
Contents

Instruction set reference .. 2

FFT – Fast Fourier Transform ... 2

FMULACC – Floating point multiplication and accumulation ... 3

FADD – Floating point Addition ... 7

FSUB – Floating point subtraction ... 8

FMUL – Floating point multiplication .. 8

FDIV – Floating point division ... 9

SQRT – Square root .. 9

ADD – Integer addition .. 11

AND – Logical AND ... 11

OR – Logical OR ... 13

XOR – Exclusive OR .. 13

FIELDCOPYI – Copying bit field ... 15

FIELDCOPY – Copying bit field .. 16

MASKCOPY – Masked bits copying .. 17

LSLI – Logical shift left on immediately specified number of bits 17

LSL – Logical shift left ... 18

LSRI – Logical shift right on immediately specified number of bits................................... 18

LSR – Logical shift right ... 19

CSLI – Cyclic shift left on immediately specified number of bits 19

CSL – Cyclic shift left .. 20

CSRI – Cyclic shift right by immediately specified number of bits 20

CSR – Cyclic shift right .. 22

ASRI – Arithmetic shift right by immediately specified number of bits 22

ASR – Arithmetic shift right .. 23

BSWAP – Bitwise swap .. 23

NEG – Negation .. 24

DAA – Decimal adjust after addition .. 24

DAS – Decimal adjust after subtraction ... 26

POS – Highest bit position calculation .. 26

CFZ – Change data Format with rounding to Zero ... 28

CFN – Change data Format with rounding to Nearest .. 28

SIZE – Resize operand in register ... 29

AMODE – Setup Address processing MODE ... 29

COPY – Copy register-register .. 30

LI – Load Immediate ... 30

LAR – Load Address Register .. 32

SAR – Store Address Register ... 32

LDB/LDW/LDD/LDQ/LDO – Load data from memory .. 33

ST – Store data .. 34

PUSHD – Push data register into the stack ... 34

PUSHA – Push address register into the stack .. 35

POPD – Recover data register from the stack ... 35

POPA – Recover address register from the stack ... 36

JC – Jump if condition true ... 36

JCL – Jump if condition true. Long form ... 37

JNEAR – Near jump ... 38

LOOP. ... 38

JUMP – Jump by value from general register .. 40

CALL – Subprogram call .. 40

SENDMSG – Send message .. 41

MEMALLOC – Allocate memory block ... 41

GETPAR – Get message parameter ... 42

RET – Return from subroutine .. 42

ENDMSG – End of message processing .. 43

BKPT – Breakpoint .. 43

NOP – No operations ... 43

Note. .. 45

Instruction set reference

FFT – Fast Fourier Transform
Mnemonic:

 FFT dst,marC:srcC,marD:srcD

Format:

X FCMARCDST7SRCCSRCD

15 8 7 0111216202831 27 192324

XMARD

Group: 10

Description:

 The instruction initiates the process of calculating the fast Fourier transform. The

instruction belongs to the FlyBy class of instructions and allows the processor to continue with

the following instructions, without waiting for the completion of the FFT calculation. Data and

twiddle factors are complex numbers, the real and imaginary parts of which are represented in

floating-point format of single precision. The source data are:

 The size of the data array. The 5-bit data length code is located in bits [4: 0] of the

general-purpose register, addressed by the DST field. The parameter can take values

from 0 (data length - 2 numbers) and up to 19 (data length - 1048576 complex

numbers).

 Pointer to a twiddle factors array. The pointer consists of an object selector, a block

offset (both parameters are placed in MAR[MARC]), and an additional block offset

(retrieved from the register R[SRCC]). The length of the array of twiddle factors is 2

times less than the length of the data block.

 Pointer to a data block. The pointer consists of an object selector, a block offset (both

parameters are placed in MAR[MARD]), and an additional block offset (retrieved from

the register R[SRCD]).

At the time of receipt of the FFT instruction, the machine may be busy processing the data

array, initiated earlier. In this case, the new instruction is ignored. To control the start of the

FFT calculation process, the ZF AFR [DST] flag allows. ZF [AFR [DST]] = 1 indicates that the

instruction has successfully started the FFT machine. If ZF = 0, then the command must be

repeated after some time.

 The completion of the processing of the data array is accompanied by the recording of

the code 544646464F444E45h (string “ENDOFFFT”) instead of the last complex number in the

data array. Periodically scanning the last 8 bytes of the data array, you can determine the

completion of the calculation of the FFT.

Altered flags in AFR[dst]:

CF[15:0] Stay unchanged.

ZF Set to 1 if FFT machine runs calculation.

SF Stay unchanged.

OF Stay unchanged.

IF Stay unchanged.

NF Stay unchanged.

DBF Stay unchanged.

OpSize Stay unchanged.

LICntr Set to zero for AFR[dst], AFR[srcP] and AFR[srcD].

AMode Stay unchanged.

Protection violations:

Violation of the object's limit.

Bad data selector, if the selector is zero or it exceeds the limit of the descriptor table.

Attempt to read from an object that is not readable.

Object not accessible on a current privilege level.

Violation of object protection mechanism by TaskID value occurs.

Invalid descriptor type occurs.

Object can’t be accessible for any other cores in the multiprocessor network.

The processor with the specified number is not on the network.

