
The architecture of the graphic extension.

Table of contents
Graphic extension unit architecture. ... 1

Connection of the graphic extension to the Core. .. 1

Graphic extension structure. ... 2

Architecture in detail. .. 3

Formation of the pixels color. ... 6

Graphics extension transaction tag. .. 6

Graphics accelerator architecture. .. 6

Graphics extension instruction set. ... 9

SWOP - Set Window Object Parameter ... 9

GWOP – Get Window Object Parameter .. 10

SSO – Set Screen Object ... 11

GSO – Get Screen Object ... 12

DRAWL – Draw Line .. 13

DRAWR – Draw Rectangle .. 14

DRAWT – Draw Triangle ... 15

DRAWE – Draw Ellipse ... 16

Graphic extension unit architecture.

Connection of the graphic extension to the Core.

 The figure below shows the general configuration of a processor system with a

graphics extension. Gray shading indicates the basic blocks that are always present in

the Core, in any configuration. QDR SSRAM and DDR3 SDRAM are located on the

Stratix IV GX FPGA Development Board.

Base core

Stream
controller

Context
controller

Messenger

Network
subsystem

Graphic
extension

QDR SSRAM
Video buffer

To
HDMI
chip

Multicore
Network
channels

T
ra

n
s
a
c
ti
o
n
s

m
u
lt
ip

le
x
e
r

ISI limited to
572.2Mb/s

Boot
SRAM

System
reg’s

DDR3
SDRAM

Board
registers

ISI 1144.4Mb/s

Cache
4way*2K*256

256bit AvalonMM interface

DDR3
memory
controller

 The graphics extension memory access channel has a forced bandwidth

limitation of 2 times the maximum. This was done so that the graphic extension could

not block the work of other processor modules with its transactions.

Graphic extension structure.

 The figure below shows the generalized structure of the graphical extension.

The graphical extension works with data from several objects located in the main

RAM.

QDR SSRAM
Videobuffer
1024*768
24M colors

ScreenHDMI
Frame

assembler

Screen
Object

/background/

Window
Object 1

Window
Object 2

Window
Object N

Graphic
accelerator

Window objects
look-up table, up

to 128 entries
XY ordinate
comparators

The screen object contains data that represents the background image and is always

displayed on the screen at points that are not occupied by any window. The screen

object must be 1024*768*4=3145728 bytes long.

 Window objects are used by processes to display graphical information. Window

objects can be of different lengths, depending on the size of the windows. A single

process can own one or more window objects.

 The frame assembler assembles the image and places it in the frame buffer.

The assembly is carried out taking into account which window data should be used to

display a specific pixel. To do this, a lookup table of 128 entry points is used. Each

point describes the parameters of one window - the start and end of the window in

the X coordinate, the start and end in the Y coordinate, and the window object

selector. If several windows overlap on the same pixel, then the window parameter

entry number in the lookup table determines the currently visible window.

 The graphics accelerator draws such simple shapes as lines, rectangles filled

with one color, triangles and ellipses. For ellipses, you can separately set the color of

the points on the border of the ellipse and the color of the fill inside the ellipse. To

draw a figure, the accelerator needs to specify in the appropriate instructions the

window object selector, the window parameters /width and height/ and the figure

parameters /output coordinates, dimensions, colors/.

Architecture in detail.

Computing unit

Instruction
FIFO

256*386 bit

Microcode-based
Control block

Register
File

32 32-bit
registers

Valid flags
Zero Flag regs.

D
a
ta

 M
U

X

Integer
ALU

Int. to FP
converter

FP to Int.
converter

FP
adder

FP
Mult.

