
Contents
Processor architecture .. 1

X16 and X16E cores .. 1

Differences between X16 and X16E ... 3

FlyBy Instructions ... 4

FFT Machine ... 5

Dual FFT Core ... 8

Processor X16x2 ... 8

Processor X16x4 ... 9

X16DT Dual-Thread core .. 11

T2X16T2X32 Quad-Thread core .. 14

In-System Interface .. 14

MpMII .. 17

Address space configuration ... 17

Processor architecture

X16 and X16E cores

Stream controller

Integer/FP ALU

SDRAM

ISI

Peripheral

devices

ISI

External SPI

interface

Bootloader

ROM &

SRAM 32Kb

R15

:

:

R0

AFR15

:

:

AFR0

ATU

AR15

:

:

AR0

Sequencer

Prefetcher &

Code cache 32Kb

T

M

U

X
Context

controller

Memory

management

RAM

256 entries

Messenger

ARAM

256

4 X

FIFO

4 descriptors

Frame

Processing

System

4096

Transaction

cache

TXCR15

:

:

TXCR0

Routing

Engine
East

MpMII

West

MpMII

South

MpMII

North

MpMII

1

3

4

5

6

7

8

SPI

Cache

subsystem

64 Kb

9

2

FFT

Machine

10

AR

data

R

data

Control

1. The executive unit, capable of running up to 8 instructions at a time. The EU

consists of:

 Arithmetic logic unit containing 16 128-bit general-purpose registers - R[15:

0] and identified with them 16 32-bit flags registers AFR[15: 0];

 Address translation unit containing 16 address registers AR[15: 0];

 Sequencer, which manages the process of sending instructions to execution

as their operands and receivers of transaction results are ready;

 Prefetcher, which forms a instruction flow to the sequencer and controls the

processes of control transfer within one code object, which is performed by

the instructions of the loop, conditional and unconditional jumps, calling

subroutines and returning from subroutines;

2. A context controller that manages processes to store the core context in the

PSO (Process State Object) and load the context from the PSO. The context

controller also contains a buffer cache for 128 positions of free memory block

selectors and 128 selector positions for free entry points in the descriptor table.

This buffer, together with the firmware, allows the context controller to process

high-level instructions for allocating and deleting blocks of memory.

3. The messenger is the system responsible for setting messages in the process

message queue and for immediately calling procedures for handling exceptions,

hardware interrupts, and debugging interrupts.

4. The Frame Processing Unit (FPU) is the unit responsible for forming frames for

the multiprocessor network, receiving frames from the network, disassembling

them, generating read / write transactions for local RAM, sending messages to

Messenger, and sending responses to message frames and frames of reading

data from memory. The unit contains a cache of transaction descriptors with a

capacity of 4096 cells, serving the caching of 16 transactions of each of the 255

network processors. The TXCR [15: 0] registers (MasterRAM location) contain

the descriptors of the multiprocessor transactions generated by the processor

core.

5. Routing Engine - 5-port switch multiprocessor frames. RTE carries out routing

of transit frames, outgoing frames and selection of incoming frames. It has 4

32-bit MpMII interfaces (Multiprocessor Media Independent Interface) north,

east, south and west. MpMII can connect to blocks that implement the physical

layer of the interprocessor connection, can connect to the RTE of another core,

if several cores are combined on the same chip in a cluster.

6. Stream Controller. It implements the mechanism of streaming data exchange

between processes both within a single core and in a multiprocessor network.

Stream controller contains a file of registers for 256 thread descriptors, as well

as a cache for 4 threads, which can be used by the core at the same time.

7. TMUX – transaction multiplexer. TMUX processes requests for access to local

memory regions from internal processor modules. TMUX defines the region of

memory that is accessed and sends the transaction for execution in the

corresponding local device. 2 ISI (InSystem Interface) interfaces are provided

by TMUX for connection of SDRAM controllers and various peripheral devices.

8. An SPI interface unit with a built-in memory buffer containing the startup code

and a small memory buffer that is required to perform the initial system

initialization procedure. The memory buffer is also used to form packet data

transfers between the processor and an external device connected via SPI.

