
Unit NU512.

 The new version of the block was developed to speed up the calculation
of convolutions, acceleration of forward and back propagation of the multi-

layer perceptron (MLP), edge extraction, pooling. I also wanted to add the
ability to work with data in the format with a floating point of half precision -

fp16. Now the NU512 block uses 2 data formats fp16 and fp32 (half and single
precision). Its architecture was developed in such a way that there was a

possibility of practical implementation on the DE5-NET platform with the

Stratix V 5SGXEA7N2F45C2 chip and at the same time the architecture had the
ability to scale when porting to more capacious and modern platforms.

 The DE5-NET platform has 2 DDR3 memory channels for 2 SO-DIM

modules.

One of the channels was used as the system memory of the X32Carrier core.
The second channel was used as data memory for the NU512 block. DDR3

SDRAM Controller with UniPHY v16.1 was used to connect to the memory. Its
Avalon-MM interface was configured for Quarter rate mode and 512-bit bus

width, operating at 150 MHz. The 5SGXEA7N2F45C2 crystal resources were
used at 95%.

Such high resource utilization did not allow me to make the 150MHz clock,

which synchronizes Avalon-MM interfaces of DDR3 controllers, the main clock
signal of the entire system. I had to lower the main clock of the system to

120MHz and use Dual-clock FIFO to connect the system with two DDR3
controllers.

DDR3
SO-DIMM

Data
Buffer

DDR3
Controller

slave

Requests & write
data

DC FIFO

Read data
DC FIFO

NU512
system

DDR3
SO-DIMM

System
Memory

Requests & write
data

DC FIFO

Read data
DC FIFO

X32Carrier
Core

DDR3
Controller

Master

Control

PLL

150 MHz

120 MHz

Operations performed by the NU512

 Loading data from system memory into the data buffer. The source data
can be in the following formats: uint8, uint16, int8, int16, fp16, fp32;

 Unloading data from the data buffer into system memory with translation
from fp16 or fp32 format into int8, int16, fp16, fp32 formats;

 Convolution. Kern sizes: 3*3, 5*5 and 7*7 Convolution step 1*1;

 Edge extraction using a combination of the horizontal Sobel operator and
the vertical Sobel operator.

 Pooling with a step of 2*2, by minimum, maximum and average values.
 Forward propagation of a MLP, a set of 8 widely used activation functions.

 Back propagation (training) of a MLP.

NU512 test results.
The system had a main clock 120МГц. To test the operations of data

loading/unloading, convolutions, edge detection and pooling, a grayscale 8-bit
photograph with a size of 1024*512 pixels was used.

It was processed with a 7x7 kern, designed to reduce noise.

After noise suppression, an edge detection operation was applied to the image.

And the last stage is checking the pooling. The image was reduced by 4 times

in area.

Performance of convolutions, edge detection and pooling.

Operation FLOPS FLOps/clock Pixels/clock

Convolution 3*3 fp16 9 171 659 248.52 76.43 4.496

Convolution 5*5 fp16 8 854 655 785.73 73.79 1.506

Convolution 7*7 fp16 12 654 934 022.24 105.46 1.087

Convolution 3*3 fp32 5 224 082 236.51 43.534 2.5608

Convolution 5*5 fp32 8 416 707 551.55 70.139 1.431

Convolution 7*7 fp32 12 193 045 812.45 101.61 1.0475

Edge detection 10 718 914 845.51 89.32 4.466

Pooling average fp16 1 346 591 865.36 11.22 3.74

Pooling average fp32 579 170 562.51 4.826 1.609

How can we use the data written in the last column of the table? For example,

let's calculate the execution time of the pooling operation on an array of
1016*504. Data format fp32. The resulting array will have a dimension of

508*252=128016 pixels. The number of clocks that the block will spend on
this operation will be equal to 128016/1.609=79562.46. If the clock is equal to

150 MHz, then the execution time of such a pooling operation will be
79562.46/150e6=530.42 µs.

Data transfers performance.

 The maximum data transfer rate is limited to 480e6 bytes/sec with the

main clock at 120 MHz. This is due to the fact that the NU512 block has a
limitation on the maximum data exchange rate with the system memory.

