks and
troughs across the experiment’s time horizon as content
switching fluctuated the power draw as various components
worked at varying paces. The only exceptions to this are
shown on two weekends (days 21, 22 and 28, 29) when the
notebook was used for a very limited (and in some cases
not at all) period. In these examples, the sleep mode kWh
reported by the watt metre exceeded the zero kWh noted
by the software as previously validated. Consequently, it is
clear that the power draw (W) is being over reported by
the software by an average of 51% per day when the four
anomalous days were excluded. The full range of error was
between+48% and +58%.

As the uniform disparity became obvious from the
results generated in the first week, a one-day test measure
was introduced for the 8th day in the hope that the results
generated might indicate the source of the error. As such,
specific short-term changes were introduced to the test set-
up and conduct. Specifically, for the duration of day 8§ only,
the power options on the notebook were altered from those
described in the methodology to the following:

e Turn off display when plugged in=Never
e Put the computer to sleep=Never

The rationale for the changes being that the notebook
would remain in an apparent active work state for 24 h even
after the user interaction had ceased. The results would
list both the power requirements during working hours
when content switching occurred and during the time that
the screen was left active but resting during non-working
hours (when no content switching occurred). Consequently,
anomalies during either active or resting OT period may
offer clues to the problem. The results for day 8 highlighted
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that the as expected the OT reported by both the software
and watt metre was exactly 24 h and therefore correct. This
further validated that the software is accurate with regards
to OT measurement. During the 9 h when the notebook
experienced user interaction the kWh inaccuracy rose to
63%. Comparatively, during the remaining 15-h period of
the notebook being active but without user interaction, the
kWh inaccuracy was lessened with a disparity of 46% when
compared to the watt metre readings. Examining the watt
results for the inactive period revealed that the software
recorded a near constant reading of 19 W whereas the watt
metre recorded 13 W. As such, it is reasonable to state that
when the notebook is in idle or long idle mode (represented
by the inactive period) the software is uniformly inconsist-
ent by 46%. Examining the watt results for the active 9-h
period revealed that the software recorded a range of 19 W
to 26 W. Whereas the watt metre ranged from 13 to 27 W. At
the lower end, the results reflected the inactive period results
as expected. However, it was notable that the high end read-
ings became almost equivalent in some instances. This sug-
gested that either the frequency of measurement, changes in
user tasks or a combination may be causing the issue. The
rationale being that if the watt metre reports in real time,
then the equivalence may only last for one second yet could
theoretically be measured by the software for a longer period
causing a greater disparity. Before examining the method of
measurement used by both sources the impact of user tasks
on the watt readings was examined (Fig. 4). Both lowest and
highest watt readings were noted during four tasks including
logging on (powering on), resting (with applications open),
productivity (email, documents, spreadsheets) and video
conference calls. The watt meter exhibited as total range
of 107% and the software 37% creating a difference of 70%
range during the active period. Specifically, the two sources
L to H readings ranged across the four tasks as follows:

Content Switching Watts by Source
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Fig.4 Task impact of watts required

1. Power on

a. Watt metre 32%
b. Software 24%

2. Resting (applications running)

a. Watt metre 8%
b. Software 5%

3. Productivity

a. Watt metre 57%
b. Software 37%

4. Video conference

a. Watt metre 93%
b. Software 9%

The disparity in percentage ranges generated by the
watt results clearly indicated that the two sources were
using different methods of data capture. As an example,
the 84% range disparity attributed to video conferencing
is a result of two factors. Firstly, the rapidity of content
switching driving the watt requirement changes, as people
interact via audio, video and screen presenter ownership.
Secondly, the likelihood that only one of the two methods
of measurement is able to keep pace. In order to substan-
tiate the hypothesis, the method of watt data capture was
examined for both the watt meter and the software.

As expected, the watt meter updated the change in
power draw (W) in real time as the user switched tasks,
rising and falling as applications, video calls and web
pages were opened, utilised and closed or left to rest.
Monitored by filming the changes for two hours during
a working day, it was noted that the watt metre W value
altered on average every three seconds as content interac-
tion or focus changes. Comparatively, the Lakeside soft-
ware reports measurements every five seconds obtaining
power and energy consumption data by querying the hard-
ware bios counters. The data points are then reported as
an average power rating in Watts (W) and a total energy
consumption figure in kilowatt-hours (kwh) for consecu-
tive ten minute periods during ‘OT’. As such, it is true to
state the following:

e For a single data capture conducted at 5 s intervals by the
software, the watt meter will between 1 or 2 power (W)
readings. As such the regularity of data snapshot by the
watt meter is feasibly 2:1 compared to the software.

