
Contents
Multiple process execution in time division mode. .. 1

Process State Object. .. 1

Contexts stack. .. 5

Table of exported procedures. .. 7

Table of imported procedures... 8

Message queues (system and regular). ... 8

Message or procedure transfer process. ... 9

Interrupt processing. ... 10

Checking the message queues. ... 12

Multiple process execution in time division mode.

Process State Object.

 Execution of multiple processes is supported by the structure of information

called Process State Object – PSO. PSO is used to support the operation of the

messaging system and is used in memory allocation functions. PSO is used to store a

number of unique process parameters and to store the context of internal registers

when the process is not active. PSO uses a separate object in the RAM that can’t be

segmented. The information constituting the PSO is located at the object's zero offset.

Process Timer Base Value [15:0]Not used

Remained free memory

Remained object count

Offset of the table of exported procedures

Items count of the table of exported procedures

+0

+4

+8

+12

+16

+20

+24

+28

Offset of the table of imported procedures

Items count of the table of imported procedures

System messages queue offset

System messages queue length

System messages queue read pointerSystem messages queue write pointer

Not used

Regular messages queue offset

Regular messages queue length

Regular messages queue read pointerRegular messages queue write pointer

Not used

+32

+36

+40

+44

+48

+52

+56

Contexts stack offset

Contexts stack limit

Contexts stack pointer +60

+64

Contexts stack

Table of exported procedures

Table of imported procedures

System messages queue

Regular messages queue

31 01516

The first 64 bytes of the PSO have fixed assignments. Contexts Stack, Table export

procedure, Table, import procedure and message queues is a variable length block,

may be placed in any order.

Process timer base value. The time of the process activity, expressed by the ticks

of the system timer. If it is 0, the timer is not used and the process is limited in some

other way. The context controller extracts the value of the process timer base value

from the PSO and places it in the PTR register before starting the process. This action

is performed only in the mode of cyclic context switching. When you switch to

message handlers and interrupts, the timer value is not used.

Remained free memory. It is a value indicating how much more memory can be

requested by the process for its needs. The parameter is used by the memory

allocation system to monitor the free memory consumption of the process. The value

decreases when a new memory block is allocated and is incremented when the

process releases the block of memory. The size is expressed in 32-byte blocks.

Remained object count. The counter of the number of objects that the process can

create. The parameter is intended to limit the process in the query of memory blocks

by the number of objects. Decreases by 1 when the process requests allocation of the

next block of memory and increases by 1, when the process releases the block of

memory. The allocation of a new block of memory is blocked if the value of the

"remained object count" is 0.

Offset of the table of exported procedures. Indicates where in PSO the table of

exported procedures begins.

Items count of the table of exported procedures. It is used to verify the

correctness of the procedure index when sending a message to the process to which

the PSO belongs.

Offset of the table of imported procedures. Indicates where in PSO the table of

exported procedures begins.

Items count of the table of imported procedures. It is used to verify the

correctness of the procedure index when sending a message from the process to

which the PSO belongs.

System messages queue offset. Indicates the location in the PSO of the buffer of

the system messages queue.

System messages queue length. Parameter specifies the maximum number of

messages in the system message queue.

System messages queue read pointer. A pointer to the first message in the

system message queue.

System messages queue write pointer. Indicates the position in which the next

system message will be placed.

Regular messages queue offset. Indicates the location in the PSO of the buffer of

the regular messages queue.

Regular messages queue length. Parameter specifies the maximum number of

messages in the regular message queue.

Regular messages queue read pointer. A pointer to the first message in the

regular message queue.

Regular messages queue write pointer. Indicates the position in which the next

regular message will be placed.

Contexts stack offset. Defines location of the contexts stack buffer.

Contexts stack limit. Context stack length, in bytes.

Contexts stack pointer. The context stack expands (contexts stack pointer

increased) up when creating the next context frame and shrinks down when the used

frame is closed (contexts stack pointer decreased).

Contexts stack. It contains the contexts frames. First frame located from zero offset

in the contexts stack buffer.

Table of exported procedures. The buffer contains pointers to the message

processing procedures that are made available for calling by other processes.

Table of imported procedures. The buffer contains pointers to the message

processing procedures that the process itself imports from other processes.

System messages queue. This buffer is used to store incoming system messages.

Regular messages queue. This buffer is used to store incoming regular messages.

Contexts stack.

Context 0

Context length 0

Return PSO selector

Context 1

Return pointer to context 1

Return PSO selector

Context 2

Free space

Current stack

pointer

Context length 1

Return pointer to context 0

Context length 2

Message parameter 2

Message parameter 1

Message parameter 0

031

Context

frame 0

Context

frame 1

Context

frame 2

Return

record 0

Return

record 1

 The context stack contains context frames separated by return records.

