Unit NU512.

The new version of the block was developed to speed up the calculation
of convolutions, acceleration of forward and back propagation of the multi-
layer perceptron (MLP), edge extraction, pooling. I also wanted to add the
ability to work with data in the format with a floating point of half precision -
fp16. Now the NU512 block uses 2 data formats fp16 and fp32 (half and single
precision). Its architecture was developed in such a way that there was a
possibility of practical implementation on the DES-NET platform with the
Stratix V 5SGXEA7N2F45C2 chip and at the same time the architecture had the
ability to scale when porting to more capacious and modern platforms.

The DES-NET platform has 2 DDR3 memory channels for 2 SO-DIM
modules.

One of the channels was used as the system memory of the X32Carrier core.
The second channel was used as data memory for the NU512 block. DDR3
SDRAM Controller with UniPHY v16.1 was used to connect to the memory. Its
Avalon-MM interface was configured for Quarter rate mode and 512-bit bus
width, operating at 150 MHz. The 5SGXEA7N2F45C2 crystal resources were
used at 95%.

g

; Quartus Prime Version
; Revision Name
; Top-level Entity Name

; Family
; Device

; Timing Models

; Logic utilization (in ALMs)

; Total
; Total
; Total
; Total

; Total
; Total

registers

pins

virtual pins

block memory bits

RAM Blocks

SP Blocks
TD RX PCSs
0G RX PCSs
GEN3 RX PCSs

3 T

oP

; Stratix v
; DSGXEA7N2FA5C2

PMA RX Deserializers ; @ /

TD TX PC5s
180G TX PCSs

; Total P
; Total

Such high resource utilization did not allow me to make the 150MHz clock,
which synchronizes Avalon-MM interfaces of DDR3 controllers, the main clock
signal of the entire system. I had to lower the main clock of the system to
120MHz and use Dual-clock FIFO to connect the system with two DDR3
controllers.

DDR3
SO-DIMM

Data
Buffer

? 120 MHz; | T

PLL

Control
150 MH
y v v y
Requests & write Read data
& & <& &
DDR3 D DgaFtIaFO D - b FIFO N DDR3
LN NU512 X32Carrier
K) Controller system Core Controller
slave Requests & write Master
o Read data » > data >
» DC FIFO » » bC FIFO »

<
<

Operations performed by the NU512

DDR3
SO-DIMM

System
Memory

Loading data from system memory into the data buffer. The source data
can be in the following formats: uint8, uintl6, int8, intl6, fp16, fp32;

Unloading data from the data buffer into system memory with translation
from fpl16 or fp32 format into int8, int16, fp16, fp32 formats;

Convolution. Kern sizes: 3*3, 5*5 and 7*7 Convolution step 1*1;

Edge extraction using a combination of the horizontal Sobel operator and

the vertical Sobel operator.

Pooling with a step of 2*2, by minimum, maximum and average values.
Forward propagation of a MLP, a set of 8 widely used activation functions.
Back propagation (training) of a MLP.

NU512 test results.

The system had a main clock 120Mly. To test the operations of data
loading/unloading, convolutions, edge detection and pooling, a grayscale 8-bit
photograph with a size of 1024*512 pixels was used.

After noise suppression, an edge detection operation was applied to the image.

And the last stage is checking the pooling. The image was reduced by 4 times
in area.

Performance of convolutions, edge detection and pooling.

Operation FLOPS FLOps/clock | Pixels/clock
Convolution 3*3 fp16 9 171 659 248.52 76.43 4.496
Convolution 5*5 fp16 8 854 655 785.73 73.79 1.506
Convolution 7*7 fp16 12 654 934 022.24 105.46 1.087
Convolution 3*3 fp32 5224 082 236.51 43.534 2.5608
Convolution 5*5 fp32 8 416 707 551.55 70.139 1.431
Convolution 7*7 fp32 12 193 045 812.45 101.61 1.0475
Edge detection 10 718 914 845.51 89.32 4.466
Pooling average fp16 1 346 591 865.36 11.22 3.74
Pooling average fp32 579 170 562.51 4.826 1.609

How can we use the data written in the last column of the table? For example,
let's calculate the execution time of the pooling operation on an array of
1016*504. Data format fp32. The resulting array will have a dimension of
508*%252=128016 pixels. The number of clocks that the block will spend on
this operation will be equal to 128016/1.609=79562.46. If the clock is equal to
150 MHz, then the execution time of such a pooling operation will be
79562.46/150e6=530.42 ps.