9. Cache subsystem. Used to cache data read from SDRAM, data buffering, written

in SDRAM. The block contains a 4-way associative cache and four 32-byte write

buffers. Data exchange between Cache subsystem and SDRAM is performed by

blocks of 32 bytes.

10. FFT Machine. The machine calculates the FFT using complex numbers, the real

and imaginary parts of which are represented in a single-precision floating-point

format. The maximum length of the data block is 2^20 values.

Differences between X16 and X16E
 The differences between the X16 and X16E cores are in the structure of the

execution units of the processor. EU X16 contains a 10-channel sequencer that allows

you to run one instruction for an integer ALU, for a floating-point adder and for a

floating point multiplier simultaneously.

EU64

Integer

ALU

Prefetcher &

Code cache 32Kb

Sequencer

Parallel

shifter

Misc.

unit

FP

adder

FP

mult

FP

divider

Data

moveme

nt

Control

channel

ATU

Memory

channel

R15

R0

AFR15

AFR0

AR0

AR15

AR1

AR14

R14

128-bit (8 instructions) register

/

64

--- 64

Multiplier

and

accumu-

lator

 EU X16E contains a 13-channel sequencer that allows you to simultaneously run

2 instructions for integer operations, 2 add / subtract instructions with floating point

and 2 floating point multiplication instructions.

EU64

Integer

ALU

1

Prefetcher &

Code cache 32Kb

Sequencer

Parallel

shifter

Misc.

unit

FP

Adder

1

FP

Mult

1

FP

divider

Data

movem

ent

Control

channel

ATU

Memory

channel

R15

R0

AFR15

AFR0

AR0

AR15

AR1

AR14

R14

128-bit (8 instructions) register

/

64

--- 64

FP

Mult

2

FP

Adder

2

Integer

ALU

2

Multiplier

and

accumu-

lator

FlyBy Instructions
 FlyBy is a class of instructions that allow the processor to execute all

subsequent instructions located in the program after the FlyBy instruction, without

waiting for the FlyBy instruction to complete. FlyBy instructions are executed using a

hardware resource separate from the execution unit.

 A FlyBy instruction that is started for processing by one process can continue

processing data even when the EU is switched to processing another process.

 FlyBy-instruction may not start processing data if there are no free hardware

resources to do this. The operation of the instruction can be checked by analyzing the

ZF flag of one of the AFRs, in which the 1-bit status of presence (1) / absence (0) of a

free hardware resource is placed.

 The control of completion of the execution of the FlyBy-instruction is carried out

with the help of certain flags located in the predefined memory cells. For example, the

completion of the FFT instruction is accompanied by the ASCII code of the string

'ENDOFFFT' written into the last 8 bytes of the data array.

 At this time, the family of FlyBy instructions is represented by only one

instruction - FFT.

FFT Machine
 Fast Fourier Transform Machine performs processing of complex numbers, the

real and imaginary parts of which are represented in a single-precision floating-point

format.

 The length of the data block is always a multiple of degree 2 and can range

from 2 ^ 1 to 2 ^ 20. The block of twiddle factors always has a length of 2 times less

than the length of the data.

FFT length

TWFIFO

YFIFO

XFIFO

Complex

multiplier

Complex

adder

Complex

adder

+

+

+

-

1

2

2

2

AFIFO

RFIFO

4

MUX

Write machine

Read machine

Data selector Data offset

Twiddle selector Twiddle offset

FFT Cache

4-way

associative

4x2048 complex

numbers

Address

Translation

Unit
From

EU

Parameters

Start processing

TMUX

FPU

Error

reporting

3
5

6 8
7

9

 FFT machine consists of the following units.

1. Input FIFO. Contains 3 64-bit buffers into which two source operands and one

rotation factor are read from memory. The queues are designed so that all

three source values are transferred to the FFT butterfly calculation at the same

time.

2. Two adders and a multiplier for complex numbers calculate the FFT butterfly.

The calculation is pipelined and allows you to get the result of a butterfly

operation on each clock cycle. The length of the pipeline is equal to 7.

3. The registers containing the operation parameters are the logical address of the

data block, the logical address of the twiddle factors block and the size of the

data block.

4. Result queue. Two complex numbers of the result and address information

defining where to write the results are placed in this queue.

