Instruction set reference

Table of contents

INstruction set referenCe.....o.vieiii e 1
INSErUCLION table .uuueeii 4
Instruction field definitionNs ... 5
ADDZX — Addition zero-extendedc.coiuiiiiiiiii s 5
ADDSX — Addition, sign-extendedcoouiiniiiiii s 5
SUBZX - Subtraction, zero-extended Operandsccoviiiiiiiiiiiiii i i i 6
SUBSX - Subtraction, sign-extended operandsccoviiiiiiiiiiiiiirree e 6
AND = 1ogical Mand” ... e 7
(@] 2 (oY | Tt H o T o P 7
XOR = @XCIUSIVE O i 8
MASKCOPY — masked bit field COPY .vivviiriieiiiii i as 8
MULZX - integer multiplication, unsigned..........ccooiiiiiiiiii e 8
MULSX - integer multiplication, signedccoiiiiiiiii e 9
DIVZX - integer divisSion, UNSIGNEdc.oiuiiiiiiiiii e aeas 10
DIVSX - integer division, SIgNedociiiiiiiiiiii e 10
FADD - floating point @ddition ..o e aens 11
FSUB - floating point subtractionccoiiiiiii e 11
LSL — logical shift left ..o e 11
LSR — logical shift right ..o e 12
CSL — cyclic shift left ...uoe e e e aes 12
CSR = cyclic shift right.. ..o e 13
ASR - arithmetic shift right ... e 13
FIELDSET - set field in the register ... 14
FIELDGET — get the bit fieldc.oiriini e 14
FMUL - floating point multiplicationo e e 15
FDIV — floating point diViSioN. ..uvieiiii i e e 15
1@ 2 =Y [U= o < e o) 15
DAA - decimal adjust after addition........c.ocoiiiiiiii 16
DAS - decimal adjust after subtractionccoiiiiiiii i 16
N = R =T = | o [0 17

BSWAP — DIt SWa P PING ceeiiiiei it e e e anens 17

R 1 e o U] T 18

POS = high Dit pOSItioN ... 18
FP2INT - floating point tO INtEgEr.....ovieii e 18
INT2FP - integer to floating point CONVErSioNcoviiiiiiiii e 19
COPYZX - copy register to register with zero extensionccooviiiiiiiiiiiiciennen, 19
COPYSX — copy With Sign @XEeNSION ...vviiiiii i e eanes 20
LID - load immediate value into data register.......cccviiiiiiii i 20
N O I 1 V7T = [0 o 21
SFR — Store flag register .o e e 21
LFR — 10@ad flag register oot e 22
LSLI - logical shift left by immediate shift parameter............ccoviiiiiiiiiieene, 22
LSRI - logical shift right by immediate shift parameterc.coiiiiiiiiiiiinn, 22
CSLI - cyclic shift left by immediate parameter........c.ooiiiiiiiiiiiiic e 23
CSRI - cyclic shift right by immediate parameter........ccoooviiiiiiiiiiice 23
ASRI - arithmetic shift right by immediate parameter..........ccoviiiiiiiiiiiiiie i, 24
ST = StOre data@...uie i e 24
LD — 10@d dataoueineiiiiii i 25
PUSHD - push data register into stackcciiiiiiiii i e 26
POPD - pop data register from Stackccoviiiiiiiiiiii i 27
PUSHA — push address register ... e ane e 28
POPA - pop address register from Stackovieiiiiiiii e 28
LAR — [0ad @ddress regiSter ... et aaeas 29
SAR — store address FegiSter ... 29
LIA - load immediate offset to the address register.........cooviiiiiiiiiiiiens 29
IAR — increment address regiSter .ot an e 30
AAR — add value to address registercuviiiiiiii 30
FMULACC - multiplication and accumulation. ... 31
FFT — fast fourier transform 34
SENDMSG = SENA MBS S0 e tieitieeieeeeateaneaeeaneaneaneaneaneaneaneaneaneaneaneaneaneanennes 35
GETPAR — get mesSage ParameEter v iiiiii e riee e s aanesnenness 35
JUMPR - jump by register content.........oooiiiii e 36
CALLR - subroutine call by register content.........cooviiiiiiii e 36
JC - jump conditional if flag SEL L0 L...oeiiriiii e 37
JNC - jump conditional if flag set t0 O....cvviiiiiiiii i 38
0 10] e (Yo o T PP 38

MEMALLOC - memory allocation request.......ccooiiiiiiiiiii i e 38

RET — return from SUDIOULING vt ettt e e e ee e e e ennaaaassassseenenns 39

ENDMSG — €nd Of MESSAGE .. .eiiiiiiiiiiiiii i e e e e eanenans 39
JUMPI - jump by immediate displacement........ccoiiiiiiiiiiii e 40
CALLI - subroutine call by immediate displacement.........ccooeviiiiiiiiiiiiiiiiiieeeaes 40
o] S I o] ¢ =T= 1 oo | | PP 41
SLEEP — PrOCESS SIEE DS ittt it e 41

N[O S aTo o] 0 1=T o= (o] o =3 PP 42

Instruction table

©® O O

>

F E D C B A 9 8 7 6 5 4 3 2 1 0
NOP
SLEEP BKPT CALLI JUMPI | ENDMSG RET MEM LooP JINC Jc CALLR | JUMPR | GETPAR | SEND
ALLOC MSG
FFT FMULACC
AAR IAR LIA SAR LAR POPA PUSHA POPD PUSHD LD ST
ASRI CSRI CSLI LSRI LSLI
LFR SFR NOT LID COPYSX | COPYZX | INT2FP | FP2INT POS RND BSWAP NEG DAS DAA
FIELD FIELD
SQRT FDIV FMUL GET SET ASR CSR csL LSR LSL
FSUB FADD DIVSX DIVZX | MULSX | MuLzZX '(‘:"gﬂ XOR OR AND SUBSX | SUBZX | ADDSX | ADD2zX
F E D C B A 9 8 7 6 5 4 3 2 1 0

@ 0O O

>

Instruction field definitions

Mnemonic Description

RO,R1,R2...R31 GPR definition without complete reference of the operand size
or type.