Data transfers performance.

The maximum data transfer rate is limited to 480e6 bytes/sec with the
main clock at 120 MHz. This is due to the fact that the NU512 block has a
limitation on the maximum data exchange rate with the system memory.
Access to the system memory is possible once every 2 clock cycles over a 64-
bit channel. This is done specifically to prevent the channel from being blocked
for the processor core, allowing it to work in parallel with the NU512
equipment.
So, Max.transfer rate = 8(bytes)*Fclk/2=> 8*120e6/2=480e6 bytes/sec.
The Pixel/clock parameter allows you to calculate the time or data transfer rate
at a different main clock frequency than 120 MHz.

Data format Bytes/sec Pixels/sec Pixel/clock
Loading data from system memory into the data buffer.
uint8->fp32 346 957 845.28 346 957 845.28 2.89
fp32->fp32 331094 411.11 82 773 602.78 0.69
fp16>fpl16 326 100 278.55 163 050 139.27 1.359
Transfer from data buffer to system memory

fp32>fp32 479 432 528.88 119 858 132.22 0.999
fp32->intl6 479 437 566.91 239 718 783.46 1.998
fp16>fp32 478 191 607.87 119 547 901.97 0.996
fp16>fp16 479 730 185.50 239 865 092.75 1.999

Test of the MLP.

For testing, the EMNIST-Digits dataset was chosen, which contained
240,000 training images and 40,000 test images. The images looked
something like this:

et VIWIZZIFIT IV [T "B W]

)|V (o0 DI V| & | D)~ | A~ |
00|13 W\ B/)| O D) AL~ D)
20 |4 0|00 |13 21O |
Q|43 YWDV A WD 7| &

O U001 Mool A |
A2 AN WH O P A LR |
L /|6 0| A |8 -0 00/ |
A el e e e

These are mirror images of handwritten digits along the vertical axis, rotated
90 degrees counterclockwise, but this does not matter for MLP training. The
image has a dimension of 28*28. The MLP was chosen in the configuration:
e Input layer - 784 elements in fp16 format (uint8>fp16 when loading the
image into the data buffer);
e The inner layer had 2048 neurons, each with 784 inputs;
e The output activation function was chosen to be tangent hyperbolic, the
result was presented in fp32 format;

e Output layer of 10 neurons, each of which had 2048 inputs;
e Output activation function is sigmoid;
e The data was fed to the MLP input without any pre-processing at all.

10 neurons of the last layer == 10 digits, 0-9. The perceptron response to the
action was selected by the maximum value at the output of one of the 10
neurons. The result of the MLP operation in the form of a set of 10 numbers in
fp32 format was unloaded into the system memory, where the numbers were
processed programmatically, using the standard set of machine instructions of
the X32Carrier core, and a decision was made on which digit was depicted. For
example, if neuron 3 produced the largest number, then the presented data set
was considered an image of the digit 3. MLP training was carried out in the
simplest way:

e The MLP was presented with the next image of a humber and the forward
propagation was calculated;

e the calculation result was unloaded into the system memory;

e the errors of the output layer were calculated: MLP Error = (expected
value 0 or 1) - (MLP response) Thus, neurons whose indices were not
equal to the true value of the digit in the presented image received
negative error values, and neurons whose indices were equal to the
value of the depicted digit received a positive error value;

e the set of errors was loaded into the MLP and the backpropagation
procedure (training) was started;

e the cycle was repeated over all 240,000 training images, and once one
cycle was completed, the next one was started from the very beginning
of the dataset.

During this infinite learning cycle, the correctness of the direct propagation
result was assessed each time. And if after the next direct propagation it was
found that the maximum number of correct results had been obtained for the
last 1000 images, then the current MLP configuration was saved, and the
training continued. Thus, after a short time (about 30 minutes), a configuration
of MLP coefficients was formed that theoretically gave the best recognition
result.

As a result of such training, a set of coefficients was obtained that
allowed us to obtain a probability of correct answers of 94.48% on the test set.

Fashion recognition.
The second experiment with MLP was class recognition of clothing, shoes
and accessories.

unnnc ﬁn l”==lu
M Ee Rzl Ml =G Tt mal e
EENEE ==L = i

i | | § R [| § DG MBI ARAR | -
-1 RSEESYT S § o 10 182, = 1% L 0EE Y]
e A] - A A

SR TR, JOE ey 1)
| TEA et M=l ifoala=n BER

The perceptron configuration was the same. 784 input elements - 1st
layer, 2048 neurons in the hidden layer and 10 neurons in the output layer. The
hidden layer also had the TanH activation function, and the output - sigmoid.