e For each ten-minute average watt measurement reported
by the software, the watt meter will have conducted a
minimum of 200 calculations compared to the software’s
120 readings
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Consequently, it is reasonable to state that the software
undertakes approximately 40% less W readings per day than
the watt metre and this may cause increased margins of error
if the components being measured are subject to content
switching. As an example, during the 15-h non-interactive
period this had no effect as the power requirements did not
fluctuate during the 3 s watt metre reading internal and the
5 s software interval. However, during the 9-h active period
the rapidity of power fluctuation driven by content switching
caused the resulting kWh calculate to increase in disparity
by a further 17% when compared to the inactive period. As
the ‘active OT" period experienced during day 8 represented
37.5% of the 24-h period, the overall disparity was increased
by 7% to+ 53%, registering energy consumption of 0.478
kWh by the software versus 0.313 kWh. As content switch-
ing is random with no day exactly matching another in tasks
undertaken or duration it was deemed highly unlikely that
examining whether the duration (percentage) of ‘OT” would
uniformly affect the kWh disparity. As Fig. 5 highlights this
was proven to be the case as the lines generated by the OT
and kWh disparity do not track one another and instead often
cross over with one value exceeding the other.

As an example, days 23, 27 and 30 all registered 52% OT,
yet they have an energy consumption disparity between the
software and the watt metre of 49%, 51% and 56% accord-
ingly. In the first two examples the results appear promising
that there is a correlation, however the third day questions
the validity of the statement. Examining the OT results,
notes and calendars for the three days, reveal that days
23 and 27 were spent working on research documents for
the majority and therefore similar tasks were undertaken
explaining the uniformity of the disparity in both OT and
energy consumption. However, day 30 was spent viewing
online training videos and participating in conference calls.
Consequently, the tasks undertaken were evidently driving
up the disparity due to the rapidity of content switching,
despite the identical OT. As such, it is fair to state that whilst
the active OT certainly influences the overall kWh meas-
urement it is the duration of time spent during this mode
undertaking specific tasks that dictate the range of increased
over estimation.

Fig.5 On time versus kWh
disparity
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To summarise the findings of the accuracy test, it is clear
that the software is with substantial error in relation to meas-
uring notebook energy use. Therefore, without compensa-
tory measures being introduced to the calculations to gen-
erate concomitant greenhouse gas values for the proposed
application, the emissions reporting will also be incorrect.

As the experiment identifies, there are four specific fac-
tors that are causing the inaccuracy:

e A 46% uniform over reporting of kWh energy consump-
tion during ‘OT’

e An average additional 5% over reporting of kWh energy
consumption during ‘OT’ generated by user content
switching outpacing the measurement intervals

e A zero kWh value measured during ‘off mode’

e Zero OT recording during ‘sleep mode’ causing minor
associated energy consumption to be excluded

These findings were discussed in depth with the analytics
software manufacturer in an attempt to validate the causes
suggested by the results. The engineering experts suggested
that the uniform over reporting was most likely due to the
fact that the software algorithmic tables that are used for
component energy consumption had not been updated for
several years. They explained that when the analytics soft-
ware was originally conceived the tables were based upon
mechanical hard drives. As the device used in the test had
a solid state hard drive which would require less watts to
power then this would cause the erroneous but uniform dis-
parity. They accepted that the additional 5% over reporting
due to content switching causing a lag in results due to the
real time reporting of the watt meter and the software would
be an issue during active user time. The zero kWh value
measurement during off mode and the zero OT during sleep
mode were also accepted as a minor issue that could not be
overcome. The positive response was that based upon this
research, Lakeside would re-examine their algorithms for
component parts and bring them up to date to cope with the
introduction of solid state storage and similar modern inno-
vation. Doing so may overcome the main issue of the 48%
over reporting although this would require further research.

kWh & On Time % Disparity Correlation
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Discussion of results

The objective of the field experiment is to answer the
research question, ‘can analytics software measure end
user computing electricity consumption?' From a prac-
tical perspective, the task is feasible as both end user
computing device asset and use profile data are captured
regardless of existing barriers such as scale and mobility.
However, pragmatically, a lack of accuracy related to the
electricity consumption results and data omissions gen-
erated during the asset profile process indicate that the
methodology, is not currently fit for purpose. Specifically,
the electricity consumption values were determined by
the control measure to be on average +48% inaccurate.
The cause being due to outdated power draw algorithms
applied to hard disc drives that have subsequently pro-
gressed from mechanical to solid state variants and as such
requiring less electricity to operate. Additionally, the node
based software failed to capture both the asset profile or
use phase data of computer displays due to the software
requiring an operating system to interrogate. This aspect
is particularly concerning as the anticipated number of
displays in operation within the subject environment out-
number mobile and desktop devices by 41%. Considering
a watt measured energy consumption value for a modern
24" Acer B8 monitor is 0.096 kWh per business day (Acer,
2021), the analytics software is omitting a potential 301
kWh per month. Accounting for the +48% over report-
ing of electricity consumption generated by the analytics
software during the experiment, this equivalent to 36%
of the total and therefore can be considered a significant
issue. Theoretically, to overcome the problem, the place-
ment of watt metres between each display and the power
source is technically feasible as these types of devices are
not mobile and can remain connected. Subsequent data
could be automatically supplied back to a master server
by data loggers and compiled to add to the mobile and
desktop computing data. However, undertaking such a task
re-introduces the logistics issues that cause companies to
avoid the practice in the first instance (Greenblatt et al.
2013) and as such does not represent an advancement of
methodology.