RBO,RB1...RB31 8-bit operand definition.

RWO,RW1..RW31 Word-wide operand definition.

RDO,RD1...RD31 Double word operand definition.

RQO,RQ1...RQ31 64-bit operand definition.

RFSO,RFS1...RFS31 | Single precision floating point operand (32 bit).

RFDO,RFD1...RFD31 | Double precision floating point operand (64 bit).

RFEO,RFE1...RFE31 Extended precision floating point operand (128 bit).

ARO,AR1...AR15 Address registers.

WO0O,W1,W2..W7 16-bit word position definition for loading him into the GPR or
ADR.

MARO,MAR1..MAR7 | Address register’s pair description in the memory load/store
operations.

CF,ZF,SF,OF,IF,NF,DF | Arithmetic and logic operations flags.

ADDZX - Addition zero-extended

Format:
31 28 23 20 15 12 7 0
FORMAT FORMAT FORMAT
it DST SRC2 SRC2 SRC1 SRC1 00

Description.

Integer addition with operands extension by zeroed bits. Source operands can
have a different size. Both source operands expand up to 64 bit by means of bits with
zero state in left. Result’s width is pointed by the Format DST field.

Altered flags in AFR[dst]:
CF[15:0], ZF, SF, OF
Example:

ADDZX Rw5,Rw6:Rb23
Exceptions:

None.

ADDSX - Addition, sign-extended

Format:
31 28 23 20 15 12 7 0
FORMAT FORMAT FORMAT
DST DST SRC> SRC2 SRC1 SRC1 01

Description.

Integer addition with extension of the source operands by their sign bits.
Source operands can have different bit depths.

Altered flags in AFR[dst]:
CF[15:0], ZF, SF, OF
Example:

ADDSX Rg24,Rb10:Rd20
Exceptions:

None.

SUBZX - Subtraction, zero-extended operands

Format:
31 28 23 20 15 12 7 0
FORMAT FORMAT FORMAT
DST DST SRC> SRC2 SRC1 SRC1 02

Description.

Integer subtraction. Both source operands expand up to 64 bit by means of bits
with zero state in left.

Altered flags in AFR[dst]:
CF[15:0], ZF, SF, OF
Example:

SUBZX Rb6,Rb10:Rb11
Exceptions:

None.

SUBSX - Subtraction, sign-extended operands

Format:
31 28 23 20 15 12 7 0
FORMAT FORMAT FORMAT
DST DST SRC2 SRC2 SRCL SRC1 03

Description.

Integer subtraction with extension of the source operands by their sign bits.
Altered flags in AFR[dst]:
CF[15:0], ZF, SF, OF

Example:

SUBSX Rb6,Rb21:Rb11
Exceptions:

None.

AND - logical “and”

Format:
31 28 23 20 15 12 7 0
Fogs':"TAT DST X X X SRC2 X X X SRC1 04

Description.

Logical «/AND». Formats of the source operands don’t have a matter because
instruction always uses a 64-bit operands. “Format DST” field describes which is a
part of the result should be written into destination register.

Altered flags in AFR[dst]:
CF[15:0], ZF, SF, OF
Example:

AND Rd7,R11:R25
Exceptions:

None.

OR - logical “or”

Format:
31 28 23 20 15 12 7 0
FOI;{SMTAT DST X X X SRC2 X X X SRC1 05

Description.

Logical «OR».
Altered flags in AFR[dst]:
CF[15:0], ZF, SF, OF
Example:

OR Rg17,Rw21:Rw5
Exceptions:

None.

XOR - exclusive “or”

Format:
31 28 23 20 15 12 7 0
FOEF;SMTAT DST X X X SRC2 X X X SRC1 06

Description.

Exclusive «OR» operation.
Altered flags in AFR[dst]:
CF[15:0], ZF, SF, OF
Example:

XOR Rw4,Rw1:Rb9
Exceptions:

None.

MASKCOPY - masked bit field copy

Format:
31 28 23 20 15 12 7 0
Fogs':"TAT DST X X X SRC2 X X X SRC1 07

Description.

The bits from the register R[srcl] are copied to the corresponding bits of the
register R[dst] if the corresponding bits of the register R[src2] are set to 1.

Altered flags in AFR[dst]:
CF[15:0], ZF, SF, OF
Example:

MASKCOPY Rd30,Rw1:R20
Exceptions:

None.

MULZX - integer multiplication, unsigned

Format:
31 28 23 20 15 12 7 0
FORMAT FORMAT
X X X DST SRCo SRC2 SRC1 SRC1 08

Description.

Unsigned integer multiplication. Depth of the result depends of depths of the

source operands.