5. The machine that controls the reading of the source data and twiddle factors.

6. The machine that controls the recording of results. Initiates write transactions if

there is valid information in the result queue and the address queue. The

contents of the address queue are used by the machine to determine the

address for writing the contents of the results queue.

7. The transaction multiplexer transfers transactions from the write and read

machines to the cache buffer. The priority is always to have a data write

channel, which eliminates the situation of overflow of the entire pipeline and

queues.

8. Cache buffer. Size 64 Kb or 8192 complex numbers. The cache is used to store

twiddle factors and data. When writing data, the cache works in write-through

mode, all transactions write intermediate data or final results are always

translated to TMUX/FPU, regardless of whether the logical address was within

the range of cached addresses or not. The cache uses a logical address to

determine the presence of data in it.

9. Address translation unit. It loads the descriptors of two objects in which the

processed data and twiddle factors are located. The unit controls the FFT

machine’s access to objects, checks the limits of the objects, reloads the

segment descriptors if the object is segmented, and stops the FFT machine’s

operation with generating a violation message if an access error to the object is

detected.

Data or twiddle factors can be located both in the local memory and in the memory of

another core of the multiprocessor network. The address translation unit, depending

on the location of the object, accesses either the local memory via TMUX or the

memory of another core using FPU. Neither data, nor twiddle factors can be placed in

objects described by stream descriptors.

 The decimation-in-time based structure is used to compute FFT. The source

data should already be written with a permutation of the even and odd sequences.

S0
0

S1
0

S2
0

S3
0

S4
0

S5
0

S6
0

S7
0

W0

W0

W0

W0

S0
1

S1
1

S2
1

S3
1

S4
1

S5
1

S6
1

S7
1

W0

W2

W0

W2

S0
2

S1
2

S2
2

S3
2

S4
2

S5
2

S6
2

S7
2

W0

W2

W1

W3

S0
3

S1
3

S2
3

S3
3

S4
3

S5
3

S6
3

S7
3

Dual FFT Core
 A dual core FFT machine can simultaneously perform two FFT operations. The

machine contains twice the number of input data queues and coefficients, two FFT

butterfly calculators, two data read machines, two write machines and two results

queues.

XFIFO

YFIFO

TWFIFO

Butterfly

calculator

RFIFO

AFIFO

Read

machine

Write

machine

Channel 0 registers

XFIFO

YFIFO

TWFIFO

Butterfly

calculator

RFIFO

AFIFO

Read

machine

Write

machine

Channel 1 registers

Cache

8192

complex

numbers

ATU

 The data and twiddle factors cache, as well as the address translation unit, are

common to the two channels of the FFT machine.

Processor X16x2
 The processor contains two cores X16. The transaction multiplexer and stream

controller of each core have 1 additional input to serve the transactions generated by

the neighboring core.

Core

“A”

Core

“B”

FPU &

RTE

“A”

FPU &

RTE

“B”

North-West

MpMII

North-East

MpMII

South-West

MpMII

South-East

MpMII

W
e

s
t

M
p

M
II E

a
s
t

M
p

M
II

FPU is not used if data transactions are performed within a cluster, since all the

cluster cores are connected to all transaction multiplexers and all stream controllers.

 The network CPU numbers of the cores determine the control register belonging

to the core "A", for core “B” the network number is formed in hardware. For example,

if the core "A" network number is 20h, then the "B" core will have the number 21h.

Processor X16x4
 The processor contains four X16 cores. The transaction multiplexer and stream

controller of each core have 3 additional inputs to serve the transactions generated by

the neighboring cores.

FPU

and

Routing

Engine

“A”

Core “A”

EU64

Context

controller

Messenger

CPUNR

XXX0XXX0b

North-West

MpMII

West-North

MpMII

TMUX

“A”

Stream

Cntr.

“A”

BOOT

SRAM

With

SPI

“A”

SDRAM & IO

ISI

SPI

FPU

and

Routing

Engine

“B”

Core “B”

EU64

Context

controller

Messenger

CPUNR

XXX0XXX1b

North-East

MpMII

East-North

MpMII

TMUX

“B”

Stream

Cntr.

