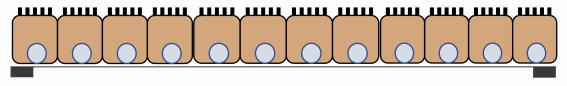
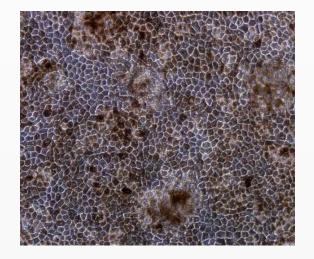


Advancement of a Cryopreserved Bio-Engineered hESC-Derived Retinal Pigmented Epithelial Cell (RPE) Implant for Geographic Atrophy to a Phase IIb Clinical Trial

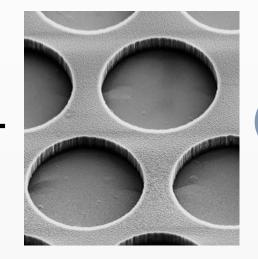
Jane S Lebkowski Ph.D
President, Regenerative Patch Technologies LLC
December 11, 2025



The CPCB-RPE1 Implant Addresses the Disease Pathology in Geographic Atrophy to Potentially Improve Visual Function


The CPCB-RPE1 Implant: A Composite RPE Cell-Parylene Membrane Implant

Implant Called CPCB-RPE1



- Polarized Healthy RPE Cells:
 Replace Dysfunctional RPE Layer in AMD Retina
- Ultrathin Diffusible Parylene Membrane: Replace Degenerating Bruch's Membrane

RPE Cells Produced from Pluripotent Stem Cells

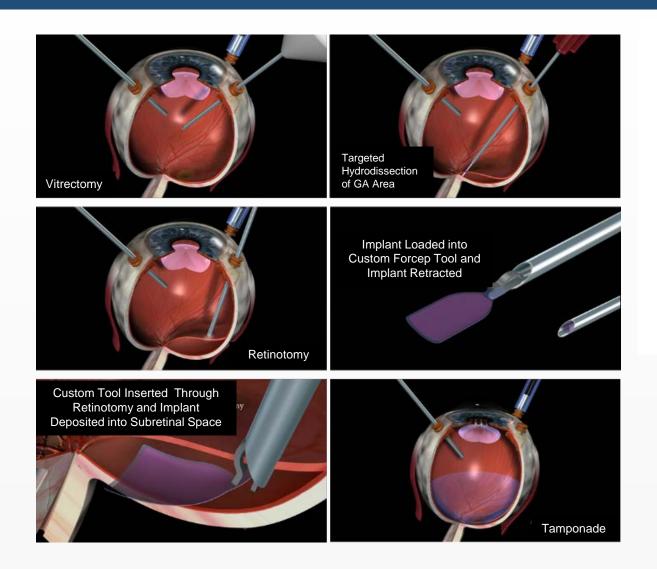
Ultrathin Parylene Membrane

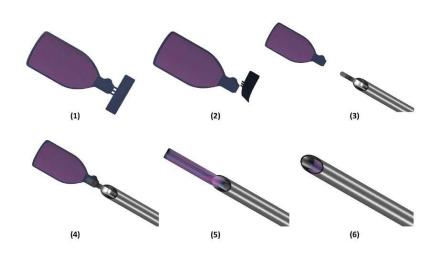
CPCB-RPE1 Implant

Implant Body

Phase I/IIa Clinical Trial Designed to Establish Safety and Potential Activity of the Implant in Patients with Advanced Disease

Study Design and Population				
Design	Single Arm Open Label Study			
Indication	Advanced, Dry Age-Related Macular Degeneration with Significant Geographic Atrophy Involving the Central Fovea			
Number of Subjects	16 Subjects			
Visual Acuity of Treated Subjects	BCVA ≤20/200; Worst Eye Treated; All Treated Eyes Legally Blind			
Dose	One Implant			
Primary Endpoint	Test the Safety and Tolerability of CPCB-RPE1 at 1 Year Post Implantation			
Secondary Endpoint	Assess Visual Acuity Retinal Function After CPCB-RPE1 Administration			
Immunosuppression	68-Day Immunosuppression Protocol Using Tacrolimus			