SRC1/2 | SRC1/2 Result
Byte Byte Word
Byte Word Dword
Byte Dword Qword
Byte Qword Qword

Word Word Dword
Word Dword Qword
Word Qword Qword
Dword Dword Qword
Dword Qword Qword
Qword Qword Qword

Altered flags in AFR[dst]:

ZF, SF.

Example:
MULZX RO,Rb1:Rd2
Exceptions:

None.

MULSX - integer multiplication, sighed

Format:

31

28

23

20

15

12

X X X

DST

FORMAT
SRC2

SRC2

FORMAT
SRC1

SRC1

09

Description.

Signed integer multiplication. Depth of the result depends of depths of the

source operands.

SRC1/2 | SRC1/2 Result
Byte Byte Word
Byte Word Dword
Byte Dword Qword
Byte Qword Qword
Word Word Dword

Word Dword Qword
Word Qword Qword
Dword Dword Qword
Dword Qword Qword
Qword Qword Qword

Altered flags in AFR[dst]:
ZF, SF.
Example:

MULSX RO,Rb1:Rd2
Exceptions:

None.

DIVZX - integer division, unsigned

Format:
31 28 23 20 15 12 7 0
FORMAT FORMAT
X X X DST SRC2 SRC2 SRC1 SRC1 0A

Description.

Unsigned integer division. SRC1 contains a dividend and SRC2 has a divisor.
Result’s format depends of depth of the SRC1 operand.

Altered flags in AFR[dst]:
ZF, SF.
Example:
DIVZX RO,Rd1:Rb2 ; division RO=R1/R2
Exceptions:

None.

DIVSX - integer division, sighed

Format:
31 28 23 20 15 12 7 0
FORMAT FORMAT
X X X DST SRCo SRC2 SRC1 SRC1 0B

Description.

Integer signed division. SRC1 contains a dividend. SRC2 contains a divisor.
Result’s depth depends of the dividend depth.

Altered flags in AFR[dst]:
ZF, SF.
Example:

DIVSX RO,Rd1:Rw2

Exceptions:

None.

FADD - floating point addition

Format:
31 28 23 20 15 12 7 0
FORMAT FORMAT FORMAT
DST DST SRC2 SRC2 SRC1 SRC1 OE

Description.

Floating point addition. Source operands could be in single, double or extended
precision. Result can be written in any of these formats.

Altered flags in AFR[dst]:
ZF, SF, IF, NF.
Example:
FADD Rfs30,Rfel:Rfd20
Exceptions:

None.

FSUB - floating point subtraction

Format:
31 28 23 20 15 12 7 0
FORMAT FORMAT FORMAT
DST DST SRC> SRC2 SRC1 SRC1 OF

Description.

Floating point subtraction.
Altered flags in AFR[dst]:
ZF, SF, IF, NF.
Example:

FSUB Rfs30,Rfs1:Rfd20
Exceptions:

None.

LSL - logical shift left
Format:

31 28 23 20 15 12 7 0

FORMAT FORMAT
DST DST X X X SRC2 SRC1 SRC1 10

Description.

Logical shift left by variable number of bits. Number of shifted bits determines
by SRC2 content.

Altered flags in AFR[dst]:
ZF, SF, OF, DF.
Example:
LSL Rd26,Rd25:R2
Exceptions:

None.

LSR - logical shift right

Format:
31 28 23 20 15 12 7 0
FORMAT FORMAT
DST DST X X X SRC2 SRC1 SRC1 11

Description.

Logical shift right by variable number of bits. Number of shifted bits determines
by SRC2 content.

Altered flags in AFR[dst]:
ZF, SF, OF, DF.
Example:
LSR Rd26,Rd25:R2
Exceptions:

None.

CSL - cyclic shift left

Format:
31 28 23 20 15 12 7 0
FORMAT FORMAT
DST DST X X X SRC2 SRC1 SRC1 12

Description.

Cyclic shift left.

Altered flags in AFR[dst]:
ZF, SF, OF, DF.
Example:
CSL Rd26,Rd25:R2
Exceptions:

None.

CSR - cyclic shift right
Format:

31 28 23 20 15 12
FORTIAT DST X X X SRC2 FORuAT SRC1 13
Description.
Cyclic shift right.
Altered flags in AFR[dst]:
ZF, SF, OF, DF.
Example:
CSR Rd26,Rd25:R2
Exceptions:
None.
ASR - arithmetic shift right
Format:
31 28 23 20 15 12
FO;{S""TAT DST X X X SRC2 ng"c"fT SRC1 15

Description.
Arithmetic shift right.
Altered flags in AFR[dst]:
ZF, SF, OF, DF.
Example:
ASR Rd26,Rd25:R2

Exceptions:

None.

FIELDSET - set field in the register

Format:
31 28 23 20 15 12 7 0
FOEF;SMTAT DST X X X SRC2 X X X SRC1 16

Description.

Bits from the register R[src1], starting from zero, are copied to the bits of the
register R[dst]. The register R[src2] contains in the low byte the index of the first bit
in the register R[dst] where the bit field will be set, and the byte [15:8] contains the
number of copied bits.

Altered flags in AFR[dst]:
ZF, SF.
Example:
FIELDSET Rd30,R1:R20
Exceptions:

None.

FIELDGET - get the bit field

Format:
31 28 23 20 15 12 7 0
FogsMTAT DST X X X SRC2 X X X SRC1 17

Description.