FP
Divider

shifter

Operand A

Operand B

Line Drawing Block

XYScalerReg
YReg

FP
MUL

FP
ADD

XYOrdinateReg

1.0

FP2Int

XReg
+

+

+

+

1

1

X
&

Y
 c

o
o
rd

in
a
te

c
o
m

p
a
ra

to
rs

HeightReg

WidthReg

X

Y
*

ColorReg

SelReg

T
ra

n
s
a
c
ti
o
n

re
g
is

te
r

C
o
lo

r
s
e
le

c
ti
o
n

c
ir
c
u
it

Object
data FIFO

Color
correction

FIFO

O
u
tp

u
t

T
ra

n
s
a
c
ti
o
n

re
g
is

te
r

XYcntrReg

-

1

Color
information

Address
information

Line buffer 2048/24bit

HDMI
Control

HDATA

DE
HSYNC
VSYNC

QDR SSRAM controller

Read channel

Line load
engine

Write channel

Write
channel

logic

QDR MCLK domain

Color
mix

circuit
Screen FIFO
64bit width

“L” object
FIFO 25bit

“H” object
FIFO 25bit

“H” temp
FIFO 24bit
“L” temp

FIFO 24bit

O
u
tF

if
o
L

1
b
it

O
u
tF

if
o
H

1
b
it

Transactions
Control
Machine

Portal
Memory

Controller
Interface

(core unit)

M
U
X

PortalDRDY & PortalTI[7]

QDR SSRAM

PortalDRDY &
~PortalTI[7] &

PortalTI[1]

PortalDRDY &
~PortalTI[7] &

PortalTI[0]

PortalDRDY &
~PortalTI[7] &
~|PortalTI[1:0]

ScrSel

Window object selector

Screen object selector

Valid Window Flag

Portal Instruction Interface
(core unit)

Xords
128 entries

Yords
128 entries

128 XY comparators

Output Priority coder

128 object selectors

Entry selection

Window objects look-up table

XY Coordinates

Frame assembler

OpA

OpA

OpA

OpA

OpA

OpB

OpB

OpC
Inst

 The work of the frame collector is controlled by the Transaction Control Machine

/TCM/. TCM reads data from the screen object and data from the window objects. In

parallel with reading data from the screen object, TCM generates the horizontal and

vertical coordinates of the point for the Window objects look-up table. The look-up

table contains 128 descriptors that describe the position and size of the window into

which the process displays its graphical information.

X left 0X right 0Y top 0Y bottom 0Window Object Selector 0

X left 1X right 1Y top 1Y bottom 1Window Object Selector 1

X left 127X right 127Y top 127Y bottom 127Window Object Selector 127

01224364871

In addition to the window sizes, each set contains an object selector in which graphic

information is located. The [X left, Y top] and [X right, Y bottom] pairs determine the

size and location of the window on the screen. Information from the window

descriptors is fed simultaneously to 128 comparators, which check that the point

coordinates generated in the TCM fall into the corresponding window. The outputs of

128 comparators go to a priority encoder, which selects the comparator channel with

the highest index. For example, if the coordinates of a point fall into windows whose

descriptors are located in positions 3 and 10 of the table, then the priority encoder will

select the descriptor with index 10. Window objects look-up table, when it detects that

the coordinates of a point fall into any window, calculates the displacement of the

point in the object and returns the window object selector and the offset within the

object to the TCM. Simultaneously, two pixels are located, even and odd. If both

pixels fall into the same window object, then the controller reads a 64-bit word from

memory. When the even and odd points hit different window objects, then the TCM

will be forced to perform 2 separate transactions reading 32-bit values from different

window objects.

 2 1-bit queues OutFifoL and OutFifoH are filled with 1-bit flags as it is

determined which object the even and odd pixels belong to. If the pixel does not fall

into any of the window objects and needs to be rendered from the screen object, then

bit 0 is written to the corresponding queue; if the pixel belongs to the window object,

the TCM places 1 into the corresponding queue at the time the read transaction is

sent to the portal.

 At the output of the OutFifoL and OutFifoH queues, 1-bit flags of the presence

of a data read request sent to the memory subsystem through the portal appear. If

the output of any queue is set to 0, then this 0 is immediately written to the 25th bit

of the “H”ObjectFifo or “L”ObjectFifo And this corresponds to the situation when there

is no data for the pixel from any window object. If the output of the OutFifoL and

OutFifoH queues is set to 1, then this flag will not be removed from the queue until

the corresponding queue “L”TempFifo or “H”TempFifo has accumulated at least one

value read from memory. Then the pixel value from “L”TempFifo or “H”TempFifo

followed by a 1 in the 25th bit is put into the “L”ObjectFifo or “H”ObjectFifo queue.

 ScreenFIFO contains data read from the screen object.

Formation of the pixels color.