“B”

BOOT

SRAM

“B”

SDRAM & IO

ISI

FPU

and

Routing

Engine

“C”

Core “C”

EU64

Context

controller

Messenger

CPUNR

XXX1XXX0b

West-South

MpMII

South-West

MpMII

TMUX

“C”

Stream

Cntr.

“C”

BOOT

SRAM

“C”

SDRAM & IO

ISI

FPU

and

Routing

Engine

“D”

Core “D”

EU64

Context

controller

Messenger

CPUNR

XXX1XXX1b

East-South

MpMII

South-East

MpMII

TMUX

“D”

Stream

Cntr.

“D”

BOOT

SRAM

“D”

SDRAM & IO

ISI

It should be noted that the data from the stream controller can only be read by the

local core. All other cores, as well as FPUs, can only transfer data to streams. For

example, streams hosted in the stream controller "B" are readable only for core "B".

This is indicated by arrows on the connecting lines on the processor's diagram. A

distinctive feature is also the fact that the SPI interface has only the core "A".

 FPU is not used if data transactions are performed within a cluster, since all the

cluster cores are connected to all transaction multiplexers and all stream controllers.

 The network numbers of the cores determine the control register belonging to

the core "A", for all other cores the network number is formed in hardware. For

example, if the core "A" network number is 20h, then the "B" core will have the

number 21h, the "C" core is 30h and the "D" core is 31h.

 The 4-core cluster has 8 MpMII interfaces. The following block diagram explains

the configuration of the cluster.

Core

“A”

Core

“B”

Core

“C”

Core

“D”

FPU

RTE

“A”

FPU

RTE

“D”

FPU

RTE

“B”

FPU

RTE

“C”

North-West

MpMII

West-North

MpMII

North-East

MpMII

East-North

MpMII

West-South

MpMII

South-West

MpMII

East-South

MpMII

South-East

MpMII

X16DT Dual-Thread core
 A two-thread core is capable of simultaneously executing two instruction

streams. At the same time, there is no need for special software support for the

functioning of such a core, unlike multi-core systems, where each core is treated as a

separate processor and the operating system requires some software support for

multiprocessing. Threads can be interrupt handlers, message processing routines, and

can be parallel executable processes. The two-thread core allows more full use of the

computing resources of the processor. For example, while one thread processes

floating-point numbers using multiplication/addition/division blocks, the second thread

can use resources to perform integer arithmetic or logical or shift operations without

any restriction. The differences between single-threaded and double-threaded cores

are as follows.

 TMUX has a dual set of system registers CSR, CPSR and PTR. Each thread has

access only to its own set of registers. The context controller and the message

controller can switch between sets of registers.

 Context and message controllers have hardware support for two channels for

interacting with two threads, as well as modified firmware.

 The executive unit has two instruction prefetchers, two caches of program code,

two sequencers, two sets of registers R, AR and AFR, two blocks of execution of

miscellaneous instructions, two address translation units.

EU64 Dual-Thread

Register file 0

Integer

ALU

Prefetcher 0 &

Code cache 0 32Kb

Sequencer 0

Parallel

shifter

FP

adder

FP

mult
Data

mov. 0

Control

channel

ATU 0

Memory

Channel

0

R15

R0

AFR15

AFR0

AR0

AR15

AR1

AR14

R14
128-bit (8 instructions) register

/

64

--- 64

Multiplier and

accumu-lator

FFT module

FP

divider Misc.

Unit

0

R1

AFR14

AFR1

Sequencer 1 128-bit (8 instructions) register

Misc.

Unit

1

Data

mov. 1

Prefetcher 1 &

Code cache 1 32Kb
Control

channel

ATU 1

Memory

Channel

1

AR0

AR15

AR1

AR14

/

64

--- 64

Register file 1

R15

R0

AFR15

AFR0

R14

R1

AFR14

AFR1

 MUX
Local channel
Stream channel
Network channel

Common blocks are multiplier-battery, FFT machine, FP multiplier, FP divider, FP

adder, parallel shifter, integer ALU. These blocks are used in time-sharing mode with

rotating priority between threads. If both streams continuously use an integer ALU on

each clock cycle, they will receive access alternately.

 After the processor is initialized by the system reset signal, only one thread

starts to execute the code (thread 0). Thread 1 is activated if there are selectors of

two or more processes in the table of executable processes.