Access to the system memory is possible once every 2 clock cycles over a 64-
bit channel. This is done specifically to prevent the channel from being blocked

for the processor core, allowing it to work in parallel with the NU512
equipment.

So, Max.transfer rate = 8(bytes)*Fclk/2 8*120e6/2=480e6 bytes/sec.
The Pixel/clock parameter allows you to calculate the time or data transfer rate

at a different main clock frequency than 120 MHz.

Data format Bytes/sec Pixels/sec Pixel/clock

Loading data from system memory into the data buffer.

uint8fp32 346 957 845.28 346 957 845.28 2.89

fp32fp32 331 094 411.11 82 773 602.78 0.69

fp16fp16 326 100 278.55 163 050 139.27 1.359

Transfer from data buffer to system memory

fp32fp32 479 432 528.88 119 858 132.22 0.999

fp32int16 479 437 566.91 239 718 783.46 1.998

fp16fp32 478 191 607.87 119 547 901.97 0.996

fp16fp16 479 730 185.50 239 865 092.75 1.999

Test of the MLP.

 For testing, the EMNIST-Digits dataset was chosen, which contained

240,000 training images and 40,000 test images. The images looked
something like this:

These are mirror images of handwritten digits along the vertical axis, rotated
90 degrees counterclockwise, but this does not matter for MLP training. The

image has a dimension of 28*28. The MLP was chosen in the configuration:
 Input layer – 784 elements in fp16 format (uint8fp16 when loading the

image into the data buffer);

 The inner layer had 2048 neurons, each with 784 inputs;
 The output activation function was chosen to be tangent hyperbolic, the

result was presented in fp32 format;

 Output layer of 10 neurons, each of which had 2048 inputs;

 Output activation function is sigmoid;

 The data was fed to the MLP input without any pre-processing at all.

10 neurons of the last layer == 10 digits, 0-9. The perceptron response to the
action was selected by the maximum value at the output of one of the 10

neurons. The result of the MLP operation in the form of a set of 10 numbers in
fp32 format was unloaded into the system memory, where the numbers were

processed programmatically, using the standard set of machine instructions of
the X32Carrier core, and a decision was made on which digit was depicted. For

example, if neuron 3 produced the largest number, then the presented data set
was considered an image of the digit 3. MLP training was carried out in the

simplest way:
 The MLP was presented with the next image of a number and the forward

propagation was calculated;
 the calculation result was unloaded into the system memory;

 the errors of the output layer were calculated: MLP Error = (expected

value 0 or 1) - (MLP response) Thus, neurons whose indices were not
equal to the true value of the digit in the presented image received

negative error values, and neurons whose indices were equal to the
value of the depicted digit received a positive error value;

 the set of errors was loaded into the MLP and the backpropagation
procedure (training) was started;

 the cycle was repeated over all 240,000 training images, and once one
cycle was completed, the next one was started from the very beginning

of the dataset.

During this infinite learning cycle, the correctness of the direct propagation
result was assessed each time. And if after the next direct propagation it was

found that the maximum number of correct results had been obtained for the
last 1000 images, then the current MLP configuration was saved, and the

training continued. Thus, after a short time (about 30 minutes), a configuration

of MLP coefficients was formed that theoretically gave the best recognition
result.

 As a result of such training, a set of coefficients was obtained that
allowed us to obtain a probability of correct answers of 94.48% on the test set.

Fashion recognition.

 The second experiment with MLP was class recognition of clothing, shoes

and accessories.

 The perceptron configuration was the same. 784 input elements - 1st

layer, 2048 neurons in the hidden layer and 10 neurons in the output layer. The
hidden layer also had the TanH activation function, and the output - sigmoid.

Result: 79.44% correct answers.

MLP Performance.