 When data is present in all three queues: “L”ObjectFifo, “H”ObjectFifo and

ScreenFIFO, 2 pixels are written to the QDR SSRAM frame buffer. Before recording,

the resulting color of the point is formed depending on the color control bits in a 32-

bit word read from the screen buffer. The figure below shows the data format used for

the screen buffer.

CB BlueRed

31 23 15 7 0828 16

0 0 Green

24

CGCR

26

The lower 24 bits are used for color encoding: [23:16]==R, [15:8]==G, [7:0]==B.

Bits [31:30] – not used. Bits [29:24] contain 3 pairs to control the formation mode of

each of the three colors separately. Bit pairs determine the results for the R, G, B

channels in accordance with the table:

CR[1:0]
CG[1:0]

CB[1:0]

Color Function

0 Color=CW

1 Color=CW xor CS

2 Color=CW + CS

3 Color=CS

CW – color value from window object

CS – color value from screen object

Graphics extension transaction tag.

PortalTI[7:0] Data receiver

0XXXXX00 ScreenFIFO<=PortalDI[63:0]

0XXXXX01 “L”ObjectFifo<=PortalDI[31:0]

0XXXXX10 “H”ObjectFifo<=PortalDI[31:0]

0XXXXX11 “L”ObjectFifo<=PortalDI[31:0], “H”ObjectFifo<=PortalDI[63:32]

1XXXXXXX ObjectDataFIFO<=PortalDI[31:0]

Graphics accelerator architecture.

 The graphics accelerator can be divided into two blocks: a computing unit and a

line drawing unit. The Computing Unit is used to calculate the coordinates of the start

and end points of the lines, as well as the slope coefficient of the line. The line

drawing block fills the object with data that forms the line and is capable of forming a

transaction for writing data to memory at each clock cycle. The block draws

horizontal, vertical and oblique lines.

 The computing unit operates under the control of a microprogram control unit,

which has microcode procedures for executing instructions for drawing lines,

rectangles, triangles and ellipses.

 A set of 32 32-bit general purpose registers is designed to store data used in

calculating the coordinates of the beginning and end of lines. Each register has 2 flag

bits associated with it. The register is ready to be used in a new microinstruction and

the zero result flag. The zero result flag is set each time the register is written to. The

register ready bit is reset to 0 when a microinstruction using the register as a result

destination is sent for execution. Different microinstructions have different execution

times, and register ready bits allow new microinstructions to be executed as their

source operands are ready.

 The computing unit contains 8 data processing channels that can send results to

registers.

1. An integer ALU that performs addition, subtraction, logical AND, OR, XOR,

register-to-register transfers, and constant loading.

2. Converts numbers from integer format to single precision floating point format.

3. Converts numbers from floating point format to integer format.

4. A floating point adder that performs additions and subtractions.

5. Floating point multiplier.

6. Floating point divider.

7. A variable-bit shifter that performs logical right/left shift and arithmetic right

shift operations.

8. The eighth channel from which data can flow into general purpose registers is

the instruction queue. The instruction queue contains 384 bits of instruction

parameters /12 32-bit words/ and 2 bits of instruction code. The instruction

code specifies the drawing of 0-line, 1-rectangle, 2-triangle and 3-ellipse.

 The computing unit calculates the coordinates of the beginning and end of the

line, determines the mode of drawing the line - vertically or horizontally, and

determines the slope coefficient of the line. The calculation results are transferred to

the line drawing block in the form of the following parameters:

1. Coordinates of the beginning of the line.

2. Drawing mode flag – horizontal or vertical.

3. Number of points in a line.

4. Line color.

5. Width and height of the window.

6. Selector of the object.

7. Line slope coefficient /optional/.

Lines can be drawn in two modes - orthogonal or slanted. Orthogonal mode draws

horizontal or vertical lines. Tilt mode uses a pipeline to calculate the increment of the

X-axis or Y-axis coordinates depending on the progress along the Y-axis or X-axis,

respectively. The resulting offset value is converted into an integer value and summed

with the base X or Y coordinate to form the full coordinate of the next point. The full

coordinates of a point are converted to an offset within the object by multiplying the Y

coordinate by the window width value, adding the X coordinate value to the product,

and then shifting it 2 bits to the left.

