
Contents
Basic Processor System Architecture .. 1

Board registers ... 2

LED &| Keys .. 2

CPU Number ... 2

FPGA platform identifier .. 3

Memory size register .. 3

UART registers... 3

Timer’s register ... 4

CRC Generator .. 4

Interrupt index table .. 5

Interrupt Mask Register .. 5

Basic Processor System Architecture
 In the basic configuration, the processor system contains six main components:

1. The actual processor core.Core of any type:

X32Carrier/X32/X16/X16E/X16DT/X16x2/X16x4/T2X16T2X32

2. Processor module configuration register.

3. System UART required for downloading and debugging software.

4. System timer.

5. CRC calculator.

6. Interrupt controller.

Processor
Core

Main memory
Controller
/optional/

SPI
FLASH

IO &
CFG

Register

UART

Address
decoder

Timer

CRC

Interrupt

DATA

BE

Data
MUX

ADDR

INTREQ

INTCODE

INTACK

IODAT

MpMII
MAC’s
/opt./

NETSTBO

NETDON

NETDOE

NETDOS

NETDOW

NETSTBI

NETDIN

NETDIE

NETDIS

NETDIW

Board registers
 To access system registers, an object with the 02h selector is used. This object is

available only at privilege level zero. Kernel has a number of functions available from

processes with privilege levels 1,2 and 3. These functions allow you to indirectly access the IO

registers and configure the interrupt controller for the application hardware.

LED &| Keys

Offset: 00h /read and write/

Format:

IO register

15 0

Description:

 This register can be used for LED indication or to enter the status of any buttons or

switches. The Kernel only uses bit 0 of this register to indicate activity.

CPU Number

Offset: 02h /read only/

Format:

CPU Number

7 0

Description:

 This register is used to set the value of the core number in a multi-core system, or to

determine the base for core numbers for multi-core variants like X16x2 and X16x4.

FPGA platform identifier

Offset: 03h /read only/

Format:

Platform ID

7 0

Description:

 This register displays the type of platform the processor is running on.

Platform ID Description

0 Arria II, EP2AGX125EF29I3

1 Arria V, 5AGTFC7H3F35I3

2 Kintex 7, XC7K420TIFFG901-2L

3 Stratix IV, EP4SGX530KH40C2

4 Stratix V, 5SGXEA7N2F45C2

5..255 Reserved

Memory size register

Offset: 04h /read only/

Format:

Memory size register

31 0

Description:

 This register describes the size of the implemented system memory expressed in 64KB

paragraphs. For example, if the system has a 2 GB memory module, then the register should

contain the value 32768, and the value 4 would indicate a total of 256 KB. The value for the

register is given by a constant in the top-level source code of the FPGA project.

UART registers

Offset: 08h

Format:

Data R/W

07

P

815

Baud rate prescaler R/W

1631

Received counter RO

3247

Transmit counter RO

4863

Description:

 The low byte of the register is the output of the UART receive queue and the input of

the transmit queue.

 Bit 8 is read-only and indicates the validity of the read byte if P=1.

 Bits 16 to 31 represent the divisor register used to set the desired baud rate. The UART

is clocked by the same clock signal as the processor core and the divider expresses the

number of clocks, which is one bit interval. Kernel uses 921600 baud to communicate with the

computer.

 Bits [47:32] contain the value of the counter of bytes in the receive queue. Data

reception from the UART can be controlled in two ways.

1. By parsing the P bit as each byte is read, all 16 bits must be read to correctly

determine the validity of the byte read.

2. Using the counter of received bytes. It is necessary to read the value of the counter and

if it is not equal to 0, then read the specified number of bytes from the FIFO.

 Bits [63:48] contain a counter of bytes in the UART transmit queue and allow control

over the transfer of data arrays to avoid queue overflows and data loss due to overflow.

Timer’s register

Offset: 10h /read & write/

Format:

02324313263

Tick counter R/W
A
R

S
E
L

E
N
A

Prescaler R/W

Description:

 Prescaler is used to generate ticks from the main main clock of the processor core. In

particular, Kernel programs the Prescaler to generate 1/128 second ticks.

 The SEL bit is used to select the value read from bits [23:0] of the timer. When SEL=0,

the current value of the Prescaler counter is read, and when SEL=1, the programmed counter

recalculation value is read, upon reaching which the Prescaler is reset to zero.

 The AR bit controls the autoload mode. If AR=0, then when the programmed value is

reached, the Prescaler stops counting. If AR=1, then when the recalculation value is reached,

the Prescaler is reset to zero and the counting starts again.

 The ENA bit enables the timer if it is set to 1.

 The tick counter is incremented by 1 each time the Prescaler reaches the programmed

value. It usually counts 7.8125 ms intervals. The timer can generate an interrupt request

every 128th tick. But this interrupt is not used by Kernel yet.

CRC Generator

Offset: 18h /read & write/

Format:

CRC code register R/W

3132 0

Data R/W

3963

Description:

 CRC code generated in accordance with the IEEE 802 polynomial. The CRC register can

be preset to any value. Before counting starts, it is usually initialized to 0FFFFFFFFh. The

calculation of the CRC for the data block is performed by sequential writing of bytes to bits

[39:32] of the register. With each write, the CRC value is recalculated.

Interrupt index table

Offset: 40h /read and write/

Format:

Index IRQ0Index IRQ1Index IRQ2Index IRQ3

Index IRQ4Index IRQ5Index IRQ6Index IRQ7

Index IRQ8Index IRQ9Index IRQ10Index IRQ11

Index IRQ12Index IRQ13Index IRQ14Index IRQ15

15163132474863 0

Description:

 This table contains 16 interrupt indexes for 16 interrupt controller inputs.

Interrupt Mask Register

Offset: 60h /read and write/

Format:

Mask & Mask Clear R/WMask Set WO

151631 0

Description:

 The lower 16 bits of the register, when read, return the interrupt mask. An interrupt is

enabled if the corresponding mask bit is set to 1. Writing to the lower 16 bits of the register

allows you to reset to 0 the mask bits for which the corresponding bits of the written word are

set to 1. For example, if the current contents of the mask register is 0087h, then writing a 16-

bit reset mask code 0080h will disable the IRQ7 interrupt and the mask register will have code

0007h.

 The upper 16 bits of the mask register are write-only. To enable the interrupt, write a 1

to the corresponding bit of the mask setting code.

 The interrupt is masked automatically when it is latched. Those. a bit in the mask

register is cleared when the corresponding input interrupt is latched. Therefore, at the end of

the interrupt processing, it is necessary to reset the desired bit in the mask register to enable

a new interrupt.

 After a system reset, the mask register is set to 0, which disables all 16 interrupts.