Result: 79.44% correct answers.

MLP Performance.
Number of elementary operations (+ - * /) in direct propagation:
2048*%(784*2+28)+10*%(2048*2+26)=3309828, where:
e 2048 - number of neurons in the hidden layer;
e 784*2 - the number of operations of multiplying input data by weight
coefficients and summing products and fixed offset;
e 28 - the number of elementary operations in calculating the activation
function TanH;
e 10 - number of neurons in the output layer;
e 2048*2 - the number of operations of multiplication of the results of the
previous layer and operations of summation of products and fixed offset;
e 26 - the number of elementary operations performed when calculating
the sigmoid activation function.
This number of elementary floating point operations was completed in
0.0002278 sec, which corresponds to the performance:
3309828/0.0002278=14529534679.54 FOPS or
14.53 GFLOPS
121.079 FOPS/clock

Number of operations in backpropagation:
2048*(10+9+1+1+2+784*2)+10*(1+1+2+2048%*2)= 3299368, where:
2048 - number of neurons in the hidden layer;

10+9 - the number of operations required to calculate the error value of each
of the 2048 neurons;

+1+1 - multiplying the error by the learning rate and multiplying by the
derivative of the output function;

+2 - number of operations when calculating the derivative of the output
function;

784*2 n 2048*2 - the number of operations of multiplying the scaled error by
the value of the input data value and then summing it with the previous
weighting factor.

This number of operations was completed in 0.000150292 sec., which
corresponds to the performance of:
3299368/0.000150292=21953051393.2877332 FOPS or

21.95 GFLOPS

182.942 FOPS/clock

Architecture of the NU512.

=

DDR3
Data
buffer
2Gb

| |
)‘ DTI PoolingH DTO
Y 22
512 } _:—L’» IPdolResFifo,
I 256
I I ‘ 16
7 }‘ DTI PoolingL DTO —;—'?;’
512 | |
N —— s L
4 \
_» 20 2
DTI ;
'y : Convolution cco |
_; accli Atom 0 }
Data A
MUX iy :&Di” Convolution , .o 1
:;ACCI Atom 1 }
p N P . |
FABler convoluton ol |
‘/’716777\‘ ACCI }
| Kourro || B2 convolution , ol |
| 8*32 | accr Atom 3 |
|
|
o | kbuft | | 1 BT convolution , | |
? 8%32 } Accl Atom 4 |
|
|
b Kbuff2 | | DT ~onvoluti I
P Y < volution |
| 832 } A::CI Atom 5 A€ |
! I
Kbuff3 | | P N) |
—} 8%32 + A~ Blc Convolution ACCO ‘
| } $Acc1 Atom 6 |
|
Kbuff4 | 1 A) ‘
—} 8%32 [T g” Convolution , .. j
| | ACCI Atom 7 |
L[kbures | | e _/
832 ‘ ! TonvFIFOI \\
I } A T
|y, Kbuff6 | | | ¢ [TconverFor !
| 8%*32 | | c |
PV YV V N
A p——— —/ M ONVFIFO2 |
U ! 12
X TONVFIFO3 1 | ConvResFifo
j - 16
; |
. i 7
' * \
} I 2
| SUM SUM SUM SUM SUM SUM }
|| buffer buffer buffer buffer buffer buffer | c \ution Enai
| 5 4 3 2 1 0 | onvolution Engine
I| 8K*32 | 8K*32 | 8K*32 | 8K*32 [8K*32 | 8K*32 | |
|
|
19 AL :
T T ~
/ 15 \ AN
AhA Ll w | Activation [
P MultAdderAtom 0 ‘ } > unit 0 |
A | 1| LAy Activation [+
A L | 1 unit1 4
| L w | Activation
P N | ; MultAdderAtom 1 I-,.l‘ =l > unit 2 N
A | | + | LA | Activation ==
M\ ! | ™1 unit3 LA
—> | ‘ Activation M N
Data to/from portal and system memory ! d | unit 4 -‘l-‘""“
Weights during forward propagation | Activation -/-V
Weights during back propagation —» unit 5 L L
Neuron control information N/ } + [Activation _“,"b N
Neuron SUM P | / > unit 6 L
Neuron Result R vV I\
| Activation]
Data to DDR3 memory buffer > unit 7 H
Data from DDR3 memory buffer v —/
Kern coefficients el .
Convolution data
Pooling data - - 1024
‘ - v \
|
} 16 | Weights | Weights | Weights | Weights | | 3
23 TMRO | Buffer0 Bufferl Buffer2 Buffer3 |
Timers | TMR1 | I ’
TMR2 || 16K*512 | 16K*512 | 16K*512 | 16K*512 | | Perceptron Engine
Inst A | | LU 3
ruct T X 512
ion |« v - MomRffa o
cha I 3
nnel s
Output PN N N >
I\ A
Core X32 | Portal Converter T— 512
AP Memory
e T 1\7 YVV interface
mor
Load/Store Output
et PNee]
y ——Address/Control Engine composer / o
cha 512
nnel
512
4 7 18
w| DIFif - Input | MemWFif
» 7 » i
64 64 Converter 512 512