The bits [N+L-1:N] from the register R[srcl] are copied to the bits [L-1:0] of
the register R[dst]. Byte [15:8] of register R[src2] contains the number of bits L to be
copied, and byte [7:0] contains the position of the first copied bit N.

Altered flags in AFR[dst]:
ZF, SF.
Example:
FIELDGET Rd30,R1:R20
Exceptions:

None.

FMUL - floating point multiplication
Format:

31 28 23 15 12
Fogs""TAT DST FCS’E"C"QT SRC2 Fg':‘{"c"fT SRC1 18
Description.
Floating point multiplication.
Altered flags in AFR[dst]:
ZF, SF, IF, NF.
Example:
FMUL Rfs30,Rfs1:Rfd20
Exceptions:
None.
FDIV - floating point division.
Format:
31 28 23 20 15 12
FORTIAT DST ol SRC2 FORuAT SRC1 1A
Description.
Floating point division.
Altered flags in AFR[dst]:
ZF, SF, IF, NF.
Example:
FDIV Rfs30,Rfs1:Rfd20
Exceptions:
None.
SQRT - square root
Format:
31 28 23 15 12
Fogs""TAT DST X X X X X X X X Fg':‘{"c"fT SRC1 1B

Description.

Square root calculation. Instruction can be applied only to the numbers in a
floating point representation.

Altered flags in AFR[dst]:
ZF, SF, IF, NF.
Example:

SQRT Rfs30,Rfs1
Exceptions:

None.

DAA - decimal adjust after addition

Format:
31 28 23 15 12 7 0
FORMAT FORMAT
DST DST X X X X X X X X| cpey SRC1 40

Description.

The instruction corrects the result of adding BCD numbers to obtain the correct
result value.

Altered flags in AFR[dst]:
CF, ZF, SF.
Example:

DAA Rd3,Rd17
Exceptions:

None.

DAS - decimal adjust after subtraction

Format:
31 28 23 15 12 7 0
FORMAT FORMAT
DST DST X X X X X X X X|gpe] SRC1 41

Description.

The instruction corrects the result of subtraction BCD numbers to obtain the
correct result value.

Altered flags in AFR[dst]:

CF, ZF, SF.

Example:
DAS Rd23,Rd7
Exceptions:

None.

NEG —-negation

Format:
31 28 23 15 12
FORMAT FORMAT
DST DST X X X X X X X X|'gpcy SRC1 42

Description.

Change the sign of an integer operand. If the receiver format is larger than the
source format, then the missing bits on the left are filled with a result sign. If the
receiver depth is less than the source depth, then only the selected result bits are

written to the register.
Altered flags in AFR[dst]:
CF, ZF, SF.
Example:

NEG Rd2,Rd17
Exceptions:

None.

BSWAP - bit swapping

Format:
31 28 23 15 12
Fogs':"TAT DST X X X X X X X X|x x x SRC1 43

Description.

Bit swapping. For example, in a 16-bit operand, bits 0 and 15, 1 and 14, 2 and

13, etc. are interchanged.
Altered flags in AFR[dst]:
CF, ZF, SF.
Example:

BSWAP Rw5,R23

Exceptions:

None.

RND - Round.

Format:
31 28 23 15 12 7 0
FORMAT FORMAT
DST DST X X X X X X X X| cpey SRC1 44

Description.

Round to the nearest integer. Operation can be performed only on floating point
numbers.

Altered flags in AFR[dst]:
ZF, SF, IF, NF.
Example:

RND Rfd5,Rfe23
Exceptions:

None.

POS - high bit position

Format:
31 28 23 15 12 7 0
X X X DST X X X X X X X X[X X X SRC1 45

Description.
Calculation of the position number of the high bit set to 1.
Altered flags in AFR[dst]:
ZF, SF.
Example:
POS Rfd5,Rfe23
Exceptions:

None.

FP2INT - floating point to integer

Format:
31 28 23 15 12 7 0
FORMAT FORMAT

DST DST X X X X X X X X SRC1 SRC1 46

Description.

Number’s conversion from a floating point format to the integer format. Source
values less than 1.0 gives zero’s as a result. The overflow flag is set to 1 if the
number cannot be represented in integer format due to the large value.

Altered flags in AFR[dst]:
ZF, SF, IF.
Example:

FP2INT Rg5,Rfe23
Exceptions:

None.

INT2FP - integer to floating point conversion

Format:
31 28 23 15 12 7 0
FORMAT FORMAT
DST DST X X X SRC2 SRC1 SRC1 47

Description.

The instruction is intended for converting numbers from a signed integer format
to a floating point format. R [srcl] contains the value of the original integer operand,
and the register R [src2] contains an integer value that is added to the order of the
exponent after conversion.

Altered flags in AFR[dst]:
ZF, SF.
Example:
INT2FP Rfs7,Rw23:R22
Exceptions:

None.

COPYZX - copy register to register with zero extension
Format:

31 28 23 15 12 7 0
FORMAT FORMAT
DST DST X X X X X X X X|'gpcy SRC1 48

Description.

The contents of register R[srcl] are copied to register R[dst]. The contents of
the companion flag register are also copied. If the format of the source operand is

smaller than the format of the receiver of the result, then the original number is
padded with zeros in the missing positions of the most significant bits.

Altered flags in AFR[dst]:
All flags are copied from the source AFR.
Example:

COPYZX Rgl12,Rw14
Exceptions:

None.