 The coordinates of the beginning of the line are written to the Xreg, Yreg

registers. During line drawing, XReg is incremented by 1 if the drawing mode is set to

horizontal with or without line slant. The YReg register is incremented by 1 if the

drawing mode is set to vertical.

 The WidthReg and HeightReg registers set the window dimensions and are used

to check the generated point coordinates to see if they fall inside the window. If the

coordinates of a point go beyond the boundaries of the window, the transaction is

blocked. WidthReg is also used to form the offset of a memory cell by multiplying by

the value of the point's Y axis coordinate.

 The XYScalerReg and XYOrdinateReg registers are used only if the line output

mode is not orthogonal. When the line drawing procedure is started, the

XYOrdinateReg register is reset to zero and is incremented by 1.0 with each new

point. The XYOrdinateReg value is multiplied by the XYScalerReg value to obtain the X

offset if the line output mode is vertical and the Y offset if the line output mode is

horizontal. The product is transformed to an integer and added to the XReg or YReg

value.

 ColorReg is a 30-bit register containing the color with which the line is drawn.

Its format is shown in the figure below.

CB BlueRed

31 23 15 7 0828 16

0 0 Green

24

CGCR

26

The lower 24 bits are the actual pixel color or the value for modifying the pixel color in

accordance with the modes specified in bits [29:24]. If the state of these bits is zero,

then the new pixel value is written to the object. If not zero, then the previous pixel

value must be read in order to modify it as needed. In this case, the value that

modifies the pixel and the logical address of the pixel are entered into the Color

Correction FIFO queue, and the Object Data Fifo queue receives values read from

memory. And when there is valid data in both queues, then the resulting color is

generated and the pixel is written to the object. The resulting color is formed for each

color channel individually in accordance with the table:

CR[1:0]

CG[1:0]
CB[1:0]

Color Function

0 Color=ColorReg

1 Color=ColorReg xor CO

2 Color=ColorReg + CO

3 Color=CO

ColorReg – color value from ColorReg

CO – color value from memory object

Graphics extension instruction set.

SWOP - Set Window Object Parameter

Mnemonic:

 SWOP src2,src1

Format:

SRC1 F0SRC2X X X

31 23 15 7 01228 20

X X XX X X X X X X X

Description:

 The instruction writes a 32-bit parameter from the SRC1 register to the window

object parameter table. The table cell is addressed by the contents of the SRC2

register. For example, if the SRC2 register contains the value 0Dh, then this register

addresses the Y parameters for the 3rd window parameter descriptor in the table.

Example:

 swop r20,r0

GWOP – Get Window Object Parameter

Mnemonic:

 GWOP dst,src2

Format:

DST F1SRC2X X X

31 23 15 7 01228 20

X X XX X X X X X X X

Description:

 The instruction reads a table cell of window objects, as well as some state

parameters of the graphical extension, and places the result in a general-purpose

register. The destination register of the result is indicated in the DST field, and the

SRC2 field indicates the register containing the address of the window object table

cell. The result format is shown in the figure below.

IC Window parameterStatCntr

63 31 02456

00000000

55 32

The lower 24 bits are the window parameter from the window object table.

The StatCntr statistics counter field provides information about how many average

wait cycles are required per transaction between the graphics extension and main

memory. The averaging is performed on a rolling sample of 4096 transactions, so to

get the average of the wait cycles per transaction, you need to shift the StatCntr

value 12 bits to the right.

The IC field provides information about the number of instructions in the graphics

accelerator instruction queue. This information can be used to determine whether a

new instruction can be sent to the accelerator.

Example:

 gwop r15,r30

SSO – Set Screen Object

Mnemonic:

 SSO src1

Format:

SRC1 F2X X X

31 23 15 7 01228 20

X X XX X X X X X X X X X X X X

Description:

 The contents of the general purpose register specified in the SRC1 field are

written to the screen object selector register /ScrSel register/. The graphics extension

builds the frame only if the value of the screen object selector is non-zero. If ScrSel is

set to zero, frame assembly work stops, but the graphics accelerator can continue its

work.