Example:

FFTStart:

 FFT R4,MAR0:R5,MAR2:R11

 JC R4:NZF,Displacement FFTStart

FMULACC – Floating point multiplication and accumulation
Mnemonic:

 FMULACC dst,marP:srcP,marD:srcD

Format:

X FCMARPDST3SRCPSRCD

15 8 7 0111216202831 27 192324

XMARD

Group: 10

Description:

 The instruction performs processing of two arrays - an array of initial data and an array

of coefficients. The DST register contains the sum of the results of multiplying the data

elements by their corresponding coefficients. The data array contains data represented in a

single-precision floating-point format. The coefficient array contains scale factors in the single-

precision format and control information. The first 64-bit word in the coefficient array contains

the counter of the data elements to be processed (bits [31:0]), and the bits [63:32] can

contain the length of the data buffer. The length is expressed in 32-bit words. If the bits

[63:32] are zero, then the offset of each data element is set separately, in the coefficient list,

next to the corresponding coefficient. If the block length is nonzero, then this indicates the

sequential arrangement of the data in the array.

 The group of address registers MARP indicates the base of the memory block where the

coefficient table is placed. The SRCP general register defines an additional offset of the

coefficient table in the block.

 The address register group MARD points to the database of the data block. The general-

purpose register SRCD determines the offset of the first data element in the data block.

FMULACC Machine

System memory

Control buffer

Data buffer

MAR[MARP]

R[SRCP] Limit Length

MAR[MARD]

C0

C1

C2

X

X

X

Counter

D0D1

D2

063

R[SRCD]

4

8

R[DST]

The data is placed with a constant step

 The sequential data addressing mode can be used to implement FIR and IIR filters. In

this mode, if during data processing the data pointer reaches the limit value, then it is set to 0

and the next data element will be read from the data buffer with a zero offset from the

beginning of the buffer. By changing the starting value in the R[SRCD] register, it is possible to

simulate the operation of the delay line of the FIR/IIR filter with the aid of a ring buffer.

FMULACC Machine

System memory

Control buffer

Data buffer

MAR[MARP]

R[SRCP] 0 Length

MAR[MARD]

C0

C1

C2

Offset 0

Offset 1

Offset 2

Counter

D0

D1

D2

063

R[SRCD]

R[DST]

The data is placed in a predefined locations

Altered flags in AFR[dst]:

CF[15:0] Undefined state.

ZF Set to 1 if zero result.

SF MSB of the result.

OF Undefined state.

IF Set to 1 if the result is out of range of the number representation for the single

precision format.

NF Set to 1 if one of the operands is a non-a-number.

DBF Set to an undefined state.

OpSize Set to 2 (Dword).

LICntr Set to zero for AFR[dst], AFR[srcP] and AFR[srcD].

AMode Stay unchanged.

Protection violations:

Violation of the object's limit.

Bad data selector, if the selector is zero or it exceeds the limit of the descriptor table.

Attempt to read from an object that is not readable.

Object not accessible on a current privilege level.

Violation of object protection mechanism by TaskID value occurs.

Invalid descriptor type occurs.

Object can’t be accessible for any other cores in the multiprocessor network.

The processor with the specified number is not on the network.

Example:

 FMULACC R4,MAR0:R5,MAR2:R11

FADD – Floating point Addition
Mnemonic:

FADD dst,src1:src2

Format:

DST SRC2 SRC1 8

15 8 7 031112

Group: 1

Description:

Addition of numbers in a floating-point format.

R[dst]<=R[src1]+R[src2].

Altered flags in AFR[dst]:

CF[15:0] Undefined state.

ZF Set to 1 if zero result.

SF MSB of the result.

OF Undefined state.

IF Set to 1 if the result is out of range of the number representation for the selected

destination format.

NF Set to 1 if one of the operands is a non-a-number.

DBF Set to an undefined state.

OpSize Determined by the maximum value of the width of the initial operands.

LICntr Set to zero for AFR[dst], AFR[src1] and AFR[src2].

AMode Stay unchanged.

Protection violations:

None.

Example:

FADD R3,R7:R15

FSUB – Floating point subtraction
Mnemonic:

FSUB dst,src1:src2

Format:

DST SRC2 SRC1 9

15 8 7 031112

Group: 1

Description:

Subtraction of numbers in a floating-point format.

R[dst]<=R[src1]-R[src2].

Altered flags in AFR[dst]:

CF[15:0] Undefined state.

ZF Set to 1 if zero result.

SF MSB of the result.

OF Undefined state.

IF Set to 1 if the result is out of range of the number representation for the selected

destination format.

NF Set to 1 if one of the operands is a non-a-number.

DBF Undefined state.

OpSize Determined by the maximum value of the width of the initial operands.

LICntr Set to zero for AFR[dst], AFR[src1] and AFR[src2].

AMode Stay unchanged.

Protection violations:

None.

Example:

FSUB R13,R6:R7

FMUL – Floating point multiplication
Mnemonic:

 FMUL dst,src1:src2

Format:

DST SRC2 SRC1 A

15 8 7 031112

Group: 2

Description:

Multiplication of numbers in a floating-point format.

R[dst]<=R[src1]*R[src2].

Altered flags in AFR[dst]:

CF[15:0] Undefined state.

ZF Set to 1 if zero result.

SF MSB of the result.

OF Undefined state.

IF Set to 1 if the result is out of range of the number representation for the selected

destination format.

NF Set to 1 if one of the operands is a non-a-number.

DBF Undefined state.

OpSize Determined by the maximum value of the width of the initial operands.

LICntr Set to zero for AFR[dst], AFR[src1] and AFR[src2].

AMode Stay unchanged.

Protection violations:

None.

Example:

FMUL R10,R8:R8

FDIV – Floating point division
Mnemonic:

 FDIV dst,src1:src2

Format:

DST SRC2 SRC1 B

15 8 7 031112

Group: 3

Description:

Division of numbers in a floating-point format.

R[dst]<=R[src1]/R[src2].

Altered flags in AFR[dst]:

CF[15:0] Undefined state.

ZF Set to 1 if zero result.

SF MSB of the result.

OF Set to an undefined state.

IF Set to 1 if the result is out of range of the number representation for the selected

destination format or if divisor was zero.