Phase I/IIa clinical trial designed to test:

- The safety and feasibility of administration of the implant
- The safety of the implant
- The immunosuppression regimen
- Possible signals of efficacy

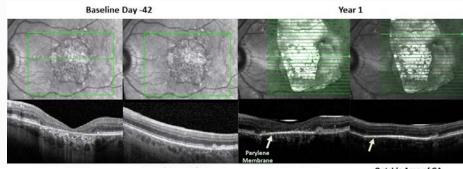
Very late-stage, legally blind, subjects selected for first-inhuman clinical trial due to novelty of product and approach

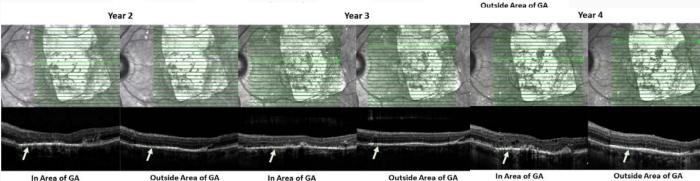
Implant Surgical Delivery: Uses Established Retinal Surgery Procedures

Custom surgical tool and ability to fold membrane enables delivery through 1.5mm Peripheral Retinopathy


- Uses Established Retinal Surgery Procedures
- Administered as Outpatient Surgery

CPCB-RPE1 Implant Delivery Safe and Positioned Over Area of Geographic Atrophy





- The surgical procedure is feasible and safe in the outpatient setting
- Refined implantation procedure to minimize hemorrhage and fibrinous debris
- Implant stably positioned over area of GA in all patients
- Stable position of implant over time
- No evidence of implant degradation
- Good preservation of retinal architecture even in areas of intact RPE layer

Increased Stable or Improved Best Corrected Visual Acuity Over Time

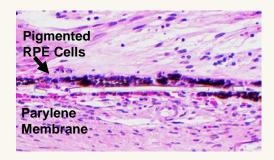
As of Last Follow-up

One Year Post-Implantation

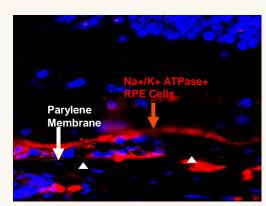
(mean 37.4 months, median 36.9 months, range 12 to 54 months)

% Subjects With	Treated Eye % (n/15 Implanted Subjects)	Untreated Eye % (n/15 Implanted Subjects)	Treated Eye % (n/15 Implanted Subjects)	Untreated Eye % (n/15 Implanted Subjects)
% Subjects with Improved BCVA (>5 Letter Gain)	27% (4/15)	7% (1/15)	27% (4/15)	7% (1/15)
% Subjects with Improved (>5 Letter Gain) or Stable BCVA (+/- 5 Letters from Baseline)	67% (10/15)	47% (7/15)	53% (8/15)	20% (3/15)
% Subjects with Worse BCVA (>5 Letter Loss)	33% (5/15)	53% (8/15)	47% (7/15)	80% (12/15)

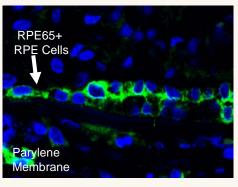
Improvements Ranged from 7-16 letters

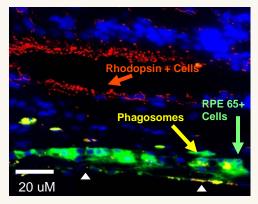

No Class I or Class II HLA Matching Performed Between Donor RPE Cells and Recipient Subject: Genotyping Performed

- Genotyping performed on 16 HLA Class I and Class II alleles to determine extent of mismatches*
- All subjects have more than 50% of alleles mismatched
- Best match is 7 of 16 HLA alleles
- No peripheral blood antibody responses to donor cell MHC molecules