9.

. Load/Store engine. The engine performs NULD, NUSD, NULP, NUSP

operations and loading of error values in the perceptron backpropagation
instruction - NUBP.

. Convolution engine. Designed to perform convolution, pooling and edge

detection. Executes NUCN, NUPL instructions.
Perceptron engine. Controls the operation of the perceptron in forward
and backward propagation, NUFP and NUBP instructions.

. Input queue. Used for temporary storage of data read from system

memory, intended for transmission to an external data buffer.

Interface to DDR3 memory module. DDR3 memory module is used as
external data storage buffer. Avalon-MM interface of DDR3 controller is
512 bits wide and uses Quad Rate mode for Avalon-MM interface.

. Read data queue. Contains 512-bit data sets consisting of either 32

elements in fpl6 format or 16 elements in fp32 format. This queue
contains data intended for transfer to system memory, for performing
convolution, pooling, and for performing forward and backward
perceptron propagation.

Input converter. Converts data received from system memory to fp16 or
fp32 format before writing to the external data buffer. Input data can be
in uint8, uint16, fp16, fp32, int8, int16 formats.

Output converter. Used when unloading data from the buffer memory to
the system memory. The converter can save data in the int8, int16, fp16
and fp32 formats.

Set of 8 blocks for calculating convolutions. These 8 blocks are capable of
calculating 16 convolutions of 3*3 or 8 convolutions of 5*5 and 7*7.

10. Kern Buffers. 7 buffers contain kernel coefficients 3*3, 5*5 and 7*7.
11. Intermediate data storage queues and intermediate results

12.

13.

multiplexer. The queues store the sums accumulated during processing
of the next initial 512-bit data set. The same 512-bit data set coming
from queue 6 contains operands for different kern rows. For example,
with a kern size of 3*3, each initial data set is processed by 3 kern rows.
The result of processing the Oth row is written to queue 11. The
intermediate result of processing the previous data set is extracted from
queue 11, summed with the result of processing the 1st row of the kern,
and placed back in queue 11. The intermediate result of processing the
two previous data sets is summed with the partial sum obtained during
processing of the 3rd row of the kern and the current data set. The result
of the sum is no longer written to the queue, but is transferred to queue
12 for subsequent writing to the buffer memory as a resulit.

Convolution Result Queue: This queue accumulates convolution
results before writing them to the data buffer.

MultAdderAtoms are blocks that perform multiplication of input
data by weight coefficients and summation of the obtained products. MLP
is used in direct and reverse propagation. During reverse propagation,
the blocks allow calculating neuron errors by multiplying the error of the
neuron from the next layer by the corresponding weight coefficient and
summing with the accumulated error. Each of the four blocks has 32
multipliers, which is designed for parallel multiplication of 32 pairs of

data and weight coefficients if the data is presented in the fp16 format. If
the fp32 format is used, only 16 multipliers work. This allows processing
the entire 512-bit data word in 1 cycle. The results of the multiplications
are summed on the pipeline over several cycles. The total pipeline length
of the MultAdderAtom block is 10. For a 512-word at the ReadMemfFifo
output, at each clock cycle the coefficients of the next neuron are
selected from the coefficient buffer and a data pair is fed to the
MultAdderAtom. When the coefficient groups for all neurons of the layer
are passed through the MultAdderAtom, the processed data word leaves
the input queue and the processing of the next 512-bit word and the
corresponding coefficients begins. If the last set of coefficients is
processed, the resulting sum is fed to the inputs of the activation blocks
simultaneously with the neuron control parameters, the neuron
parameters pass through the ControlWordsFifo queue.