NF Set to 1 if one of the operands is a non-a-number.

DBF Set to undefined state.

OpSize Determined by the maximum value of the width of the initial operands.

LICntr Set to zero for AFR[dst], AFR[src1] and AFR[src2].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 FDIV R0,R5:r10

SQRT – Square root
Mnemonic:

 SQRT dst,src2

Format:

DST SRC2 7C

15 8 7 01112

Group: 3

Description:

Extracting the square root from the contents of R[src2] and writing the result to the R[dst]

register. R[dst]<=sqrt(R[src2]).

Altered flags in AFR[dst]:

CF[15:0] Undefined state.

ZF Set to 1 if zero result.

SF Set to 0.

OF Set to undefined state.

IF Set to 1 if the initial operand was an infinite number and to 0, if not.

NF Set to 1 if initial operand is a non-a-number.

DBF Set to undefined state.

OpSize Determined by value of the width of the initial operand.

LICntr Set to zero for AFR[dst] and AFR[src2].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 SQRT R2,R10

ADD – Integer addition
Mnemonic:

 ADD dst,src1:src2

Format:

DST SRC2 SRC1 3

15 8 7 031112

Group: 4

Description:

Addition of integer numbers.

R[dst]<=R[src1]+R[src2].

Altered flags in AFR[dst]:

CF[15:0] Register carry signals from tetrads.

ZF Set to 1 if zero result.

SF MSB of the result.

OF Set to 1 if integer overflow occurs.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to undefined state.

OpSize Determined by the maximum value of the width of the initial operands.

LICntr Set to zero for AFR[dst], AFR[src1] and AFR[src2].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 ADD R6,R6:R10

AND – Logical AND
Mnemonic:

 AND dst,src1:src2

Format:

DST SRC2 SRC1 6

15 8 7 031112

Group: 4

Description:

Logical AND.

R[dst]<=R[src1] &R[src2].

Altered flags in AFR[dst]:

CF[15:0] Undefined state.

ZF Set to 1 if zero result.

SF MSB of the result.

OF Set to 0.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to undefined state.

OpSize Determined by the maximum value of the width of the initial operands.

LICntr Set to zero for AFR[dst], AFR[src1] and AFR[src2].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 AND R15,R2:R3

OR – Logical OR
Mnemonic:

 OR dst,src1:src2

Format:

DST SRC2 SRC1 7

15 8 7 031112

Group: 4

Description:

Logical OR.

R[dst]<=R[src1] | R[src2].

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if zero result.

SF MSB of the result.

OF Set to 0.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to undefined state.

OpSize Determined by the maximum value of the width of the initial operands.

LICntr Set to zero for AFR[dst], AFR[src1] and AFR[src2].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 OR R9,R9:R0

XOR – Exclusive OR
Mnemonic:

 XOR dst,src1:src2

Format:

DST SRC2 SRC1 E

15 8 7 031112

Group: 4

Description:

Exclusive OR.

R[dst]<=R[src1] ^ R[src2].

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if zero result.

SF MSB of the result.

OF Set to 0.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to undefined state.

OpSize Determined by the maximum value of the width of the initial operands.

LICntr Set to zero for AFR[dst], AFR[src1] and AFR[src2].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 XOR R2,R13:R11

FIELDCOPYI – Copying bit field
Mnemonic:

 FIELDCOPYI dst,src2:par1:par2

Format:

FCSRC2DST0Par1Par2

15 8 7 0111216202631 25 19

Group: 4

Description:

Copying the bit field. Several bits (par2), starting with the zero, extracted from the src2

register, are copied to the dst register. Par1 determines the position of the first bit in the dst

register where the copied bit group will be placed. The remaining bits of the dst register

remain unchanged. For example, if dst register R5 holds 16-bit value 0F007h and a value in

src2 register R7 is byte 55h. After the fieldcopyi r5,r7:5:7 instruction is executed, the R5

register will contain a 16-bit value of 0FAA7h.

R[dst]<={R[dst][63:par1+par2], R[src2][par2-1:0], R[dst][par1-1:0]}

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to undefined state.

SF Set to undefined state.

OF Set to undefined state.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to undefined state.

OpSize Determined by the OpSize AFR[dst].

LICntr Set to zero for AFR[dst] and AFR[src2].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 FIELDCOPYI R5,R7:30:7

FIELDCOPY – Copying bit field
Mnemonic:

 FIELDCOPY dst,src2:src3:src4

Format:

XXXX FCSRC2DST1SRC3SRC4

15 8 7 0111216202831 27 192324

Group: 4

Description:

Copying the bit field. Several bits, starting with the zero bit, extracted from the src2 register,

are copied to the dst register. The register R[src3] contains a 6-bit value that determines the

number of the first bit of the register R[dst], from which the copied group of bits will be

located. The bits [5:0] of the register R[src4] contain the number of bits to be copied.

R[dst]<={R[dst][63:R[src3][5:0]+R[src4][5:0]], R[src2][R[src4][5:0]-1:0],

R[dst][R[src3][5:0]-1:0]}

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to undefined state.

SF Set to undefined state.

OF Set to undefined state.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to undefined state.

OpSize Determined by the OpSize AFR[dst].

LICntr Set to zero for AFR[dst], AFR[src3], AFR[src4] and AFR[src2].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 FIELDCOPY R4,R5:R10:R0

MASKCOPY – Masked bits copying
Mnemonic:

 MASKCOPY dst,src2:src3:src4

Format:

XXXX FCSRC2DST2SRC3SRC4

15 8 7 0111216202831 27 192324

Group: 4

Description:

Masked bit copying.

R[dst]<=(R[src2] & ~R[src4]) | (R[src3] & R[src4])

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to undefined state.