COPYSX - copy with sign extension

Format:
31 28 23 15 12 7 0
FORMAT FORMAT
DST DST X X X X X X X X| cpey SRC1 49

Description.

Copy data with a sign bit extension if the recipient format is wider than the
source format.

Altered flags in AFR[dst]:
All flags are copied from the source AFR.
Example:

COPYSX Rgl2,Rw14
Exceptions:

None.

LID - load immediate value into data register

Format:
31 28 23 15 7 0
WORD REG Immediate 4A

Description.

Download 16 bits to the register. The word number is determined in bits
[31:29] of the instruction. Downloading constants longer than 16 bits is performed in
several steps. For example, to load a 128-bit constant into the register, you need to
execute 8 LID commands in sequence, they are can be executed in any order.

Altered flags in AFR[dst]:

AFR[dst] doesn’t altered.
Example:

LID R12:w2,0FEDCh
Exceptions:

None.

NOT - inversion

Format:
31 28 23 15 12 7 0
FOEF;SMTAT DST X X X X X X X X|X X X SRC1 4B

Description.

Bitwise inversion of the operand. The depth of the original operand does not
matter.

Altered flags in AFR[dst]:
ZF, SF.
Example:

NOT Rq7,R23
Exceptions:

None.

SFR - store flag register

Format:
31 28 23 15 12 7 0
X X X DST X X X X X X X X X X X SRC 4C

Description.
Content of the flag register AFR[src] stores in the GPR[dst].
Altered flags in AFR[dst]:
AFR[dst] doesn’t altered.
Example:
SFR R12,R12
Exceptions:

None.

LFR - load flag register

Format:
31 28 23 15 12 7
X X X DST X X X X X X X X X X X SRC 4D

Description.
Instruction loads flag register from the general-purpose register.
Altered flags in AFR[dst]:
All flags loaded from R[src].
Example:
LFR R12,R11
Exceptions:

None.

LSLI - logical shift left by immediate shift parameter
Format:

31 28 23 21 15 12 7
FORMAT FORMAT
DST DST X X Spar SRC1 SRC1 50

Description.
Logical shift left. Shift parameter pointed in the instruction code.
Altered flags in AFR[dst]:
ZF, SF, OF, DF.
Example:
LSLI Rd26,Rd25:22
Exceptions:

None.

LSRI - logical shift right by immediate shift parameter
Format:

31 28 23 21 15 12 7
FORMAT FORMAT
DST DST X X Spar SRC1 SRC1 51

Description.

Logical shift right. Shift parameter pointed in the instruction code.

Altered flags in AFR[dst]:
ZF, SF, OF, DF.
Example:
LSRI Rd26,Rd25:22
Exceptions:

None.

CSLI - cyclic shift left by immediate parameter
Format:

31 28 23 21 15 12 7
Fog‘SMTAT DST X X Spar Fgﬁ'\c’"ln SRC1 52
Description.
Cyclic shift left. Shift parameter pointed in the instruction code.
Altered flags in AFR[dst]:
ZF, SF, OF, DF.
Example:
CSLI Rb6,Rb5:2
Exceptions:
None.
CSRI - cyclic shift right by immediate parameter
Format:
31 28 23 21 15 12 7
Fogs':"TAT DST X X Spar FCS’E'\C’"l*T SRC1 53

Description.

Cyclic shift right. Shift parameter pointed in the instruction code.

Altered flags in AFR[dst]:
ZF, SF, OF, DF.
Example:

CSRI Rw13,Rw3:12

Exceptions:

Non

e.

ASRI - arithmetic shift right by immediate parameter

Format:
31 28 23 21 15 12 7 0
FORMAT FORMAT
DST DST X X Spar SRC1 SRC1 55

Description.

Arithmetic shift right. Shift parameter pointed in the instruction code. Sign bit
of the source operand copied into all shifted-in bits.

Altered flags in AFR[dst]:

ZF, SF, OF, DF.

Example:

ASRI

Exceptions:

None.

ST - store data

Format:

31

28

Rw13,Rw3:12

23 20 15 12 7 0

FORMAT

SRC

Additional 80

MAR DispREG AMODE Offset

Description.

Instruction stores data from GPR into memory location.

Additional offset is expressed not in bytes, but in data elements - bytes, words,
double words, 64-bit words or 128-bit words, depending on the specified bit depth of
the transmitted data element. The additional offset is a signed number and allows you
to adjust the offset both upward and downward. For example, if a 32-bit value is
written to the memory and the instruction contains the 1Ah code in bits [12:8], then
the value of the additional offset will be -24.

The mode of formation of the resulting offset is indicated directly in the
instruction code and encoded in accordance with the table:

AMODE | Mnemonic Reference
0 [AR] address register fully determines the offset
1 [AR] The offset is formed only from the contents of the address
AR=AR+R | register, and the address register is incremented by the value

from the general-purpose register.

2 [R] An offset is the contents of a general-purpose register.
3 [AR+R] The offset is formed by adding the contents of the address
register and the general-purpose register.
4 [AR] The offset is retrieved from the address register. The contents
AR=AR+0S | of the address register are increased by the number of bytes
that make up the data element.
5 [AR] The offset is retrieved from the address register. The contents
AR=AR-0S | of the address register are reduced by the number of bytes
that make up the data element.
6 [AR+R] The offset is formed by adding the contents of the address
AR=AR+0S | register and the general-purpose register. After the operation,
the contents of the address register is increased by the
number of bytes that make up the data element.
7 [AR+R] The offset is formed by adding the contents of the address
AR=AR-0S | register and the general-purpose register. After the operation
is completed, the contents of the address register are reduced
by the number of bytes constituting the data element.