14. ControlWordsFifo is used to synchronize the simultaneous supply of
the accumulated sum value and neuron parameters to the inputs of the
activation blocks.

15. Activation blocks calculate the output functions of neurons. Each
block is capable of calculating up to 4 different functions in parallel. In
total, 8 blocks can calculate up to 32 activation functions in parallel. Each
activation block contains an adder, a multiplier, and a divider. These
blocks perform calculations in the fp32 floating-point format and have 3
pipeline levels, which, in addition to the level of the source operand
multiplexer, form 4-level pipelines on which data of 4 output functions
being calculated can simultaneously be located. The “e~x” function is
calculated using a tabular method using 24 multiplication operations. The
principle is simple: if the mantissa bit of the number x is 0, then the
generated value is multiplied by 1, if the bit is 1, then the result is
multiplied by the corresponding coefficient from the table. Activation
blocks calculate the output functions during forward data propagation
and calculate the derivatives of the activation functions during backward
propagation. The table below shows the formulas for the functions in
accordance with which the calculations are made. The natural logarithm

_ _1\3 _a\5
is calculated using the series: ln(x)=2*[i—$+§*(i—i) +§*CTD +%*

7
(53) +-1The values 1/3, 1/5, 1/7, 1/9, 1/11, 1/13, 1/15 and 1/17 are

x+1
retrieved from ROM.

16. The results of the activation functions and the values of the sums
of the weighted input data are written to the coefficient buffers. They will
be used if the backpropagation operation is started after the forward
propagation. The activation blocks do not always produce results
simultaneously, since different activation functions can be used or the
formulas can use the division operation, the execution time of which
depends on the number of 1's in the mantissas of the operands.

17. The results of the activation functions are passed to the input of
the OutComposer result collector, which waits for the next 512-bit word
to be filled and passes it to the write queue.

18. The write queue accumulates data and it is transferred to the
memory controller in burst mode.

19. Sum Buffers in the amount of 6 pcs are used during convolution
calculation, perceptron forward propagation and perceptron
backpropagation. During convolution calculation, these buffers are used
to store the last few elements of the current 512-bit word of the current
matrix column's raw data in order to use them as raw data when
processing the next matrix column. If the core size is 3*3, then only
buffers 5 and 4 are used (4 is used when the data width is fp32), if the
core size is 5*5, then buffers 5 and 4 are used if the data format is fp16
and buffers 5,4,3 and 2 if the data format is fp32. When using the 7*7
core, all 6 buffers are used if the data format is fp32. Only 4 buffers, 0-3,
are used when calculating MLP. When calculating forward propagation,
the buffers are used to temporarily store intermediate values of the sums
of products of weight coefficients and data. When calculating
backpropagation, buffers are used to store the derivatives of the
activation functions multiplied by the neuron's error rate and the learning
rate. These values are used later when recalculating the weights.

20. The data multiplexer prepares the source data for the convolution
blocks depending on the data format and the kern size.

21. Two pooling units process two 512-bit words and form a single
512-bit result.

22. The pooling result is placed in PoolResFifo, from which the data is
transferred for writing to DDR3 data buffer.

23. The timers count the running time of the Load/Store Engine,

Convolution Engine, and Perceptron Engine in 200ns ticks. The contents
of the timers can be read into a general-purpose register. The timers are
reset to 0 by software.

MLP control block format.

The header contains the description of the perceptron layers. Each 32-bit

word contains a counter of data elements and a bit of data size. The data size
bit is placed in bit 31, 0 - fp16, 1 - fp32. The description of the layers ends
with a zero 32-bit word. Next, the neuron parameters are placed. The
parameters are aligned to the boundary of 64-bit Qwords. If the description of
the MLP layers contains an even number of layers, then after the zero
termination word, another 32-bit word is placed for alignment to the boundary
of 8 bytes.

63 32 31 0 63 32 31 0

w Layer 1 length w Data length w Layer 1 length w Data length
00000000h w Layer 2 length w Layer 3 length w Layer 2 length
00000000h
Layer 1
Layer 1 Neuron description

Neuron description

Layer 2
Neuron description

Layer 2
Neuron description

Layer 3
Neuron description

Each neuron is described by a block of parameters followed by a set of
coefficients.