SF Set to undefined state.

OF Set to undefined state.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to undefined state.

OpSize Determined by maximum value from AFR[src2], AFR[src3] and AFR[src4].

LICntr Set to zero for AFR[dst], AFR[src3], AFR[src4] and AFR[src2].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 MASKCOPY R1,R9:R10:R15

LSLI – Logical shift left on immediately specified number of bits
Mnemonic:

 LSLI dst:Par

Format:

00ParDST

15 8 7 01112

Group: 5

Description:

Shift the contents of the DST register to the left via the DBF flag by the number of bits

specified by the parameter Par. After executing the command, the last extended bit is stored in

the DBF. The shift is possible by a maximum of 15 bits.

R[dst]<=R[dst] << Par

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if result is zero.

SF MSB of the result.

OF Set to 1 if arithmetic shift left overflow.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to the last shifted out data bit.

OpSize Determined by the OpSize AFR[dst].

LICntr Set to zero for AFR[dst].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 LSLI R0:9

LSL – Logical shift left
Mnemonic:

 LSL dst:src2

Format:

80SRC2DST

15 8 7 01112

Group: 5

Description:

Shifts the contents of the R[dst] register to the left via the DBF flag by the number of bits

specified in the R[src2] register. The bit [5:0] of the R[src2] register is used as the shift

parameter.

R[dst]<=R[dst] << R[src2][5:0]

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if result is zero.

SF MSB of the result.

OF Set to 1 if arithmetic shift left overflow.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to the last shifted out data bit.

OpSize Determined by the OpSize AFR[dst].

LICntr Set to zero for AFR[dst] and AFR[src2].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 LSL R5:R8

LSRI – Logical shift right on immediately specified number of bits
Mnemonic:

 LSRI dst:Par

Format:

10ParDST

15 8 7 01112

Group: 5

Description:

Shift the contents of the DST register to the right via the DBF flag by the number of bits

specified by the parameter Par. After executing the command, the last extended bit is stored in

the DBF. The shift is possible by a maximum of 15 bits.

R[dst]<=R[dst] >> Par

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if result is zero.

SF MSB of the result.

OF Set to 0.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to the last shifted out data bit.

OpSize Determined by the OpSize AFR[dst].

LICntr Set to zero for AFR[dst].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 LSRI R10:8

LSR – Logical shift right
Mnemonic:

 LSR dst:src2

Format:

90SRC2DST

15 8 7 01112

Group: 5

Description:

Shifts the contents of the R[dst] register to the right via the DBF flag by the number of bits

specified in the R[src2] register. The bit [5:0] of the R[src2] register is used as the shift

parameter.

R[dst]<=R[dst] >> R[src2][5:0]

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if result is zero.

SF MSB of the result.

OF Set to 0.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to the last shifted out data bit.

OpSize Determined by the OpSize AFR[dst].

LICntr Set to zero for AFR[dst] and AFR[src2].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 LSR R6:R0

CSLI – Cyclic shift left on immediately specified number of bits
Mnemonic:

CSLI dst:Par

Format:

20ParDST

15 8 7 01112

Group: 5

Description:

Cyclic left shift of the contents of the register R[dst] by the number of bits determined by the

directly specified Par parameter.

R[dst]<=R[dst] << Par

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if result is zero.

SF MSB of the result.

OF Set to 0.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to the last shifted out data bit.

OpSize Determined by the OpSize AFR[dst].

LICntr Set to zero for AFR[dst].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 CSLI R10:10

CSL – Cyclic shift left
Mnemonic:

 CSL dst:src2

Format:

A0SRC2DST

15 8 7 01112

Group: 5

Description:

Cyclic shift left of the contents of the register R[dst] by the number of bits specified in the bits

[5: 0] of the register R[src2].

R[dst]<=R[dst] << R[src2]

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if result is zero.

SF MSB of the result.

OF Set to 0.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to the last shifted out data bit.

OpSize Determined by the OpSize AFR[dst].

LICntr Set to zero for AFR[dst] and AFR[src2].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 CSL R5:R11

CSRI – Cyclic shift right by immediately specified number of bits
Mnemonic:

 CSRI dst:Par

Format:

30ParDST

15 8 7 01112

Group: 5

Description:

Cyclic right shift of the contents of register R [dst] to the specified number of bits.

R[dst]<={R[dst][Par-1:0], R[dst][MSB:Par]}

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if result is zero.

SF MSB of the result.

OF Set to 0.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to the last shifted out data bit.

OpSize Determined by the OpSize AFR[dst].

LICntr Set to zero for AFR[dst].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 CSRI R0:10

CSR – Cyclic shift right
Mnemonic:

 CSR dst:src2

Format:

B0SRC2DST

15 8 7 01112

Group: 5

Description:

Cyclic right shift of the contents of R[dst] by the number of bits specified in the register

R[src2].

R[dst]<={R[dst][R[src2][5:0]-1:0], R[dst][MSB:R[src2][5:0]]}

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if result is zero.

SF MSB of the result.

OF Set to 0.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to the last shifted out data bit.

OpSize Determined by the OpSize AFR[dst].

LICntr Set to zero for AFR[dst] and AFR[src2].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 CSR R15:R0

ASRI – Arithmetic shift right by immediately specified number of

bits
Mnemonic:

 ASRI dst:Par

Format:

50ParDST

15 8 7 01112

Group: 5

Description:

Arithmetic right shift of the contents of R[dst] by the number of bits determined by the

specified parameter.

R[dst]<={{Par{R[dst][MSB]}}, R[dst][MSB:Par]}

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if result is zero.

SF MSB of the result.

OF Set to 0.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to the last shifted out data bit.

OpSize Determined by the OpSize AFR[dst].

