
Multi-core processor using optical transceivers.

 The experiment was done to answer the questions: “is it possible to make a

multi-core processor by connecting the cores with optical communication channels and

what communication characteristics can be obtained.” For the experiment, 2 identical

DE5-Net boards with FPGA 5SGXEA7N2F45C2 were taken. These FPGAs allow the

configuration of 4-core experimental X16 processors, the architecture of which is

shown in the figure below.

Core A
Number:
rrr0ccc0 L

o
c
a
l
m

e
m

o
ryFPU

RTE

Core B
Number:
rrr0ccc1L

o
c
a
l
m

e
m

o
ry FPU

RTE

Core C
Number:
rrr1ccc0

L
o
c
a
l
m

e
m

o
ry

FPU

RTE

Core D
Number:
rrr1ccc1

L
o
c
a
l
m

e
m

o
ry

FPU

RTE

NorthWest NorthEast

EastNorth

EastSouth

SouthEastSouthWest

WestSouth

WestNorth

rrr – Row index upper bits
ccc – Column index upper bits

Each core in the cluster has its own local RAM. This memory is accessed at the same

speed both for the owner core and for the neighboring 3 cores of the cluster. But if

any core in the cluster accesses an object located in a core that does not belong to

the cluster, then the network subsystem, consisting of a frame processing unit - FPU

and a routing engine - RTE, comes into operation. The transaction is transmitted

outside the cluster through one of 8 channels.

 A 4-core cluster can communicate with other cores or clusters through 8

channels. 2 northern, 2 eastern, 2 southern and 2 western. The figure below shows

the connection diagram of two 4-core clusters, carried out in the experiment.

Cluster 1Cluster 0

CPU
04

CPU
05

CPU
06

CPU
07

CPU
14

CPU
15

CPU
16

CPU
17

USB-
UART

 And below is the structure of the equipment assembled in the experiment, as

well as a photo of the equipment.

Core A
CPUN: 04h

R
T
E

F
P
U

Core B
CPUN: 05h

R
T
E

F
P
U

Core C
CPUN: 14h

R
T
E

F
P
U

Core D
CPUN: 15h

R
T
E

F
P
U

MAC
2G5

East
North Low

Latency
PHY

MAC
2G5

Low
Latency

PHY

East
South

SFP connector “A”

CPU Number settings. SW[0]=0

MAC
2G5

West
North

MAC
2G5

West
South

Low
Latency

PHY

Low
Latency

PHY

SFP connector “B”

SFP connector “C”

SFP connector “D”

DE5-Net board 1

Core A
CPUN: 06h

R
T
E

F
P
U

Core B
CPUN: 07h

R
T
E

F
P
U

Core C
CPUN: 16h

R
T
E

F
P
U

Core D
CPUN: 17h

R
T
E

F
P
U

MAC
2G5

East
North Low

Latency
PHY

MAC
2G5

Low
Latency

PHY

East
South

SFP connector “A”

CPU Number settings. SW[0]=1

MAC
2G5

West
North

MAC
2G5

West
South

Low
Latency

PHY

Low
Latency

PHY

SFP connector “B”

SFP connector “C”

SFP connector “D”

DE5-Net board 2

DAC “A-C”

DAC “B-D”

648MByte/sec.

298MByte/sec.

2.5GBit/sec

UART

USB-
UART

Synchronized by internal processor clock 170MHz MAC<->RTE connection

STBO – data strobe from RTE to the MAC

NETDO[32:0] – data from RTE to the MAC (32 bit data and one bit of the first word flag)

STBI – data strobe from MAC to the RTE

NETDI[32:0] – data from MAC to the RTE (32 bit data and one bit of the first word flag)

MAC TX channel:

TXCLK – transmit clock from HPY to the MAC (78.125MHz)

TXDATA[31:0] – transmit data from MAC to the PHY

MAC RX channel:

RXCLK – receive clock from PHY to the MAC (78.125MHz)

RXDATA[31:0] – receive data from PHY to the mAC

Fiber optic DAC (Direct Attach Cable) was chosen as the data transmission cable. Low

Latency PHY v17.0 was used, configured for a transfer rate of 2.5Gb/sec. In fact, this

PHY only used the PLL, serializer/deserializer, and transmit/receive queues.

 Each PHY is connected by 32-bit TxD and RxD data buses, as well as TxCLK and

RxCLK clock signals to the MAC2G5 modules. These modules implement a protocol for

transmitting and receiving inter-core transactions, align received data streams onto

32-bit word boundaries based on 32-bit synchronizing codes, generate these codes in

transmitting channels, generate transaction start codes, and transmit transactions.

Transactions contain control information, address information and data.