63 0
Weights
+64
Reserved Reserved +56
Reserved Reserved +48
Reserved Reserved +40
319 Neuron error 288 | 287 Learn Speed factor 256 | +32
255 Neuron Result 224 | 223 SUM 192 | +24
191 Parameter C 160 | 159 Parameter B 128 | +16
127 Parameter A 96 | 95 LIMIT 64 | +8
63 BIAS 32 | 31 Control word 0| +0

The number of coefficients is equal to the length of the previous layer, and
their format is equal to the format of the data of the previous layer. The
neuron parameter block contains:

e The control word contains only 3 significant bits. Bits [2:0] define the
activation function according to the table:

[2:0]] Function | Forward propagation Derivative
0 Limit f(x)=C+A(x-limit), if x>=Ilimit f'(x)=A, if x>=limit
detector, | f(x)=B(x-limit), if x<limit f'(x)=B, if x<limit
RelLU,
Leak
RelLU,
Linear
1 Softsign f(x)=x/(]|x]|+1) f'(xX)=1/((|x]|+1)"2)
2 ELU f(x)=A(x-limit), if x>=Ilimit f'(x)=A, if x>=limit
f(x)=B(eN(x-limit)-1), if x<limit | f'(x)=f(x)+B, if x<limit
3 Sigmoid f(x)=1/(1+e”-x) f'(x)=f(x)*(1-f(x))
4 TanH f(x)=2/(1 + e~(-2x)) - 1 f'(x)=1-(f(x))"2
5 Softplus f(x)=In(1+e”x) f'(x)=1/(1+e”-x)
6 Swish f(x)=x/(1+e”™-x) f'(xX)=((en-x)*(x + 1) +
1)/((1+eN-x)N2)
7 Gaussian | f(x)=eN-(x"2) f'(x)=-2xeN-(x"2)

e Limit, Parameter A, Parameter B, Parameter C - activation function
parameters;

e SUM - the value of the sum of the weighted input data of a neuron. This
value is the initial operand of the activation function;

e Neuron result - the value of the activation function result;

e Learning speed - learning speed;

e Neuron error — neuron error value. For the last layer, the error value is
loaded from system memory at the start of the NUBP instruction. For the
remaining layers, the error values are calculated by NU512.

Weights can be in 16-bit or 32-bit format.

NU512 Instructions
NULD, NeuroUnit Load Data.

Mnemonic:
NULD SRC1,SRC2,SRCF,DSTF
Format:
31 28 24 23 20 16 15 13 12 8 7 0
D
x x |3 x x x x x[x x x SRC2 SRCF SRC1 0AOh
F
Example:
nuld r4,r23,uint16,fp32
Description:

Instruction for loading data from system memory into the data buffer.
Instruction parameters:
e SRC1[31:0] - selector of the object in which the data is placed starting
from offset zero.

e SRC1[56:32] - address of loading data inside the data buffer. The value
defines the address of a 512-bit cell.

e SRC2[31:0] - number of data elements in a row.

e SRC2[63:32] - number of rows, reduced by 1. If SRC2[63:32]=0, then
there is only one row. This property allows loading both one-dimensional
data blocks and two-dimensional arrays into the data buffer.

e SRCF - format of the source data: uint8 - unsigned 8 bits, uintl6 -
unsigned 16 bits, fp16 - floating point 16 bits, fp32 - floating point 32
bits, int8 — signed number 8 bits, int16 - sighed number 16 bits.

e DSTF - format in which the data will be written to the buffer. Can be
either fp16 or fp32.

NUSD, NeuroUnit Store Data.

Mnemonic:
NUSD SRC1,SRC2,SRCF,DSTF
Format:
31 29 28 24 23 20 16 15 13 12 8 7 0
S
X | DSTF | X X X X X | X X X SRC2 X X 2 SRC1 0Alh
F
Example:
nusd r5,r2,fp16,intl6
Description:

The instruction unloads data from the data buffer into the system
memory. Data from the internal fpl6 or fp32 format is converted to the
receiver format. The receiver format can be int8, intl6, fp16 or fp32. This
instruction does not output data in unsigned format. Instruction parameters:

e SRC1[31:0] - selector of the object into which data is written, starting at
offset zero;

e SRC1[56:32] - address of data placement in the buffer;

e SRC2[31:0] - number of data elements in each row;

e SRC2[63:32] - number of lines minus 1. If SRC2[63:32]=0, then only
one line of data is transmitted;

e SRCF - format of the source data in the buffer. Can be either fpl6 or
fp32;

e DSTF - The format of the data in the destination object. Can be int8,
intl6, fp16, or fp32.