 Context frames are used to save the context of the process in times when the

process is not being executed by the core. The context frame contains the length of

the context, the message parameter, and the actual core context. The context length

is used when creating a new frame to determine the location of the return pointer

entry. The length of the context is provided in order to make it possible in the future

to use reconfigurable cores with different context lengths depending on the core

configuration. The message parameter is stored in a context frame so that it can later

be extracted with the GETPAR instruction.

 The return record contains two values: a return to the previous frame and a

PSO return selector. The PSO return selector can point to the current PSO or to

another, in the event that any process is interrupted by the interrupt processing. The

return pointer is used to make it possible in the future to implement a reconfigurable

core with a variable length of contexts, depending on the configuration. The return

pointer is used when the current context frame is closed by the ENDMSG instruction to

reset the context stack pointer to the previous frame of the system stack.

 The size of the buffer for the stack of contexts is recommended to be chosen

based on the possibility of saving at least 5 contexts. The main process loop (context

frame 0) can be interrupted by processing a regular message (context frame 1). A

regular message can be interrupted by the system message (context frame 2). The

system message can be interrupted by a hardware interrupt (context frame 3). A

hardware interrupt can be interrupted by processing a security violation (context

frame 4).

Process context.

 Address registers

CSR

Not used

IP[35:0]

SP0[35:0]

SS0[31:0]

SP1[35:0]

SS1[31:0]

SP2[35:0]

SS2[31:0]

SP3[35:0]

SS3[31:0]

R[31:0][63:0]

R[31:0][127:64]

AFR[31:0]Not used

AR1

AR15

0313263

+0

+8

+16

+24

+32

+40

+48

+56

+64

+72

+80

+336

+592

+848

+968

+97636

Not used

AR0

AR14 +960

 The length of the core context CoreOne32V0 is fixed - 976 bytes. Context

includes:

 CSR register content;

 The IP instruction pointer determines the position of the first instruction from

which the code execution will start when the process is activated;

 The four sets of program stack pointers are offsets and selectors for the four

privilege levels. When the context load occurs, the image of registers AR14 and

AR15 is ignored, and one of the pairs SS[3:0]:SP[3:0] is loaded into the

registers themselves. Which pair will be used is determined depending on the

CPL field from the CSR register. When the context is saved, the corresponding

CPL position is updated with the program stack pointer.

 A set of general-purpose registers R[31:0], bits [63:0] and bits [127:64];

 A set of flag registers AFR[31:0];

 A set of address registers AR[15:0].

Table of exported procedures.

 The table contains the descriptors of the message processing procedures that

are available for calling from other processes.

Code offset

Code selectorCTRL

31 0

PL[1:0]TYPE[1:0]PM IMODE[2:0]

01234567

2324

+0

+4

The descriptor includes a selector and an offset that define the entry point to the

message processing procedure. CPU Number is not included into selector. Higher byte

set to 0 when selector will be loaded into AR13 register.

 The control byte that defines the mode of message processing, the mode of the

privilege level of the handler and the mode of forming the Task ID for the handler.

Control byte structure:

 PL is the privilege level used to control access to the procedure descriptor. If

the PL of the process calling the message handler is numerically greater than

the procedure descriptor PL, access to the entry point is blocked. PL is not

checked if the source of the call is a hardware interrupt or a violation of the

protection system;

 TYPE. The type of the handler. 0 - interrupt handler, 1 - procedure, 2 - system

message, 3 - regular message.

 IMODE. Interrupt blocking mode. Bit 0 - blocks hardware interrupts, bit 1

blocks cyclic switching of processes, bit 2 blocks the call of messages.

 PM. A bit that specifies the mode for setting the properties of the message

handler. When PM = 0, the CPL and TaskID of the message handler are set by

the values from the descriptor of the code object to which the control will be

transferred. PM = 1 - instructs to use CPL and TaskID passed from the process

that caused the message handler. This bit is not used if a hardware interrupt or

security violation is being processed.

Table of imported procedures.

 The table contains the descriptors of the imported procedures. Each descriptor

contains 2 values: the process selector PSO and the index of the exported procedure

in the export procedure table in the specified PSO.

PSO Selector

Procedure Index

31 0

+0

+4

Using these two values, the processor retrieves the handle of the message handler in

the table of exported procedures. The PSO selector can reference an object in another

processor if the high byte is non-zero and is not equal to the current processor index.

In this case, the message is sent to another processor.

Message queues (system and regular).

 Any message is always placed in the process message queue, regardless of

whether it can be processed immediately or not. A message consisting of four double

words is placed in the message queue.

Code offset

Code selectorCTRL

Parameter

CSR

31 0

+0

+4

+8

+12

The record includes:

 The offset of the entry point to the handler code and the code object selector;

 The control byte copied from the exported procedures table;

 A 32-bit message parameter. This parameter is passed by the SENDMSG

command and is written to the top of the context stack and can be extracted

into the message processing routine by the GETPAR instruction.

 The contents of the CSR state register of the process that sent the message, on

the basis of which a new CSR state will be generated for the called message

processing procedure.

Message or procedure transfer process.