 Number of elementary operations (+ - * /) in direct propagation:

2048*(784*2+28)+10*(2048*2+26)=3309828, where:
 2048 – number of neurons in the hidden layer;

 784*2 – the number of operations of multiplying input data by weight
coefficients and summing products and fixed offset;

 28 – the number of elementary operations in calculating the activation
function TanH;

 10 – number of neurons in the output layer;
 2048*2 – the number of operations of multiplication of the results of the

previous layer and operations of summation of products and fixed offset;
 26 – the number of elementary operations performed when calculating

the sigmoid activation function.
This number of elementary floating point operations was completed in

0.0002278 sec, which corresponds to the performance:

 3309828/0.0002278=14529534679.54 FOPS or
14.53 GFLOPS
121.079 FOPS/clock

Number of operations in backpropagation:
2048*(10+9+1+1+2+784*2)+10*(1+1+2+2048*2)= 3299368, where:

2048 – number of neurons in the hidden layer;
10+9 – the number of operations required to calculate the error value of each

of the 2048 neurons;
+1+1 – multiplying the error by the learning rate and multiplying by the

derivative of the output function;
+2 – number of operations when calculating the derivative of the output

function;

784*2 и 2048*2 – the number of operations of multiplying the scaled error by

the value of the input data value and then summing it with the previous

weighting factor.
This number of operations was completed in 0.000150292 sec., which

corresponds to the performance of:
3299368/0.000150292=21953051393.2877332 FOPS or

21.95 GFLOPS
182.942 FOPS/clock

Architecture of the NU512.

PortalCore X32

Main
DDR3

memory
2GB

Me
mor

y
cha
nnel

Inst
ruct
ion
cha
nnel

Timers
TMR0
TMR1
TMR2

Input
Converter

/
64

DDR3
Data
buffer
2GbLoad/Store

Engine

M
U
X

/
512/

512

Memory
interface

Output
composer

512 —

Address/Control

/
512

512
/

Activation
unit 0

Activation
unit 1

Activation
unit 2

Activation
unit 3

Activation
unit 4

Activation
unit 5

Activation
unit 6

Activation
unit 7

MultAdderAtom 0

MultAdderAtom 1

MultAdderAtom 2

MultAdderAtom 3

Weights
Buffer0

16K*512

Weights
Buffer1

16K*512

Weights
Buffer2

16K*512

Weights
Buffer3

16K*512

/
1024

Data to/from portal and system memory
Weights during forward propagation
Weights during back propagation
Neuron control information
Neuron SUM

SUM
buffer

0
8K*32

SUM
buffer

1
8K*32

SUM
buffer

2
8K*32

SUM
buffer

3
8K*32

SUM
buffer

4
8K*32

SUM
buffer

5
8K*32

Neuron Result
Data to DDR3 memory buffer

Perceptron Engine

Output
Converter

Data from DDR3 memory buffer

Convolution
Atom 0

DTI
CI
ACCI

ACCO

Convolution
Atom 1

DTI
CI
ACCI

ACCO

Convolution
Atom 2

DTI
CI
ACCI

ACCO

Convolution
Atom 3

DTI
CI
ACCI

ACCO

Convolution
Atom 4

DTI
CI
ACCI

ACCO

Convolution
Atom 5

DTI
CI
ACCI

ACCO

Convolution
Atom 6

DTI
CI
ACCI

ACCO

Convolution
Atom 7

DTI
CI
ACCI

ACCO

Kbuff0
8*32

Kbuff1
8*32

Kbuff2
8*32

Kbuff3
8*32

Kbuff4
8*32

Kbuff5
8*32

Kbuff6
8*32

Data
MUX

ConvFIFO0
8

ConvFIFO1
8

ConvFIFO2
8

ConvFIFO3
8

A
C
C
M
U
X

Kern coefficients
Convolution data

Convolution Engine

/
512

PoolingLDTI DTO

PoolingHDTI DTO

/
512

Pooling data

/
512

/
512

/
256

/
256

PoolResFifo
16

ConvResFifo
16

ControlWordsFifo
16

MemRFifo
32

MemWFifo
32

DIFifo
64

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1. Load/Store engine. The engine performs NULD, NUSD, NULP, NUSP

operations and loading of error values in the perceptron backpropagation
instruction - NUBP.