NULP, NeuroUnit Load Percetron

Mnemonic:
NULP SRC1
Format:
31 24 23 16 15 13 12 8 7 0
X X X X X X X X X X X X X X X X | X X X SRC1 0A2h
Example:
nulp r20
Description:

The instruction loads the perceptron data into the internal buffers of the
NU512 block. The instruction parameter is a selector in the SRC1 register. The

selector points to the object in which the perceptron data is located starting
from offset zero.

NUSP, NeuroUnit Store Perceptron

Mnemonic:
NUSP SRC1
Format:
31 24 23 16 15 13 12 8 7 0
X X X X X X X X X X X X X X X X | X X X SRC1 0A3h
Example:
nusp r3
Description:

The instruction unloads the perceptron data into an object located in
system memory. SRC1 contains the object selector.

NUBP, Neuro Unit Back Propagation

Mnemonic:
NUBP SRC1,SRC2
Format:
31 24 23 21 20 16 15 13 12 8 7 0
X X X X X X X X | X X X SRC2 X X X SRC1 0A4h
Example:
nubp r23,r17
Description:

The instruction initiates loading of the error block into the control
parameters of the last layer of neurons. After loading the errors, the
backpropagation procedure begins. During this procedure, a sequential
calculation of errors is performed for all neurons of all preceding layers,
starting from N-1 to 1. After completing the calculation of errors for all neurons
in all layers, the weight coefficients are updated for all neurons in all layers.

NUWR, NeuroUnit Write Register

Mnemonic:
NUWR NDST,SRC1
Format:
31 27 24 23 16 15 13 12 8 7 0
X X X X X NDST X X X X X X X X | X X X SRC1 0A6h
Example:
nuwr 0,ri4
Description:

The instruction writes data to one of the NU512 control registers. In the
current version of the block, writing any value to register O results in zeroing
the TMRO, TMR1, TMR2 counters.

NURR, NeuroUnit Read Register
Mnemonic:
NURR DST,NSRC

Format:

31 28 24 23 16 15 11 8 7 0
X X X DST X X X X X X X X X X X X X NSRC 0A7h
Example:
nurr r28,1
Description:

Reading a register. In the current version, only 2 registers are available:
0 and 1. Their format is shown in the figure below.

63 48 47 32 31 0
clsm | csm | plsm | psm | 0 | msm | 0 | Issm TMRO Register 0
TMR2 TMR1 Register 1

Register 0 contains the TMRO timer and the state machine fields. TMRO -
counts 200ns ticks of the data load/store engine. TMR1 - counts ticks of
convolution, pooling and edge detection. TMR2 counts ticks of forward and
backward propagation MLP.

NUCN, NeuroUnit CoNvolution.

Mnemonic:
NUCN SRC1,SRC2,DST
Format:
31 29 28 24 23 20 16 15 13 12 8 7 0
X X X DST X X X SRC2 X X X SRC1 0A8h
Example:
nucn r3,r29,ré
Description

The instruction starts the calculation of the convolution of a two-
dimensional matrix with a 3*3 or 5*5 or 7*7 kern size. The register specified
in the SRC1 field contains the address of the source data location in the data
buffer (bits [24:0]), the horizontal width of the matrix (bits [43:32]) and the
height of the matrix (bits [59:48]). Bit 62 of SRC1 is the data format 0=>fp16
and 1=2>fp32, bit 63 is the edge detection mode control, if SRC1[63]=0 -
convolution is performed, if SRC1[63]=1 - edge detection is performed. The
SRC2 register contains the offset (bits [31:0]) and the object selector (bits
[63:32]) that determine the placement of the kern data. The kern data has the
format shown in the figure below.