T2X16T2X32 Quad-Thread core
 T2X16T2X32 core contains 2 execution units in X16 configuration and two units

in X32 configuration. The leader (starting after a system reset) is one of the X16

blocks, respectively, and the Kernel is used in the version of the X16 instruction set.

The processor can execute simultaneously 2 processes in the X16 instruction set and

two processes in the X32 instruction set. The processor can execute mixed instruction

set processes that contain code objects in the X16 instruction set and code objects in

the X32 instruction set.

In-System Interface
 The interface is intended for connections of the type "master" - "slave". It is

synchronized with the clock signal. It can transmit information at each clock cycle

from the master to the slave and vice versa. Commands, addresses and data are sent

from the master to the slave. The data is valid if the data is written to the internal

resource of the slave device. The slave can only return the read data to the master.

 In general, the ISI consists of the following lines.

Master

unit

CLK

Slave

unit

CLK

NEXT

ACT

DRDY

TAGi

DATAi

CMD

ADDRESS

TAGo

DATAo

1. ACT - transaction activation signal. The master sets ACT = 1 when the

transaction is active.

2. SMD - the type of transaction - read or write. CMD = 0 specifies the write

transaction.

3. ADDRESS - the address describing where in the slave device it is necessary to

place the data or where to read it.

4. TAGo, TAGi - transaction tag. Used only in read transactions. This tag must be

returned by the slave device at the same time as the data read. By the

transaction tag, the master determines the location in which the read data is to

be placed, for example, the tag can contain a general-purpose register number.

5. DATAo - data that the master sends to the slave. The value is valid only for

CMD = 0.

6. NEXT is a signal that notifies the master that a transaction can be received for

processing in the current clock cycle. NEXT = 1 allows the master to set the

parameters of the new transaction in the next clock cycle. NEXT = 0 indicates

that the current transaction must be repeated in the next clock cycle.

7. DRDY - data availability. The slave notifies the master that the data requested

previously is present on the DATAi bus.

8. TAGi – tag of the read transaction.

9. DATAi - data transferred to the master.

An example of the time diagram of the ISI.

CLK

NEXT

ACT

CMD

ADDRESS

TAGo

DATAo

DRDY

TAGi

DATAi

Cycle type Write 1 Write 2 Read 1 Empty cycle
Write 3

(incomplete)

Write 3

(incomplete)
Read 2 Write 3

d.c.

d.c.

Addr. write 1 Addr. write 2 Addr. read 1 d.c. Addr. read 2 Addr. write 3

TAG write 1 TAG write 2 TAG read 1 d.c. TAG read 2 TAG write 3

Data 1 Data 2 d.c. Data 3

d.c. TAG read 1TAG read 2

d.c. Data 1Data 2

The sequence of data returned by the slave module may not coincide with the order of

the read requests generated by the master module. The only way to determine which

response to which read transaction has been sent to the master module is the

transaction tag. In CoreOne and CoreQuad cores ISI is used everywhere. It connects

EU and TMUX, EU and FPU, FPU and stream controller, FPU and TMUX, etc.

 Two ISIs from each core are output as external interfaces, intended for

connection of the memory controllers and modules of peripheral input / output

equipment.

Bus Description

Common buses

CMD Operation type. 1 – read, 0 – write.

ADDR[44:0] Address of the location of the least significant byte of the data
element to be transmitted.

DATA[63:0] The data transferred to the SDRAM or IO device.

BE[7:0] The lines that determine which bytes on the DATA bus are valid.

Encoded according to the table:

ADDR[2:0] Location on the
DATA bus

BE[7:0]

8-bit data

000b [7:0] 11111110b

001b [15:8] 11111101b

010b [23:16] 11111011b

011b [31:24] 11110111b

100b [39:32] 11101111b

101b [47:40] 11011111b

110b [55:48] 10111111b

111b [63:56] 01111111b

16-bit data

00Xb [15:0] 11111100b

01Xb [31:16] 11110011b

10Xb [47:32] 11001111b

11Xb [63:48] 00111111b

32-bit data

0XXb [31:0] 11110000b

1XXb [63:32] 00001111b

64-bit data

XXXb [63:0] 00000000b

TAG[20:0] Tag of transaction.