An additional offset in the table is not indicated, since it always participates in the
formation of the resulting offset.

The DispREG field defines the general-purpose register, the contents of which
are used to form the resulting offset or to obtain a new value in the address register.

Altered flags in AFR[dst]:

Any AFRs

Example:

don't alter.

; instruction parameters: mar:DispREG:Additional Offset, AMODE,SRC

ST

mar3:r13:2,2,Rd23

Exceptions:

PN U AWM

LD - load data

Format:

31

28

Object limits violation.

Illegal object selector.

Illegal object type.

Privilege level violation.

Read or write access violation.

TaskID violation.

Object can’t be accessed through multiprocessor network.
Processor is absent in the multiprocessor network.

23 20 15 12 7 0

FORMAT

DST

Additional 81

MAR Offset

DispREG AMODE

Description.

Loading a data element from memory into a register.

Altered flags in AFR[dst]:

Any AFRs don't alter.

Example:
; instruction parameters: DST,mar:DispREG:Additional Offset, AMODE
LD Rw4,mar4:r23:0,2

Exceptions:

Object limits violation.

Illegal object selector.

Illegal object type.

Privilege level violation.

Read or write access violation.

TaskID violation.

Object can’t be accessed through multiprocessor network.
Processor is absent in the multiprocessor network.

NGO AWM

PUSHD - push data register into stack

Format:
31 28 23 15 7 0
X X X SRC X X X X X X X X X X X X X X X X 84

Description.

Push data register content into stack. 16 bytes of a 128-bit data register and 4
bytes of the corresponding AFR register are always written to the stack. Since the
stack is always aligned to the border of 8 byte words, the contents of the AFR are
complemented by 4 unused bytes. The format of the top of the stack after executing
the PUSD instruction:

/\/

Stack object

Not used (reserved) | AFR
R bits[127:64]
R bits[63:0] «—| AR14

-] AR15

/\/

Altered flags in AFR[src]:
Any AFR bits don't alter.
Example:

PUSHD R4
Exceptions:

1. Stack object limits violation.

POPD - pop data register from stack

Format:
31 28 23 15 7
X X X DST X X X X X X X X X X X X X X X X 85

Description.
Reading the data register and its accompanying flag register from the stack.
Altered flags in AFR[src]:

AFR loads from the stack.

Example:
POPD

Exceptions:

R22

1. Stack object limits violation.

PUSHA - push address register

Format:
31 27 23 15
X X X X ADST X X X X X X X X X X X X X X X X 86
Description.
writing the contents of the address register onto the stack.
Altered flags in AFR[src]:
Any AFR's don't alter.
Example:
PUSHA AR4
Exceptions:
1. Stack object limits violation.
POPA - pop address register from stack
Format:
31 27 23 15
X X X X| ADST X X X X X X X X X X X X X X X X 87

Description.

Reading address register from the stack.

Altered flags in AFR[src]:

Any AFR's don't alter.

Example:
POPA

Exceptions:

AR4

1. Stack object limits violation.

LAR - load address register

Format:
31 27 23 20 15 7 0
X X X X ADST X X X SRC X X X X X X X X 88

Description.

Download the address register from the general-purpose register. Registers
AR13 and AR15 can only be changed with CPL = 0.

Altered flags in AFR:
Any AFR's don't alter.
Example:

LAR AR4,R17
Exceptions:

None.

SAR - store address register

Format:
31 28 23 15 11 7 0
X X X DST X X X X X X X X X X X X ASRC 89

Description.
Sending the contents of the address register to the general-purpose register.
Altered flags in AFR:
Any AFR's don't alter.
Example:
SAR R4,AR7
Exceptions:

None.

LIA - load immediate offset to the address register
Format:

31 27 23 15 7 0

WORD | X AREG Immediate 8A

Description.

Loading a 16-bit value into the address register. Since the address registers
containing the offset are 37-bit, a full load of such a register is possible with three
consecutive instructions. If a word is loaded into bits [15: 0] or [31:16], then the
most significant bits of the register are set according to the state of bit 15 of the word
specified in the instruction.

Altered flags in AFR:
Any AFR's don't alter.
Example:
LIA AR6:w0,Offset DataString shl 2
Exceptions:

None.

IAR - increment address register

Format:
31 27 23 15 7 0
X X X X AREG Immediate 8B

Description:

Increase the contents of the address register by the value specified in the
instruction. The 16-bit value is supplemented with up to 37 bits with its signed bit
before adding to the contents of the address register.

Altered flags in AFR:
Any AFR's don't alter.
Example:

IAR AR6:-592
Exceptions:

None.

AAR - add value to address register

Format:
31 27 23 20 15 7 0
X X X X ADST X X X SRC X X X X X X X X 8C

Description.

Adding to the contents of the address register the value from the general-
purpose register.

Altered flags in AFR:
Any AFR's don't alter.
Example:

AAR AR6:R3
Protection violations:

None.

FMULACC - multiplication and accumulation.

Format:
31 28 23 20 15 12 7 0
FORMAT DST MARD SRCD MARC SRCC 90

Description.