Kern 3X3 Kern 5X5 Kern 7X7

K[1:3] | k[1:21 | K[i:1] K[1:5] | K[1:41 | k[1:31 | k[1:2] | Kri:1] K[1:7] | K[1:6] | k[1:51 | kr1:4] | kri:31 | k[1:21 | k[i:13
Kr2:3]1 | kr2:21 | kr2:1] K[2:5] | K[2:41 | k[2:31 | kr2:21 [krz:1] Kr2:71 | kr2:61 | kr2:51 | kr2:41 | wr2:31 | kr2:21 | krz:13
K[3:3] | k[3:21 | Kr3:1] K[3:5] | K[3:4] | K[3:31 | k[3:2] | kr3:1] K[3:7]1 | K[3:6] | K[3:51 | kr3:4] | wr3:31 | k(3:21 | Kk[3:1]
K[4:5] | K[4:41 | k[4:31 | kra:21 | kra:1] K[4:7]1 | K[4:6]1 | k[a:51 | kra:41 | wra:31 | wpa:21 | kra:13
63 32 31 0 K[5:5] | K[5:4] | K[5:3] | K[5:2] | K[5:1] K[5:7] | KI[5:6] | K[5:51 | K[5:4] | Kr5:3]1 | Kk[5:2] | K[5:1]
XXXXXXXX Control K[6:7] K[6:6] K[6:5] K[6:4] K[6:3] K[6:2] K[6:1]
K[1:2] K[1:1] 63 32 31 0 K[7:71 | k17:6]1 | kr7:51 | kr7:41 | «7:31 | k17:21 | k[7:11
K[2:1] K[1:3] XXXXXXXX | Control

K[2:3] K[2:2] K[1:2] K[1:1] 63 32 31 0

K[3:2] K[3:1] K[1:4] K[1:3] XXXXXXXX | Control

XXXXXXXX K[3:3] K[2:1] K[1:5] K[1:2] K[1:1]

K[2:3] K[2:2] K[1:4] K[1:3]

K[2:5] K[2:4] K[1:6] K[1:5]

K[3:2] K[3:1] K[2:1] K[1:7]

K[3:4] K[3:3] K[2:3] K[2:2]

K[4:1] K[3:5] K[2:5] K[2:4]

K[4:3] K[4:2] K[2:7] K[2:6]

K[4:5] K[4:4] K[3:2] K[3:1]

K[5:2] K[5:1] K[3:4] K[3:3]

K[5:4] K[5:3] K[3:6] K[3:5]

XXXXXXXX K[5:5] K[4:1] K[3:7]

K[4:3] K[4:2]
K[4:5] K[4:4]
K[4:7] K[4:6]
K[5:2] K[5:1]
Kern size K[5:4] K[5:3]
0-3x3 K[5:6 K[5:5
1-5x5 [5:6] [5:5]
2-7X7 K[6:1] K[5:7]
3 - lllegal K[6:3] K[6:2]
K[6:5] K[6:4]
MODE[0] — negative value processing modeO: K[6:71 K[6:6]
0 - no changes
1 — convert negative to zero K[7:2] K[7:1]
MODE[1] — negative value processing model: K[7:4] K[7:3]
0 - no changes
1 - convert negative to positive K[7:6] K[7:5]

XXXXXXXX K[7:7]

The DST register in bits [24:0] contains the address of the data buffer where
the result of the convolution or edge detection will be placed.

NUPL, NeuroUnit PoolLing

Mnemonic:
NUPL SRC1,DST,Pmode
Format:
31 29 28 24 23 16 15 12 8 7 0
X X X DST X X X X X X X X PMEODX SRC1 0A9h
Example:
nupl ri13,r14,pmin

Description:

Pooling. The pooling operation can be performed in 3 modes:
Pmode=0pmin - selects minimum values, Pmode=1pmax - selects
maximum values, Pmode=2=»pavr - calculates the average value for 4 points.
The SRC1 register contains the address of the initial data in the buffer (bits
[24:0]), the horizontal length of the matrix (bits [43:32]), the vertical height
(bits [59:48]), the data format (bit [62]) SRC1[62]=0->FP16,
SRC1[62]=1=FP32. The DST register contains the address where the result
will be written.

NUFP, NeuroUnit Forward Propagation

Mnemonic:
NUFP SRC1
Format:
31 24 23 16 15 13 12 8 7 0
X X X X X X X X X X X X X X X X | X X X SRC1 0AAh
Example:
nufp rl7
Description:

Forward propagation. The SRC1 register contains the address of the
source data. During forward propagation, the results of the intermediate
layers' calculations and the results of the last layer are placed in the data
buffer immediately after the source data, as shown in the figure below.

511 0

Data buffer
32M*512

Output layes results

Internal layer N results

Internal layer 1 results

Source data