2. Convolution engine. Designed to perform convolution, pooling and edge
detection. Executes NUCN, NUPL instructions.

3. Perceptron engine. Controls the operation of the perceptron in forward
and backward propagation, NUFP and NUBP instructions.

4. Input queue. Used for temporary storage of data read from system
memory, intended for transmission to an external data buffer.

5. Interface to DDR3 memory module. DDR3 memory module is used as
external data storage buffer. Avalon-MM interface of DDR3 controller is

512 bits wide and uses Quad Rate mode for Avalon-MM interface.
6. Read data queue. Contains 512-bit data sets consisting of either 32

elements in fp16 format or 16 elements in fp32 format. This queue
contains data intended for transfer to system memory, for performing

convolution, pooling, and for performing forward and backward

perceptron propagation.
7. Input converter. Converts data received from system memory to fp16 or

fp32 format before writing to the external data buffer. Input data can be
in uint8, uint16, fp16, fp32, int8, int16 formats.

8. Output converter. Used when unloading data from the buffer memory to
the system memory. The converter can save data in the int8, int16, fp16

and fp32 formats.
9. Set of 8 blocks for calculating convolutions. These 8 blocks are capable of

calculating 16 convolutions of 3*3 or 8 convolutions of 5*5 and 7*7.
10. Kern Buffers. 7 buffers contain kernel coefficients 3*3, 5*5 and 7*7.

11. Intermediate data storage queues and intermediate results
multiplexer. The queues store the sums accumulated during processing

of the next initial 512-bit data set. The same 512-bit data set coming
from queue 6 contains operands for different kern rows. For example,

with a kern size of 3*3, each initial data set is processed by 3 kern rows.

The result of processing the 0th row is written to queue 11. The
intermediate result of processing the previous data set is extracted from

queue 11, summed with the result of processing the 1st row of the kern,
and placed back in queue 11. The intermediate result of processing the

two previous data sets is summed with the partial sum obtained during
processing of the 3rd row of the kern and the current data set. The result

of the sum is no longer written to the queue, but is transferred to queue
12 for subsequent writing to the buffer memory as a result.

12. Convolution Result Queue: This queue accumulates convolution
results before writing them to the data buffer.

13. MultAdderAtoms are blocks that perform multiplication of input
data by weight coefficients and summation of the obtained products. MLP

is used in direct and reverse propagation. During reverse propagation,
the blocks allow calculating neuron errors by multiplying the error of the

neuron from the next layer by the corresponding weight coefficient and

summing with the accumulated error. Each of the four blocks has 32
multipliers, which is designed for parallel multiplication of 32 pairs of

data and weight coefficients if the data is presented in the fp16 format. If

the fp32 format is used, only 16 multipliers work. This allows processing

the entire 512-bit data word in 1 cycle. The results of the multiplications
are summed on the pipeline over several cycles. The total pipeline length

of the MultAdderAtom block is 10. For a 512-word at the ReadMemFifo
output, at each clock cycle the coefficients of the next neuron are

selected from the coefficient buffer and a data pair is fed to the
MultAdderAtom. When the coefficient groups for all neurons of the layer

are passed through the MultAdderAtom, the processed data word leaves
the input queue and the processing of the next 512-bit word and the

corresponding coefficients begins. If the last set of coefficients is
processed, the resulting sum is fed to the inputs of the activation blocks

simultaneously with the neuron control parameters, the neuron
parameters pass through the ControlWordsFifo queue.

14. ControlWordsFifo is used to synchronize the simultaneous supply of
the accumulated sum value and neuron parameters to the inputs of the

activation blocks.