Example:

 sso r3

GSO – Get Screen Object

Mnemonic:

 GSO dst

Format:

DST F3X X X

31 23 15 7 01228 20

X X XX X X X X X X XX X X X X

Description:

 The instruction reads the ScrSel register and status information, placing the

result in the register specified in the dst field. Instruction result format:

IC Screen object selectorStatCntr

63 31 02456

00000000

55 32

Bits [23:0] contain the screen object selector. Since bits [31:24] are zero, the selector

always describes an object located in the core’s local memory. The screen object

cannot reside in the memory of another core in a multi-core system, only in local

memory.

Bits [55:32] – statistics on the number of clock cycles spent on executing a

transaction between main memory and the graphics extension.

Bits [63:56] – the number of instructions in the graphics accelerator queue.

Example:

 gso r22

DRAWL – Draw Line

Mnemonic:

 DRAWL src1,src2,dst

Format:

DST F4SRC2X X X

31 23 15 7 01228 20

X X XX X X SRC1

Description:

 Instructions for drawing a line using a graphics accelerator. The src1 register

contains the object selector and the window width and height parameters. The size of

the object must be equal to or greater than WindowWidth*WindowHeight*4 bytes.

Object selectorWindow Width

63 31 024

00000000

32

Window Height 00000000

444859 43

The two parameters Window Width and Window Height indicate the size of the

window.

The src2 register contains the coordinates of the starting and ending points of the line.

Xstart0000Ystart0000Xend0000Yend0000

0111643 23324859

The dst register contains the line color and control bits for the line color generation

mode.

CB BlueRed

31 23 15 7 0828 16

0 0 Green

24

CGCR

26

Example:

 drawl r6,r19,r17

DRAWR – Draw Rectangle

Mnemonic:

 DRAWR src1,src2,dst

Format:

DST F5SRC2X X X

31 23 15 7 01228 20

X X XX X X SRC1

Description:

 Instructions for filling the rectangle. The src1 register contains the object

selector where to fill and size the window.

Object selectorWindow Width

63 31 024

00000000

32

Window Height 00000000

444859 43

The src2 register contains the coordinates of the upper left corner of the rectangle, its

width and height.

Xleft0000Ytop0000Width0000Height0000

0111643 23324859

The dst register contains the fill color and the resulting color control bits.

CB BlueRed

31 23 15 7 0828 16

0 0 Green

24

CGCR

26

Example:

 drawr r6,r21,r23

DRAWT – Draw Triangle

Mnemonic:

 DRAWT src1,src2,dst

Format:

DST F6SRC2X X X

31 23 15 7 01228 20

X X XX X X SRC1

Description:

 Instructions for filling a triangle with color.

The register specified in the src1 field contains the object selector in which you want

to form a filled triangle and the size of the window in this object.

Object selectorWindow Width

63 31 024

00000000

32

Window Height 00000000

444859 43

The register specified in the src2 field contains three coordinates of the angles of the

triangle.

X10Y1

0111643 23324859

0X20Y20X30Y300

6475809196127

The register specified in the dst field contains the triangle fill color and color control

bits.

CB BlueRed

31 23 15 7 0828 16

0 0 Green

24

CGCR

26

Example:

 drawt r6,r19,r17

DRAWE – Draw Ellipse

Mnemonic:

 DRAWE src1,src2,dst

Format:

DST F7SRC2X X X

31 23 15 7 01228 20

X X XX X X SRC1

Description:

 Instructions for drawing an ellipse and filling its internal space with the required

color. Using this instruction, you can draw only the outline of an ellipse, or only a

completely filled ellipse, or an ellipse with a fill and border of different colors.

The register specified in the src1 field contains the object selector and window

dimensions.

Object selectorWindow Width

63 31 024

00000000

32

Window Height 00000000

444859 43

The register specified in the src2 field must contain three parameters:

1. Coordinate of the center of the ellipse.

2. Dimensions of the ellipse along the X and Y axes.

3. The ellipse angle ranges from – to in single-precision floating-point

format.

Xcenter0Ycenter0XradiusYradius 00Rotation angle0

0111643 233248596496127 95

The register specified in the dst field must contain the color of the ellipse border and

its fill color, along with bits that control the mode of formation of the resulting color.

Border Color and control bitsFill Color and control bits

63 02961

0
0

32

0
0

Example:

 drawe r6,r23,r20

