Macroeconomía Dinámica

EC3024.1 (Santa Fe) CLASE 8

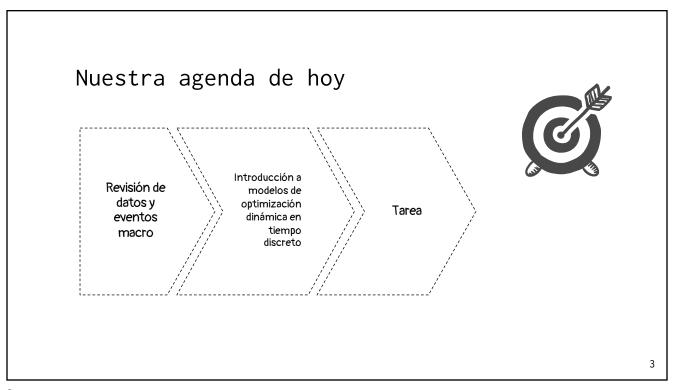
1

RECESO

Hoy habrá **dos recesos** de 10 minutos:

4:50pm y 5:50pm

2



Oferta y demanda agregada

Oferta Agregada

PIB
Agropecuario
Industrial
Servicios
Importaciones

Demanda Agregada

Consumo privado Inversión Gasto de gobierno Exportaciones

Oferta Agregada = Demanda Agregada

PIB + Importaciones = Consumo privado +
Inversión +
Gasto de gobierno +
Exportaciones

5

5

Oferta y demanda agregada

PIB + Importaciones = Consumo privado +
Inversión +
Gasto de gobierno +
Exportaciones

PIB = Consumo privado +
Inversión +
Gasto de gobierno +
Exportaciones –
Importaciones

PIB = C + I + G + X - M

6

Oferta y demanda agregada

7

Nuestra agenda de hoy

Introducción a modelos de optimización dinámica en tiempo discreto

Tarea

8

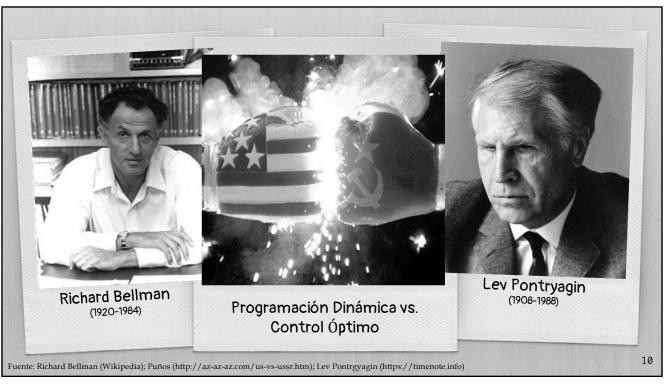
Programación Dinámica

Durante la 'Guerra Fría' (1947-1991), existieron al menos cuatro 'carreras' entre los Estados Unidos y la Unión Soviética:

- (1) Carrera armamentista;
- (2) Carrera espacial, particularmente por llegar a la luna;
- (3) Carrera económica (*i.e.* modelo capitalista vs. comunista); y
- (4) Carrera matemática

9

9



Programación Dinámica

La **Teoría de Control Óptimo** de Pontryagin (OC – *Optimal Control*) nació del Cálculo de Variaciones (Siglo XIX) para dar solución a problemas de optimización dinámica en tiempo continuo ("Principio del Máximo")

Bellman desarrolló el "Principio de Optimalidad", que da origen a la **Programación Dinámica** (DP *- Dynamic Programming*), para encontrar la solución a problemas de optimización dinámica en tiempo discreto

11

11

¿Qué método se utiliza más?

Ambos métodos (OC y DP) se pueden utilizar para resolver problemas de optimización dinámica, pero...

	Tiempo		Características de las variables		-
	Continuo	Discreto	Determinístico	Estocástico	Método preferido
(1)	X		Х		Control Óptimo
(2)		X	х		Programación Dinámica
(3)	X			x	Programación Dinámica
(4)		Х		X	Programación Dinámica

Al final del día, con el método de Lagrange se pueden obtener los mismos resultados que con 'Control Óptimo' o 'Programación Dinámica', pero estas herramientas son mucho más eficientes

12

Modelo de Ramsey-Cass-Koopmans → Tiempo continuo vs. discreto

Tiempo continuo

<u>Tiempo discreto</u>

$$\max_{C_t} \int_{t=0}^{\infty} e^{-\beta t} U(C_t) dt$$

 $\max_{\{\mathcal{C}_t\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^{t-1} U(\mathcal{C}_t)$

sujeto a:

sujeto a:

$$\dot{a_t} = w + r_t a_t - c_t$$

$$a_{t+1} = w + (1 + r_t) a_t - c_t$$
, $\forall t$

Ramsey, Frank (1928). "A mathematical theory of saving." *Economic Journal* 38 (diciembre), pp. 543-59.

Cass, David (1965). "Optimum growth in an aggregate model of capital accumulation." *Review od Economic Studies* 32 (julio), pp. 233-40.