Mutiplication and accumulation. The instruction performs processing of two
arrays - an array of initial data and an array of coefficients. The DST register contains
the sum of the results of multiplying the data elements by their corresponding
coefficients. The data array contains data represented in a single-precision floating-
point format. The coefficient array contains scale factors in the single-precision format
and control information. The first 64-bit word in the coefficient array contains the
counter of the data elements to be processed (bits [31: 0]), and the bits [63:32] can
contain the length of the data buffer. The length is expressed in 32-bit words. If the
bits [63:32] are zero, then the offset of each data element is set separately, in the
coefficient list, next to the corresponding coefficient. If the block length is nonzero,
then this indicates the sequential arrangement of the data in the array.

The group of address registers MARC indicates the base of the memory block
where the coefficient table is placed. The SRCC general-purpose register defines an
additional offset of the coefficient table in the block.

The address register group MARD points to the database of the data block. The
general-purpose register SRCD determines the offset of the first data element in the
data block.

63 0

System memory

\ 4

Data buffer

D1 DO

| MAR[mARD]

Control buffer

C2 N, —

Cl I —

Co

Limnit Length —L FMULACC Machine

The data is placed with a constant step

The sequential data addressing mode can be used to implement FIR and IIR
filters. In this mode, if during data processing the data pointer reaches the limit value,
then it is set to 0 and the next data element will be read from the data buffer with a
zero offset from the beginning of the buffer. By changing the starting value in the
R[SRCD] register, it is possible to simulate the operation of the delay line of the
FIR/IIR filter with the aid of a ring buffer.

63 0

System memory

Data buffer

» » DO
4
: &
X
| MAR[mARD]

¥
@QH—>D—>{_Rios1_|]
A

Control buffer

CX N
A
—T—" Offset 2 C2 — T
— Offset 1 C1 ——

Offset 0 Co

0 Length —L FMULACC Machine

| MAR[vArRP]

The data is placed in a predefined locations

Altered flags in AFR[dst]:
ZF, SF, IF, NF
Example:
FMULACC R4,marl:r4,mar2:R9
Protection violations:

1. Violation of the object's limit.

2. Bad data selector, if the selector is zero or it exceeds the limit of the descriptor
table.

. Attempt to read from an object that is not readable.

4. Object not accessible on a current privilege level.

W

Violation of object protection mechanism by TaskID value occurs.

Invalid descriptor type occurs.

Object can’t be accessible for any other cores in the multiprocessor network.
The processor with the specified number is not on the network.

® N WU

FFT - fast fourier transform

Format:
31 28 23 20 15 12 7 0
X X X DST MARD SRCD MARC SRCC 91

Description.

The instruction initiates the process of calculating the fast Fourier transform.
The instruction belongs to the FlyBy class of instructions and allows the processor to
continue with the following instructions, without waiting for the completion of the FFT
calculation. Data and twiddle factors are complex numbers, the real and imaginary
parts of which are represented in floating-point format of single precision. The source
data are:

e The size of the data array. The 5-bit data length code is located in bits [4: 0] of
the general-purpose register, addressed by the DST field. The parameter can
take values from 0 (data length - 2 numbers) and up to 19 (data length -
1048576 complex numbers).

e Pointer to a twiddle factors array. The pointer consists of an object selector, a
block offset (both parameters are placed in MAR[MARC]), and an additional
block offset (retrieved from the register RISRCC]). The length of the array of
twiddle factors is 2 times less than the length of the data block.

e Pointer to a data block. The pointer consists of an object selector, a block offset
(both parameters are placed in MAR[MARD]), and an additional block offset
(retrieved from the register REISRCD]).

At the time of receipt of the FFT instruction, the machine may be busy processing the
data array, initiated earlier. In this case, the new instruction is ignored. To control the
start of the FFT calculation process, the ZF AFR [DST] flag allows. ZF [AFR [DST]] =1
indicates that the instruction has successfully started the FFT machine. If ZF = 0, then
the command must be repeated after some time.

The completion of the processing of the data array is accompanied by the
recording of the code 544646464F444E45h (string "ENDOFFFT"”) instead of the last
complex number in the data array. Periodically scanning the last 8 bytes of the data
array, you can determine the completion of the calculation of the FFT.

Altered flags in AFR[dst]:
ZF sets to 1 if FFT Machine starts calculations.
Example:

FFTStart:

FFT R4,MARO:R5,MAR2:R11
JC R4:NZF,Displacement FFTStart

Protection violations:

[y

Violation of the object's limit.

Bad data selector, if the selector is zero or it exceeds the limit of the descriptor
table.

Attempt to read from an object that is not readable.

Object not accessible on a current privilege level.

Violation of object protection mechanism by TaskID value occurs.

Invalid descriptor type occurs.

Object can’t be accessible for any other cores in the multiprocessor network.
The processor with the specified number is not on the network.

N

PN U AW

SENDMSG - send message

Format:
31 28 23 15 7 0
X X X REG X X X X X X X X X X X X X X X X Cco

Description.

Sending a message. The message identifier is located in the [15: 0] bits of the
R[dst] general-purpose register. A 32-bit parameter that is passed to the message
handler is placed in the bits [63:32] of the R[dst] register.

Altered flags:

None.
Example:

SENDMSG R9
Protection violations:

The message index is outside the table of imported procedures.

Invalid PSO selector to which the message is sent.

The index goes beyond the table of exported procedures.

Violation of access to the message handler by privilege level.