LICntr Set to zero for AFR[dst].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 ASRI R2:5

ASR – Arithmetic shift right
Mnemonic:

 ASR dst:src2

Format:

D0SRC2DST

15 8 7 01112

Group: 5

Description:

Arithmetic shift right of the contents of the register R[dst] by the number of bits determined

by the content of the register R[src2].

R[dst]<={{R[src2][5:0]{R[dst][MSB]}}, R[dst][MSB:R[src2][5:0]]}

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if result is zero.

SF MSB of the result.

OF Set to 0.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to the last shifted out data bit.

OpSize Determined by the OpSize AFR[dst].

LICntr Set to zero for AFR[dst] and AFR[src2].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 ASR R6:R7

BSWAP – Bitwise swap
Mnemonic:

 BSWAP dst

Format:

2F0DST

15 01112

Group: 6

Description:

Swap bits in operand.

If the operand is byte, then bits 7 and 0, 6 and 1 and so on change in places. For 16-bit

operands, the bits 15<>0, 14<>1, etc. are being interchanged, 32-bit operands are swapped

bit 31<>0, 30<>1, etc. For 64-bit operands, the bit 63<>0, 62<>1, etc. is swapped.

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if result is zero.

SF MSB of the result.

OF Set to 0.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to undefined state.

OpSize Determined by the OpSize AFR[dst].

LICntr Set to zero for AFR[dst].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 BSWAP R9

NEG – Negation
Mnemonic:

 NEG dst

Format:

3F0DST

15 01112

Group: 6

Description:

Generate additional number code. Used in the operation of subtracting binary numbers.

Prepares the operand before the addition operation.

R[dst]<=(~R[dst])+1

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if result is zero.

SF MSB of the result.

OF Set to 0.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to undefined state.

OpSize Determined by the OpSize AFR[dst].

LICntr Set to zero for AFR[dst].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 NEG R0

DAA – Decimal adjust after addition
Mnemonic:

 DAA dst

Format:

4F0DST

15 01112

Group: 6

Description:

Decimal correction of the result of the addition operation.

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if result is zero.

SF MSB of the result.

OF Set to 0.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to undefined state.

OpSize Determined by the OpSize AFR[dst].

LICntr Set to zero for AFR[dst].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 DAA R2

DAS – Decimal adjust after subtraction
Mnemonic:

 DAS dst

Format:

5F0DST

15 01112

Group: 6

Description:

Decimal correction of the result of the operation of subtraction of BCD-numbers.

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if result is zero.

SF MSB of the result.

OF Set to 0.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to undefined state.

OpSize Determined by the OpSize AFR[dst].

LICntr Set to zero for AFR[dst].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 DAS R11

POS – Highest bit position calculation
Mnemonic:

 POS dst,src2

Format:

DST SRC2 C0

15 8 7 01112

Group: 6

Description:

Calculate the position of the last bit on the left side, set to 1.

Pos=0

For (i=0; i<OperandSize; i=i+1) If (R[src2][i] != 0) Pos=i

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if result is zero.

SF Set to 0.

OF Set to 0.

IF Set to undefined state.

NF Set to undefined state.

DBF Set to undefined state.

OpSize Determined by the OpSize AFR[dst].

LICntr Set to zero for AFR[dst] and AFR[src2].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 POS R0,R14

CFZ – Change data Format with rounding to Zero
Mnemonic:

 CFZ dst,src2

Format:

DST SRC2 1C

15 8 7 01112

Group: 6

Description:

Change the format of floating-point data. The number from the SRC2 register is copied to the

DST register with the format change. The new number format is determined by the OpSize

field of the AFR[dst]. When converting numbers to a format with less accuracy, rounding is

used by discarding the lower bits of the mantissa.

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if result is zero.

SF Set to MSB of the result.

OF Set to 0.

IF Set to 1 if the number is outside the range of the number representation for the

selected format.

NF Set to 1 if source operand is a NaN.

DBF Set to undefined state.

OpSize Determined by the OpSize AFR[dst]

LICntr Set to zero for AFR[dst] and AFR[src2].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 CFZ R1,R6

CFN – Change data Format with rounding to Nearest
Mnemonic:

 CFN dst,src2

Format:

DST SRC2 3C

15 8 7 01112

Group: 6

Description:

Change the format of floating-point data. The number from the SRC2 register is copied to the

DST with the format change. When converting numbers to a lower-precision format, rounding

to the nearest value is applied.

Altered flags in AFR[dst]:

CF[15:0] Set to undefined state.

ZF Set to 1 if result is zero.

SF Set to MSB of the result.

OF Set to 0.

IF Set to 1 if the number is outside the range of the number representation for the

selected format.

NF Set to 1 if source operand is a NaN.

DBF Set to undefined state.

OpSize Determined by the OpSize AFR[dst]

LICntr Set to zero for AFR[dst] and AFR[src2].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 CFN R8,R6

SIZE – Resize operand in register
Mnemonic:

 SIZE dst,OS

Format:

DST OS 0E0

15 9 8 01112

Group: 7

Description:

Three OS bits are written in the OpSize field of the register AFR [dst]. The instruction is used

to replace the width of operands. The OS parameter can take the values BYTE, WORD,

DWORD, QWORD, OWORD and NAN.

AFR[dst][24:22]<=OS

Altered flags in AFR[dst]:

CF[15:0] Stay unchanged.

ZF Stay unchanged.

SF Stay unchanged.

OF Stay unchanged.

IF Stay unchanged.

NF Stay unchanged.

DBF Stay unchanged.

OpSize Accepts the value of OS.

LICntr Set to zero for AFR[dst].

AMode Stay unchanged.

Protection violations:

 None.