15. Activation blocks calculate the output functions of neurons. Each
block is capable of calculating up to 4 different functions in parallel. In

total, 8 blocks can calculate up to 32 activation functions in parallel. Each
activation block contains an adder, a multiplier, and a divider. These

blocks perform calculations in the fp32 floating-point format and have 3
pipeline levels, which, in addition to the level of the source operand

multiplexer, form 4-level pipelines on which data of 4 output functions
being calculated can simultaneously be located. The ―e^x‖ function is

calculated using a tabular method using 24 multiplication operations. The
principle is simple: if the mantissa bit of the number x is 0, then the

generated value is multiplied by 1, if the bit is 1, then the result is
multiplied by the corresponding coefficient from the table. Activation

blocks calculate the output functions during forward data propagation
and calculate the derivatives of the activation functions during backward

propagation. The table below shows the formulas for the functions in

accordance with which the calculations are made. The natural logarithm

is calculated using the series:

 The values 1/3, 1/5, 1/7, 1/9, 1/11, 1/13, 1/15 and 1/17 are

retrieved from ROM.
16. The results of the activation functions and the values of the sums

of the weighted input data are written to the coefficient buffers. They will

be used if the backpropagation operation is started after the forward
propagation. The activation blocks do not always produce results

simultaneously, since different activation functions can be used or the
formulas can use the division operation, the execution time of which

depends on the number of 1's in the mantissas of the operands.
17. The results of the activation functions are passed to the input of

the OutComposer result collector, which waits for the next 512-bit word
to be filled and passes it to the write queue.

18. The write queue accumulates data and it is transferred to the
memory controller in burst mode.

19. Sum Buffers in the amount of 6 pcs are used during convolution

calculation, perceptron forward propagation and perceptron

backpropagation. During convolution calculation, these buffers are used
to store the last few elements of the current 512-bit word of the current

matrix column's raw data in order to use them as raw data when
processing the next matrix column. If the core size is 3*3, then only

buffers 5 and 4 are used (4 is used when the data width is fp32), if the
core size is 5*5, then buffers 5 and 4 are used if the data format is fp16

and buffers 5,4,3 and 2 if the data format is fp32. When using the 7*7
core, all 6 buffers are used if the data format is fp32. Only 4 buffers, 0-3,

are used when calculating MLP. When calculating forward propagation,
the buffers are used to temporarily store intermediate values of the sums

of products of weight coefficients and data. When calculating
backpropagation, buffers are used to store the derivatives of the

activation functions multiplied by the neuron's error rate and the learning
rate. These values are used later when recalculating the weights.

20. The data multiplexer prepares the source data for the convolution

blocks depending on the data format and the kern size.
21. Two pooling units process two 512-bit words and form a single

512-bit result.
22. The pooling result is placed in PoolResFifo, from which the data is

transferred for writing to DDR3 data buffer.
23. The timers count the running time of the Load/Store Engine,

Convolution Engine, and Perceptron Engine in 200ns ticks. The contents
of the timers can be read into a general-purpose register. The timers are

reset to 0 by software.

MLP control block format.
 The header contains the description of the perceptron layers. Each 32-bit
word contains a counter of data elements and a bit of data size. The data size

bit is placed in bit 31, 0 – fp16, 1 – fp32. The description of the layers ends
with a zero 32-bit word. Next, the neuron parameters are placed. The

parameters are aligned to the boundary of 64-bit Qwords. If the description of

the MLP layers contains an even number of layers, then after the zero
termination word, another 32-bit word is placed for alignment to the boundary

of 8 bytes.

Data lengthLayer 1 length

Layer 2 length00000000h W

WW

63 3132 0

Layer 1
Neuron description

Layer 2
Neuron description

Data lengthLayer 1 length

Layer 2 length

00000000h

W

WW

63 3132 0

Layer 1
Neuron description

Layer 2
Neuron description

Layer 3 lengthW

Layer 3
Neuron description

 Each neuron is described by a block of parameters followed by a set of
coefficients.

Control wordBIAS

LIMITParameter A

Parameter BParameter C

Learn Speed factor

SUMNeuron Result

Neuron error

Reserved

ReservedReserved

ReservedReserved

Weights

063

63

127

191

255

319

223

31

95

159

287

0

64

128

192

256

32

96

160

224

288

Reserved

+0

+8

+16

+24

+32

+40

+48

+56

+64

The number of coefficients is equal to the length of the previous layer, and
their format is equal to the format of the data of the previous layer. The

neuron parameter block contains:

 The control word contains only 3 significant bits. Bits [2:0] define the

activation function according to the table:

[2:0] Function Forward propagation Derivative

0 Limit

detector,
ReLU,

Leak
ReLU,

Linear

f(x)=C+A(x-limit), if x>=limit

f(x)=B(x-limit), if x<limit

f'(x)=A, if x>=limit

f'(x)=B, if x<limit

1 Softsign f(x)=x/(|x|+1) f'(x)=1/((|x|+1)^2)

2 ELU f(x)=A(x-limit), if x>=limit

f(x)=B(e^(x-limit)-1), if x<limit

f'(x)=A, if x>=limit

 f'(x)=f(x)+B, if x<limit

3 Sigmoid f(x)=1/(1+e^-x) f'(x)=f(x)*(1-f(x))

4 TanH f(x)=2/(1 + e^(-2x)) – 1 f'(x)=1-(f(x))^2

5 Softplus f(x)=ln(1+e^x) f'(x)=1/(1+e^-x)

6 Swish f(x)=x/(1+e^-x) f'(x)=((e^-x)*(x + 1) +

1)/((1+e^-x)^2)

7 Gaussian f(x)=e^-(x^2) f'(x)=-2xe^-(x^2)

 Limit, Parameter A, Parameter B, Parameter C – activation function

parameters;
 SUM – the value of the sum of the weighted input data of a neuron. This

value is the initial operand of the activation function;
 Neuron result – the value of the activation function result;

 Learning speed – learning speed;
 Neuron error – neuron error value. For the last layer, the error value is

loaded from system memory at the start of the NUBP instruction. For the
remaining layers, the error values are calculated by NU512.

Weights can be in 16-bit or 32-bit format.

NU512 Instructions

NULD, NeuroUnit Load Data.

Mnemonic:
 NULD SRC1,SRC2,SRCF,DSTF

Format:

0A0h

0

SRC1

7812

SRCF

1315

SRC2

1620

x x x

23

x x x x x

2428

D
S
T
F

x x

31

Example:
 nuld r4,r23,uint16,fp32

Description:
 Instruction for loading data from system memory into the data buffer.

Instruction parameters:
 SRC1[31:0] – selector of the object in which the data is placed starting

from offset zero.

 SRC1[56:32] – address of loading data inside the data buffer. The value

defines the address of a 512-bit cell.

 SRC2[31:0] – number of data elements in a row.
 SRC2[63:32] – number of rows, reduced by 1. If SRC2[63:32]=0, then

there is only one row. This property allows loading both one-dimensional
data blocks and two-dimensional arrays into the data buffer.

 SRCF – format of the source data: uint8 – unsigned 8 bits, uint16 –
unsigned 16 bits, fp16 – floating point 16 bits, fp32 – floating point 32

bits, int8 – signed number 8 bits, int16 – signed number 16 bits.
 DSTF – format in which the data will be written to the buffer. Can be

either fp16 or fp32.

NUSD, NeuroUnit Store Data.

Mnemonic:

 NUSD SRC1,SRC2,SRCF,DSTF
Format:

0A1h

0

SRC1

7812

S
R
C
F

1315

SRC2

1620

x x x

23

x x x x x

2428

DSTFx

31

x x

29

Example:
 nusd r5,r2,fp16,int16

Description:
 The instruction unloads data from the data buffer into the system

memory. Data from the internal fp16 or fp32 format is converted to the

receiver format. The receiver format can be int8, int16, fp16 or fp32. This
instruction does not output data in unsigned format. Instruction parameters:

 SRC1[31:0] – selector of the object into which data is written, starting at
offset zero;

 SRC1[56:32] – address of data placement in the buffer;
 SRC2[31:0] – number of data elements in each row;

 SRC2[63:32] – number of lines minus 1. If SRC2[63:32]=0, then only
one line of data is transmitted;

 SRCF – format of the source data in the buffer. Can be either fp16 or
fp32;

 DSTF – The format of the data in the destination object. Can be int8,
int16, fp16, or fp32.