Subject	# Mismatched HLA Alleles	Subject	# Mismatched HLA Alleles
204	9 of 12	401	13 of 16
125	14 of 16	216	12 of 16
128	9 of 16	403	12 of 16
303	11 of 16	404	13 of 16
304	10 of 16	606	13 of 16
305	12 of 16	502	13 of 16
130	11 of 16	607	12 of 16
501	13 of 16		

^{*}Genotyping performed at UCLA Immunogenetics Lab


The Fully Allogeneic RPE Cells Survive at Least 2 Years with Only a Short Course of Immunosuppression


 Pigmented RPE Cells Survive on the Parylene Membrane at Least 2 Years

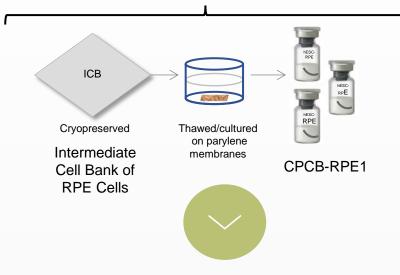
 Implanted RPE Cells Have Apical Expression of Na+/K+ATPase, Suggesting Polarized Mature Function.

 Implanted RPE Cells Express RPE65, a Visual Function Protein

- Spared Rhodopsin + Rosettes Over Implant
- Presence of Phagosomes Suggests Functional Integration of Implant RPE Cells

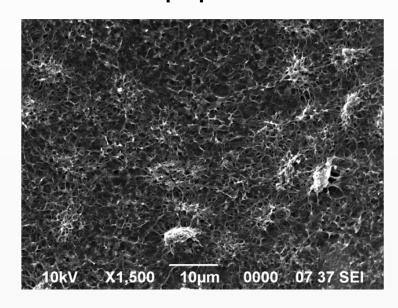
nnologies

CPCB-RPE1 CMC Development for Advanced Clinical Trials and Eventual Commercialization

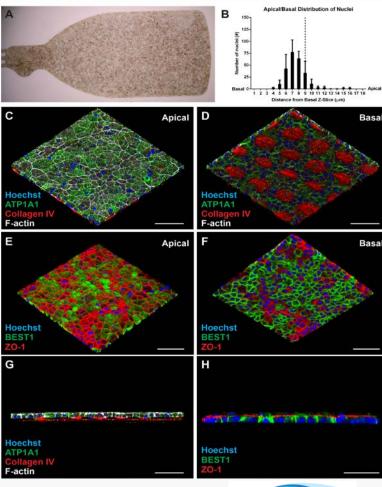

Develop Methods to Provide a Shelf Stable Product that Can Be Distributed Globally to Meet the Global Market

- Develop a long-term, stable storage formulation for the CPCB-RPE1 implant
- Scale RPE production to support registration trials and eventual commercialization.
- Scale implant production to support registration trials and eventual commercialization.
- Incorporate automation processes
- Optimize COGs and distribution to support an affordable therapeutic product compatible with reimbursement policies.

Cryopreserved and Thawed CPCB-RPE1 Implants Form Polarized Cells with Apical and Basal Structures Like the Non-cryopreserved Implant


Production of Implant

Cryopreserved Long-Term Storage Condition



Develop Apical Villi

Confocal Imaging of Cryopreserved CPCB-RPE1 Showing Cell Polarity Post-Thaw as Assessed for Apical and Basal Markers.