Example:

 SIZE R11,DWORD

AMODE – Setup Address processing MODE
Mnemonic:

 AMODE dst,AM

Format:

DST AM 1E0

15 9 8 01112

Group: 7

Description:

Three AM bits are recorded in the AMode field of the register AFR[dst]. AM can take values

from 0 to 7.

AFR[dst][27:25]<=AM

Altered flags in AFR[dst]:

CF[15:0] Stay unchanged.

ZF Stay unchanged.

SF Stay unchanged.

OF Stay unchanged.

IF Stay unchanged.

NF Stay unchanged.

DBF Stay unchanged.

OpSize Stay unchanged.

LICntr Set to zero for AFR[dst].

AMode Accepts the value of AM.

Protection violations:

 None.

Example:

 AMODE R9,5

COPY – Copy register-register
Mnemonic:

 COPY dst,src2

Format:

DST SRC2 40

15 8 7 01112

Group: 7

Description:

The command copies the contents of the register R[src2] to the register R[dst], and copies the

contents of the AFR[src2] register to the register AFR[dst].

R[dst]<=R[src2]

Altered flags in AFR[dst]:

AFR[dst]<=AFR[src2] without LICntr field.

LICntr sets to zero in AFR[dst] and AFR[src2].

Protection violations:

 None.

Example:

 COPY R11,R1

LI – Load Immediate
Mnemonic:

 LI dst,byte

Format:

DST Fbyte

15 4 3 01112

Group: 7

Description:

Load the byte into the 8-bit part of the general-purpose register. The first LI instruction always

loads the byte [7: 0] of register R[dst]. In this case, bit 7 of the byte is copied to all other bits

of the register [127: 8]. The next LI instruction with the same dst value puts the data byte in

the [15: 8] bits of the R [dst] register, and the most significant bit is copied into the [127: 16]

bits of the register. Accordingly, the third instruction will load the third byte into bits [23:16]

by expanding the character to bits [127: 24]. 16 LI instructions fully load a 128-bit register.

For example, the sequence LI R3,78h; LI R3,56h; LI R3,34h; LI R3,12h will result in the

formation of the number 12345678h in the register R3. A sequence of LI R9,0EFh; LI R9,0CDh

will form in the register R9 the value 0FFFFFFFFFFFFFFFFFFFFFFFFFFFFCDEFh. LI commands

can alternate with other commands, as well as with LI commands that have different values in

the dst field. The LICntr counter is zeroed out by any command other than LI and using the

register as the source of the source operand or result receiver.

Altered flags in AFR[dst]:

All flags stay unchanged, but only LICntr receives an increment of 1

Protection violations:

 None.

Example:

 LI R8,0B4h

LI R9,11

LI R8,34 ; R8 loaded with 16-bit value 22B4h, R9 holds byte 0Bh

LAR – Load Address Register
Mnemonic:

 LAR adst,src2

Format:

ADST SRC2 60

15 8 7 01112

Group: 8

Description:

Load address register.

AR[adst]<=R[src2]

Registers AR[13], AR[14] and AR[15] can’t be modified when CPL<>0.

Altered flags:

Field LICntr in AFR[src2] cleared.

Protection violations:

 None.

Example:

 LAR AR6,R12

SAR – Store Address Register
Mnemonic:

 SAR dst,asrc

Format:

DST ASRC 70

15 8 7 01112

Group: 8

Description:

Read address register.

R[dst]<=AR[asrc]

Altered flags:

Field LICntr in R[dst] cleared.

Protection violations:

 None.

Example:

 SAR R10,AR0

LDB/LDW/LDD/LDQ/LDO – Load data from memory
Mnemonic:

 LDB dst,mar:src2

 LDW dst,mar:src2

 LDD dst,mar:src2

 LDQ dst,mar:src2

 LDO dst,mar:src2

Format:

05MARSRC2DST

0DMARSRC2DST

15MARSRC2DST

1DMARSRC2DST

14MARSRC2DST

15 8 7 01112 45

LDB

LDW

LDD

LDQ

LDO

Group: 8

Description:

Instruction loads data into register from local memory space or memory space of the another

processor, or from data stream. The MAR address registers pair describes the object selector

and the base offset. If the [31: 0] bits of the object selector are 0 or equal to the CPUNR

number, then reading is done either from the local memory or from the stream controller,

depending on the type of descriptor. The register R[src2] contains either an additional offset

summed with an offset from the address register, or an increment of the base offset, or does

not participate in the address generation at all. The register AFR [src2] contains the AMODE

field, which defines the final offset generation mode and the basic offset modification mode.

Altered flags:

LICntr field of AFR[src2] and AFR[dst] set to 0.

The Size field in the AFR [dst] register is set depending on the operation applied, however, if

reading data from an empty stream or from a non-existent processor in the network, the Size

field is set to NaN and the NF bit is set to 1.

Protection violations:

Violation of the object's limit.

Bad data selector, if the selector is zero or it exceeds the limit of the descriptor table.

Attempt to read from an object that is not readable.

Object not accessible on a current privilege level.

Violation of object protection mechanism by TaskID value occurs.

Invalid descriptor type occurs.

Object can’t be accessible for any other cores in the multiprocessor network.

The processor with the specified number is not on the network.

Example:

 LDO R10,MAR3:R8

ST – Store data
Mnemonic:

 ST mar:src2,dst

Format:

04MARSRC2DST

15 8 7 01112 45

Group: 8

Description:

The command writes a data element either to local memory, or to the memory of another

processor or to a local stream, or to a stream located in another processor. The bit size of the

data element is determined by the Size field of the register AFR [dst]. A pair of address

registers MAR contains an object selector and a base offset. If the [31: 0] bits of the object

selector are 0 or the current CPUNR value, the data is transferred to either the local memory

or the local flow controller, depending on the type of the object descriptor. If the selector

refers to another processor, the transaction is transferred to the FPU. In the case of the

CoreQuad processor, a transaction can be sent either to TMUX or to the stream controller of

the neighboring core.