 The SENDMSG instruction causes the message to be sent to another process or

an immediate procedure call. Algorithms for performing both actions almost

completely coincide, except that the procedure call parameters are not set in the

process message queue, but are applied immediately switching the core to the

execution of the procedural code.

PSO “A”Code Process “A”

SENDMSG R1

FIELDCOPYI R1,R0:32:32

SIZE R1,qword

LI R1,ProcedureIndex

xxxx

xxxx

Messenger

Table of Imported

procedures

Procedure index

Selector PSO “B”Message parameter

Message index

Procedure index

Selector PSO “B”

PSO “B”

Table of exported

procedures

Control byte and selector

Code offset

Message queue

Code offset

Control byte and selector

Message parameter

CSR process “A”

CSR

Code offset

Control byte and selector

Message parameter

CSR

Context controller

Code offset

Control byte and selector

Message parameter

CSR

CSR process “B”

Modify

Code Process “B”

LAR AR0,R1

LI R1,0

LAR AR1,R0

GETPAR R0

AMODE R1,4

Context stack

Frame of message processing

code

Main code frame

Create

frame

1

2

2

3

3

4

7

7

6

6

1. Instruction SENDMSG is coming to the messenger unit.

2. The messenger looks at the table of imported procedures in the current PSO

using the index specified in the SENDMSG instruction and receives the PSO of

the receiving message process and the message handler index in the exported

procedures table.

3. Using the obtained PSO selector and index, the messenger retrieves the

descriptor of the message handler from the table of exported procedures of

process B. Performs a check on the accessibility of the process “B” message

handler from process “A” and generates a message.

4. The message is placed in the message queue of process “B”. This concludes the

work of the messenger.

5. If the CSR of process “B” allows message processing, the context controller

checks the message queue for process “B” in the following cases:

 The resumption of the work of process “B” by the mechanism of cyclic

switching of processes;

 In the case where the processes “B” and “A” are the same process;

 In case the control byte from the table of exported procedures of process

“B” defines the message handler as a procedure that must be executed

immediately;

 In case the "B" process has completed the processing of the previous

message, procedure or hardware interrupt.

6. If a message is detected in the queue or if there is an immediate request to

start the procedure from the messenger, the context controller creates a new

frame in the process “B” context stack. This frame will be used to save the

context of process “B” in the event that the message handler or procedure is

interrupted, for example, by a hardware interrupt or by a procedure for cyclic

switching processes. The message parameter is placed in the created context

frame and subsequently it can be obtained by the GETPAR command by the

message handler.

7. The context controller generates a new CSR register value, sets the instruction

pointer to the entry point to the message processing routine, and starts the

core to execute the message or procedure handler code.

Message parameter may be a simple 32-bit value but typically an object selector is

used. One process takes a memory block, fills block with some parameters and datas

and sends an object selector of this memory block to the another process as message

parameter.

Interrupt processing.

 The INTCR register contains an object selector in which a table is placed that is

identical to the table of imported procedures of any process. The number of records in

the table is also indicated in the INTCR register.

Memory

Messenger

Interrupt table

Procedure index

Selector PSO “B”

Interrupt index

Procedure index

Selector PSO “B”

PSO “B”

Table of exported

procedures

Control byte and selector

Code offset

Code offset

Control byte and selector

Message parameter

CPSR process “A”

Context controller

Code offset

Control byte and selector

Message parameter

CSR process “B”

Create

CSR

Code Process “B”

xxxxxxxx

Context stack

Frame of interrupt processing

code

Main code frame Create

frame

INTCD

 By processing the hardware interrupt, the messenger reads the 16-bit interrupt

ID code from the INTCD bus, indexes the interrupt table, extracting the PSO selector

and the index of the exported procedure from it.

 Three entry points to the interrupt table have a special purpose. A zero entry

point is never used, since the messenger ignores interrupts with a null identifier,

treating them as interrupts from uninitialized peripheral equipment. The entry point

with index 1 is used to specify the security violation handler. The entry point with

index 2 is used to specify the BKPT instruction handler.

 The messenger generates a request to the context controller to immediately

stop the core and switch it to interrupt processing. The control byte, the PSO selector

of the interrupt handler, the code object selector and the interrupt handler offset are

passed to the context controller.

 The context controller creates a new frame in the context stack and starts the

interrupt routine. If the interrupt is caused by the BKPT command, then when the

frame is created in the context stack, the controller sets the process selector PSO as

the message parameter. This is done so that the debugging interrupt handler can

determine which process caused the interrupt.

Checking the message queues.

 System messages queue state always checking first and regular messages is

not processed while system queue holds at least one message.

 Queue checking:

1. When the ENDMSG instruction is executed and message processing is not

prohibited in the process to which the return is performed.

2. When a message is addressed to a process that is currently active and message

processing is enabled.

3. When the cyclic process switching system activates the process, the context

controller checks the status of the message queues of the activated process if

message processing is enabled.