The type of the message handler does not match the mode of access. For
example, if a software attempt is made to call a hardware interrupt handler.

6. There is no space in the message queue to write a message.

nhHhLUnE

GETPAR - get message parameter
Format:

31 28 23 15 7 0

X X X REG X X X X X X X X X X X X X X X X Cc1

Description.

Getting the message parameter into the general-purpose register. The main
process code can also get the parameter with which the process was launched.

Altered flags:

None.
Example:

GETPAR R14
Protection violations:

None.

JUMPR - jump by register content

Format:
31 28 23 15 7 0
X X X REG X X X X X X X X X X X X X X X X c2

Description.

Unconditional jump by the contents of the general-purpose register. The
contents of the register determines the offset of the first command in a new
instruction flow.

Altered flags:

None.
Example:

JUMPR R16
Protection violations:

Code object limits violation.

CALLR - subroutine call by register content

Format:
31 28 23 15 7 0
X X X REG X X X X X X X X X X X X X X X X C3

Description.

Unconditional call of the subroutine by the contents of the register. The
contents of the register determines the offset of the first subroutine instruction in the
code object.

Altered flags:

None.
Example:

CALLR R23
Protection violations:

1. Code object limits violation.
2. Stack limits violation.

JC - jump conditional if flag setto 1
Format:

31 23 15 7 0

cC REG Displacement Cc4

Description.

Conditional jump if the selected flag is set to 1. The relative offset is
supplemented by the sign bit on the left and is summed with the address of the IC
instruction.

cC Flag Description
0 ZF Zero flag
1 CF Carry flag
2 SF Sign flag
3 OF Overflow flag /integer operations/
4 IF Infinity flag /floating point operations/
5 NF Not a number flag
6 DF Data flag
7 1 Always “true” jump condition
Altered flags:
None.
Example:
]C R16:SF,Displacement Lab1l

Protection violations:

Code object limits violation.

JNC - jump conditional if flag set to 0
Format:

31 28 23 15
CC REG Displacement C5
Description.
Conditional jump if flag is cleared.
Altered flags:
None.
Example:
INC R16:SF,Displacement Lab1l
Protection violations:
Code object limits violation.
LOOP - loop
Format:
31 28 23 15
X X X REG Displacement C6

Description.

The instruction is designed to organize the cycle. The loop counter is located in
the general-purpose register. The offset from the instruction is supplemented by 19
bits on the left and is summed with the address of the LOOP instruction itself to obtain

the address of the first instruction in the loop.
Altered flags:

None.
Example:

LOOP R6,Displacement Cycle0
Protection violations:

Code object limits violation.

MEMALLOC - memory allocation request

Format:
31 28 23 15
X X X REG X X X X X X X X X X X X X X X X

c7

Description.

Request a block of memory or free a block of memory. The parameter specified
in the general-purpose register determines whether a request will be made for a new

block or release of the old one.

To obtain a new memory block, it is necessary to indicate the required block
size in bits [63:32]. Size must be expressed in 32-byte paragraphs. Bits [31: 0] must
be in the zero state for the operation of allocating a new block.

If bits [31: 0] contain a value other than 0, then the block is freed, and this
value is interpreted as the selector of the object that is freed. Object can be released
when owner field from object’s descriptor is equal to PSO selector. If CPL=0 owner’s

verification skips by processor.
Altered flags:

None.
Example:

MEMALLOC R7
Protection violations:

None.

RET - return from subroutine
Format:

31 23 15

X X X X X X X X X X X XXX X X X X X X X X X X

C8

Description.
Return from the subroutine.
Altered flags:
None.
Example:
RET
Protection violations:

1. Code object limits violation.
2. Stack limits violation.

ENDMSG - end of message
Format:

31 23 15 7 0

X (O°]

Description.

The instruction terminated the processing of the hardware interrupt or message
and restores the execution of the interrupted process.

Altered flags:

None.
Example:

ENDMSG
Protection violations:

1. Empty context stack.
2. Invalid return PSO selector in context stack.

JUMPI - jump by immediate displacement
Format:

31 23 15 7 0

Displacement CA

Description.

Unconditional jump with immediate value of relative displacement. 24 bits of
the offset specified in the command are complemented by 11 bits on the left and are
summed with the address of the JUMPI command itself.

Altered flags:

None.
Example:

JUMPI Displacement Labelll
Protection violations:

Code object limits violation.

CALLI - subroutine call by immediate displacement
Format:

31 23 15 7 0

Displacement CB

Description.

Unconditional subroutine call with immediate value of relative displacement.
Altered flags:

None.
Example:

CALLI Displacement Labell1
Protection violations:

1. Code object limits violation.
2. Stack limit violation.

BKPT - breakpoint

Format:
31 23 15 7 0
X CcC

Description.
Breakpoint generation.
Altered flags:
None.
Example:
BKPT
Protection violations:

None.

SLEEP - process sleeps

Format:
31 23 15 7 0
X CD

Description.

A process frees the core to execute other processes before the activity timer for
the current process located in the PTR register ends. Instruction SLEEP resets PTR
counter to value 2 what causes switch of processes in short time.

Altered flags:

None.

Example:
SLEEP
Protection violations:

None.

NOP - no operations
Format:

31 23 15

XX X X X X X X X X XXX XX X X X X X X X X X

FF

Description.
Do nothing instruction.
Altered flags:
None.
Example:
NOP
Protection violations:

None.