Polarized Phenotype

Key Objective of Phase Ilb Clinical Trial

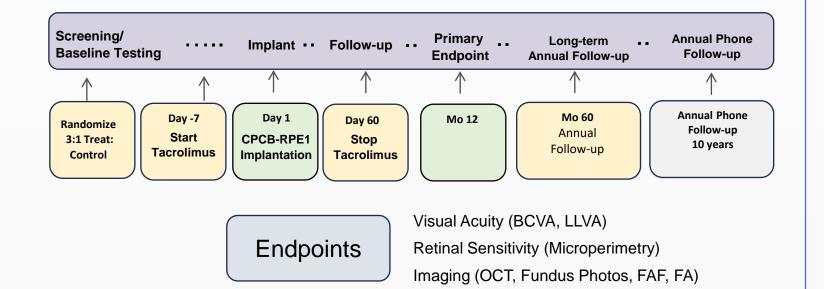
Phase IIb Clinical Trial

Designed to:

- Assess safety and effectiveness of the CPCB-RPE1 implant in the target GA population with less severe disease intended for registration.
- Verify study procedures to be used in Phase III registration trials including:
 - Use of multiple clinical trial sites for implantation of the CPCB-RPE1 implant
 - Use of the cryopreserved implant to enable widespread distribution.
 - Test outcome measures such as microperimetry that FDA accepts as registration endpoints for licensure.
 - Incorporate randomization and masking schemes that FDA currently requires for registration trials.

Features of Phase IIb Clinical Trial

- Randomized masked clinical trial
- 24 subjects


Less severe patient
population (BCVA ≤20/63≥20/200; to potentially boost
efficacy signal based on
Phase 1/2a results

- Multiple surgical implantation clinical trial sites to demonstrate broad feasibility of implantation procedure
- FDA approved registration endpoints including microperimetry
- Use of cryopreserved implant

Currently Enrolling: RPT-14-02 – PATCH-AMD

A Phase IIb, Randomized, Assessor-Masked, Multicenter Clinical Trial to Assess the Safety and Efficacy of Subretinal Implantation of the CPCB-RPE1 implant in Subjects with Advanced, Dry Age-Related Macular Degeneration (Geographic Atrophy)

- Age 55 to 90
- Area of GA involving the fovea
- BCVA ≥20/200 to 20/63
- No current or history of CNV in either eye
- Pseudophakic in the study eye
- Able to complete microperimetry
- No diabetic retinopathy

ClinicalTrials.gov NCT06557460

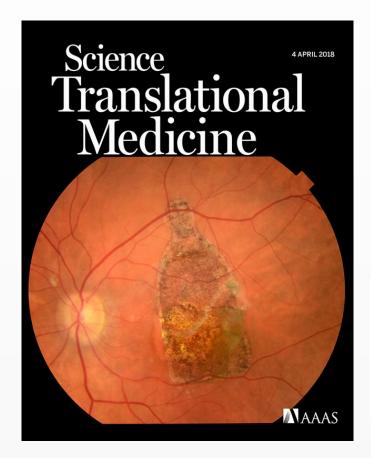
clinicaltrials@regenerativepatch.com

Clinical Trial Sites Actively Enrolling

Dr. Sun Young Lee

Keck School of Medicine of USC Dr. Hani Salehi-Had

Dr. Meena George


Dr. Firas Rahhal

Dr. Charles Wykoff

Clinical Trial Data Published

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

RETINAL DISEASE

A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration

Amir H. Kashani, ¹* Jane S. Lebkowski, ² Firas M. Rahhal, ³ Robert L. Avery, ⁴ Hani Salehi-Had, ⁵ Wei Dang, ⁶ Chih-Min Lin, ⁶ Debbie Mitra, ¹ Danhong Zhu, ⁷ Biju B. Thomas, ¹ Sherry T. Hikita, ⁸ Britney O. Pennington, ⁸ Lincoln V. Johnson, ^{2,8} Dennis O. Clegg, ⁸ David R. Hinton, ^{1,7} Mark S. Humayun^{1,9}*

Kashani et al., Sci. Transl. Med. 10, eaao4097 (2018) 4 April 2018

Surgical Method for Implantation of a Biosynthetic Retinal Pigment Epithelium Monolayer for Geographic Atrophy: Experience from a Phase 1/2a Study