NULP, NeuroUnit Load Percetron

Mnemonic:
 NULP SRC1

Format:

0A2h

0

SRC1

7812131516

x x x x x x x x

23

x x x x x x x x

2431

x x x

Example:

 nulp r20
Description:

 The instruction loads the perceptron data into the internal buffers of the

NU512 block. The instruction parameter is a selector in the SRC1 register. The

selector points to the object in which the perceptron data is located starting

from offset zero.

NUSP, NeuroUnit Store Perceptron
Mnemonic:

 NUSP SRC1
Format:

0A3h

0

SRC1

7812131516

x x x x x x x x

23

x x x x x x x x

2431

x x x

Example:

 nusp r3
Description:

 The instruction unloads the perceptron data into an object located in
system memory. SRC1 contains the object selector.

NUBP, Neuro Unit Back Propagation

Mnemonic:
 NUBP SRC1,SRC2

Format:

0A4h

0

SRC1

78121315

SRC2

1620

x x x

232431

x x xx x x x x x x x

21

Example:

 nubp r23,r17
Description:

 The instruction initiates loading of the error block into the control
parameters of the last layer of neurons. After loading the errors, the

backpropagation procedure begins. During this procedure, a sequential
calculation of errors is performed for all neurons of all preceding layers,

starting from N-1 to 1. After completing the calculation of errors for all neurons
in all layers, the weight coefficients are updated for all neurons in all layers.

NUWR, NeuroUnit Write Register

Mnemonic:
 NUWR NDST,SRC1

Format:

0A6h

0

SRC1

7812131516232431

x x xx x x x x x x xx x x x x NDST

27

Example:
 nuwr 0,r14

Description:
 The instruction writes data to one of the NU512 control registers. In the

current version of the block, writing any value to register 0 results in zeroing
the TMR0, TMR1, TMR2 counters.

NURR, NeuroUnit Read Register

Mnemonic:
 NURR DST,NSRC

Format:

0A7h

0

NSRC

78111516232431

x x x x x x x x x x x x x x x xDST

28

Example:

 nurr r28,1
Description:

 Reading a register. In the current version, only 2 registers are available:
0 and 1. Their format is shown in the figure below.

TMR0

031

lssm0msm0psmplsmcsmclsm

63 47 3248

TMR1TMR2

Register 0

Register 1

Register 0 contains the TMR0 timer and the state machine fields. TMR0 –
counts 200ns ticks of the data load/store engine. TMR1 – counts ticks of

convolution, pooling and edge detection. TMR2 counts ticks of forward and
backward propagation MLP.

NUCN, NeuroUnit CoNvolution.

Mnemonic:
 NUCN SRC1,SRC2,DST

Format:

0A8h

0

SRC1

78121315

SRC2

1620

x x x

23242831 29

x x xDSTx x x

Example:

 nucn r3,r29,r6
Description

 The instruction starts the calculation of the convolution of a two-

dimensional matrix with a 3*3 or 5*5 or 7*7 kern size. The register specified
in the SRC1 field contains the address of the source data location in the data

buffer (bits [24:0]), the horizontal width of the matrix (bits [43:32]) and the
height of the matrix (bits [59:48]). Bit 62 of SRC1 is the data format 0fp16

and 1fp32, bit 63 is the edge detection mode control, if SRC1[63]=0 –
convolution is performed, if SRC1[63]=1 – edge detection is performed. The

SRC2 register contains the offset (bits [31:0]) and the object selector (bits
[63:32]) that determine the placement of the kern data. The kern data has the

format shown in the figure below.

K[1:1]K[1:2]K[1:3]

K[2:1]K[2:2]K[2:3]

K[3:1]K[3:2]K[3:3]

Kern 3X3

ControlXXXXXXXX

63 31 032

K[1:1]K[1:2]

K[1:3]K[2:1]

K[2:2]K[2:3]

K[3:1]K[3:2]

K[3:3]XXXXXXXX

K[1:1]K[1:2]K[1:3]

K[2:1]K[2:2]K[2:3]

K[3:1]K[3:2]K[3:3]

Kern 5X5

ControlXXXXXXXX

63 31 032

K[1:1]K[1:2]

K[1:3]

K[2:1]

K[2:2]K[2:3]

K[3:1]K[3:2]

K[3:3]