SDRAM ISI

SDNEXT The readiness of the SDRAM interface unit to accept the
transaction.

SDACT Activation of transaction to SDRAM.

SDCMD Command, read/write.

SDADDR[41:0] Address of the 64-bit word.

SDBE[7:0] Byte enables.

SDDI[63:0] Data to the SDRAM.

SDTI[1:0] Tag.

SDDRDY Readiness of data from SDRAM.

SDDO[63:0] Data read from the SDRAM.

SDTO[1:0] Tag read from SDRAM.

IO ISI

IONEXT IO resource readiness to accept the transaction.

IOACT Activation of transaction to IO resource.

IODRDY Readiness of data from IO resource.

IODAT[63:0] Data read from the IO resource.

IOTAG[20:0] Tag read from IO resource data.

Transaction tag encoding.

12 0

TAG from module EU/FPU/Messenger/Strem controller/Context controller

15

Channel:

000 – EU

001 – FPU

010 – Stream controller

011 – Context controller

100 – Messenger

Only for CoreQuad processor

101 – Neighborhood core

110 – Neighborhood core

111 – Neighborhood core

17

Operand size:

00 – 8-bit

01 – 16-bit

10 – 32-bit

11 – 64-bit

20

Copy of ADDR[2:0]

131618

The bit field of the operand size and the copy of the lower three bits of the address

are used to determine the SDDAT or IODAT bus lines containing the read data.

MpMII
 The interface is intended for communication between the RTE module and the

physical implementation module of multiprocessor communication. It is synchronized

by the main clock signal.

Bus Description

NETSTBO Strobe of data output. 1 - there are valid data on the NETDO bus.

NETDO[32:0] A bus for transferring data to an adjacent processor. Data is
transmitted in bits [31: 0] Bit 32 is used to refer to the first 32-bit
data word in the sequence. For the first word, the bit is set to 1,

the remaining words are followed by 0.

NETSTBI Strobe of data reception. 1 - there are valid data on the NETDI bus.

NETDI[32:0] A data bus received from a neighboring processor.

Address space configuration
 An address space of 1 GB, starting with a zero address, is allocated to

accommodate devices that contain the boot code and system kernel software. Directly

from the zero address, the built-in memory containing the initial initialization code is

allocated. The total size of this block of memory is 32KB. The top of the buffer size of

1024 bytes is designed to organize packet data exchange and control information with

an external SPI device. But the same block can be used as a RAM.

Physical address

space 32768 Gb

Boot memory with

SPI Flash interface

000000000000h

00003FFFFFFFh

000040000000h

System registers

IO block

1FFFBFFFFFFFh

1FFFFFFFFF80h

SDRAM

1FFFFFFF0000h

1FFFFFFFFFFFh

RAM

with KERNEL code

Reserved

SPI Control register

Reserved

SPI Flash

00000000h

00007FFFh

01000000h

1FFFFFFFh

20000000h

3FFFFFFFh

1FFFFFFFFFFFh

IO block

64Kb

1FFFFFFF0000h

1FFFFFFFFF7Fh

At address 1000000h, the SPI interface control register is located. Writing to it lowest

16-bit word initiates the procedure of transfer a variable number of bytes located from

address 7C00h to the SPI FLASH. The transferred data length is programmed by the

contents of the control register.

TxCNTRNot usedRxCMDNot used

31 15 016 1024 23 9

The counter of the bytes transferred to the SPI is located in bits [9:0]. In the bits

[23:16] there is a read command, which must be transferred to the SPI Flash during

read transactions. Read transactions is performed, when processor reads data from

SPI Flash address space. SPI Flash address space starts from 20000000h and ends at

the 3FFFFFFFh. Currently SPI Flash controller supports instructions with a several

codes.

RxCMD Instruction

05 Read status register 1

35 Read status register 2

15 Read status register 3

03 Read data

AB Release ID

90 Read manufacturer/device ID

0B Fast read

4B Read unique ID

5A Read SFDP Register

48 Read security register

 For IO devices, a 64KB memory block is allocated. The last 128 bytes of the

block are used to place the system status and control registers.