 In IDLE state, MAC2G5 modules broadcast code 0ADDF00B5h. The receiver

looks for this sequence in the input data stream. This code can be split into 2 32-bit

words in the input stream received from the PHY. Low Latency PHY does not align

data bits to byte boundaries, much less to 32-bit word boundaries. This function is

implemented by MAC2G5. MAC2G5 searches for the position of the zero bit of the

IDLE 0ADDF00B5h code and, after detecting this code, goes into transaction waiting

mode. Any transaction begins with the sequence 0ADDF004Ah, as shown in the figure

below.

0
A
D

D
F
0
0
B
5
h

0
A
D

D
F
0
0
B
5
h

0
A
D

D
F
0
0
B
5
h

0
A
D

D
F
0
0
B
5
h

0
A
D

D
F
0
0
4
A
h

T
ra

n
s
a

c
ti
o

n

0
A
D

D
F
0
0
4
A
h

T
ra

n
s
a

c
ti
o

n

0
A
D

D
F
0
0
B
5
h

0
A
D

D
F
0
0
B
5
h

0
A
D

D
F
0
0
B
5
h

0
A
D

D
F
0
0
4
A
h

T
ra

n
s
a

c
ti
o

n

0
A
D

D
F
0
0
B
5
h

0
A
D

D
F
0
0
B
5
h

DSTSRC

0

0
SZ
CPL

TAG

31

Task ID
Selector
[15:0]

Sel

[23:16]
Offset[23:0]

Offset
[36:24]

Data[15:0]

Data[47:16]

Data[63:48]XXXX

0

1

2

3

4

5

First write
transation

DSTSRC

0

1
SZ
CPL

TAG

31

Task ID
Selector
[15:0]

Sel

[23:16]
Offset[23:0]

Offset
[36:24]

XXXX

0

1

2

3

First read
transation

DSTSRC

0

2
SZ
CPL

TAG

31

DisplacementData[15:0]

Data[47:16]

Data[63:48]XXXX

Short write
transation

DSTSRC

0

3
SZ
CPL

TAG

31

DisplacementXXXX

0

1

2

3

0

1

Short read
transation

DSTSRC

0

4CPLTAG

31

Task ID
Target PSO
sel. [15:0]

0

1

Target PSO

Sel[23:16]
Message ID

Param.

[7:0]

Parameter [31:8]
SRC PSO

[7:0]
SRC PSO
[23:8]

XXXX

2

3

4

Message
transaction

DSTSRC

0

5TAG

31

Source PSO selectorXX

0

1

Sta
tus

Message
Acknowledgement
transaction

DSTSRC

0

6TAG

31

Data [31:0]

0

1

responses to
data read
requests

Size

Data [63:32] 2

DSTSRC

0

7TAG

31

0
Sta
tus Violation report

The length of a transaction depends on its type. After receiving a known number of

32-bit words, the MAC expects either IDLE 0ADDF00B5h or the start of a new

transaction code. If there is neither one nor the other code, then a loss of connection

is detected and the controller begins to select a bit shift to detect the idle code in the

incoming sequence of 32-bit words. Why are the codes 0ADDF00B5h and

0ADDF004Ah chosen for the idle and transaction start states? Because a zero byte at

position [15:8] cannot be in the first word of a transaction of any type, since there

cannot be a core with number 00h in the network and there cannot be such a

transaction source.

 After loading the configuration into the FPGA of both DE5-Net boards,

CoreExplorer expectedly received a list of 8 cores detected in the multi-core system.

An experiment was made to practically determine the time for reading data from the

local memory of all cluster cores by a program executed in the 04h core.

 It is necessary to pay attention to the fact that this is only an experiment in

which data exchange between cores was carried out in the most inefficient, slowest

way - by software transferring an array of 64-bit data from the memory of one core to

the memory of another. In this case, scalar machine instructions were used. Some

code to help you understand the process is given below.

 In practice, of course, data exchange between cores must be based on block

write transactions, block data transfer in one direction. A block read will be less

efficient, but for a block read, the read requester must be able to issue requests

without waiting for each individual data item to be received. In the code segment

shown above, a new data transfer did not begin until a 64-bit word arrived in the R0

register and was subsequently written to local memory. This is an example of how not

to program block transfers in practice.

 Using the system timer, the time it took to transfer a block of 512 64-bit words

was measured. The start time of the cycle was entered into register R14, and the end

time into R15. The system timer contains a counter register synchronized by the main

clock signal of the cores, the frequency of which in this experiment is 170 MHz.

Data transfer paths and time of transferring the 1st 64-bit word.

Path 1: Local read/write.