XXXXXXXX

K[1:4]K[1:5]

K[2:4]K[2:5]

K[3:4]K[3:5]

K[4:1]K[4:2]K[4:3]

K[5:1]K[5:2]K[5:3]

K[4:4]K[4:5]

K[5:4]K[5:5]

K[1:4]

K[1:5]

K[2:4]K[2:5]

K[3:4]

K[3:5]K[4:1]

K[4:2]K[4:3]

K[4:4]K[4:5]

K[5:1]K[5:2]

K[5:3]K[5:4]

K[5:5]

K[1:1]K[1:2]K[1:3]

K[2:1]K[2:2]K[2:3]

K[3:1]K[3:2]K[3:3]

Kern 7X7

ControlXXXXXXXX

63 31 032

K[1:1]K[1:2]

K[1:3]

K[2:1]

K[2:2]K[2:3]

K[3:1]K[3:2]

K[3:3]

XXXXXXXX

K[1:4]K[1:5]

K[2:4]K[2:5]

K[3:4]K[3:5]

K[4:1]K[4:2]K[4:3]

K[5:1]K[5:2]K[5:3]

K[4:4]K[4:5]

K[5:4]K[5:5]

K[1:4]

K[1:5]

K[2:4]K[2:5]

K[3:4]

K[3:5]

K[4:1]

K[4:2]K[4:3]

K[4:4]K[4:5]

K[5:1]K[5:2]

K[5:3]K[5:4]

K[5:5]

K[1:6]K[1:7]

K[2:6]K[2:7]

K[3:6]K[3:7]

K[4:6]K[4:7]

K[5:6]K[5:7]

K[6:1]K[6:2]K[6:3]

K[7:1]K[7:2]K[7:3]

K[6:4]K[6:5]

K[7:4]K[7:5]

K[6:6]K[6:7]

K[7:6]K[7:7]

K[1:6]

K[1:7]

K[2:6]K[2:7]

K[3:6]

K[3:7]

K[4:6]K[4:7]

K[5:6]

K[5:7]K[6:1]

K[6:2]K[6:3]

K[6:4]K[6:5]

K[6:6]K[6:7]

K[7:1]K[7:2]

K[7:3]K[7:4]

K[7:5]K[7:6]

K[7:7]

Control

SIZEMODE

5 4 3 2 1 0

0 00 0

7 6

Kern size

0 – 3X3

1 – 5X5

2 – 7X7

3 – Illegal

MODE[0] – negative value processing mode0:

0 – no changes

1 – convert negative to zero

MODE[1] – negative value processing mode1:

0 – no changes

1 – convert negative to positive

The DST register in bits [24:0] contains the address of the data buffer where

the result of the convolution or edge detection will be placed.

NUPL, NeuroUnit PooLing

Mnemonic:

 NUPL SRC1,DST,Pmode
Format:

0A9h

0

SRC1

7812151623242831 29

DSTx x x x x x x x x x x
PMOD

E
x

Example:
 nupl r13,r14,pmin

Description:
 Pooling. The pooling operation can be performed in 3 modes:

Pmode=0pmin – selects minimum values, Pmode=1pmax – selects

maximum values, Pmode=2pavr – calculates the average value for 4 points.
The SRC1 register contains the address of the initial data in the buffer (bits

[24:0]), the horizontal length of the matrix (bits [43:32]), the vertical height
(bits [59:48]), the data format (bit [62]) SRC1[62]=0FP16,

SRC1[62]=1FP32. The DST register contains the address where the result

will be written.

NUFP, NeuroUnit Forward Propagation

Mnemonic:

 NUFP SRC1
Format:

0AAh

0

SRC1

7812131516

x x x x x x x x

23

x x x x x x x x

2431

x x x

Example:
 nufp r17

Description:
 Forward propagation. The SRC1 register contains the address of the

source data. During forward propagation, the results of the intermediate
layers' calculations and the results of the last layer are placed in the data

buffer immediately after the source data, as shown in the figure below.

Data buffer
32M*512

0511

Source data

Internal layer 1 results

Output layes results

Internal layer N results

* * *