Koopmans, Tjalling (1965). "On the concept of optimal economic growth" en *The economic approach to development planning*. Amsterdam, Países Bajos: North Holland

13

13

Modelo de Ramsey-Cass-Koopmans → Tiempo continuo vs. discreto

Tiempo continuo

<u>Tiempo discreto</u>

$$\max_{C_t} \int_{t=0}^{\infty} e^{-\beta t} U(C_t) dt$$

$$\max_{\{\mathcal{C}_t\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^{t-1} U(\mathcal{C}_t)$$

sujeto a:

sujeto a:

$$\dot{a_t} = w + r_t a_t - c_t$$

$$\overline{a_{t+1} - a_t} = w + r_t a_t - c_t , \forall t$$

Ramsey, Frank (1928). "A mathematical theory of saving." *Economic Journal* 38 (diciembre), pp. 543-59.

Cass, David (1965). "Optimum growth in an aggregate model of capital accumulation." *Review od Economic Studies* 32 (julio), pp. 233-40.

Koopmans, Tjalling (1965). "On the concept of optimal economic growth" en *The economic approach to development planning*. Amsterdam, Países Bajos: North Holland

El agente representativo y su duración

Los modelos macroeconómicos 'modernos' (post-Lucas) asumen que los individuos se comportan de manera similar en el agregado y que viven eternamente. Claramente el comportamiento de los individuos o agentes económicos sin duda es heterogéneo y no hemos logrado alcanzar la inmortalidad. Sin embargo...

(1) Comportamiento similar en el agregado. Se utiliza una función de utilidad que 'representa' las preferencias y describe el comportamiento AGREGADO de la población. A esto se le llama 'agente representativo'. Lo mismo ocurre cuando se incorporan empresas; y...

15

15

El agente representativo y su duración

(2) Vida infinita. Cuando unas personas mueren, otras continúan vivas. Cuando algún gobierno termina, inicia otro y de la misma manera sucede con las empresas. Pero lo más importante es que cuando las personas, las empresas, los gobiernos o los bancos centrales toman decisiones —como ahorrar o consumir, trabajar o dedicarle tiempo al ocio, invertir, producir, bajar tasas de interés, etc.—, no lo hacen pensando en que se va a terminar su periodo de existencia. En este sentido, destaca que los modelos de optimización de los agentes económicos modelan la toma de decisiones.

La optimización del agente representativo

Vamos a ilustrar cómo resolver problemas de optimización dinámica en tiempo discreto, utilizando un modelo sencillo de un consumidor que tiene que decidir cuánto consume y cuánto ahorra (para consumir en el futuro)

El consumidor maximiza su utilidad esperada de toda su existencia en función del consumo

sujeto a:

- (1) Función de acumulación de los activos en términos del salario y el consumo, en donde el salario es incierto; y
- (2) Condición de solvencia

17

17

El problema del agente representativo

$$\max_{\{C_t\}_{t=1}^{\infty}\{A_t\}_{t=2}^{\infty}} E\left[\sum_{t=1}^{\infty} \beta^{t-1} U(C_t)\right]$$

Sujeto a:

$$A_{t+1} = (1+r_t)\,A_t + \eta_t w_t - C_t \text{ , para toda } t$$

$$\lim_{T\to\infty} A_1(1+r_1) + \sum_{t=1}^T \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0$$

En donde:

 $U(\mathcal{C}_t)$ es una función de utilidad a partir del consumo en t o \mathcal{C}_t , $U'(\mathcal{C}_t) > 0$ y $U''(\mathcal{C}_t) < 0$ β es un factor de descuento, tal que $0 < \beta < 1$ A_t son los activos que tiene en t, $A_1 \geq 0$ w_t es el salario que recibe en t, con un choque estocástico η_t

¿Cómo vamos a aprender DP?

	Número de periodos de tiempo	Determinístico / Estocástico	Método de solución
(1)	Tres	Determinístico	Lagrange
(2)	Tres	Determinístico	Función de política
(3)	Tres	Determinístico	Programación Dinámica
(4)	Infinito	Determinístico	Programación Dinámica
(5)	Tres	Estocástico	Programación Dinámica
(6)	Infinito	Estocástico	Programación Dinámica

19

19

Tres periodos, determinístico

$$\max_{\{C_t\}_{t=1}^{\infty+3}\{A_t\}_{t=2}^{\infty+3}} \mathbb{E}\left[\sum_{t=1}^{\infty^{7}} \beta^{t-1} U(C_t)\right]$$

Sujeto a:

Sujeto a:
$$\beta \text{ es un factor de descuento, tal} \\ A_{t+1} = (1+r_t) A_t + \eta_t w_t - C_t \text{ , para toda } t \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_t}{(1+r_t)^{t-1}} = 0 \\ \lim_{t \to \infty} A_1 (1+r_t) + \sum_{t=1}^{T} \frac{w_t - C_$$

En donde:

 $U(C_t)$ es una función de utilidad a partir del consumo en t o C_t , $U'(C_t) > 0$ y $U''(C_t) < 0$ β es un factor de descuento, tal w_t es el salario que recibe en t

Tres periodos, determinístico

$$\max_{\{C_t\}_{t=1}^3 \{A_t\}_{t=2}^4} \sum_{t=1}^3 \beta^{t-1} U(C_t)$$

sujeto a:

$$A_{t+1} = (1+r_t)\,A_t + w_t - \mathcal{C}_t$$
 , para toda t $A_4 \geq 0$

21

21

(1) Tres periodos, determinístico→ Método de solución: Lagrange

$$\max_{\{C_t\}_{t=1}^3 \{A_t\}_{t=2}^4} \sum_{t=1}^3 \beta^{t-1} U(C_t)$$

sujeto a:

$$A_{t+1} = (1+r_t)\,A_t + w_t - \mathit{C}_t$$
 , para toda t $A_4 \geq 0$

$$\mathcal{L} = \sum_{t=1}^{3} \beta^{t-1} U(C_t) + \sum_{t=1}^{3} \lambda_t [(1+r_t) A_t + w_t - C_t - A_{t+1}]$$

Función de utilidad logarítmica

$$U(C_t) = \ln C_t , C_t > 0$$

$$U'^{(C_t)} = \frac{\partial U(C_t)}{\partial C_t} = \frac{1}{C_t} > 0$$

$$U''(C_t) = \frac{\partial^2 U(C_t)}{\partial C_t^2} = -\frac{1}{C_t^2} < 0$$

23

23

Condiciones de Inada (1963)

$$\lim_{C_t \to 0} U'(C_t) = \infty; \lim_{C_t \to 0} \frac{1}{C_t} = \infty$$

$$\lim_{C_t \to \infty} U'(C_t) = 0; \lim_{C_t \to \infty} \frac{1}{C_t} = 0$$

Inada, Ken-Ichi (1963), "On the two-sector model of economic Growth: Comments and a generalization". Review of Economic Studies, 30 (junio), pp. 119-27.

Problema de optimización con función de utilidad logarítmica

$$\max_{\{C_t\}_{t=1}^3 \{A_t\}_{t=2}^4} \sum_{t=1}^3 \beta^{t-1} \ln C_t$$

sujeto a:

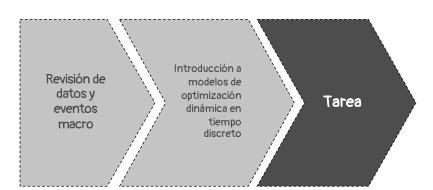
$$A_{t+1} = (1+r_t)\,A_t + w_t - \mathcal{C}_t$$
 , para toda t
$$A_4 \geq 0$$

$$\mathcal{L} = \sum_{t=1}^{3} \beta^{t-1} \ln C_t + \sum_{t=1}^{3} \lambda_t [(1+r_t) A_t + w_t - C_t - A_{t+1}]$$

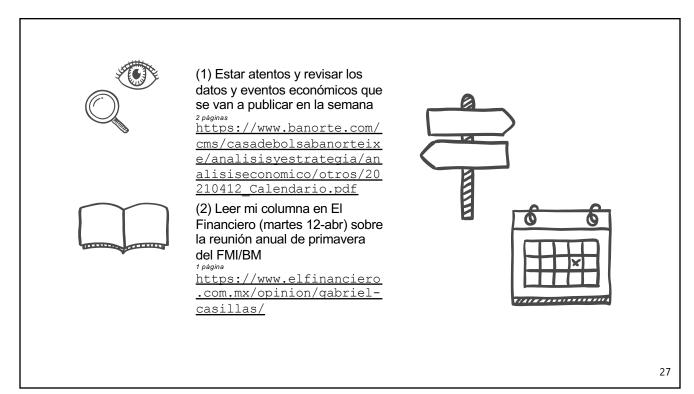
25

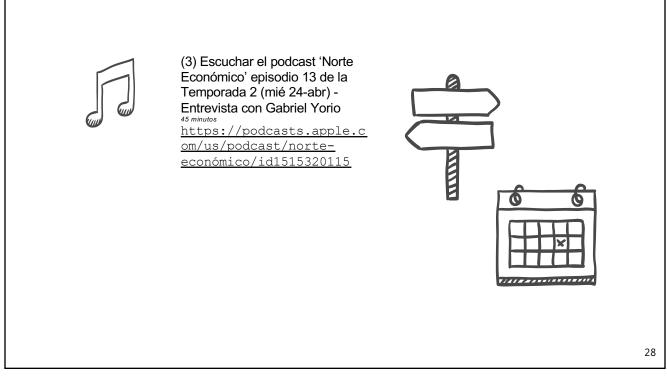
25

Nuestra agenda de hoy



26





Muchas gracias!

29

29

Free templates for all your presentation needs

For PowerPoint and Google Slides

100% free for personal or commercial use

Ready to use, professional and customizable Blow your audience away with attractive visuals