In isolation, the barriers of mobility and scale (Greenb-
latt et al. 2013) are overcome as numerous devices subject
to use in multiple locations, such as notebooks, are meas-
ured in real time regardless of location and quantity. It is
reasonable therefore to suggest that, as 86% of global end
user computing devices are now mobile (Gartner 2021), the
analytics software removes the logistics issues associated
with watt metres that is causing a shortage of available end
user computing use phase electricity consumption field data
(Karpagam and Yung 2017; Belkhir and Elmeligi 2017).

However, setting aside the electricity consumption measure-
ment error, omissions related to the captured location data
prove an issue with regards to the production of scope 2
greenhouse gas quantification. Specifically, 21% of devices
were not identified by location due to possible IP masking.
As location data is essential to the application of appropriate
electricity consumption (kWh) to greenhouse gas (kgCO,e)
conversion factors (DoBEIS 2021), the calculation of scope
2 concomitant emissions will also suffer invalidity due to a
lack of specificity.

One aspect of the process does however arguably offer
a possibility to expand research appreciation of use pro-
file data. This is delivered by the analytics software ‘OT’
measurements that proved almost 100% accurate during
the experiment. Theoretically, determining the duration of
human—computer interaction at scale could prove valuable.
The rationale being that creating granular profiles for users
by specific business types and job roles, could enhance end
user computing annual scope 2 greenhouse gas reporting.
As an example, a determined average number of active
computing hours applied to accounting tools such as the
JISC (2019) tool could improve the accuracy of estimation
by moving away from pre-determine ‘time’ use profile data
applied as a standard to all business types. Although, as per
the objective of the experiment, attaining accurate use phase
electricity consumption values that include human interac-
tion will still be required to account for the increased power
draw created by use.

Conclusion

Whilst the asset data relating to end user computing devices
can be improved by supplementary actions discussed in
the results, the current omission of peripheral device pro-
filing and electricity consumption errors of 48% cause the
proposed methodology to be currently inappropriate to
produce meaningful kWh and concomitant scope 2 emis-
sions data. As such, it is reasonable to conclude that the
proposed data capture process partially overcomes scale and
mobility issues at the cost of inclusion and accuracy. As end
user computing device energy consumption measurement
is undertaken for several purposes, including device selec-
tion and scope 2 reporting, certain aspects of the discovered
capabilities may prove useful. As an example, if an organisa-
tion wishes to use analytics to support a sustainable device
procurement programme, then the method may be of worth.
The rationale being that whilst inaccurate to an average of
48% in relation to electricity consumption, the software
does have the ability to uniformly identify differing energy
use results across multiple devices. As such a stacked rank-
ing of energy efficient devices could be compiled and fed
back to procurement teams as supplementary information
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to current benchmark results such as the Energy Star typical
energy consumption value. However, in comparison, if the
analytics method is to be used to generate use phase data
for either product carbon footprint reporting or mandatory
emissions reporting, then it would prove inappropriate due to
the omission of monitors and the excess reporting of power
draw averages. Contrarily, if the method is to be used within
mobile only environments, then it is reasonable to suggest
an improvement in accessible field data has been achieved.
The rationale being that as associated research substantiates
(Sutton-Parker 2020) that use phase electricity consumption
values determined by the Energy Star benchmarks create an
error range of —48% to+ 107%, then reducing this to a near
constant+48% via analytics software is arguably a step in
the right direction.

Limitations and recommendations

It is recognised that the control user was conducted on one
notebook and a wider experiment with increased numbers
of devices, brands and operating systems is suggested in
order to further improve the comparative results. The ration-
ale being that where mechanical hard drives exist in legacy
equipment the software may prove more accurate. It is also
noted that the analytics use profile data proved highly accu-
rate and as such generates patterns of working hours for the
subject organisation. This creates a feasible recommenda-
tion to advance the process of end user computing energy
consumption that accounts for the active operational mode.
Firstly, if specific models of devices within an organisation
can be measured by an accurate watt meter for a number of
business days, then patterns of electricity consumption by
both vertical and role based use could be formed. Apply-
ing this as an hourly electricity consumption value to the
analytics use profile by user would then arguably form an
accurate value for the energy consumption and concomitant
emissions. As such, it is recommended that in conjunction
with improvements to algorithms undertaken by the software
vendor, further research to triangulate measured energy con-
sumption with OT should be explored.
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