Altered flags:

Fields LICntr resets in the AFR[dst] and AFR[src2] registers.

Protection violations:

Violation of the object's limit.

Bad data selector, if the selector is zero or it exceeds the limit of the descriptor table.

Attempt to write to a write-protected object.

Object not accessible on a current privilege level.

Violation of object protection mechanism by TaskID value occurs.

Invalid descriptor type occurs.

Object can’t be accessible for any other cores in the multiprocessor network.

The processor with the specified number is not on the network.

Example:

 ST MAR2:R10,R3

PUSHD – Push data register into the stack
Mnemonic:

 PUSHD dst

Format:

0F0DST

15 1112 0

Group: 8

Description:

Pushing the contents of the general register and the corresponding flags register into the

stack. During the operation, the stack pointer in AR14 is reduced by 24. First, a 32-bit flag

register is pushed to the stack, supplemented with up to 64 bits, then the high-order 64 bits of

the general register and then the lower 64 bits.

Altered flags:

Field LICntr in AFR[dst] cleared.

Protection violations:

Violation of the object's limit.

Bad data selector, if the selector is zero or it exceeds the limit of the descriptor table.

Attempt to write to a write-protected object.

Object not accessible on a current privilege level.

Violation of object protection mechanism by TaskID value occurs.

Invalid descriptor type occurs.

Object can’t be accessible for any other cores in the multiprocessor network.

The processor with the specified number is not on the network.

Example:

 PUSHD R13

PUSHA – Push address register into the stack
Mnemonic:

 PUSHA adst

Format:

8F0ADST

15 1112 0

Group: 8

Description:

Pushing the contents of the address register into the stack. The stack pointer is decremented

by 8 and the value of the address register is written to the stack.

Altered flags:

None

Protection violations:

Violation of the object's limit.

Bad data selector, if the selector is zero or it exceeds the limit of the descriptor table.

Attempt to write to a write-protected object.

Object not accessible on a current privilege level.

Violation of object protection mechanism by TaskID value occurs.

Invalid descriptor type occurs.

Object can’t be accessible for any other cores in the multiprocessor network.

The processor with the specified number is not on the network.

Example:

 PUSHA AR12

POPD – Recover data register from the stack
Mnemonic:

 POPD dst

Format:

1F0DST

15 1112 0

Group: 8

Description:

Recovery from the stack of the general register and its register of flags. First, the lower 64 bits

of the data register are restored, the stack pointer is incremented by 8, then the higher 64 bits

of the data register are restored and the stack pointer is incremented by 8 and then the

AFR[dst] is loaded and the stack pointer is incremented by 8 again.

Altered flags AFR[dst]:

All flags loaded from the stack, but only LICntr cleared

Protection violations:

Violation of the object's limit.

Bad data selector, if the selector is zero or it exceeds the limit of the descriptor table.

Attempt to write to a write-protected object.

Object not accessible on a current privilege level.

Violation of object protection mechanism by TaskID value occurs.

Invalid descriptor type occurs.

Object can’t be accessible for any other cores in the multiprocessor network.

The processor with the specified number is not on the network.

Example:

 POPD R2

POPA – Recover address register from the stack
Mnemonic:

 POPA adst

Format:

9F0ADST

15 1112 0

Group: 8

Description:

Recover address register from the stack and increase the stack pointer by 8.

Altered flags AFR[dst]:

None.

Protection violations:

Violation of the object's limit.

Bad data selector, if the selector is zero or it exceeds the limit of the descriptor table.

Attempt to write to a write-protected object.

Object not accessible on a current privilege level.

Violation of object protection mechanism by TaskID value occurs.

Invalid descriptor type occurs.

Object can’t be accessible for any other cores in the multiprocessor network.

The processor with the specified number is not on the network.

Example:

 POPA AR13

JC – Jump if condition true
Mnemonic:

 JC src1:cc,displacement

Format:

2SRC1CCDisplacement

15 8 7 031112

Group: 9

Description:

The instruction performs conditional transfer of control within the current code object to a

distance of +7 and -8 16-bit words. The command specifies the register R[src1] whose flags

are checked, the jump condition code CC and the 4-bit displacement of the first command

relative to the JC command. The offset is expressed in 16-bit words, since the lengths of all

commands are a multiple of 16-bits.

СС Branch condition

0 ZF = 1

1 CF15 = 1

2 SF = 1

3 OF = 1

4 IF = 1

5 NF = 1

6 DBF = 1

7 Always executed

8 ZF = 0

9 CF15 = 0

A SF = 0

B OF = 0

C IF = 0

D NF = 0

E DBF = 0

F Always executed

Altered flags AFR[dst]:

LICntr zeroed.

Protection violations:

None.

Example:

NaNDetected:

 JC R5:NF,displacement NaNDetected

JCL – Jump if condition true. Long form
Mnemonic:

 JCL src1:cc,displacement

Format:

1 2SRC1CCDisplacement

15 8 7 0311121631

Group: 9

Description:

The instruction performs conditional transfer of control within the current code object to a

distance of +32767 and -32768 16-bit words. The command specifies the register R[src1]

whose flags are checked, the jump condition code CC and the 4-bit displacement of the first

command relative to the JC command. The offset is expressed in 16-bit words, since the

lengths of all commands are a multiple of 16-bits. This instruction must be aligned to the four-

byte paragraph in the memory.

СС Branch condition

0 ZF = 1

1 CF15 = 1

2 SF = 1

3 OF = 1

4 IF = 1

5 NF = 1

6 DBF = 1

7 Always executed

8 ZF = 0

9 CF15 = 0

A SF = 0

B OF = 0

C IF = 0

D NF = 0

E DBF = 0

F Always executed

Altered flags AFR[dst]:

LICntr zeroed.