Amir H. Kashani, MD, PhD, ¹ Jeremy Uang, BS, ¹ Melissa Mert, MS, ² Firas Rahhal, MD, ³ Clement Chan, MD, ⁸ Robert L. Avery, MD, ⁵ Pravin Dugel, MD, ⁸ Sanford Chen, MD, ⁷ Jane Lebkowski, PhD, ⁸ Dennis O. Clegg, PhD, ¹ David R. Hinton, MD, ¹⁰ Mark S. Humayun, MD, PhD^{1,11}

Ophthalmology Retina 2020; 4:264-273

One-Year Follow-Up in a Phase 1/2a Clinical Trial of an Allogeneic RPE Cell Bioengineered Implant for Advanced Dry Age-Related Macular Degeneration

Amir H. Kashani1, Jane S. Lebkowski2, Firas M. Rahhal3, Robert L. Avery4, Hani Salehi-Had5, Sanford Chen6, Clement Chan7, Neal Palejwala8, April Ingram2, Wei Dang9, Chih-Min Lin9, DebbieMitra10, Britney O. Pennington2,11, Cassidy Hinman2,11,Mohamed A. Faynus2,11, Jeffrey K. Bailey2,11, Sukriti Mohan10, Narsing Rao12, Lincoln V. Johnson2,11, Dennis O. Clegg11, David R. Hinton10,12, and Mark S. Humayun10,13

TVST | Special Issue | Vol. 10 | No. 10 | Article 13 | 2

Stem Cell Reports

Survival of an HLA-mismatched, bioengineered RPE implant in dry agerelated macular degeneration

Amir H. Kashani,1 Jane S. Lebkowski,2 David R. Hinton,3,12 Danhong Zhu,3 Mohamed A. Faynus,2,4 Sanford Chen,5 Firas M. Rahhal,6 Robert L. Avery,7 Hani Salehi-Had,8 Clement Chan,9 Neal Palejwala,10 April Ingram,2Wei Dang,11 Chih-Min Lin,11 Debbie Mitra,12 Juan Carlos Martinez-Camarillo,1 Jeff Bailey,2,4 Cassidy Arnold,2,4 Britney O. Pennington,2,4 Narsing Rao,12 Lincoln V. Johnson,2 Dennis O. Clegg,4 and Mark S. Humayun12,13,*

Stem Cell Reports (2022), https://doi.org/10.1016/j.stemcr.2022.01.001

Acknowledgements

Patients and Caregivers

CPCB-RPE1 Founders

Mark Humayun, USC Dennis Clegg, UCSB YC Tai, Cal Tech

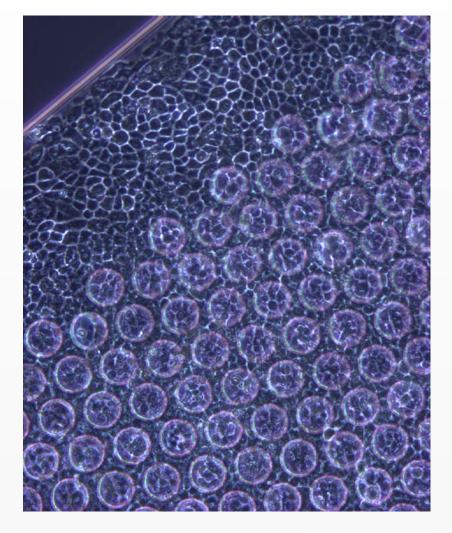
Funders

Clinical Investigators

Amir Kashani Firas Rahhal Meena George Hani Salehi-Had Charles Wykoff Sun Young Lee Rodrigo Brant

DMC Medical Monitor Sigi Caron

LC Industries


Del White

RPT Team

Jane Lebkowski
Britney Pennington
Linc Johnson
Adam Akkad
Mohamed Faynus
Megan Treu
April Ingram
Jeff Bailey
Jeffrey Lin

City of Hope

Nicole Chan
Patrica Huang
Jennil Patel
Taby Ahsan
Jennifer Downey