Core
04

Local
memory

045 clk

8 clk

Memory read total: 13 clk

Reading and writing are performed within the local memory of one core. The total

cycle execution time is 7200 cycles of the main processor clock, 14 clock cycles per 1

“read-write-jump on the cycle counter”. 1 clock more than the calculated 13.

Path 2. Reading from the memory of a neighboring core located in the current

cluster.

Core
04

Core
TMUX

05/14/15

Local
memory
05/14/151 clk

8 clk

4 clk

1 clk

Memory read total: 14 clk

In this case, the read transaction was sent to the memory subsystem of the

neighboring core through its transaction multiplexer. Data transfer was completed in

7700 clock cycles, 15 clock cycles per 64-bit word transfer.

Path 3. Data is read from the local memory of the core located in a neighboring

cluster. Shortest way.

Core
04

FPU
04

RTE
04

RTE
05

MAC2G5
EastNorth

Low Latency
PHY & SFP “A”

Low Latency
PHY & SFP “C”

MAC2G5
WestNorth

RTE
06

FPU
06

Core
TMUX

06

Local
memory

06

4 clk 12 clk 4/2 clk 23/17 clk

? 22 clk

43/30 clk17 clk

?14 clk3 clk14 clk

DAC

Memory read total: 156/135+X clk (Long read form/short read form) Where X – delay value in the both PHY

A data request from core 04h comes to FPU/04h, from FPU to RTE/04h, broadcast to

RTE/05h, sent to MAC2G5/05h, via Low Latency PHY/05h transmitted via DAC to Low

Latency PHY/06h, RTE/06h, FPU/06h and goes to the transaction multiplexer of the

06h core, is processed by the memory subsystem of the 06h core and returns back

through the same chain of modules to the 04h core. The above figure shows the

transaction delays in all modules. The total execution time for transferring a data

block was 92553 clock cycles, 180 clock cycles per 64-bit word. Calculations show that

the minimum duration of a read transaction should be 135 clock cycles of a core

operating at 170 MHz. A short read request will be transmitted through the DAC in 7

clock cycles, and the read data will be transmitted in 9 clock cycles. This corrects the

numbers to 172 and 151. In the test, only the first transaction can be completed in

172 clock cycles, the remaining 511 in 151. Apparently, a minimum of 29 clock cycles

are added on delays in the FIFO of both PHYs.

Path 4. Data is read from the core memory located in a neighboring cluster and

double relaying to RTE is used to transfer transactions.

Core
04

Core
05

Core
06

Core
07

Core
14

Core
15

Core
16

Core
17

RTE transit

Core
04

Core
05

Core
06

Core
07

Core
14

Core
15

Core
16

Core
17

RTE transit

Reading data from the memory of core 07 or core 16. In the first version, transactions

transit through the RTE of cores 05 and 06, and in the second, transactions transit

through RTE 05 and 15. In such transactions, another 5 clock cycles are added, i.e.

151+5=156 cycles. The test showed that the system spent 185-188 clock cycles to

transmit one 64-bit word. And here again 185-156=29 cycles were apparently added

as the transaction passed through the PHY 4 times. A 4 times pass is passing a read

request through 2 PHYs, and then passing the data in the opposite direction, also

through 2 PHYs.

Path 5: Reading data from core 17.

Core
04

Core
05

Core
06

Core
07

Core
14

Core
15

Core
16

Core
17

RTE transit

Another relay is being added via RTE. Transit RTEs become RTEs of cores 05, 06 and

07. The execution time of a short data read transaction will be 156+5=161 clock

cycles. In the experiment, a block of 512 words was transmitted in 99,260 clock

cycles, 194 clock cycles per word of data. The difference between the minimum

calculated value and the experimental one is 33 cycles.

Conclusion.

 The system showed stable performance. Files of different sizes were repeatedly

transferred from the computer's hard drive to the memory of each core and read

back, followed by comparison with the original file. The highest transfer rate that can

be achieved in this network is possible in the case of block data writes and is

determined by the transmission time of the short form of a 64-bit word write

transaction over the connection between the MAC2G5 and the PHY. This connection

operates at 78.125 MHz, which is more than 2 times lower than the operating

frequency of the cores, FPU and RTE. The short form of a write transaction is

transferred between the MAC2G5 and the Low Latency PHY in 4 TxCLK or RxCLK clock

cycles. These 4 clock cycles include: transaction start code 0ADDF004Ah, 32 bits of

the transaction control word and 2 32-bit data words. 19531250 64-bit words per

second or 156.25MByte/sec. Theoretically, this can be increased by almost 4 times if

you configure the Low Latency PHY transceiver at a speed of about 9.5G. It is also

possible to use 2 or 4 transceivers in parallel for one inter-core connection, which will

further increase the throughput, but that is another story.