Protection violations:

None.

Example:

NaNDetected:

 JCL R5:NF,displacement NaNDetected

JNEAR – Near jump
Mnemonic:

 JNEAR displacement

Format:

5CDisplacement

15 067

Group: 9

Description:

The command transfers control within the limits of +255 and -256 of 16-bit words.

Altered flags:

 None.

Protection violations:

None.

Example:

 JNEAR displacement Label_A1

LOOP.
Mnemonic:

 LOOP dst,displacement

Format:

1DisplacementDST

15 031112

Group: 9

Description:

The counter in the R[dst] register is decremented by 1. If a new value in the register R[dst] is

not equal to 0, then a jump is performed using the specified displacement to calculate the

address of the instruction that starts the loop. The transition is possible up to 256 instructions

back (with displacement = 00h). With displacement = 0FFh, the transition will be made to 1

instruction back, to the instruction located in front of LOOP.

Altered flags:

 None.

Protection violations:

None.

Example:

 LOOP R7,displacement A0

JUMP – Jump by value from general register
Mnemonic:

 JUMP dst

Format:

BF0DST

15 01112

Group: 9

Description:

Unconditional jump to location specified by register content.

Altered flags:

 None.

Protection violations:

None.

Example:

 JUMP R9

CALL – Subprogram call
Mnemonic:

 CALL dst

Format:

CF0DST

15 01112

Group: 9

Description:

Call the subroutine who location specified by register content.

Altered flags:

 None.

Protection violations:

Stack object violations:

Violation of the object's limit.

Bad data selector, if the selector is zero or it exceeds the limit of the descriptor table.

Attempt to write to a write-protected object.

Object not accessible on a current privilege level.

Violation of object protection mechanism by TaskID value occurs.

Invalid descriptor type occurs.

Object can’t be accessible for any other cores in the multiprocessor network.

The processor with the specified number is not on the network.

Example:

 CALL R4

SENDMSG – Send message
Mnemonic:

 SENDMSG dst

Format:

AF0DST

15 01112

Group: 9

Description:

Sending a message. The message identifier is located in the [15: 0] bits of the R[dst] general

register. A 32-bit parameter that is passed to the message handler is placed in the bits

[63:32] of the R[dst] register.

Altered flags:

 None.

Protection violations:

The message index is outside the table of imported procedures.

Invalid PSO selector to which the message is sent.

The index goes beyond the table of exported procedures.

Violation of access to the message handler by privilege level.

The type of the message handler does not match the mode of access. For example, if a

software attempt is made to call a hardware interrupt handler.

There is no space in the message queue to write a message.

Example:

 SENDMSG R9

MEMALLOC – Allocate memory block
Mnemonic:

 MEMALLOC dst

Format:

6F0DST

15 01112

Group: 9

Description:

The register R[dst] contains the original instruction parameter and takes the result of its

execution. If the [23:0] bits of the register R[dst] contain zeros, then a new memory block is

allocated. If the bits are non-zero, they are used as an object selector for the object deletion

procedure. Bits [63:32] contain the value of the required length of the object, expressed in 32-

byte paragraphs if the operation of allocating a new block is performed. The distributed block

selector is returned to the R[dst] register if the selection was successful. If the block was not

allocated or was deleted, the register will contain 0.

Altered flags:

 None.

Protection violations:

 None.

Example:

 MEMALLOC R2

GETPAR – Get message parameter
Mnemonic:

 GETPAR dst

Format:

7F0DST

15 01112

Group: 9

Description:

The instruction is used to get the message handler a 32-bit message call parameter that was

previously sent in the SENDMSG instruction.

Altered flags:

 None.

Protection violations:

 None.

Example:

 GETPAR R11

RET – Return from subroutine
Mnemonic:

 RET

Format:

0FF0

15 0

Group: 9

Description:

Returns from the subroutine within the current code object.

Altered flags:

 None.

Protection violations:

Stack object violations:

Violation of the object's limit.

Bad data selector, if the selector is zero or it exceeds the limit of the descriptor table.

Attempt to write to a write-protected object.

Object not accessible on a current privilege level.

Violation of object protection mechanism by TaskID value occurs.

Invalid descriptor type occurs.

Object can’t be accessible for any other cores in the multiprocessor network.

The processor with the specified number is not on the network.

Example:

 RET

ENDMSG – End of message processing
Mnemonic:

 ENDMSG

Format:

1FF0

15 0

Group: 9

Description:

The instruction terminated the processing of the hardware interrupt or message and restores

the execution of the interrupted process.

Altered flags:

 None.

Protection violations:

Empty context stack.

Invalid return PSO selector in context stack.

Example:

 ENDMSG

BKPT – Breakpoint
Mnemonic:

 BKPT

Format:

2FF0

15 0

Group: 9

Description:

Instruction generates breakpoint interrupt. Used for software debugging.

Altered flags:

 None.

Protection violations:

 None.

Example:

 BKPT

NOP – No operations
Mnemonic:

 NOP

Format:

FFF0

15 0

Group: none

Description:

 Instruction is used to align the placement of instructions with a 32-bit format, to the

address that is a multiple of 32-bit double word.

Altered flags:

 None.

Protection violations:

 None.

Example:

 NOP

Note.
Any instruction can cause object limit violation, if processor detects attempt to execute

instruction, that located out of code object range.

MSB – most significant bit

Group. Instructions from different groups can be executed simultaneously if they are

independent of each other by the source operands and the result receivers. X16E can execute

two instructions from groups 1, 2 and 4 simultaneously if they are independent of each other.

